1
|
Snowdon-Farrell A, Attal C, Nikkheslat N, Pariante C, Young AH, Zahn R. How does neurochemistry affect attachment styles in humans? The role of oxytocin and the endogenous opioid system in sociotropy and autonomy - A systematic review. Neurosci Biobehav Rev 2025; 169:105994. [PMID: 39732223 DOI: 10.1016/j.neubiorev.2024.105994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024]
Abstract
Oxytocin was hypothesised to play a critical role in forming and maintaining secure attachments, shown to confer resilience against affective disorders. The endogenous opioid system has also emerged as a key player in attachment dynamics. In this pre-registered systematic review, we investigated whether individual differences in the functioning of these neurochemical systems are related to attachment styles, following PRISMA guidelines. As predicted, individuals with higher oxytocin function exhibited more secure attachment styles (p = .006, n = 12 studies) and less insecure attachment styles (p = .021, n = 16 studies). Contrary to our hypothesis, we found no association of endogenous opioid function with insecure (p = 0.549, n = 11 studies) or secure attachment styles (p = .065, n = 11 studies). The lack of association between endogenous mu-opioid function and attachment styles remains inconclusive due to inconsistencies in the neurochemical measurements and lack of eligible studies. Therefore, further investigations into the role of the endogenous opioid system in attachment styles are needed. Our findings corroborate the hypothesis that individual differences in oxytocin function relate to differences in attachment styles.
Collapse
Affiliation(s)
- Anita Snowdon-Farrell
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, UK
| | - Chiara Attal
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, UK
| | - Naghmeh Nikkheslat
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, UK
| | - Carmine Pariante
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, UK; South London and Maudsley NHS Foundation Trust, London BR3 3BX, United Kingdom
| | - Allan H Young
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, UK; South London and Maudsley NHS Foundation Trust, London BR3 3BX, United Kingdom
| | - Roland Zahn
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, UK; South London and Maudsley NHS Foundation Trust, London BR3 3BX, United Kingdom.
| |
Collapse
|
2
|
Metz GAS, Faraji J. Environmental epigenetics and the loneliness epidemic. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae024. [PMID: 39734912 PMCID: PMC11671689 DOI: 10.1093/eep/dvae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024]
Affiliation(s)
- Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Jamshid Faraji
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
3
|
Izaki A, Verbeke WJMI, Vrticka P, Ein-Dor T. A narrative on the neurobiological roots of attachment-system functioning. COMMUNICATIONS PSYCHOLOGY 2024; 2:96. [PMID: 39406946 PMCID: PMC11480372 DOI: 10.1038/s44271-024-00147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Attachment theory is one of the most comprehensive frameworks in social and developmental psychology. It describes how selective, enduring emotional bonds between infants and their caregivers are formed and maintained throughout life. These attachment bonds exhibit distinct characteristics that are intimately tied to fundamental aspects of mammalian life, including pregnancy, birth, lactation, and infant brain development. However, there is a lack of a cohesive biological narrative that explains the psychological forces shaping attachment behavior and the emergence and consolidation of attachment patterns at a neurobiological level. Here, we propose a theoretical narrative focusing on organized attachment patterns that systematically link the two primary purposes of the attachment behavioral system: the provision of tangible protection or support and the corresponding subjective feeling of safety or security. We aim for this detailed delineation of neurobiological circuits to foster more comprehensive and interdisciplinary future research.
Collapse
|
4
|
Spencer H, Parianen Lesemann FH, Buisman RSM, Kraaijenvanger EJ, Branje S, Boks MPM, Bos PA. Facing infant cuteness: How nurturing care motivation and oxytocin system gene methylation are associated with responses to baby schema features. Horm Behav 2024; 164:105595. [PMID: 38972246 DOI: 10.1016/j.yhbeh.2024.105595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
Baby schema features are a specific set of physical features-including chubby cheeks, large, low-set eyes, and a large, round head-that have evolutionary adaptive value in their ability to trigger nurturant care. In this study among nulliparous women (N = 81; M age = 23.60, SD = 0.44), we examined how sensitivity to these baby schema features differs based on individual variations in nurturant care motivation and oxytocin system gene methylation. We integrated subjective ratings with measures of facial expressions and electroencephalography (EEG) in response to infant faces that were manipulated to contain more or less pronounced baby schema features. Linear mixed effects analyses demonstrated that infants with more pronounced baby schema features were rated as cuter and participants indicated greater motivation to take care of them. Furthermore, infants with more pronounced baby schema features elicited stronger smiling responses and enhanced P2 and LPP amplitudes compared to infants with less pronounced baby schema features. Importantly, individual differences significantly predicted baby schema effects. Specifically, women with low OXTR methylation and high nurturance motivation showed enhanced differentiation in automatic neurophysiological responses to infants with high and low levels of baby schema features. These findings highlight the importance of considering individual differences in continued research to further understand the complexities of sensitivity to child cues, including facial features, which will improve our understanding of the intricate neurobiological system that forms the basis of caregiving behavior.
Collapse
Affiliation(s)
- Hannah Spencer
- Institute of Education and Child Studies, Leiden University, Leiden, the Netherlands.
| | | | - Renate S M Buisman
- Institute of Education and Child Studies, Leiden University, Leiden, the Netherlands
| | - Eline J Kraaijenvanger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim /Heidelberg University, Mannheim, Germany
| | - Susan Branje
- Department of Youth and Family, Utrecht University, Utrecht, the Netherlands
| | - Marco P M Boks
- Brain Centre University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Peter A Bos
- Institute of Education and Child Studies, Leiden University, Leiden, the Netherlands
| |
Collapse
|
5
|
Sanwald S, Montag C, Kiefer M. Group differences in OXT methylation between patients with Major Depressive Disorder and healthy controls: A pre-registered replication study. Psychiatry Res 2024; 335:115855. [PMID: 38522151 DOI: 10.1016/j.psychres.2024.115855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Depression is linked to stress which leaves traces in the epigenetic signature of genes. The oxytocin system is implicated in allostatic processes promoting adaption to environmental stressors. Interactions of the oxytocin system with the environment, e.g., methylation of the gene coding for oxytocin (OXT), are candidates for the investigation of the biological underpinnings of depression. Recently, we found hypomethylation of OXT in patients with Major Depressive Disorder (MDD) compared to healthy controls (HC). Since the replicability of findings is a key point of criticism in (epi‑)genetic research, we aimed to confirm our previous findings in a pre-registered study (data was stored in a database prior to pre-registration) within a new sample of n = 85 patients with MDD and n = 85 HC. We investigated OXT DNA-methylation in peripheral blood samples, stressful life events and depression severity. In accordance with our previous study, we found hypomethylation of OXT in patients with MDD compared to HC. Methylation was not associated with stressful life events. Patients reported significantly more stressful life events compared to HC. Our study revealed that hypomethylation of OXT can be demonstrated in a reproducible fashion and provides further evidence for the involvement of the oxytocin system in depression.
Collapse
Affiliation(s)
- Simon Sanwald
- Ulm University, Department of Psychiatry and Psychotherapy III, Germany.
| | - Christian Montag
- Ulm University, Department of Molecular Psychology, Institute of Psychology and Education, Germany
| | - Markus Kiefer
- Ulm University, Department of Psychiatry and Psychotherapy III, Germany
| |
Collapse
|
6
|
Tomoda A, Nishitani S, Takiguchi S, Fujisawa TX, Sugiyama T, Teicher MH. The neurobiological effects of childhood maltreatment on brain structure, function, and attachment. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01779-y. [PMID: 38466395 DOI: 10.1007/s00406-024-01779-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024]
Abstract
Childhood maltreatment is a risk factor for psychopathologies, and influences brain development at specific periods, particularly during early childhood and adolescence. This narrative review addresses phenotypic alterations in sensory systems associated with specific types of childhood maltreatment exposure, periods of vulnerability to the neurobiological effects of maltreatment, and the relationships between childhood maltreatment and brain structure, function, connectivity, and network architecture; psychopathology; and resilience. It also addresses neurobiological alterations associated with maternal communication and attachment disturbances, and uses laboratory-based measures during infancy and case-control studies to elucidate neurobiological alterations in reactive attachment disorders in children with maltreatment histories. Moreover, we review studies on the acute effects of oxytocin on reactive attachment disorder and maltreatment and methylation of oxytocin regulatory genes. Epigenetic changes may play a critical role in initiating or producing the atypical structural and functional brain alterations associated with childhood maltreatment. However, these changes could be reversed through psychological and pharmacological interventions, and by anticipating or preventing the emergence of brain alterations and subsequent psychopathological risks.
Collapse
Affiliation(s)
- Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Fukui, Japan.
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan.
| | - Shota Nishitani
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Fukui, Japan
| | - Shinichiro Takiguchi
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Fukui, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Takashi X Fujisawa
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Fukui, Japan
| | - Toshiro Sugiyama
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Fukui, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Martin H Teicher
- Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, USA
- Department of Psychiatry, Harvard Medical School, Boston, USA
| |
Collapse
|
7
|
Marzoratti A, Liu ME, Krol KM, Sjobeck GR, Lipscomb DJ, Hofkens TL, Boker SM, Pelphrey KA, Connelly JJ, Evans TM. Epigenetic modification of the oxytocin receptor gene is associated with child-parent neural synchrony during competition. Dev Cogn Neurosci 2023; 63:101302. [PMID: 37734257 PMCID: PMC10518595 DOI: 10.1016/j.dcn.2023.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Interpersonal neural synchrony (INS) occurs when neural electrical activity temporally aligns between individuals during social interactions. It has been used as a metric for interpersonal closeness, often during naturalistic child-parent interactions. This study evaluated whether other biological correlates of social processing predicted the prevalence of INS during child-parent interactions, and whether their observed cooperativity modulated this association. Child-parent dyads (n = 27) performed a visuospatial tower-building task in cooperative and competitive conditions. Neural activity was recorded using mobile electroencephalogram (EEG) headsets, and experimenters coded video-recordings post-hoc for behavioral attunement. DNA methylation of the oxytocin receptor gene (OXTRm) was measured, an epigenetic modification associated with reduced oxytocin activity and socioemotional functioning. Greater INS during competition was associated with lower child OXTRm, while greater behavioral attunement during competition and cooperation was associated with higher parent OXTRm. These differential relationships suggest that interpersonal dynamics as measured by INS may be similarly reflected by other biological markers of social functioning, irrespective of observed behavior. Children's self-perceived communication skill also showed opposite associations with parent and child OXTRm, suggesting complex relationships between children's and their parents' social functioning. Our findings have implications for ongoing developmental research, supporting the utility of biological metrics in characterizing interpersonal relationships.
Collapse
Affiliation(s)
- Analia Marzoratti
- School of Education and Human Development, University of Virginia, Charlottesville, VA, USA
| | - Megan E Liu
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Kathleen M Krol
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Gus R Sjobeck
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Daniel J Lipscomb
- School of Education and Human Development, University of Virginia, Charlottesville, VA, USA
| | - Tara L Hofkens
- School of Education and Human Development, University of Virginia, Charlottesville, VA, USA
| | - Steven M Boker
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Kevin A Pelphrey
- School of Education and Human Development, University of Virginia, Charlottesville, VA, USA; Department of Psychology, University of Virginia, Charlottesville, VA, USA; Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Jessica J Connelly
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Tanya M Evans
- School of Education and Human Development, University of Virginia, Charlottesville, VA, USA; Department of Psychology, University of Virginia, Charlottesville, VA, USA; Department of Neurology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Nishitani S, Fujisawa TX, Yao A, Takiguchi S, Tomoda A. Evaluation of the pooled sample method in Infinium MethylationEPIC BeadChip array by comparison with individual samples. Clin Epigenetics 2023; 15:138. [PMID: 37641110 PMCID: PMC10463626 DOI: 10.1186/s13148-023-01544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/29/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The pooled sample method is used in epigenomic research and expression analysis and is a cost-effective screening approach for small amounts of DNA. Evaluation of the pooled sample method in epigenomic studies is performed using the Illumina Infinium Methylation 450K BeadChip array; however, subsequent reports on the updated 850K array are lacking. A previous study demonstrated that the methylation levels obtained from individual samples were accurately replicated using pooled samples but did not address epigenome-wide association study (EWAS) statistics. The DNA quantification method, which is important for the homogeneous mixing of DNA in the pooled sample method, has since become fluorescence-based, and additional factors need to be considered including the resolution of batch effects of microarray chips and the heterogeneity of the cellular proportions from which the DNA samples are derived. In this study, four pooled samples were created from 44 individual samples, and EWAS statistics for differentially methylated positions (DMPs) and regions (DMRs) were conducted for individual samples and compared with the statistics obtained from the pooled samples. RESULTS The methylation levels could be reproduced fairly well in the pooled samples. This was the case for the entire dataset and when limited to the top 100 CpG sites, consistent with a previous study using the 450K BeadChip array. However, the statistical results of the EWAS for the DMP by individual samples were not replicated in pooled samples. Qualitative analyses highlighting methylation within an arbitrary candidate gene were replicable. Focusing on chr 20, the statistical results of EWAS for DMR from individual samples showed replicability in the pooled samples as long as they were limited to regions with a sufficient effect size. CONCLUSIONS The pooled sample method replicated the methylation values well and can be used for EWAS in DMR. This method is sample amount-effective and cost-effective and can be utilized for screening by carefully understanding the effective features and disadvantages of the pooled sample method and combining it with candidate gene analyses.
Collapse
Affiliation(s)
- Shota Nishitani
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan.
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, University of Fukui, Osaka, Japan.
- Life Science Innovation Center, University of Fukui, Fukui, Japan.
| | - Takashi X Fujisawa
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, University of Fukui, Osaka, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Akiko Yao
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Shinichiro Takiguchi
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, University of Fukui, Osaka, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, University of Fukui, Osaka, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| |
Collapse
|
9
|
Feixiang L, Yanchen F, Xiang L, Yunke Z, Jinxin M, Jianru W, Zixuan L. The mechanism of oxytocin and its receptors in regulating cells in bone metabolism. Front Pharmacol 2023; 14:1171732. [PMID: 37229246 PMCID: PMC10203168 DOI: 10.3389/fphar.2023.1171732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Oxytocin (OT) is a neuropeptide known to affect social behavior and cognition. The epigenetic modification of the oxytocin receptor (OTR) via DNA methylation stimulates parturition and breast milk secretion and inhibits craniopharyngioma, breast cancer, and ovarian cancer growth significantly as well as directly regulates bone metabolism in their peripheral form rather than the central form. OT and OTR can be expressed on bone marrow mesenchymal stem cells (BMSCs), osteoblasts (OB), osteoclasts (OC), osteocytes, chondrocytes, and adipocytes. OB can synthesize OT under the stimulation of estrogen as a paracrine-autocrine regulator for bone formation. OT/OTR, estrogen, and OB form a feed-forward loop through estrogen mediation. The osteoclastogenesis inhibitory factor (OPG)/receptor activator of the nuclear factor kappa-B ligand (RANKL) signaling pathway is crucially required for OT and OTR to exert anti-osteoporosis effect. Downregulating the expression of bone resorption markers and upregulating the expression of the bone morphogenetic protein, OT could increase BMSC activity and promote OB differentiation instead of adipocytes. It could also stimulate the mineralization of OB by motivating OTR translocation into the OB nucleus. Moreover, by inducing intracytoplasmic Ca2+ release and nitric oxide synthesis, OT could regulate the OPG/RANKL ratio in OB and exert a bidirectional regulatory effect on OC. Furthermore, OT could increase the activity of osteocytes and chondrocytes, which helps increase bone mass and improve bone microstructure. This paper reviews recent studies on the role of OT and OTR in regulating cells in bone metabolism as a reference for their clinical use and research based on their reliable anti-osteoporosis effects.
Collapse
Affiliation(s)
- Liu Feixiang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Feng Yanchen
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Li Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, China
| | - Zhang Yunke
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Miao Jinxin
- Research and Experiment Center, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wang Jianru
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Lin Zixuan
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Neuroimaging genetics of oxytocin: A transcriptomics-informed systematic review. Neurosci Biobehav Rev 2022; 142:104912. [DOI: 10.1016/j.neubiorev.2022.104912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/10/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022]
|
11
|
Melino S, Mormone E. On the Interplay Between the Medicine of Hildegard of Bingen and Modern Medicine: The Role of Estrogen Receptor as an Example of Biodynamic Interface for Studying the Chronic Disease's Complexity. Front Neurosci 2022; 16:745138. [PMID: 35712451 PMCID: PMC9196248 DOI: 10.3389/fnins.2022.745138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Hildegard of Bingen (1098-1179) interpreted the origins of chronic disease highlighting and anticipating, although only in a limited fashion, the importance that complex interactions among numerous genetic, internal milieu and external environmental factors have in determining the disease phenotype. Today, we recognize those factors, capable of mediating the transmission of messages between human body and environment and vice versa, as biodynamic interfaces. Aim We analyzed, in the light of modern scientific evidence, Hildegard of Bingen's medical approach and her original humoral theory in order to identify possible insights included in her medicine that could be referred to in the context of modern evidence-based medicine. In particular, the abbess's humoral theory suggests the identification of biodynamic interfaces with sex hormones and their receptors. Findings We found that the Hildegardian holistic vision of the organism-environment relationship can actually represent a visionary approach to modern endocrinology and that sex hormones, in particular estrogens, could represent an example of a biodynamic interface. Estrogen receptors are found in regions of the brain involved in emotional and cognitive regulation, controlling the molecular mechanism of brain function. Estrogen receptors are involved in the regulation of the hypothalamic-pituitary-adrenal axis and in the epigenetic regulation of responses to physiological, social, and hormonal stimuli. Furthermore, estrogen affects gene methylation on its own and related receptor promoters in discrete regions of the developing brain. This scenario was strikingly perceived by the abbess in the XIIth century, and depicted as a complex interplay among different humors and flegmata that she recognized to be sex specific and environmentally regulated. Viewpoint Considering the function played by hormones, analyzed through the last scientific evidence, and scientific literature on biodynamic interfaces, we could suggest Hildegardian insights and theories as the first attempt to describe the modern holistic, sex-based medicine. Conclusion Hildegard anticipated a concept of pathogenesis that sees a central role for endocrinology in sex-specific disease. Furthermore, estrogens and estrogen receptors could represent a good example of molecular interfaces capable of modulating the interaction between the organism internal milieu and the environmental factors.
Collapse
Affiliation(s)
- Sabrina Melino
- Research Unit of Philosophy of Science and Human Development, Faculty of Science and Technology for Humans and the Environment, University Campus Bio-Medico of Rome, Rome, Italy
| | - Elisabetta Mormone
- Fondazione IRCCS Casa Sollievo della Sofferenza, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, Foggia, Italy
| |
Collapse
|
12
|
Bell K, McMillin K, Ethridge LE. Bereft and Left: The interplay between insecure attachment, isolation, and neurobiology. DEVELOPMENTAL REVIEW 2022. [DOI: 10.1016/j.dr.2022.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Doi S, Isumi A, Fujiwara T. Association between maternal adverse childhood experiences and child resilience and self-esteem: Results from the K-CHILD study. CHILD ABUSE & NEGLECT 2022; 127:105590. [PMID: 35287013 DOI: 10.1016/j.chiabu.2022.105590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Previous studies have found that children of mothers with adverse childhood experiences (ACEs) are more likely to have adverse mental health outcomes. However, little is known about the role of other cognitive abilities, such as resilience and self-esteem, in how children deal with stressful situations. OBJECTIVE To examine the association between maternal ACEs and resilience and self-esteem in children. PARTICIPANTS AND SETTING The data was collected as part of the population-based Kochi Child Health Impact of Living Difficulty (K-CHILD) study in 2016. Participants included 2759 in first grade, 2878 in fifth grade, 3143 in eighth grade, and 3611 children in 11th grade living in Kochi Prefecture, Japan (N = 12,391). METHODS Maternal ACEs and covariates were reported by mothers. Mothers provided information regarding their children's resilience for children in the first, fifth, and eighth grades. Children in the fifth, eighth, and 11th grades reported their own self-esteem. RESULTS Children of mothers with a larger number of ACEs had lower levels of resilience (p for trend (i.e., linear associations) < 0.001) as well as lower levels of self-esteem (p for trend <0.001), adjusting for potential confounding variables. These associations became non-significant after adjusting for potential mediators, and the relationship was mediated by variables such as maternal psychological distress, current socioeconomic status, and parenting behaviors. CONCLUSIONS There was a significant dose-response relationship between the number of maternal ACEs and children's resilience and self-esteem, and this relationship may be mediated by maternal psychological distress, current socioeconomic status, and positive parenting behaviors. Further interventional studies that break the link between maternal ACEs and resilience and self-esteem should be conducted.
Collapse
Affiliation(s)
- Satomi Doi
- Department of Global Health Promotion, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | - Aya Isumi
- Department of Global Health Promotion, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takeo Fujiwara
- Department of Global Health Promotion, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
14
|
Oxytocin system gene methylation is associated with empathic responses towards children. Psychoneuroendocrinology 2022; 137:105629. [PMID: 34973541 DOI: 10.1016/j.psyneuen.2021.105629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 11/23/2022]
Abstract
Empathy is an essential component of sensitive caregiving behavior, which in turn is an important predictor of children's healthy social-emotional development. The oxytocin (OXT) system plays a key role in promoting sensitive parenting and empathy. In this study, we investigated how OXT system gene methylation was associated with empathic processes in nulliparous women (M age = 23.60, SD =0.44)-measuring both physiological facial muscle responses and ratings of compassion and positive affect to affective images depicting children. Linear mixed effects analyses demonstrated that lower methylation levels in the OXT and OXTR genes were related to enhanced empathic responses. The effect of OXT system gene methylation on empathic processes was partly qualified by an interaction with individual variations in women's care motivation. Our findings provide experimental evidence for an association between the methylation of OXT system genes and empathy.
Collapse
|
15
|
OXTR Gene DNA Methylation Levels Are Associated with Discounting Behavior with Untrustworthy Proposers. Brain Sci 2022; 12:brainsci12010098. [PMID: 35053841 PMCID: PMC8774269 DOI: 10.3390/brainsci12010098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Individual differences in temporal and probabilistic discounting are associated with a wide range of life outcomes in literature. Traditional approaches have focused on impulsiveness and cognitive control skills, on goal-oriented personality traits as well as on the psychological perception of time. More recently, literature started to consider the role of social and contextual factors in discounting behavior. Between others, higher generalized trust in human beings and specific trust in people who will deliver the future/probabilistic rewards have been related to a stronger willingness to wait and to assume risk. Moreover, the tendency to trust others has been associated with the oxytocin receptor gene regulation that can be modified by life experiences. In this perspective, we hypothesized that differences in the tendency to wait and to take risks for a more desirable reward according to the proposer’s trustworthiness could be related to a different level of DNA methylation at the oxytocin receptor gene. Findings confirmed that participants are less willing to wait and to risk when the proposer is considered highly untrustworthy and revealed how higher oxytocin receptor gene DNA methylation is associated with a stronger effect due to the presence of an untrustworthy proposer. Limits and future directions are outlined.
Collapse
|
16
|
Nishitani S, Fujisawa TX, Hiraoka D, Makita K, Takiguchi S, Hamamura S, Yao A, Shimada K, Smith AK, Tomoda A. A multi-modal MRI analysis of brain structure and function in relation to OXT methylation in maltreated children and adolescents. Transl Psychiatry 2021; 11:589. [PMID: 34789725 PMCID: PMC8599663 DOI: 10.1038/s41398-021-01714-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
Child maltreatment dysregulates the brain's oxytocinergic system, resulting in dysfunctional attachment patterns. However, how the oxytocinergic system in children who are maltreated (CM) is epigenetically affected remains unknown. We assessed differences in salivary DNA methylation of the gene encoding oxytocin (OXT) between CM (n = 24) and non-CM (n = 31), alongside its impact on brain structures and functions using multi-modal brain imaging (voxel-based morphometry, diffusion tensor imaging, and task and resting-state functional magnetic resonance imaging). We found that CM showed higher promoter methylation than non-CM, and nine CpG sites were observed to be correlated with each other and grouped into one index (OXTmi). OXTmi was significantly negatively correlated with gray matter volume (GMV) in the left superior parietal lobule (SPL), and with right putamen activation during a rewarding task, but not with white matter structures. Using a random forest regression model, we investigated the sensitive period and type of maltreatment that contributed the most to OXTmi in CM, revealing that they were 5-8 years of age and physical abuse (PA), respectively. However, the presence of PA (PA+) was meant to reflect more severe cases, such as prolonged exposure to multiple types of abuse, than the absence of PA. PA+ was associated with significantly greater functional connectivity between the right putamen set as the seed and the left SPL and the left cerebellum exterior. The results suggest that OXT promoter hypermethylation may lead to the atypical development of reward and visual association structures and functions, thereby potentially worsening clinical aspects raised by traumatic experiences.
Collapse
Affiliation(s)
- Shota Nishitani
- grid.163577.10000 0001 0692 8246Research Center for Child Mental Development, University of Fukui, Fukui, Japan ,grid.136593.b0000 0004 0373 3971Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan ,grid.163577.10000 0001 0692 8246Life Science Innovation Center, University of Fukui, Fukui, Japan ,grid.189967.80000 0001 0941 6502Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA USA
| | - Takashi X. Fujisawa
- grid.163577.10000 0001 0692 8246Research Center for Child Mental Development, University of Fukui, Fukui, Japan ,grid.136593.b0000 0004 0373 3971Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan ,grid.163577.10000 0001 0692 8246Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Daiki Hiraoka
- grid.163577.10000 0001 0692 8246Research Center for Child Mental Development, University of Fukui, Fukui, Japan ,grid.54432.340000 0004 0614 710XJapan Society for the Promotion of Science, Tokyo, Japan
| | - Kai Makita
- grid.163577.10000 0001 0692 8246Research Center for Child Mental Development, University of Fukui, Fukui, Japan ,grid.136593.b0000 0004 0373 3971Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
| | - Shinichiro Takiguchi
- grid.413114.2Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Shoko Hamamura
- grid.163577.10000 0001 0692 8246Research Center for Child Mental Development, University of Fukui, Fukui, Japan ,grid.136593.b0000 0004 0373 3971Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan ,grid.413114.2Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Akiko Yao
- grid.163577.10000 0001 0692 8246Research Center for Child Mental Development, University of Fukui, Fukui, Japan ,grid.136593.b0000 0004 0373 3971Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan
| | - Koji Shimada
- grid.163577.10000 0001 0692 8246Research Center for Child Mental Development, University of Fukui, Fukui, Japan ,grid.136593.b0000 0004 0373 3971Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan ,grid.163577.10000 0001 0692 8246Life Science Innovation Center, University of Fukui, Fukui, Japan ,grid.163577.10000 0001 0692 8246Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Alicia K. Smith
- grid.189967.80000 0001 0941 6502Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA USA
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan. .,Division of Developmental Higher Brain Functions, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka, Japan. .,Life Science Innovation Center, University of Fukui, Fukui, Japan. .,Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan.
| |
Collapse
|
17
|
DNA Methylation Changes in Fibromyalgia Suggest the Role of the Immune-Inflammatory Response and Central Sensitization. J Clin Med 2021; 10:jcm10214992. [PMID: 34768513 PMCID: PMC8584620 DOI: 10.3390/jcm10214992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 12/14/2022] Open
Abstract
Fibromyalgia (FM) has been explained as a result of gene-environment interactions. The present study aims to verify DNA methylation differences in eleven candidate genome regions previously associated to FM, evaluating DNA methylation patterns as potential disease biomarkers. DNA methylation was analyzed through bisulfite sequencing, comparing 42 FM women and their 42 healthy sisters. The associations between the level of methylation in these regions were further explored through a network analysis. Lastly, a logistic regression model investigated the regions potentially associated with FM, when controlling for sociodemographic variables and depressive symptoms. The analysis highlighted significant differences in the GCSAML region methylation between patients and controls. Moreover, seventeen single CpGs, belonging to other genes, were significantly different, however, only one cytosine related to GCSAML survived the correction for multiple comparisons. The network structure of methylation sites was different for each group; GRM2 methylation represented a central node only for FM patients. Logistic regression revealed that depressive symptoms and DNA methylation in the GRM2 region were significantly associated with FM risk. Our study encourages better exploration of GCSAML and GRM2 functions and their possible role in FM affecting immune, inflammatory response, and central sensitization of pain.
Collapse
|
18
|
Wei S, Tao J, Xu J, Chen X, Wang Z, Zhang N, Zuo L, Jia Z, Chen H, Sun H, Yan Y, Zhang M, Lv H, Kong F, Duan L, Ma Y, Liao M, Xu L, Feng R, Liu G, Project TEWAS, Jiang Y. Ten Years of EWAS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100727. [PMID: 34382344 PMCID: PMC8529436 DOI: 10.1002/advs.202100727] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Epigenome-wide association study (EWAS) has been applied to analyze DNA methylation variation in complex diseases for a decade, and epigenome as a research target has gradually become a hot topic of current studies. The DNA methylation microarrays, next-generation, and third-generation sequencing technologies have prepared a high-quality platform for EWAS. Here, the progress of EWAS research is reviewed, its contributions to clinical applications, and mainly describe the achievements of four typical diseases. Finally, the challenges encountered by EWAS and make bold predictions for its future development are presented.
Collapse
Affiliation(s)
- Siyu Wei
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Junxian Tao
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Jing Xu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Xingyu Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhaoyang Wang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Nan Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Lijiao Zuo
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhe Jia
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Haiyan Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongmei Sun
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Yubo Yan
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Mingming Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongchao Lv
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Fanwu Kong
- The EWAS ProjectHarbinChina
- Department of NephrologyThe Second Affiliated HospitalHarbin Medical UniversityHarbin150001China
| | - Lian Duan
- The EWAS ProjectHarbinChina
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Ye Ma
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Mingzhi Liao
- The EWAS ProjectHarbinChina
- College of Life SciencesNorthwest A&F UniversityYanglingShanxi712100China
| | - Liangde Xu
- The EWAS ProjectHarbinChina
- School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325035China
| | - Rennan Feng
- The EWAS ProjectHarbinChina
- Department of Nutrition and Food HygienePublic Health CollegeHarbin Medical UniversityHarbin150081China
| | - Guiyou Liu
- The EWAS ProjectHarbinChina
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijing100069China
| | | | - Yongshuai Jiang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| |
Collapse
|
19
|
Darling Rasmussen P, Storebø OJ. Attachment and Epigenetics: A Scoping Review of Recent Research and Current Knowledge. Psychol Rep 2021; 124:479-501. [PMID: 32024431 DOI: 10.1177/0033294120901846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
BACKGROUND Epigenetic research has pointed to that the interaction between genetics and environmental factors may play a role in making some individuals more vulnerable than others. AIM The aim of this article was to present a broad perspective on the current state of knowledge in a relatively new and complex field of "attachment and epigenetic processes." METHOD We conducted a scoping review based on a systematic literature search in PsycINFO, PubMed, and Embase databases for relevant abstracts using the terms attachment and epigenet*. RESULTS In total, 11 studies were included. Research predating 2009 and animal studies were excluded in order to review the current state of research in humans. CONCLUSION Overall, there seems to be a consistency in the literature, pointing to a link between early childhood adversity, attachment processes, and epigenetic changes. However, research in human subjects is still limited.
Collapse
Affiliation(s)
- Pernille Darling Rasmussen
- Child and Adolescent Psychiatric Department, Region Zealand, Denmark; Psychiatric Research Unit, Region Zealand, Denmark; Child and Adolescent Psychiatric Department, Psychiatric Research Unit, University of Southern Denmark, Odense, Denmark
| | - Ole Jakob Storebø
- Child and Adolescent Psychiatric Department, Region Zealand, Denmark; Psychiatric Research Unit, Region Zealand, Denmark; Child and Adolescent Psychiatric Department, Psychiatric Research Unit, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Craig F, Tenuta F, Rizzato V, Costabile A, Trabacca A, Montirosso R. Attachment-related dimensions in the epigenetic era: A systematic review of the human research. Neurosci Biobehav Rev 2021; 125:654-666. [PMID: 33727029 DOI: 10.1016/j.neubiorev.2021.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/16/2022]
Abstract
In recent years, an increasing number of studies documented potential links between parental care and epigenetic mechanisms. The present systematic review focuses on the potential association and interrelationship between attachment-related dimensions and DNA methylation in human studies. We performed a literature review using electronic databases such as PubMed, Scopus, Web of Science, and EBSCOhost. Thirteen papers were included in the review. Findings support significant associations between attachment-related dimensions and epigenetic status in studies which considered different populations, age ranges, attachment measures and peripheral tissues. Although research in this area is still under investigation, available results suggest that DNA methylation associated with attachment-related dimensions might affect the development of stress regulation system and social-emotional capacities, thus contributing to the emerging phenotypic outcomes. However, identifying mediator and moderator effects in the interrelationship between these parameters was problematic owing to heterogeneous methodologies. Finally, we discuss clinical implications, unanswered questions, and future directions for human development in epigenetics research.
Collapse
Affiliation(s)
- Francesco Craig
- Scientific Institute, IRCCS E. Medea, Unit for Severe Disabilities in Developmental Age and Young Adults, Brindisi, Italy
| | - Flaviana Tenuta
- Department of Culture, Education and Society, University of Calabria, Cosenza, Italy
| | - Veronica Rizzato
- Scientific Institute, IRCCS E. Medea, Unit for Severe Disabilities in Developmental Age and Young Adults, Brindisi, Italy
| | - Angela Costabile
- Department of Culture, Education and Society, University of Calabria, Cosenza, Italy
| | - Antonio Trabacca
- Scientific Institute, IRCCS E. Medea, Unit for Severe Disabilities in Developmental Age and Young Adults, Brindisi, Italy.
| | - Rosario Montirosso
- Scientific Institute, IRCCS Eugenio Medea, 0-3 Center for the at-Risk Infant, Bosisio Parini, Italy
| |
Collapse
|
21
|
Ogawa S, Pfaff DW, Parhar IS. Fish as a model in social neuroscience: conservation and diversity in the social brain network. Biol Rev Camb Philos Soc 2021; 96:999-1020. [PMID: 33559323 DOI: 10.1111/brv.12689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Mechanisms for fish social behaviours involve a social brain network (SBN) which is evolutionarily conserved among vertebrates. However, considerable diversity is observed in the actual behaviour patterns amongst nearly 30000 fish species. The huge variation found in socio-sexual behaviours and strategies is likely generated by a morphologically and genetically well-conserved small forebrain system. Hence, teleost fish provide a useful model to study the fundamental mechanisms underlying social brain functions. Herein we review the foundations underlying fish social behaviours including sensory, hormonal, molecular and neuroanatomical features. Gonadotropin-releasing hormone neurons clearly play important roles, but the participation of vasotocin and isotocin is also highlighted. Genetic investigations of developing fish brain have revealed the molecular complexity of neural development of the SBN. In addition to straightforward social behaviours such as sex and aggression, new experiments have revealed higher order and unique phenomena such as social eavesdropping and social buffering in fish. Finally, observations interpreted as 'collective cognition' in fish can likely be explained by careful observation of sensory determinants and analyses using the dynamics of quantitative scaling. Understanding of the functions of the SBN in fish provide clues for understanding the origin and evolution of higher social functions in vertebrates.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, Rockefeller University, New York, NY, 10065, U.S.A
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| |
Collapse
|
22
|
Hiraoka D, Nishitani S, Shimada K, Kasaba R, Fujisawa TX, Tomoda A. RETRACTED: Epigenetic modification of the oxytocin gene is associated with gray matter volume and trait empathy in mothers. Psychoneuroendocrinology 2021; 123:105026. [PMID: 33130408 DOI: 10.1016/j.psyneuen.2020.105026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). The Editor has concluded that the acceptance of this article was partly based upon the positive advice of an unreliable reviewer report. The report was provided to the journal by a reviewer suggested by the authors, and there were inappropriate communications between the authors and reviewer during the peer-review process. The Editor has therefore concluded that the review was not appropriate or independent. This manipulation of the peer-review process represents a clear violation of the fundamentals of peer review, our publishing policies, and publishing ethics standards. Apologies are offered to the readers of the journal that this deception was not detected during the submission process.
Collapse
Affiliation(s)
- Daiki Hiraoka
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shota Nishitani
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan
| | - Koji Shimada
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan; Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Ryoko Kasaba
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan
| | - Takashi X Fujisawa
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan; Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan; Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Fukui, Japan.
| |
Collapse
|
23
|
Relation of promoter methylation of the structural oxytocin gene to critical life events in major depression: A case control study. J Affect Disord 2020; 276:829-838. [PMID: 32738668 DOI: 10.1016/j.jad.2020.07.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/02/2020] [Accepted: 07/05/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Stressful life events (SLEs) are associated with hyper(re-)activity of the HPA-axis. HPA-axis hyper(re-)activity is thought to be a major risk factor for depression development. SLEs may induce changes in an organism's stress system via epigenetic mechanisms. The neuropeptide oxytocin (OT) is able to attenuate the stress response, and OT pathways are dysregulated in individuals suffering from Major Depressive Disorder (MDD). Therefore, the gene coding for oxytocin (OXT) is a possible target for the investigation of depression development. METHODS We collected data on SLEs, OXT promoter methylation (Sequenom Epityper MassArray) and depression severity from 90 MDD inpatients and 90 matched healthy controls. RESULTS We found MDD inpatients to have a significantly lower OXT methylation than healthy controls. Methylation status was significantly negatively associated with SLEs but only in the group of MDD inpatients. There were no associations between methylation status and depression severity. LIMITATIONS Methylation in blood samples is only a proxy for epigenetic profiles in brain tissue. We did not assess mRNA or protein levels and cannot draw conclusions regarding the functionality or specificity of differences in OXT methylation between groups. CONCLUSION SLEs leave their traces in the epigenetic profiles of the OT system of MDD inpatients. Alterations in epigenetic profiles of the OXT system could constitute a vulnerability factor predisposing individuals for depression development. Better understanding of DNA methylation profiles of depression-associated genes could serve as basis for a personalized medicine, in which pharmacological or psychotherapeutic treatment of depression is tailored to the patient's individual characteristics.
Collapse
|
24
|
De Leon D, Nishitani S, Walum H, McCormack KM, Wilson ME, Smith AK, Young LJ, Sanchez MM. Methylation of OXT and OXTR genes, central oxytocin, and social behavior in female macaques. Horm Behav 2020; 126:104856. [PMID: 32979349 PMCID: PMC7725942 DOI: 10.1016/j.yhbeh.2020.104856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/01/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022]
Abstract
Oxytocin (OXT) and its receptor (OXTR) are encoded by OXT and OXTR, respectively. Variable methylation of these genes has been linked to variability in sociability and neuroendophenotypes. Here we examine whether OXTR or OXT methylation in blood predicts concentrations of OXT in cerebrospinal fluid (CSF) (n = 166) and social behavior (n = 207) in socially-housed female rhesus macaques. We report a similarity between human and rhesus CpG sites for OXT and OXTR and a putative negative association between methylation of two OXTR CpG units with aggressive behavior (both P = 0.003), though this finding does not survive the most stringent correction for multiple comparison testing. We did not detect a statistically significant association between methylation of any CpG sites and CSF OXT concentrations, either. Because none of the tested associations survived statistical corrections, if there is any relationship between blood-derived methylation of these genes and the behavioral and physiological outcomes measured here, the effect size is too small to be detected reliably with this sample size. These results do not support the hypothesis that blood methylation of OXT or OXTR is robustly associated with CSF OXT concentration or social behavior in rhesus. It is possible, though, that methylation of these loci in the brain or in cheek epithelia may be associated with central OXT release and behavior. Finally, we consider the limitations of this exploratory study in the context of statistical power.
Collapse
Affiliation(s)
- Desirée De Leon
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA, United States of America; Center for Translational Social Neuroscience, Emory University, Atlanta, GA, United States of America
| | - Shota Nishitani
- Dept. of Gynecology and Obstetrics, Emory School of Medicine, Emory University, Atlanta, GA, United States of America; Research Center for Child Mental Development, University of Fukui, Fukui, Japan; Dept. of Psychiatry & Behavioral Sciences, Emory School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Hasse Walum
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA, United States of America
| | - Kai M McCormack
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America; Dept. of Psychology, Spelman College, Atlanta, GA, United States of America
| | - Mark E Wilson
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America; Dept. of Psychiatry & Behavioral Sciences, Emory School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Alicia K Smith
- Dept. of Gynecology and Obstetrics, Emory School of Medicine, Emory University, Atlanta, GA, United States of America; Dept. of Psychiatry & Behavioral Sciences, Emory School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Larry J Young
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA, United States of America; Center for Translational Social Neuroscience, Emory University, Atlanta, GA, United States of America; Dept. of Psychiatry & Behavioral Sciences, Emory School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Mar M Sanchez
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA, United States of America; Center for Translational Social Neuroscience, Emory University, Atlanta, GA, United States of America; Dept. of Psychiatry & Behavioral Sciences, Emory School of Medicine, Emory University, Atlanta, GA, United States of America.
| |
Collapse
|
25
|
Lauby SC, McGowan PO. Early life variations in temperature exposure affect the epigenetic regulation of the paraventricular nucleus in female rat pups. Proc Biol Sci 2020; 287:20201991. [PMID: 33109014 PMCID: PMC7661289 DOI: 10.1098/rspb.2020.1991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/06/2020] [Indexed: 11/12/2022] Open
Abstract
Early life maternal care received has a profound effect on later-life behaviour in adult offspring, and previous studies have suggested epigenetic mechanisms are involved. Changes in thyroid hormone receptor signalling may be related to differences in maternal care received and DNA methylation modifications. We investigated the effects of variations in temperature exposure (a proxy of maternal contact) and licking-like tactile stimulation on these processes in week-old female rat pups. We assessed thyroid hormone receptor signalling by measuring circulating triiodothyronine and transcript abundance of thyroid hormone receptors and the thyroid hormone-responsive genes DNA methyltransferase 3a and oxytocin in the paraventricular nucleus of the hypothalamus. DNA methylation of the oxytocin promoter was assessed in relation to changes in thyroid hormone receptor binding. Repeated room temperature exposure was associated with a decrease in thyroid hormone receptor signalling measures relative to nest temperature exposure, while acute room temperature exposure was associated with an increase. Repeated room temperature exposure also increased thyroid hormone receptor binding and DNA methylation at the oxytocin promoter. These findings suggest that repeated room temperature exposure may affect DNA methylation levels as a consequence of alterations in thyroid hormone receptor signalling.
Collapse
Affiliation(s)
- Samantha C. Lauby
- Department of Biological Sciences, University of Toronto, Scarborough Campus, SW548, 1265 Military Trail, Scarborough, Toronto, Ontario, Canada M1C 1A4
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick O. McGowan
- Department of Biological Sciences, University of Toronto, Scarborough Campus, SW548, 1265 Military Trail, Scarborough, Toronto, Ontario, Canada M1C 1A4
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Parianen Lesemann FH, Spencer H, Montoya ER, Kraaijenvanger EJ, He Y, Branje S, Boks MP, Bos PA. Methylation of oxytocin related genes and early life trauma together shape the N170 response to human faces. Eur Neuropsychopharmacol 2020; 39:19-28. [PMID: 32993882 DOI: 10.1016/j.euroneuro.2020.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/24/2020] [Accepted: 08/17/2020] [Indexed: 01/03/2023]
Abstract
Childhood trauma fundamentally shapes social cognition and basic processing of social cues, which frequently cascade into adverse behavioral outcomes. Recent studies indicate that epigenetic changes in oxytocin functioning might contribute to these long-term effects, although a deeper understanding of the underlying mechanisms is still lacking. The electroencephalographic N170 response to faces might capture a neural response at the core of these interactive effects of oxytocin gene methylation and childhood adversity, given that this response is considered to reflect fundamental face processing, to be susceptible to oxytocin administration and also to be a biomarker of various psychiatric disorders. We assessed the N170 response to neutral faces in relation to participant's (81, women) recalled childhood trauma, methylation of their oxytocin structural (OXTg) and oxytocin receptor (OXTRg) genes, and endogenous levels of cortisol and testosterone. Additionally, we investigated the interactive effect of OXTg methylation and CTQ across three face sets of varying maturity. Methylation of OXTg relates to a weakened N170 response towards adults, children and infants. Moreover, methylation of both OXTRg and OXTg shaped the directionality of adversity effects, predicting a weakened N170 response in those with high methylation and hyper-vigilance with participants with low methylation. Our results are the first to relate OXT(R)g methylation to the N170 response. They shed light on biological processes linking childhood adversity and epigenetic marks to altered behavior and potentially psychopathologies.
Collapse
Affiliation(s)
- Franca H Parianen Lesemann
- Department of Experimental Psychology, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands.
| | - Hannah Spencer
- Research Institute of Child Development and Education, University of Amsterdam, PO Box 15780, 1001 NG Amsterdam, the Netherlands
| | - Estrella R Montoya
- Department of Experimental Psychology, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands
| | - Eline J Kraaijenvanger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, D-68159 Mannheim, Germany
| | - Yujie He
- Brain Center University Medical Center Utrecht, Utrecht, the Netherlands
| | - Susan Branje
- Department of Youth and Family, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands
| | - Marco P Boks
- Brain Center University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter A Bos
- Institute of Education and Child Studies, Leiden University, Leiden, the Netherlands
| |
Collapse
|
27
|
Brown GL, Kogan SM, Cho J. Pathways linking childhood trauma to rural, unmarried, African American father involvement through oxytocin receptor gene methylation. Dev Psychol 2020; 56:1496-1508. [PMID: 32790448 DOI: 10.1037/dev0000929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Father involvement contributes uniquely to children's developmental outcomes. The antecedents of father involvement among unmarried, African American fathers from rural areas, however, have been largely overlooked. The present study tested a conceptual model linking retrospective reports of childhood trauma and early adulthood social instability to father involvement among unmarried, African American men living in resource-poor, rural communities in the southeastern United States. We hypothesized these factors would influence father involvement indirectly, via DNA methylation of the oxytocin receptor gene (OXTR). A sample of 192 fathers participated in 3 waves of data collection in early adulthood. Fathers reported on social instability at Wave 1; OXTR methylation was assessed via saliva samples at Wave 2; and measures of father involvement, retrospective childhood trauma, and quality of the fathers' relationships with their children's mothers were collected at Wave 3. Structural equation modeling indicated that childhood trauma was related directly to reduced levels of father involvement and to increased social instability. Social instability was associated with elevated levels of OXTR methylation, which in turn predicted decreased father involvement. The indirect effect from social instability to father involvement via OXTR methylation was significant. These associations did not operate through fathers' relationship with the child's mother and remained significant even accounting for associations between interparental relationship quality and father involvement. Findings suggest that OXTR methylation might be a biological mechanism linking social instability to father involvement among unmarried, African American fathers in vulnerable contexts and underscore the detrimental influence of childhood trauma on father involvement. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
|
28
|
Wheater ENW, Stoye DQ, Cox SR, Wardlaw JM, Drake AJ, Bastin ME, Boardman JP. DNA methylation and brain structure and function across the life course: A systematic review. Neurosci Biobehav Rev 2020; 113:133-156. [PMID: 32151655 PMCID: PMC7237884 DOI: 10.1016/j.neubiorev.2020.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/01/2023]
Abstract
MRI has enhanced our capacity to understand variations in brain structure and function conferred by the genome. We identified 60 studies that report associations between DNA methylation (DNAm) and human brain structure/function. Forty-three studies measured candidate loci DNAm; seventeen measured epigenome-wide DNAm. MRI features included region-of-interest and whole-brain structural, diffusion and functional imaging features. The studies report DNAm-MRI associations for: neurodevelopment and neurodevelopmental disorders; major depression and suicidality; alcohol use disorder; schizophrenia and psychosis; ageing, stroke, ataxia and neurodegeneration; post-traumatic stress disorder; and socio-emotional processing. Consistency between MRI features and differential DNAm is modest. Sources of bias: variable inclusion of comparator groups; different surrogate tissues used; variation in DNAm measurement methods; lack of control for genotype and cell-type composition; and variations in image processing. Knowledge of MRI features associated with differential DNAm may improve understanding of the role of DNAm in brain health and disease, but caution is required because conventions for linking DNAm and MRI data are not established, and clinical and methodological heterogeneity in existing literature is substantial.
Collapse
Affiliation(s)
- Emily N W Wheater
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom
| | - David Q Stoye
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom
| | - Simon R Cox
- Department of Psychology, University of Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | - James P Boardman
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
29
|
Lee J, Papa F, Jaini PA, Alpini S, Kenny T. An Epigenetics-Based, Lifestyle Medicine-Driven Approach to Stress Management for Primary Patient Care: Implications for Medical Education. Am J Lifestyle Med 2020; 14:294-303. [PMID: 32477032 PMCID: PMC7232902 DOI: 10.1177/1559827619847436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 12/22/2022] Open
Abstract
Over 75% of patients in the primary care setting present with stress-related complaints. Curiously, patients and health care providers all too often see stress as a relatively benign sequela of many common illnesses such as heart disease, cancer, lung disease, dementia, diabetes, and mental illness. Unfortunately, various day-to-day lifestyle choices and environmental factors, unrelated to the presence of any disease, can cause stress sufficient to contribute to the development of various diseases/disorders and suboptimal health. There is evidence suggesting that counseling in stress management-oriented therapeutic interventions (as offered by lifestyle medicine-oriented practitioners) may prevent or reduce the onset, severity, duration, and/or overall burden of stress-related illnesses. Such counseling often involves considerations such as the patient's nutrition, physical activity, interest in/capacity to meditate, drug abuse/cessation, and so on. Unfortunately, lifestyle medicine-oriented approaches to stress management are rarely offered in primary care-the patient care arena wherein such counseling would likely be best received by patients. Would health care outcomes improve if primary care providers offered counseling in both stress management and positive lifestyle choices? The purpose of this article is to provide both primary care practitioners and educators in health care training programs with an introductory overview of epigenetics. An emerging field of science offering insights into how factors such as stress and lifestyle choices interact with our genes in ways that can both positively and negatively impact the various micro (eg, cellular) through macro (eg, physiologic, pathophysiologic) processes that determine our tendencies toward illness or wellness. A deeper understanding of epigenetics, as provided herein, should enable primary care providers and medical educators to more confidently advocate for the primary benefits associated with counseling in both stress reduction and the pursuit of healthy lifestyle choices.
Collapse
Affiliation(s)
- Jenny Lee
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| | - Frank Papa
- Frank Papa, DO, PhD, Medical Education, UNT Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107; e-mail:
| | - Paresh Atu Jaini
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| | - Sarah Alpini
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| | - Tim Kenny
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| |
Collapse
|
30
|
Long M, Verbeke W, Ein-Dor T, Vrtička P. A functional neuro-anatomical model of human attachment (NAMA): Insights from first- and second-person social neuroscience. Cortex 2020; 126:281-321. [DOI: 10.1016/j.cortex.2020.01.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/14/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
|
31
|
Schiele MA, Gottschalk MG, Domschke K. The applied implications of epigenetics in anxiety, affective and stress-related disorders - A review and synthesis on psychosocial stress, psychotherapy and prevention. Clin Psychol Rev 2020; 77:101830. [PMID: 32163803 DOI: 10.1016/j.cpr.2020.101830] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
Abstract
Mental disorders are highly complex and multifactorial in origin, comprising an elaborate interplay of genetic and environmental factors. Epigenetic mechanisms such as DNA modifications (e.g. CpG methylation), histone modifications (e.g. acetylation) and microRNAs function as a translator between genes and the environment. Indeed, environmental influences such as exposure to stress shape epigenetic patterns, and lifetime experiences continue to alter the function of the genome throughout the lifespan. Here, we summarize the recently burgeoning body of research regarding the involvement of aberrant epigenetic signatures in mediating an increased vulnerability to a wide range of mental disorders. We review the current knowledge of epigenetic changes to constitute useful markers predicting the clinical response to psychotherapeutic interventions, and of psychotherapy to alter - and potentially reverse - epigenetic risk patterns. Given first evidence pointing to a transgenerational transmission of epigenetic information, epigenetic alterations arising from successful psychotherapy might be transferred to future generations and thus contribute to the prevention of mental disorders. Findings are integrated into a multi-level framework highlighting challenges pertaining to the mechanisms of action and clinical implications of epigenetic research. Promising future directions regarding the prediction, prevention, and personalized treatment of mental disorders in line with a 'precision medicine' approach are discussed.
Collapse
Affiliation(s)
- Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany
| | - Michael G Gottschalk
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, D-79106 Freiburg, Germany.
| |
Collapse
|
32
|
Verhagen M, Verweij KJH, Lodder GMA, Goossens L, Verschueren K, Van Leeuwen K, Van den Noortgate W, Claes S, Bijttebier P, Van Assche E, Vink JM. A SNP, Gene, and Polygenic Risk Score Approach of Oxytocin-Vasopressin Genes in Adolescents' Loneliness. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2020; 30 Suppl 2:333-348. [PMID: 30697859 PMCID: PMC7277497 DOI: 10.1111/jora.12480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Not much is known regarding underlying biological pathways to adolescents' loneliness. Insight in underlying molecular mechanisms could inform intervention efforts aimed at reducing loneliness. Using latent growth curve modeling, baseline levels and development of loneliness were studied in two longitudinal adolescent samples. Genes (OXTR, OXT, AVPR1A, AVPR1B) were examined using SNP-based, gene-based, and polygenic risk score (PRS) approaches. In both samples, SNP- and gene-based tests showed involvement of the OXTR gene in development of loneliness, though, significance levels did not survive correction for multiple testing. The PRS approach provided no evidence for relations with loneliness. We recommend alternative phenotyping methods, including environmental factors, to consider epigenetic studies, and to examine possible endophenotypes in relation to adolescents' loneliness.
Collapse
|
33
|
Picardi A, Giuliani E, Gigantesco A. Genes and environment in attachment. Neurosci Biobehav Rev 2020; 112:254-269. [PMID: 32014527 DOI: 10.1016/j.neubiorev.2020.01.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/24/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
In the last two decades, there has been increasing research interest in disentangling the contribution of genetic and environmental factors to individual differences in attachment, and in identifying the genes involved in shaping attachment. Twin studies suggest that as attachment changes during the course of development, genetic factors may play a progressively more important role, while shared environmental effects might decrease. However, most of this literature is limited by low power, measurement issues, and cross-sectional design. The findings of molecular genetic studies are, overall, inconclusive. The literature on main genetic effects and gene-by-environment interactions on attachment is filled with inconsistent and unreplicated findings. Also, most studies are underpowered. Challenges for future research are to identify the unshared environmental mechanisms involved in shaping attachment, and to better elucidate the genes involved and their interaction with the environment. Some pioneer studies suggested that the incorporation of epigenetic processes into G × E interaction models might represent a promising future way for investigating the complex, dynamic interplay between genes, environment, and attachment.
Collapse
Affiliation(s)
- Angelo Picardi
- Centre for Behavioural Sciences and Mental Health, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Eugenia Giuliani
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena, 291-293, 00161 Rome, Italy
| | - Antonella Gigantesco
- Centre for Behavioural Sciences and Mental Health, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
34
|
Lecompte V, Robins S, King L, Solomonova E, Khan N, Moss E, Nagy C, Feeley N, Gold I, Hayton B, Turecki G, Zelkowitz P. Examining the role of mother-child interactions and DNA methylation of the oxytocin receptor gene in understanding child controlling attachment behaviors. Attach Hum Dev 2020; 23:37-55. [DOI: 10.1080/14616734.2019.1708422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- V. Lecompte
- Institut Universitaire Jeunes en Difficulté, CIUSSS Centre-Sud-de-l’île-de-Montréal , Montreal, Canada
| | - S. Robins
- Lady Davis Institute for Medical Research, Jewish General Hospital , Montreal, Canada
- Department of Psychiatry, Jewish General Hospital , Montreal, Canada
| | - L. King
- Department of Psychiatry, McGill University , Montreal, Canada
| | - E. Solomonova
- Lady Davis Institute for Medical Research, Jewish General Hospital , Montreal, Canada
- Department of Psychiatry, Jewish General Hospital , Montreal, Canada
- Department of Psychiatry, McGill University , Montreal, Canada
| | - N. Khan
- Department of Medicine, McGill University , Montreal, Canada
| | - E. Moss
- Department of Psychology, Université du Québec à Montréal , Montréal, Canada
| | - C. Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute , Montreal, Canada
| | - N. Feeley
- Lady Davis Institute for Medical Research, Jewish General Hospital , Montreal, Canada
- Center for Nursing Research, Jewish General Hospital , Montreal, Canada
- Ingram School of Nursing, McGill University , Montreal, Canada
| | - I. Gold
- Department of Psychiatry, McGill University , Montreal, Canada
- Department of Philosophy, McGill University , Montreal, Canada
| | - B. Hayton
- Department of Psychiatry, Jewish General Hospital , Montreal, Canada
- Department of Psychiatry, McGill University , Montreal, Canada
| | - G. Turecki
- Department of Psychiatry, McGill University , Montreal, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute , Montreal, Canada
| | - P. Zelkowitz
- Lady Davis Institute for Medical Research, Jewish General Hospital , Montreal, Canada
- Department of Psychiatry, Jewish General Hospital , Montreal, Canada
- Department of Psychiatry, McGill University , Montreal, Canada
| |
Collapse
|
35
|
Lardenoije R, Roubroeks JAY, Pishva E, Leber M, Wagner H, Iatrou A, Smith AR, Smith RG, Eijssen LMT, Kleineidam L, Kawalia A, Hoffmann P, Luck T, Riedel-Heller S, Jessen F, Maier W, Wagner M, Hurlemann R, Kenis G, Ali M, del Sol A, Mastroeni D, Delvaux E, Coleman PD, Mill J, Rutten BPF, Lunnon K, Ramirez A, van den Hove DLA. Alzheimer's disease-associated (hydroxy)methylomic changes in the brain and blood. Clin Epigenetics 2019; 11:164. [PMID: 31775875 PMCID: PMC6880587 DOI: 10.1186/s13148-019-0755-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/26/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Late-onset Alzheimer's disease (AD) is a complex multifactorial affliction, the pathogenesis of which is thought to involve gene-environment interactions that might be captured in the epigenome. The present study investigated epigenome-wide patterns of DNA methylation (5-methylcytosine, 5mC) and hydroxymethylation (5-hydroxymethylcytosine, 5hmC), as well as the abundance of unmodified cytosine (UC), in relation to AD. RESULTS We identified epigenetic differences in AD patients (n = 45) as compared to age-matched controls (n = 35) in the middle temporal gyrus, pertaining to genomic regions close to or overlapping with genes such as OXT (- 3.76% 5mC, pŠidák = 1.07E-06), CHRNB1 (+ 1.46% 5hmC, pŠidák = 4.01E-04), RHBDF2 (- 3.45% UC, pŠidák = 4.85E-06), and C3 (- 1.20% UC, pŠidák = 1.57E-03). In parallel, in an independent cohort, we compared the blood methylome of converters to AD dementia (n = 54) and non-converters (n = 42), at a preclinical stage. DNA methylation in the same region of the OXT promoter as found in the brain was found to be associated with subsequent conversion to AD dementia in the blood of elderly, non-demented individuals (+ 3.43% 5mC, pŠidák = 7.14E-04). CONCLUSIONS The implication of genome-wide significant differential methylation of OXT, encoding oxytocin, in two independent cohorts indicates it is a promising target for future studies on early biomarkers and novel therapeutic strategies in AD.
Collapse
Affiliation(s)
- Roy Lardenoije
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Janou A. Y. Roubroeks
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ehsan Pishva
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Markus Leber
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937 Cologne, Germany
| | - Holger Wagner
- Department of Neurodegeneration and Gerontopsychiatry, University of Bonn, 53127 Bonn, Germany
| | - Artemis Iatrou
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Adam R. Smith
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Rebecca G. Smith
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Lars M. T. Eijssen
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- Department of Bioinformatics—BiGCaT, Maastricht University, Maastricht, The Netherlands
| | - Luca Kleineidam
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937 Cologne, Germany
- Department of Neurodegeneration and Gerontopsychiatry, University of Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Amit Kawalia
- Department of Neurodegeneration and Gerontopsychiatry, University of Bonn, 53127 Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, 53127 Bonn, Germany
- Division of Medical Genetics, University Hospital and Department of Biomedicine, University of Basel, CH-4058 Basel, Switzerland
| | - Tobias Luck
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, 04103 Leipzig, Germany
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, 04103 Leipzig, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937 Cologne, Germany
| | - Wolfgang Maier
- Department of Neurodegeneration and Gerontopsychiatry, University of Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Michael Wagner
- Department of Neurodegeneration and Gerontopsychiatry, University of Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - René Hurlemann
- Department of Psychiatry and Division of Medical Psychology, University of Bonn, 53105 Bonn, Germany
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Muhammad Ali
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Antonio del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russian Federation
- CIC bioGUNE, Bizkaia Technology Park, 801 Building, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Dolgoprudny Bilbao, Spain
| | - Diego Mastroeni
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- L.J. Roberts Center for Alzheimer’s Research Banner Sun Health Research Institute, Sun City, AZ USA
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ USA
| | - Elaine Delvaux
- L.J. Roberts Center for Alzheimer’s Research Banner Sun Health Research Institute, Sun City, AZ USA
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ USA
| | - Paul D. Coleman
- L.J. Roberts Center for Alzheimer’s Research Banner Sun Health Research Institute, Sun City, AZ USA
- Biodesign Institute, Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ USA
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK
- Institute of Psychiatry, King’s College London, London, UK
| | - Bart P. F. Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937 Cologne, Germany
- Department of Neurodegeneration and Gerontopsychiatry, University of Bonn, 53127 Bonn, Germany
| | - Daniël L. A. van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| |
Collapse
|
36
|
Relation of Promoter Methylation of the Oxytocin Gene to Stressful Life Events and Depression Severity. J Mol Neurosci 2019; 70:201-211. [DOI: 10.1007/s12031-019-01446-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
|
37
|
Fujisawa TX, Nishitani S, Takiguchi S, Shimada K, Smith AK, Tomoda A. Oxytocin receptor DNA methylation and alterations of brain volumes in maltreated children. Neuropsychopharmacology 2019; 44:2045-2053. [PMID: 31071720 PMCID: PMC6898679 DOI: 10.1038/s41386-019-0414-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/07/2019] [Accepted: 04/26/2019] [Indexed: 11/09/2022]
Abstract
Although oxytocin (OXT) plays an important role in secure attachment formation with a primary caregiver, which is impaired in many children with childhood maltreatment (CM), epigenetic regulation in response to CM is a key factor in brain development during childhood. To address this issue, we first investigated differences in salivary DNA methylation of the oxytocin receptor (OXTR) between CM and Non-CM groups of Japanese children (CM: n = 44; Non-CM: n = 41) and its impact on brain structures in subgroup analysis using brain imaging and full clinical data (CM: n = 24; Non-CM: n = 31). As a result, we observed that the CM group showed higher CpG 5,6 methylation than did the Non-CM group and confirmed negative correlations of gray matter volume (GMV) in the left orbitofrontal cortex (OFC) with CpG 5,6 methylation. In addition, the CM group showed significantly lower GMV in the left OFC than did the Non-CM group. Furthermore, as a result of examining the relationship between GMV in the left OFC and psychiatric symptoms in CM, we observed a negative association with insecure attachment style and also confirmed the mediation effect of left-OFC GMV reduction on the relationship between OXTR methylation and insecure attachment style. These results suggest that any modulation of the oxytocin signaling pathway induced by OXTR hypermethylation at CpG 5,6 leads to atypical development of the left OFC, resulting in distorted attachment formation in children with CM.
Collapse
Affiliation(s)
- Takashi X. Fujisawa
- 0000 0001 0692 8246grid.163577.1Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Shota Nishitani
- 0000 0001 0941 6502grid.189967.8Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA USA ,0000 0001 0941 6502grid.189967.8Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Shinichiro Takiguchi
- grid.413114.2Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Koji Shimada
- 0000 0001 0692 8246grid.163577.1Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Alicia K. Smith
- 0000 0001 0941 6502grid.189967.8Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA USA ,0000 0001 0941 6502grid.189967.8Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan. .,Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan.
| |
Collapse
|
38
|
Bang M, Kang JI, Kim SJ, Park JY, Kim KR, Lee SY, Park K, Lee E, Lee SK, An SK. Reduced DNA Methylation of the Oxytocin Receptor Gene Is Associated With Anhedonia-Asociality in Women With Recent-Onset Schizophrenia and Ultra-high Risk for Psychosis. Schizophr Bull 2019; 45:1279-1290. [PMID: 31220321 PMCID: PMC6812051 DOI: 10.1093/schbul/sbz016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Negative symptoms are recognized as a fundamental feature of schizophrenia throughout the disease course. Epigenetic alterations in the oxytocin receptor gene (OXTR) may be a key mechanism involved in social-emotional disturbances of schizophrenia. Here, we investigated OXTR methylation and its association with clinical and brain network connectivity phenotypes of negative symptoms, particularly anhedonia-asociality, in individuals with recent-onset schizophrenia (ROS) and at ultrahigh risk (UHR) for psychosis. Sixty-four ROS (39 women), 46 UHR (19 women), and 98 healthy individuals (52 women) participated in this study. OXTR methylation was quantified using the pyrosequencing method. A subset of participants (16 ROS, 23 UHR, and 33 healthy controls [HCs]) underwent a 5.5-minute resting-state functional magnetic resonance imaging to determine the relationship between OXTR methylation and the striatal-amygdala network functional connectivity (FC) underlying anhedonia-asociality. Both men and women with ROS and UHR showed significantly decreased OXTR methylation compared to HCs. In women with ROS and UHR, decreased OXTR methylation showed a significant correlation with increased anhedonia-asociality. FC of the striatal-amygdala network, positively associated with the severity of anhedonia-asociality, showed an inverse correlation with OXTR methylation. This study suggests that epigenetic alterations of OXTR, which can be detected before the development of full-blown psychosis, confer susceptibility to schizophrenia and play a crucial role in the manifestation of anhedonia-asociality, particularly in women.
Collapse
Affiliation(s)
- Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jee In Kang
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Joo Kim
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Young Park
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea,Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Ran Kim
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Young Lee
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea,Department of Psychiatry, Cheil General Hospital and Women’s Healthcare Center, Dankook University College of Medicine, Seoul, Republic of Korea
| | - Kyungmee Park
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Lee
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Koo Lee
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suk Kyoon An
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea,Graduate Program in Cognitive Science, Yonsei University, Seoul, Republic of Korea,To whom correspondence should be addressed; tel: +82-2-2228-1585, fax: +82-2-313-0891, e-mail:
| |
Collapse
|
39
|
|
40
|
Walsh E, Blake Y, Donati A, Stoop R, von Gunten A. Early Secure Attachment as a Protective Factor Against Later Cognitive Decline and Dementia. Front Aging Neurosci 2019; 11:161. [PMID: 31333443 PMCID: PMC6622219 DOI: 10.3389/fnagi.2019.00161] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 06/12/2019] [Indexed: 01/07/2023] Open
Abstract
The etiology of neurodegenerative disorders such as dementia is complex and incompletely understood. Interest in a developmental perspective to these pathologies is gaining momentum. An early supportive social environment seems to have important implications for social, affective and cognitive abilities across the lifespan. Attachment theory may help to explain the link between these early experiences and later outcomes. This theory considers early interactions between an infant and its caregiver to be crucial to shaping social behavior and emotion regulation strategies throughout adult life. Furthermore, research has demonstrated that such early attachment experiences can, potentially through epigenetic mechanisms, have profound neurobiological and cognitive consequences. Here we discuss how early attachment might influence the development of affective, cognitive, and neurobiological resources that could protect against cognitive decline and dementia. We argue that social relations, both early and late in life, are vital to ensuring cognitive and neurobiological health. The concepts of brain and cognitive reserve are crucial to understanding how environmental factors may impact cognitive decline. We examine the role that attachment might play in fostering brain and cognitive reserve in old age. Finally, we put forward the concept of affective reserve, to more directly frame the socio-affective consequences of early attachment as protectors against cognitive decline. We thereby aim to highlight that, in the study of aging, cognitive decline and dementia, it is crucial to consider the role of affective and social factors such as attachment.
Collapse
Affiliation(s)
- Emilie Walsh
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Yvonne Blake
- Center for Psychiatric Neurosciences, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Alessia Donati
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Ron Stoop
- Center for Psychiatric Neurosciences, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Armin von Gunten
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
41
|
Toepfer P, O'Donnell KJ, Entringer S, Garg E, Heim CM, Lin DTS, MacIsaac JL, Kobor MS, Meaney MJ, Provençal N, Binder EB, Wadhwa PD, Buss C. Dynamic DNA methylation changes in the maternal oxytocin gene locus (OXT) during pregnancy predict postpartum maternal intrusiveness. Psychoneuroendocrinology 2019; 103:156-162. [PMID: 30690225 PMCID: PMC6554513 DOI: 10.1016/j.psyneuen.2019.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 01/21/2023]
Abstract
Maternal behavior (MB) is observable across mammals and represents an important feature of environmental variation during early postnatal development. Oxytocin (OT) plays a crucial role in MB. Even prior to childbirth, pregnancy induces epigenetic and other downstream changes in the maternal OT-system, likely mediated by the actions of steroid hormones. However, little is known about the nature and consequences of epigenetic modifications in the maternal OT-encoding gene (OXT) during pregnancy. Our study aims to investigate temporal dynamics of OXT promoter DNA methylation (DNAm) throughout pregnancy in predicting MB in humans. In 107 mother-child dyads, maternal OXT DNAm was serially analyzed in whole blood in early, mid and late pregnancy. MB was coded based on standardized mother-child interactions at six months postpartum. After controlling for cellular heterogeneity, race/ethnicity, age, and socioeconomic status, OXT-promoter DNAm exhibited a dynamic profile during pregnancy (b = 0.026, t=-3.37, p < .001), with decreases in DNAm from early to mid-pregnancy and no further change until late pregnancy. Moreover, dynamic DNAm trajectories of the OXT-promoter region predicted MB (intrusiveness) at six months postpartum (b = 0.006, t = 2.0, p < 0.05), with 6% higher OXT DNAm in late pregnancy in intrusive compared to non-intrusive mothers. We here demonstrate that OXT promoter DNAm changes significantly throughout gestation in peripheral blood and that these changes are associated with variability in MB, providing a novel potential biomarker predicting postnatal MB.
Collapse
Affiliation(s)
- Philipp Toepfer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany
| | - Kieran J O'Donnell
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Sackler Program for Epigenetics and Psychobiology at McGill University, Montreal, QC, Canada
| | - Sonja Entringer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany; University of California, Irvine, Development, Health, and Disease Research Program, Orange, CA, USA
| | - Elika Garg
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Christine M Heim
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany; Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA
| | - David T S Lin
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Sackler Program for Epigenetics and Psychobiology at McGill University, Montreal, QC, Canada; Singapore Institute for Clinical Sciences, Singapore
| | - Nadine Provençal
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany; Simon Fraser University, Faculty of Health Sciences, Vancouver, BC, Canada
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Pathik D Wadhwa
- University of California, Irvine, Development, Health, and Disease Research Program, Orange, CA, USA; Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine, CA, USA
| | - Claudia Buss
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany; University of California, Irvine, Development, Health, and Disease Research Program, Orange, CA, USA.
| |
Collapse
|
42
|
Krol KM, Puglia MH, Morris JP, Connelly JJ, Grossmann T. Epigenetic modification of the oxytocin receptor gene is associated with emotion processing in the infant brain. Dev Cogn Neurosci 2019; 37:100648. [PMID: 31125951 PMCID: PMC6969294 DOI: 10.1016/j.dcn.2019.100648] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 01/22/2023] Open
Abstract
First developmental neuroimaging epigenetics study with human infants. Oxytocin receptor gene methylation (OXTRm) assessed in a large sample of infants. OXTRm predicts inferior frontal brain responses to emotional faces using fNIRS. Higher OXTRm linked to enhanced brain responses to angry and fearful faces. OXTRm contributes to variability in social brain function early in ontogeny.
The neural capacity to discriminate between emotions emerges early in development, though little is known about specific factors that contribute to variability in this vital skill during infancy. In adults, DNA methylation of the oxytocin receptor gene (OXTRm) is an epigenetic modification that is variable, predictive of gene expression, and has been linked to autism spectrum disorder and the neural response to social cues. It is unknown whether OXTRm is variable in infants, and whether it is predictive of early social function. Implementing a developmental neuroimaging epigenetics approach in a large sample of infants (N = 98), we examined whether OXTRm is associated with neural responses to emotional expressions. OXTRm was assessed at 5 months of age. At 7 months of age, infants viewed happy, angry, and fearful faces while functional near-infrared spectroscopy was recorded. We observed that OXTRm shows considerable variability among infants. Critically, infants with higher OXTRm show enhanced responses to anger and fear and attenuated responses to happiness in right inferior frontal cortex, a region implicated in emotion processing through action-perception coupling. Findings support models emphasizing oxytocin’s role in modulating neural response to emotion and identify OXTRm as an epigenetic mark contributing to early brain function.
Collapse
Affiliation(s)
- Kathleen M Krol
- Department of Psychology, University of Virginia, 480 McCormick Rd. Charlottesville VA 22903, USA; Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04275 Leipzig, Germany.
| | - Meghan H Puglia
- Department of Psychology, University of Virginia, 480 McCormick Rd. Charlottesville VA 22903, USA
| | - James P Morris
- Department of Psychology, University of Virginia, 480 McCormick Rd. Charlottesville VA 22903, USA
| | - Jessica J Connelly
- Department of Psychology, University of Virginia, 480 McCormick Rd. Charlottesville VA 22903, USA
| | - Tobias Grossmann
- Department of Psychology, University of Virginia, 480 McCormick Rd. Charlottesville VA 22903, USA; Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04275 Leipzig, Germany
| |
Collapse
|
43
|
Moore AM, Xu Z, Kolli RT, White AJ, Sandler DP, Taylor JA. Persistent epigenetic changes in adult daughters of older mothers. Epigenetics 2019; 14:467-476. [PMID: 30879397 DOI: 10.1080/15592294.2019.1595299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Women of advanced maternal age account for an increasing proportion of live births in many developed countries across the globe. Offspring of older mothers are at an increased risk for a variety of subsequent health outcomes, including outcomes that do not manifest until childhood or adulthood. The molecular underpinnings of the association between maternal aging and offspring morbidity remain elusive. However, one possible mechanism is that maternal aging produces specific alterations in the offspring's epigenome in utero, and these epigenetic alterations persist into adulthood. We conducted an epigenome-wide association study (EWAS) of the effect of a mother's age on blood DNA methylation in 2,740 adult daughters using the Illumina Infinium HumanMethylation450 array. A false discovery rate (FDR) q-value threshold of 0.05 was used to identify differentially methylated CpG sites (dmCpGs). We identified 87 dmCpGs associated with increased maternal age. The majority (84%) of the dmCpGs had lower methylation in daughters of older mothers, with an average methylation difference of 0.6% per 5-year increase in mother's age. Thirteen genomic regions contained multiple dmCpGs. Most notably, nine dmCpGs were found in the promoter region of the gene LIM homeobox 8 (LHX8), which plays a pivotal role in female fertility. Other dmCpGs were found in genes associated with metabolically active brown fat, carcinogenesis, and neurodevelopmental disorders. We conclude that maternal age is associated with persistent epigenetic changes in daughters at genes that have intriguing links to health.
Collapse
Affiliation(s)
- Aaron M Moore
- a Epidemiology Branch , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA
| | - Zongli Xu
- a Epidemiology Branch , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA
| | - Ramya T Kolli
- b Epigenetics & Stem Cell Biology Laboratory , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA
| | - Alexandra J White
- a Epidemiology Branch , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA
| | - Dale P Sandler
- a Epidemiology Branch , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA
| | - Jack A Taylor
- a Epidemiology Branch , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA.,b Epigenetics & Stem Cell Biology Laboratory , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA
| |
Collapse
|
44
|
Expanding Regulation Theory With Oxytocin: A Psychoneurobiological Model for Infant Development. Nurs Res 2019; 67:133-145. [PMID: 29489634 DOI: 10.1097/nnr.0000000000000261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oxytocin (OT), an affiliation hormone released during supportive social interactions, provides an exemplar of how social environments are reflected in our neurobiology from the beginning of life. A growing body of OT research has uncovered previously unknown functions of OT, including modulation of parenting behaviors, neuroprotection, affiliation, and bonding. Regulation theory provides a strong framework for describing how the maternal care environment affects infant neurodevelopment through a symphony of molecules that form the neurobiological milieu of the developing infant brain. OBJECTIVES The purpose of this article was to expand on regulation theory by discussing how OT-based processes contribute to infant neurobiology and by proposing a new model for maternal-infant nursing practice and research. APPROACH We structure our discussion of the socially based, neurobiological processes of OT through its effects in the nested hierarchies of genetic, epigenetic, molecular, cellular, neural circuit, multiorgan, and behavioral levels. Our discussion is also presented chronologically, as OT works through a positive feedback loop during infant neurodevelopment, beginning prenatally and continuing after birth. IMPLICATIONS Nurses are in a unique position to use innovative discoveries made by the biologic sciences to generate new nursing theories that inform clinical practice and inspire the development of innovative interventions that maximize the infant's exposure to supportive maternal care.
Collapse
|
45
|
Chong A, Chew SH, Lai PS, Ebstein RP, Gouin JP. The role of the Oxytocin-Neurophysin I gene in contributing to human personality traits promoting sociality. Int J Psychophysiol 2019; 136:81-86. [DOI: 10.1016/j.ijpsycho.2018.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 12/12/2022]
|
46
|
Oxytocin receptor gene methylation in male and female PTSD patients and trauma-exposed controls. Eur Neuropsychopharmacol 2019; 29:147-155. [PMID: 30415783 DOI: 10.1016/j.euroneuro.2018.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 09/30/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022]
Abstract
Oxytocin receptor gene (OXTR) DNA-methylation levels have been associated with trauma-exposure, mood- and anxiety disorders, and social processes relevant to posttraumatic stress disorder (PTSD). We hypothesized that OXTR methylation may play a role in the neurobiological underpinnings of PTSD. In the current study, we compared OXTR methylation between PTSD patients (n = 31, 14 females) and trauma-exposed controls (n = 36, 19 females). Additionally, the association between OXTR methylation and PTSD symptom severity and amygdala reactivity to an emotional faces task was assessed, as a neural hallmark of PTSD. DNA-methylation was investigated in the CpG island located at exon 3 of the OXTR, previously associated with OXTR expression. We observed a significant interaction between PTSD-status, sex and CpG-position on methylation levels. Post-hoc testing revealed that methylation levels at two specific CpG-sites were significantly higher in PTSD females compared to female trauma-exposed controls and PTSD males (CpGs Chr3:8809437, Chr3:8809413). No significant differences in methylation were observed between male PTSD patients and controls. Furthermore, within PTSD females, methylation in these CpG-sites was positively associated with anhedonia symptoms and with left amygdala responses to negative emotional faces, although this was no longer significant after stringent correction for multiple-comparisons. Though the modest size of the current sample is an important limitation, we are the first to report on OXTR methylation in PTSD, replicating previously observed (sex-specific) associations of OXTR methylation with other psychiatric disorders.
Collapse
|
47
|
Kraaijenvanger EJ, He Y, Spencer H, Smith AK, Bos PA, Boks MP. Epigenetic variability in the human oxytocin receptor (OXTR) gene: A possible pathway from early life experiences to psychopathologies. Neurosci Biobehav Rev 2019; 96:127-142. [DOI: 10.1016/j.neubiorev.2018.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 02/09/2023]
|
48
|
Langille JJ, Brown RE. The Synaptic Theory of Memory: A Historical Survey and Reconciliation of Recent Opposition. Front Syst Neurosci 2018; 12:52. [PMID: 30416432 PMCID: PMC6212519 DOI: 10.3389/fnsys.2018.00052] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/28/2018] [Indexed: 01/12/2023] Open
Abstract
Trettenbrein (2016) has argued that the concept of the synapse as the locus of memory is outdated and has made six critiques of this concept. In this article, we examine these six critiques and suggest that the current theories of the neurobiology of memory and the empirical data indicate that synaptic activation is the first step in a chain of cellular and biochemical events that lead to memories formed in cell assemblies and neural networks that rely on synaptic modification for their formation. These neural networks and their modified synaptic connections can account for the cognitive basis of learning and memory and for memory deterioration in neurological disorders. We first discuss Hebb's (1949) theory that synaptic change and the formation of cell assemblies and phase sequences can link neurophysiology to cognitive processes. We then examine each of Trettenbrein's (2016) critiques of the synaptic theory in light of Hebb's theories and recent empirical data. We examine the biochemical basis of memory formation and the necessity of synaptic modification to form the neural networks underlying learning and memory. We then examine the use of Hebb's theories of synaptic change and cell assemblies for integrating neurophysiological and cognitive conceptions of learning and memory. We conclude with an examination of the applications of the Hebb synapse and cell assembly theories to the study of the neuroscience of learning and memory, the development of computational models of memory and the construction of "intelligent" robots. We conclude that the synaptic theory of memory has not met its demise, but is essential to our understanding of the neural basis of memory, which has two components: synaptic plasticity and intrinsic plasticity.
Collapse
Affiliation(s)
| | - Richard E. Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
49
|
Gartstein MA, Skinner MK. Prenatal influences on temperament development: The role of environmental epigenetics. Dev Psychopathol 2018; 30:1269-1303. [PMID: 29229018 PMCID: PMC5997513 DOI: 10.1017/s0954579417001730] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review summarizes current knowledge and outlines future directions relevant to questions concerning environmental epigenetics and the processes that contribute to temperament development. Links between prenatal adversity, epigenetic programming, and early manifestations of temperament are important in their own right, also informing our understanding of biological foundations for social-emotional development. In addition, infant temperament attributes represent key etiological factors in the onset of developmental psychopathology, and studies elucidating their prenatal foundations expand our understanding of developmental origins of health and disease. Prenatal adversity can take many forms, and this overview is focused on the environmental effects of stress, toxicants, substance use/psychotropic medication, and nutrition. Dysregulation associated with attention-deficit/hyperactivity-disruptive disorders was noted in the context of maternal substance use and toxicant exposures during gestation, as well as stress. Although these links can be made based on the existing literature, currently few studies directly connect environmental influences, epigenetic programming, and changes in brain development/behavior. The chain of events starting with environmental inputs and resulting in alterations to gene expression, physiology, and behavior of the organism is driven by epigenetics. Epigenetics provides the molecular mechanism of how environmental factors impact development and subsequent health and disease, including early brain and temperament development.
Collapse
Affiliation(s)
- Maria A. Gartstein
- Department of Psychology, Washington State University, Pullman, WA-99164-4820, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA-99164-4236, USA
| |
Collapse
|
50
|
Pearce E, Wlodarski R, Machin A, Dunbar RIM. The Influence of Genetic Variation on Social Disposition, Romantic Relationships and Social Networks: a Replication Study. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2018; 4:400-422. [PMID: 30393594 PMCID: PMC6190642 DOI: 10.1007/s40750-018-0101-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Sociality is underpinned by a variety of neurochemicals. We previously showed, in a large healthy Caucasian sample, that genes for different neurochemicals are typically associated with differing social domains (disposition, romantic relationships and networks). Here we seek to confirm the validity of these findings by asking whether they replicate in other population samples. METHODS We test for associations between the same 24 Single Nucleotide Polymorphisms (SNPs) and measures of sociality as previously, in two smaller independent samples: Caucasian individuals with histories of mental illness (subclinical sample) (N = 140), and non-Caucasian individuals (N = 66). We also combined the relevant SNPs and social measures into 18 distinct neurochemical/social domain categories to examine the distribution of significant associations across these. RESULTS In the subclinical Caucasian sample, we confirm previous associations between (i) specific oxytocin and dopamine receptor gene SNPs and sexual attitudes and behavior, and (ii) two SNPs associated with dopamine receptor 2 and feelings of inclusion in the local community. In the non-Caucasian sample, we replicate the previous association between an oxytocin receptor SNP and anxious attachment. More generally, chi-squared tests indicated that the distribution of significant associations for each neurochemical across the three social domains did not differ significantly between the original sample and either of the new samples, except for oxytocin in the non-Caucasian sample. CONCLUSIONS These results corroborate both the SNP-specific and broader neurochemical associations with particular facets of sociality in two new populations, thereby confirming the validity of the previous findings.
Collapse
Affiliation(s)
- Eiluned Pearce
- Social & Evolutionary Neuroscience Research Group, Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory, Woodstock Rd, Quarter, Oxford, OX2 6GG UK
| | - Rafael Wlodarski
- Social & Evolutionary Neuroscience Research Group, Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory, Woodstock Rd, Quarter, Oxford, OX2 6GG UK
| | - Anna Machin
- Social & Evolutionary Neuroscience Research Group, Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory, Woodstock Rd, Quarter, Oxford, OX2 6GG UK
| | - Robin I. M. Dunbar
- Social & Evolutionary Neuroscience Research Group, Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory, Woodstock Rd, Quarter, Oxford, OX2 6GG UK
| |
Collapse
|