1
|
Barve PR, Barvkar VT, Giri AP, Kotkar HM. High levels of sinigrin trigger synthesis of fatty acids in Plutella xylostella (L.). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101424. [PMID: 39854962 DOI: 10.1016/j.cbd.2025.101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Diamondback moth (Lepidoptera: Plutellidae; Plutella xylostella L.) is a specialist insect of the Brassicaceae family, damaging economically important crops, such as cabbage and cauliflower. Glucosinolates, also known as 'mustard oil bombs' are present in all Brassicaceae members, of which sinigrin (allyl-glucosinolate or 2-propenyl-glucosinolate) is a major aliphatic compound. During herbivory, glucosinolates are converted to toxic isothiocyanates that deter insect pests. P. xylostella possesses glucosinolate sulfatases that desulfate them. Such a conversion renders them unfit for degradation to toxic products. Changes in the larval performance prompted us for RNA sequencing to understand probable adaptation mechanism under sinigrin stress. Differentially expressed genes were found to be related to larval cuticle proteins. Further, gene ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses depict genes belonging to the categories, integral component of membrane, cellular processes and those involved in biosynthesis of fatty acids. Upregulation of cuticular genes viz. larval cuticle protein-17 (LCP-17), cuticular protein-19 (2CP-19) and ATP binding cassette transporter C7 (ABCC7), ABCC16 was validated by qRT-PCR. Liquid chromatography quadrupole time of flight mass spectrometry analysis of whole larvae feeding on sinigrin and their separated cuticle, depicted abundance of fatty acids. Changes in the topography of the larval cuticle were evident by scanning electron microscopy. Expression of PxABCH1 was corroborated to its role in the transport of cuticular lipids. Notably, molecular docking of PxABCH1 with cuticular fatty acids showed favorable binding interactions. To summarize, integrated transcriptomic and metabolomic analyses suggest that in response to a diet containing a high dose of sinigrin, P. xylostella re-programs metabolic pathways related to fatty acid biosynthesis that directly influence insect development.
Collapse
Affiliation(s)
- Pranoti R Barve
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune- 411 007, Maharashtra, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune- 411 007, Maharashtra, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Hemlata M Kotkar
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune- 411 007, Maharashtra, India.
| |
Collapse
|
2
|
Wang X, Chen X, Zhou T, Dai W, Zhang C. NADPH-cytochrome P450 reductase mediates resistance to neonicotinoid insecticides in Bradysia odoriphaga. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 211:106406. [PMID: 40350226 DOI: 10.1016/j.pestbp.2025.106406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025]
Abstract
As a crucial electron transfer partner of the P450 system, NADPH-cytochrome P450 reductase (CPR) plays an influential role in P450-mediated detoxification metabolism of xenobiotics. CPR has been found to be associated with insecticide resistance in several insects. However, the role of CPR in the cross-resistance of Bradysia odoriphaga to clothianidin and neonicotinoid insecticides remains to be elucidated. In this study, the CPR gene (BoCPR) of B. odoriphaga was cloned and characterized. The expression of BoCPR was more abundant in the adult stage and in the midgut and Malpighian tubules of larvae, and BoCPR was significantly overexpressed in the clothianidin-resistant (CL-R) strain compared to the susceptible (SS) strain. Exposure to clothianidin significantly increased BoCPR expression in both the SS and CL-R strains. In addition, knockdown of BoCPR in SS and CL-R strains significantly reduced CPR and P450 enzyme activities, and resulted in a significant increase in larval susceptibility to clothianidin, imidacloprid, and thiamethoxam. These results suggest that BoCPR plays an important role in B. odoriphaga resistance to clothianidin and cross-resistance to neonicotinoid insecticides.
Collapse
Affiliation(s)
- Xinxiang Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xianglong Chen
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Taoling Zhou
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wu Dai
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chunni Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Dortey MD, Abdulai A, Sraku IK, Azumah JD, Anim-Baidoo I, Afrane YA. Exploring the metabolic and cuticular mechanisms of increased pyrethroid resistance in Anopheles gambiae S.l populations from Ghana. Sci Rep 2025; 15:18800. [PMID: 40442265 PMCID: PMC12122726 DOI: 10.1038/s41598-025-03066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 05/19/2025] [Indexed: 06/02/2025] Open
Abstract
Increasing insecticide resistance in malaria vectors threatens the efficacy of current control tools, however knowledge of metabolic and cuticular mechanisms is widely lacking in Ghana. We examined the metabolic and cuticular resistance mechanisms in Anopheles gambiae mosquitoes from coastal and sahel zones of Ghana. WHO susceptibility tests and synergist assays were performed on F0 field collected An. gambiae s.l. Gene expression profiles of eight key metabolic and cuticular genes were determined using qRT-PCR. Moderate to high pyrethroid resistance (< 70%) were observed across all the sites. Piperonyl butoxide significantly increased susceptibility to pyrethroids across all sites and insecticides, implicating P450s. Gene expression analysis revealed overexpression of metabolic and cuticular resistance genes in field An. gambiae populations compared to the susceptible Kisumu strain. CYP6M2 and CYP6P3 were the most overexpressed metabolic genes in pyrethroid-resistant mosquitoes, compared to the pyrethroid susceptible mosquitoes in the coastal (FC: 122.28 and 231.86, p < 0.05) and sahel (FC: 344.955 and 716.37, p < 0.001) zones respectively. CYP4G16 (previously associated with cuticular resistance) was significantly overexpressed in only resistant mosquitoes (FC: 3.32-30.12, p < 0.05). Overexpression of metabolic and cuticular resistance genes in local malaria vectors highlights the need to intensify insecticide resistance management strategies to control malaria in Ghana.
Collapse
Affiliation(s)
- Miriam DedeAma Dortey
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Anisa Abdulai
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Isaac Kwame Sraku
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Judith Dzifa Azumah
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Isaac Anim-Baidoo
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana.
| | - Yaw Asare Afrane
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana.
| |
Collapse
|
4
|
Nagi SC, Ingham VA. A multi-omic meta-analysis reveals novel mechanisms of insecticide resistance in malaria vectors. Commun Biol 2025; 8:790. [PMID: 40410509 PMCID: PMC12102355 DOI: 10.1038/s42003-025-08221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/13/2025] [Indexed: 05/25/2025] Open
Abstract
Malaria control faces challenges from widespread insecticide resistance in major Anopheles species. This study, employing a cross-species approach, integrates RNA-Sequencing, whole-genome sequencing, and microarray data to elucidate drivers of insecticide resistance in Anopheles gambiae complex and An. funestus. Here we show an inverse relationship between genetic diversity and gene expression, with highly expressed genes experiencing stronger purifying selection. Gene expression clusters physically in the genome, revealing potential coordinated regulation, and we find that highly over-expressed genes are associated with selective sweep loci. We identify known and novel candidate insecticide resistance genes, enriched for metabolic, cuticular, and behavioural functioning. We also present AnoExpress, a Python package, and an online interface for user-friendly exploration of resistance candidate expression. Despite millions of years of speciation, convergent gene expression responses to insecticidal selection pressures are observed across Anopheles species, providing crucial insights for malaria vector control.
Collapse
Affiliation(s)
- Sanjay C Nagi
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Victoria A Ingham
- Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, Heidelberg, Germany.
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
5
|
Dias GS, Machado EP, Sacilotto MG, Thiesen LV, Omoto C. Bifenthrin resistance in Dalbulus maidis (Hemiptera: Cicadellidae): inheritance, cross-resistance, and stability. PEST MANAGEMENT SCIENCE 2025. [PMID: 40277011 DOI: 10.1002/ps.8848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Pyrethroid insecticides have been a primary strategy for managing Dalbulus maidis (Hemiptera: Cicadellidae) in Brazil. Howeve, failures in the control of D. maidis with pyrethroids have been reported. In this study, we selected a bifenthrin-resistant strain of D. maidis under laboratory cage conditions to investigate the inheritance pattern of resistance, cross-resistance to other insecticides, and resistance stability. RESULTS The estimated LC50 of the Bif-R was 2,055.72 μg a.i. mL-1, while that of the susceptible (Sus) strain was 0.64 μg a.i. mL-1, resulting in a 3,170-fold resistance ratio (RR). Reciprocal crosses (H1: Bif-R ♀ × Sus ♂ and H2: Bif-R ♂ × Sus ♀) and backcrosses between heterozygous H1 and H2 with the Sus strain indicated autosomal, incompletely dominant, and polygenic resistance. Potential cross or multiple-resistance was observed between Bif-R and lambda-cyhalothrin, imidacloprid, and acetamiprid, with resistance ratios varying from 300- to 2,000-fold. No cross-resistance was detected between Bif-R and methomyl, carbosulfan or acephate. Cage studies with different proportions of Sus and Bif-R strains revealed that resistance of D. maidis to bifenthrin is unstable. A decrease in the LC50 of the field-collected population from 113.61 to 10.73 μg bifenthrin mL-1 was detected in the absence of selection pressure. CONCLUSIONS Our findings provide insights into the evolution of resistance of D. maidis to bifenthrin. This study is the first comprehensive analysis of pyrethroid resistance in D. maidis and will contribute to insect resistance management (IRM) strategies to preserve the efficacy of bifenthrin and other insecticides. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Gabriel Silva Dias
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Eduardo Perkovski Machado
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Matheus Gerage Sacilotto
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Leonardo Vinicius Thiesen
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Celso Omoto
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
6
|
Liu W, Zhao Y, Zhao X, Guo H, Yang Y, Moussian B, Zhang J. The pore canal protein snsl is required for cuticular lipids transport and cuticle barrier function in the migratory locust, Locusta migratoria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 181:104314. [PMID: 40280450 DOI: 10.1016/j.ibmb.2025.104314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/04/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Lipids are important components of the insect cuticle protecting against desiccation and xenobiotic penetration. Delivery of lipids to the cuticular surface occurs through pore canals, which are a nano-canal system formed by the epidermis, running through the procuticle and terminating at the epicuticle, where they ramify as wax-canals. The molecular mechanisms of cuticular lipids deposition in insects are poorly understood. Here, we identified the pore canal protein Snsl (Snustorr snarlik) in the migratory locust Locusta migratoria (LmSnsl) and investigated its function in cuticular lipid transport and cuticle barrier construction. We found that LmSnsl was specifically expressed in the integument and had a high expression level before ecdysis when a new cuticle is formed. Silencing of LmSnsl by RNA interference (RNAi) caused a lethal phenotype during or shortly after molting. In addition, RNAi against LmSnsl resulted in a decrease in cuticular lipids and in the accumulation of internal lipids. The pore canals of dsLmSnsl animals are deformed and contain less luminal material. Furthermore, we found that cuticle permeability to xenobiotics was enhanced in dsLmSnsl-treated nymphs that were, consistently, more susceptible to insecticides. These animals were also prone to pathogen invasion suggesting that cuticle lipids act in pathogen defense. Taken together, our results indicate that the locust Snsl protein is needed for pore canal integrity required for the transport of lipids from the epidermis to the cuticle to constitute a barrier against xenobiotics and pathogens.
Collapse
Affiliation(s)
- Weimin Liu
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China
| | - Yiyan Zhao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China
| | - Xiaoming Zhao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China.
| | - Hongfang Guo
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China; College of Life Science, Shanxi University, Taiyuan, China
| | - Yang Yang
- Interfaculty Institute of Cell Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Bernard Moussian
- Interfaculty Institute of Cell Biology, University of Tübingen, 72076, Tübingen, Germany; Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, 06903, France.
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China.
| |
Collapse
|
7
|
Kong X, Tan S, Guan M, Lin X, Shen J, Shi W, Wang D. Nanocarrier-mediated transdermal delivery of Lmidgf4 dsRNA expedites biological control of locusts by Beauveria bassiana. J Nanobiotechnology 2025; 23:272. [PMID: 40186278 PMCID: PMC11969711 DOI: 10.1186/s12951-025-03347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025] Open
Abstract
Locusts have been a major global agricultural pest that poses a serious threat to crop and livestock production. Entomopathogenic fungi (EPF) provide an eco-friendly control method; however, their efficacy usually takes slow and is unstable. To achieve an enhancement of the biocontrol efficacy of Beauveria bassiana (B. bassiana) against locusts, we developed a new strategy by which B. bassiana and nanocarrier-mediated dsRNA are co-applied across the locust cuticle. The nanocarrier star polycation (SPc) effectively delivers Lmidgf4 dsRNA (dsLmidgf4) into the locust, which targets Locusta migratoria imaginal disc growth factor 4 (Lmidgf4). SPc protects dsLmidgf4 from degradation by the hemolymph and enables efficient gene silencing. Furthermore, SPc has no adverse effects on B. bassiana spore germination and growth. Lmidgf4 interference leads to a thinner layer of endocuticle, thus facilitates infection of B. bassiana, and finally reduces the median lethal time of locusts infected with B. bassiana. In conclusion, the combination of B. bassiana and dsRNA/SPc complex overcomes the slow action of fungi, providing a novel strategy for field control of locusts.
Collapse
Affiliation(s)
- Xue Kong
- State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Lab of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shuqian Tan
- State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Lab of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Mei Guan
- State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Lab of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiaoxin Lin
- State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Lab of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jie Shen
- State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Lab of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wangpeng Shi
- State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Lab of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dan Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Lab of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Camacho E, Dong Y, Chrissian C, Cordero RJ, Saraiva RG, Anglero-Rodriguez Y, Smith DF, Jacobs E, Hartshorn I, Patiño-Medina JA, DePasquale M, Dziedzic A, Jedlicka A, Smith B, Mlambo G, Tripathi A, Broderick NA, Stark RE, Dimopoulos G, Casadevall A. Dietary L-3,4-dihydroxyphenylalanine (L-DOPA) augments cuticular melanization in Anopheles mosquitos while reducing their lifespan and malaria parasite burden. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.30.615839. [PMID: 40166253 PMCID: PMC11956902 DOI: 10.1101/2024.09.30.615839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA), a naturally occurring tyrosine derivative, is prevalent in environments that include mosquito habitats, potentially serving as part of their diet. Given its role as a precursor for melanin synthesis we investigate the effect of dietary L-DOPA on mosquito physiology and immunity to Plasmodium falciparum and Cryptococcus neoformans infection. Dietary L-DOPA is incorporated into mosquito melanin via a non-canonical pathway and has a profound transcriptional effect associated with enhanced immunity, increased pigmentation, and reduced lifespan. Increased melanization results in an enhanced capacity to absorb electromagnetic radiation that affects mosquito temperatures. Bacteria in the mosquito microbiome act as sources of dopamine, a substrate for melanization. Our results illustrate how an environmentally abundant amino acid analogue can affect mosquito physiology and suggest its potential usefulness as an environmentally friendly vector control agent to reduce malaria transmission, warranting further research and field studies.
Collapse
|
9
|
Qureshi YM, Voloshin V, Gleave K, Ranson H, McCall PJ, Covington JA, Towers CE, Towers DP. Discrimination of inherent characteristics of susceptible and resistant strains of Anopheles gambiae by explainable artificial intelligence analysis of flight trajectories. Sci Rep 2025; 15:6759. [PMID: 40000754 PMCID: PMC11862076 DOI: 10.1038/s41598-025-91191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Understanding mosquito behaviours is vital for the development of insecticide-treated nets (ITNs), which have been successfully deployed in sub-Saharan Africa to reduce disease transmission, particularly malaria. However, rising insecticide resistance (IR) among mosquito populations, owing to genetic and behavioural changes, poses a significant challenge. We present a machine learning pipeline that successfully distinguishes between innate IR and insecticide-susceptible (IS) mosquito flight behaviours independent of insecticidal exposure by analysing trajectory data. Data-driven methods are introduced to accommodate common tracking system shortcomings that occur due to mosquito positions being occluded by the bednet or other objects. Trajectories, obtained from room-scale tracking of two IR and two IS strains around a human-baited, untreated bednet, were analysed using features such as velocity, acceleration, and geometric descriptors. Using these features, an XGBoost model achieved a balanced accuracy of 0.743 and a ROC AUC of 0.813 in classifying IR from IS mosquitoes. SHAP analysis helped decipher that IR mosquitoes tend to fly slower with more directed flight paths and lower variability than IS-traits that are likely a fitness advantage by enhancing their ability to respond more quickly to bloodmeal cues. This approach provides valuable insights based on flight behaviour that can reveal the action of interventions and insecticides on mosquito physiology.
Collapse
Affiliation(s)
- Yasser M Qureshi
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
| | - Vitaly Voloshin
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Katherine Gleave
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Hilary Ranson
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Philip J McCall
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | | | - David P Towers
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
10
|
Deng M, Xu X, Xiao T, Huang X, Wang W, Zhao X, Li J, Jiang Y, Pan B, He Z, Yang Z, Lu K. Chemosensory Proteins Protect Nilaparvata lugens from Imidacloprid by Sequestering the Insecticide and Facilitating Metabolic Detoxification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3951-3966. [PMID: 39908228 DOI: 10.1021/acs.jafc.4c10518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The involvement of chemosensory proteins (CSPs) in binding to insecticides has been implicated. However, our understanding of CSP-mediated insecticide resistance remains limited. Herein, 15 CSP genes were identified and characterized from Nilaparvata lugens. Expression analysis identified six CSPs with overexpression in the imidacloprid-resistant strain, whose involvement in imidacloprid resistance was validated by RNA interference. Among them, four CSPs were successfully expressed using a prokaryotic expression system, and their binding affinities to imidacloprid were confirmed through fluorescence competitive binding assays. Knockdown of them impaired the capacity of N. lugens to metabolize imidacloprid and inhibited the activity of metabolic detoxification pathways, while their overexpression in Escherichia coli enhanced bacterial metabolic efficiency toward imidacloprid. Furthermore, the transcriptional regulation of CSP2 and CSP15 was found to be mediated by AhR/ARNT and CncC/MafK. These findings suggest that the overexpression of CSPs in N. lugens promotes imidacloprid resistance by sequestering the insecticide and enhancing metabolic detoxification.
Collapse
Affiliation(s)
- Mengqing Deng
- Key Laboratory of Agri-Products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiyue Xu
- Key Laboratory of Agri-Products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tianxiang Xiao
- Key Laboratory of Agri-Products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiaodan Huang
- Key Laboratory of Agri-Products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Key Laboratory of Agri-Products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xinyu Zhao
- Key Laboratory of Agri-Products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Jun Li
- Key Laboratory of Agri-Products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yingjie Jiang
- Key Laboratory of Agri-Products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bo Pan
- Key Laboratory of Agri-Products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Ziyu He
- Key Laboratory of Agri-Products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhiming Yang
- Key Laboratory of Agri-Products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Kai Lu
- Key Laboratory of Agri-Products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
11
|
Tzotzos G. Properties of "Stable" Mosquito Cytochrome P450 Enzymes. INSECTS 2025; 16:184. [PMID: 40003814 PMCID: PMC11855896 DOI: 10.3390/insects16020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
The use of insecticides is widespread in the control of debilitating mosquito-borne diseases. P450 enzymes (CYPs) play essential roles in mosquito physiological function but also in the enzymatic detoxification of xenobiotics. Broadly speaking, CYPs can be classified as "stable", meaning those that have no or very few paralogs, and "labile", constituting gene families with many paralogous members. The evolutionary dichotomy between "stable" and "labile" P450 genes is fuzzy and there is not a clear phylogenetic demarcation between P450s involved in detoxification and P450s involved in essential metabolic processes. In this study, bioinformatic methods were used to explore differences in the sequences of "stable" and "labile" P450s that may facilitate their functional classification. Genomic and sequence data of Anopheles gambiae (Agam), Aedes aegypti (Aaeg), and Culex quinquefasciatus (Cqui) CYPs were obtained from public databases. The results of this study show that "stable" CYPs are encoded by longer genes, have longer introns and more exons, and contain a higher proportion of hydrophobic amino acids than "labile" CYPs. Compared to "labile" CYPs, a significantly higher proportion of "stable" CYPs are associated with biosynthetic and developmental processes.
Collapse
Affiliation(s)
- George Tzotzos
- Visiting Research Fellow, Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60100 Ancona, Italy
| |
Collapse
|
12
|
Yang L, Ye S, Liu H, Yin Y, Yang Y, Wang C, Ma T, Zhang G, Han X. Oxidative metabolism mechanism of terpenoid compound ZQ-8 by cytochrome P450 enzyme in Helicoverpa armigera. Int J Biol Macromol 2025; 290:138989. [PMID: 39710025 DOI: 10.1016/j.ijbiomac.2024.138989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
In our previous research, we identified that treatment of Helicoverpa armigera with ZQ-8 led to upregulation of CYP450 genes. To clarify the metabolic pathway of ZQ-8, this study analyzed the expression of CYP450 genes and proteins in H. armigera after ZQ-8 treatment through transcriptomics and proteomics. Molecular docking, recombinant protein expression, and surface plasmon resonance techniques were employed to investigate the interactions between ZQ-8 and P450 proteins. The oxidative reduction related pathways were significantly enriched in H. armigera larvae treated with ZQ-8, with an increase in the expression of CYP6B2 and CYP6B6 genes. The CYP6B2 and CYP6B6 proteins exhibited significant expression following ZQ-8 treatment. ZQ-8 demonstrated rapid binding and stable dissociation characteristics with CYP6B6, characterized by a dissociation constant (KD) of 88.15 μM. In contrast, ZQ-8 also showed rapid binding and dissociation with CYP6B2, but with a lower KD of 74.77 μM indicating that CYP6B2 has a stronger binding affinity for ZQ-8 compared to CYP6B6, and is capable of oxidizing ZQ-8 to the corresponding carboxylic acid. This study provides a reference for the metabolism and mechanism of action of ZQ-8 as a potential drug molecule, laying the foundation for future drug design and optimization, paving the way for environmentally sustainable pest control strategies and reducing reliance on traditional chemical pesticides.
Collapse
Affiliation(s)
- Longfei Yang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, China
| | - Siying Ye
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, China
| | - Hao Liu
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, China
| | - Yuelan Yin
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, China
| | - Yuting Yang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, China
| | - Chunjuan Wang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, China
| | - Ting Ma
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, China
| | - Guoqiang Zhang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, China.
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, China.
| |
Collapse
|
13
|
Francis S, Irvine W, Mackenzie-Impoinvil L, Vizcaino L, Poupardin R, Lenhart A, Paine MJI, Delgoda R. Evaluating the potential of Kalanchoe pinnata, Piper amalago amalago, and other botanicals as economical insecticidal synergists against Anopheles gambiae. Malar J 2025; 24:25. [PMID: 39844288 PMCID: PMC11756067 DOI: 10.1186/s12936-025-05254-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/11/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Synergists reduce insecticide metabolism in mosquitoes by competing with insecticides for the active sites of metabolic enzymes, such as cytochrome P450s (CYPs). This increases the availability of the insecticide at its specific target site. The combination of both insecticides and synergists increases the toxicity of the mixture. Given the demonstrated resistance to the classical insecticides in numerous Anopheles spp., the use of synergists is becoming increasingly pertinent. Tropical plants synthesize diverse phytochemicals, presenting a repository of potential synergists. METHODS Extracts prepared from medicinal plants found in Jamaica were screened against recombinant Anopheles gambiae CYP6M2 and CYP6P3, and Anopheles funestus CYP6P9a, CYPs associated with anopheline resistance to pyrethroids and several other insecticide classes. The toxicity of these extracts alone or as synergists, was evaluated using bottle bioassays with the insecticide permethrin. RNA sequencing and in silico modelling were used to determine the mode of action of the extracts. RESULTS Aqueous extracts of Piper amalago var. amalago inhibited CYP6P9a, CYP6M2, and CYP6P3 with IC50s of 2.61 ± 0.17, 4.3 ± 0.42, and 5.84 ± 0.42 μg/ml, respectively, while extracts of Kalanchoe pinnata, inhibited CYP6M2 with an IC50 of 3.52 ± 0.68 μg/ml. Ethanol extracts of P. amalago var. amalago and K. pinnata displayed dose-dependent insecticidal activity against An. gambiae, with LD50s of 368.42 and 282.37 ng/mosquito, respectively. Additionally, An. gambiae pretreated with K. pinnata (dose: 1.43 μg/mosquito) demonstrated increased susceptibility (83.19 ± 6.14%) to permethrin in a bottle bioassay at 30 min compared to the permethrin only treatment (0% mortality). RNA sequencing demonstrated gene modulation for CYP genes in anopheline mosquitoes exposed to 715 ng of ethanolic plant extract at 24 h. In silico modelling showed good binding affinity between CYPs and the plants' secondary metabolites. CONCLUSION This study demonstrates that extracts from P. amalago var. amalago and K. pinnata, with inhibitory properties, IC50 < 6.95 μg/ml, against recombinant anopheline CYPs may be developed as natural synergists against anopheline mosquitoes. Novel synergists can help to overcome metabolic resistance to insecticides, which is increasingly reported in malaria vectors.
Collapse
Affiliation(s)
- Sheena Francis
- Caribbean Centre for Research in Biosciences, Natural Products Institute, University of the West Indies, Kingston, Jamaica.
- The Mosquito Control Research Unit, University of the West Indies, Kingston, Jamaica.
| | - William Irvine
- Caribbean Centre for Research in Biosciences, Natural Products Institute, University of the West Indies, Kingston, Jamaica
| | - Lucy Mackenzie-Impoinvil
- Entomology Branch, Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30329, USA
| | - Lucrecia Vizcaino
- Entomology Branch, Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30329, USA
| | - Rodolphe Poupardin
- Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30329, USA
| | - Mark J I Paine
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Rupika Delgoda
- Caribbean Centre for Research in Biosciences, Natural Products Institute, University of the West Indies, Kingston, Jamaica
| |
Collapse
|
14
|
Chen J, Xu Z, Yang F, Yang J, Kuang W, Li J, Wang Y, Jin L. Transcriptome Analysis of Culex pipiens quinquefasciatus Larvae Exposed to a Semi-Lethal Dose of Vermistatin. Trop Med Infect Dis 2025; 10:31. [PMID: 39998035 PMCID: PMC11860603 DOI: 10.3390/tropicalmed10020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Culex pipiens quinquefasciatus is a notorious vector transmitting severe diseases such as Zika virus and West Nile virus to humans worldwide. Vermistatin is a type of funicon-like compound and was first isolated from Penicillin vermiculatum in the 1970s. Vermistatin has shown promising activity against Cx. p. quinquefasciatus larvae in our previous research. Here, we conducted a transcriptomic analysis of Cx. p. quinquefasciatus larvae treated with a median lethal concentration of 28.13 mg/L vermistatin. Differential expression analysis identified 1055 vermistatin-responsive genes, with 477 downregulated and 578 upregulated. Gene Ontology annotation and enrichment analysis revealed the metabolic process to be the most significantly affected biological process, the membrane to be the most significantly affected cellular component, and catalytic activity to be the most significantly affected molecular function. Kyoto Encyclopedia of Genes and Genomes pathway analysis classified the differential expression genes into six major categories, with metabolism and organismal systems being the most enriched. Fifty-five pathways were significantly enriched, with the hematopoietic cell lineage, renin-angiotensin system, cholesterol metabolism, and peroxisome proliferator-activated receptor signaling pathways among the top altered pathways. Furthermore, 32 potential detoxification-related genes were differentially expressed, with 3 cytochrome P450s, 2 ABC transporters, and 1 UGT induced by vermistatin. This study provides insights into the molecular mechanisms of vermistatin's action against Cx. p. quinquefasciatus larvae, highlighting potential targets for novel mosquito control strategies.
Collapse
Affiliation(s)
- Junhui Chen
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Chinese Medicine, Ministry of Education, Nanchang 330006, China;
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330022, China; (J.Y.); (W.K.); (J.L.)
| | - Zhiyong Xu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330022, China;
| | - Feiying Yang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330022, China;
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330022, China
| | - Jian Yang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330022, China; (J.Y.); (W.K.); (J.L.)
| | - Wendong Kuang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330022, China; (J.Y.); (W.K.); (J.L.)
| | - Jianghuai Li
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330022, China; (J.Y.); (W.K.); (J.L.)
| | - Yaqi Wang
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Chinese Medicine, Ministry of Education, Nanchang 330006, China;
| | - Liang Jin
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330022, China;
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330022, China
| |
Collapse
|
15
|
Worku N, Sanou A, Hartke J, Morris M, Cissé F, Ouédraogo S, Tapsoba M, Vallon N, Akilu TD, Worku L, Guelbeogo MW, Ingham VA. Insecticide resistant Anopheles from Ethiopia but not Burkina Faso show a microbiota composition shift upon insecticide exposure. Parasit Vectors 2025; 18:17. [PMID: 39833936 PMCID: PMC11748507 DOI: 10.1186/s13071-024-06638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Malaria remains a key contributor to mortality and morbidity across Africa, with the highest burden in children under 5. Insecticide-based vector control tools, which target the adult Anopheles mosquitoes, are the most efficacious tool in disease prevention. Due to the widespread use of these interventions, insecticide resistance to the most used classes of insecticides is now pervasive across Africa. Understanding the underlying mechanisms contributing to this phenotype is necessary to both track the spread of resistance and to design new tools to overcome it. METHODS Here, we compare the microbiota composition of insecticide-resistant populations of Anopheles gambiae, An. coluzzii and An. arabiensis from Burkina Faso, and in the latter case additionally from Ethiopia, to insecticide-susceptible populations. RESULTS We show that the microbiota composition between insecticide-resistant and -susceptible populations does not differ in Burkina Faso. This result is supported by data from laboratory colonies originating in Burkina Faso across two countries. In contrast, An. arabiensis from Ethiopia demonstrates clear differences in microbiota composition in those dying from and those surviving insecticide exposure. To further understand resistance in this An. arabiensis population, we performed RNAseq and saw differential expression of detoxification genes associated with insecticide resistance and changes in respiration, metabolism and synapse-related ion channels. CONCLUSIONS Our results indicate that, in addition to changes in the transcriptome, microbiota can contribute to insecticide resistance in certain settings.
Collapse
Affiliation(s)
- Netsanet Worku
- Institute of Public Health (IPH), College of Medicine and Health Sciences, University of Gondar, PO Box 196, Gondar, Ethiopia
| | - Antoine Sanou
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Rue 1487 Avenue de la liberté, Ouagadougou, Burkina Faso
- Université Yembila-Abdoulaye-Toguyeni (UYAT), 54 Route Bogandé, Fada NGourma, Burkina Faso
| | - Juliane Hartke
- University Hospital Heidelberg, Medical Faculty, Centre for Infectious Diseases, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Marion Morris
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK
| | - Fatoumata Cissé
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Rue 1487 Avenue de la liberté, Ouagadougou, Burkina Faso
| | - Salimata Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Rue 1487 Avenue de la liberté, Ouagadougou, Burkina Faso
| | - Madou Tapsoba
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Rue 1487 Avenue de la liberté, Ouagadougou, Burkina Faso
| | - Nicola Vallon
- University Hospital Heidelberg, Medical Faculty, Centre for Infectious Diseases, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | | | - Ligabaw Worku
- Department of Parasitology, School of Biomedical Sciences, College of Medicine and Health Sciences, University of Gondar, POBox 196, Gondar, Ethiopia
| | - Moussa Wamdaogo Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Rue 1487 Avenue de la liberté, Ouagadougou, Burkina Faso
- University Joseph KI Zerbo, 03 BP 7021, Ouagadougou, Burkina Faso
| | - Victoria A Ingham
- University Hospital Heidelberg, Medical Faculty, Centre for Infectious Diseases, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
16
|
Djoko Tagne CS, Kouamo MFM, Tchouakui M, Muhammad A, Mugenzi LJL, Tatchou-Nebangwa NMT, Thiomela RF, Gadji M, Wondji MJ, Hearn J, Desire MH, Ibrahim SS, Wondji CS. A single mutation G454A in the P450 CYP9K1 drives pyrethroid resistance in the major malaria vector Anopheles funestus reducing bed net efficacy. Genetics 2025; 229:1-40. [PMID: 39509710 PMCID: PMC11708915 DOI: 10.1093/genetics/iyae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Metabolic mechanisms conferring pyrethroid resistance in malaria vectors are jeopardizing the effectiveness of insecticide-based interventions, and identification of their markers is a key requirement for robust resistance management. Here, using a field-lab-field approach, we demonstrated that a single mutation G454A in the P450 CYP9K1 is driving pyrethroid resistance in the major malaria vector Anopheles funestus in East and Central Africa. Drastic reduction in CYP9K1 diversity was observed in Ugandan samples collected in 2014, with the selection of a predominant haplotype (G454A mutation at 90%), which was completely absent in the other African regions. However, 6 years later (2020) the Ugandan 454A-CYP9K1 haplotype was found predominant in Cameroon (84.6%), but absent in Malawi (Southern Africa) and Ghana (West Africa). Comparative in vitro heterologous expression and metabolism assays revealed that the mutant 454A-CYP9K1 (R) allele significantly metabolizes more type II pyrethroid (deltamethrin) compared with the wild G454-CYP9K1 (S) allele. Transgenic Drosophila melanogaster flies expressing 454A-CYP9K1 (R) allele exhibited significantly higher type I and II pyrethroids resistance compared to flies expressing the wild G454-CYP9K1 (S) allele. Furthermore, laboratory testing and field experimental hut trials in Cameroon demonstrated that mosquitoes harboring the resistant 454A-CYP9K1 allele significantly survived pyrethroids exposure (odds ratio = 567, P < 0.0001). This study highlights the rapid spread of pyrethroid-resistant CYP9K1 allele, under directional selection in East and Central Africa, contributing to reduced bed net efficacy. The newly designed DNA-based assay here will add to the toolbox of resistance monitoring and improving its management strategies.
Collapse
Affiliation(s)
- Carlos S Djoko Tagne
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Bamenda, P.O. Box 39 Bambili, Bamenda, Cameroon
| | - Mersimine F M Kouamo
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Biotechnology Research, Bayero University, Kano, PMB 3011, Kano, Nigeria
| | - Leon J L Mugenzi
- Syngenta Crop Protection Department, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - Nelly M T Tatchou-Nebangwa
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O Box 63, Buea, Cameroon
| | - Riccado F Thiomela
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Mahamat Gadji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Murielle J Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Jack Hearn
- Centre for Epidemiology and Planetary Health, Scotland’s Rural College (SRUC), RAVIC, Inverness IV2 5NA, UK
| | - Mbouobda H Desire
- Department of Biochemistry, Faculty of Science, University of Bamenda, P.O. Box 39 Bambili, Bamenda, Cameroon
| | - Sulaiman S Ibrahim
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biochemistry, Bayero University, PMB 3011 Kano, Nigeria
| | - Charles S Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
17
|
Deng M, Xu X, Huang X, Xiao T, Wang W, Li J, Zhao X, Pan B, Jiang Y, He Z, Yang Z, Lu K. Mechanistic exploration of odorant binding protein-mediated chlorpyrifos resistance in Nilaparvata lugens: Insights from insecticide sequestration and transcriptional regulation. Int J Biol Macromol 2025; 284:138108. [PMID: 39608539 DOI: 10.1016/j.ijbiomac.2024.138108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The effectiveness and sustainable application of insecticides are severely threatened by the rapid evolution of resistance in agricultural pests. Recent research indicates that odorant binding proteins (OBPs) may be involved in facilitating insecticide resistance, while the specific mechanisms remain poorly understood. Herein, 11 OBPs were identified from Nilaparvata lugens. Among them, OBP5 exhibited high and specific expression in the head, and showed constitutive overexpression in the chlorpyrifos-resistant strain. Knockdown of OBP5 notably restored susceptibility to chlorpyrifos in N. lugens, while overexpression of OBP5 in Escherichia coli significantly enhanced bacterial tolerance to chlorpyrifos. Fluorescence competitive binding assay confirmed the strong binding affinities of OBP5 to chlorpyrifos and its active metabolite chlorpyrifos-oxon. Molecular docking studies proposed a critical interacting amino acid (Lys147) in the binding site, which was further validated by comparative binding studies between wildtype OBP5 and the mutated protein OBP5K147A. Furthermore, Lim1β that also presented overexpression pattern in the resistant strain, was found to regulate expression of OBP5 through a dual-luciferase reporter assay. Our findings demonstrate that the overexpression of OBP5 contributes to chlorpyrifos resistance by binding and sequestering the insecticides, shedding light on the sequestration resistance mechanism conferred by OBPs and offering potential targets for resistance management.
Collapse
Affiliation(s)
- Mengqing Deng
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiyue Xu
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiaodan Huang
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tianxiang Xiao
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Jun Li
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xinyu Zhao
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bo Pan
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yingjie Jiang
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Ziyu He
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhiming Yang
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Kai Lu
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
18
|
Ali AAB. Cuticular composition: An alternative taxonomic approach to differentiate between Argas arboreus and Argas persicus ticks (Acari: Argasidae). Vet Parasitol 2025; 333:110353. [PMID: 39561508 DOI: 10.1016/j.vetpar.2024.110353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Argas arboreus and A. persicus are blood sucking ectoparasites on domestic birds in Egypt. They cause anemia in birds, in addition to transmitting a variety of pathogens that leads to economical loss in the poultry industry. It is difficult for non-taxonomists to differentiate between these species because of minor morphological characters. Therefore, it is very important to identify tick species for developing a suitable strategy to reduce risks to poultry wealth. This study characterized the female cuticular hydrocarbons of two Argas species using gas chromatography-mass spectrometry. Sixty different hydrocarbons were exclusively identified in A. arboureus, whereas only 51 in A. persicus. Some of the hydrocarbon compounds were stage-specific ones that differentiate between two species. Others shared between all feeding stages of both species that improved they are closely related ones. Genetic variability recorded its maximum value between unfed stages of the two species, and similarity reached only 25 %. The present study provides the first chemotaxonomic data to differentiate between two closely related Argas species according to their cuticular hydrocarbons. Therefore, hydrocarbon composition seems to be a promising tool available as a taxonomic character, in addition improved that feeding stage was the susceptible one to be controlled.
Collapse
Affiliation(s)
- Asmaa Ali Baioumy Ali
- Zoology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt.
| |
Collapse
|
19
|
Xu Y, Du J, Zhang K, Li J, Zou F, Li X, Meng Y, Chen Y, Tao L, Zhao F, Ma L, Shen B, Zhou D, Sun Y, Yan G, Zhu C. The Dual Resistance Mechanism of CYP325G4 and CYP6AA9 in Culex pipiens pallens Legs According to Transcriptome and Proteome Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27150-27162. [PMID: 39604078 DOI: 10.1021/acs.jafc.4c05708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Mosquitoes within the Culex pipiens complex play a crucial role in human disease transmission. Insecticides, especially pyrethroids, are used to control these vectors. Mosquito legs are the main entry point and barrier for insecticides to gain their neuronal targets. However, the resistance mechanism in mosquito legs is unclear. Herein, we employed transcriptomic analyses and isobaric tags for relative and absolute quantitation techniques to investigate the resistance mechanism, focusing on Cx. pipiens legs. We discovered 2346 differentially expressed genes (DEGs) between deltamethrin-resistant (DR) and deltamethrin-sensitive (DS) mosquito legs, including 41 cytochrome P450 genes. In the same comparison, we identified 228 differentially expressed proteins (DEPs), including six cytochrome P450 proteins. Combined transcriptome and proteome analysis revealed only two upregulated P450 genes, CYP325G4 and CYP6AA9. The main clusters of DEGs and DEPs were associated with metabolic processes, such as cytochrome P450-mediated metabolism of drugs and xenobiotics. Transcription analysis revealed high CYP325G4 and CYP6AA9 expression in the DR strain at 72 h posteclosion compared with that in the DS strain, particularly in the legs. Mosquitoes knocked down for CYP325G4 were more sensitive to deltamethrin than the controls. CYP325G4 knockdown reduced the expression of several chlorinated hydrocarbon (CHC)-related genes, which altered the cuticle thickness and structure. Conversely, CYP6AA9 knockdown increased CHC gene expression without altering cuticle thickness and structure. P450 activity analysis demonstrated that CYP325G4 and CYP6AA9 contributed to metabolic resistance in the midgut and legs. This study identified CYP325G4 as a novel mosquito deltamethrin resistance factor, being involved in both metabolic and cuticular resistance mechanisms. The previously identified CYP6AA9 was investigated for its involvement in metabolic resistance and potential cuticular resistance in mosquito legs. These findings enhance our comprehension of resistance mechanisms, identifying P450s as promising targets for the future management of mosquito vector resistance, and laying a theoretical groundwork for mosquito resistance management.
Collapse
Affiliation(s)
- Yang Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiajia Du
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Kewei Zhang
- Department of Population Health & Disease Prevention, Joe C. Wen School of Population & Public Health, University of California, Irvine, California 92697, United States
| | - Jinze Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Feifei Zou
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xixi Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yufen Meng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Tao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fengming Zhao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Guiyun Yan
- Department of Population Health & Disease Prevention, Joe C. Wen School of Population & Public Health, University of California, Irvine, California 92697, United States
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| |
Collapse
|
20
|
Sessa L, Oberti H, Abreo E, Pedrini N. Beauveria bassiana transcriptomics reveal virulence-associated shifts during insect lipid assimilation. Appl Microbiol Biotechnol 2024; 108:23. [PMID: 38159119 DOI: 10.1007/s00253-023-12898-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024]
Abstract
Insect cuticular lipids, especially epicuticular hydrocarbons (CHC), have a significant role in insect ecology and interactions with other organisms, including fungi. The CHC composition of a specific insect species may influence the outcome of the interaction with a specific fungal strain. Some insects, such as Piezodorus guildinii, have low susceptibility towards fungal infections seemingly due to their CHC composition. The entomopathogenic fungus Beauveria bassiana can assimilate CHC and incorporate them as building blocks via cytochrome P450 monooxygenases (CYPs). However, little is known about other enzymes that promote the degradation/assimilation of these cuticular components. In this study, we performed a transcriptomic analysis to evaluate the in vitro response of two virulence-contrasting B. bassiana strains when grown on three different P. guildinii CHC sources. We found a different expression profile of virulence-related genes, as well as different GO and KEGG parameters enriched at 4 days post-inoculation, which could help account for the intrinsic virulence and for an alkane-priming virulence enhancement effect. The hypovirulent strain predominantly showed higher expression of cuticle penetration genes, including chitinases, proteases, and CYPs, with GO term categories of "heme binding," "monooxygenase activity," and "peroxisome" pathways enriched. The hypervirulent strain showed higher expression of cell wall remodeling and cell cycle genes, and cuticle adhesion and a distinct set of CYPs, with GO categories of "DNA-binding transcription factor activity" and KEGG pathways corresponding to "meiosis-yeast" and "cell cycle" enriched. These results suggest a delay and alternate routes in pathogenicity-related metabolism in the hypovirulent strain in comparison with the hypervirulent strain. KEY POINTS: •Transcriptomics of two B. bassiana strains grown in P. guildinii cuticular components •Virulence-related genes correlated with virulence enhancement towards P. guildinii •Differentially expressed genes, GOs and KEGGs showed different metabolic timelines associated with virulence.
Collapse
Affiliation(s)
- Lucia Sessa
- Laboratorio de Bioproducción, Plataforma de Bioinsumos. Instituto Nacional de Investigación Agropecuaria, estación experimental Wilson Ferreira Aldunate, Ruta 48, km, 10, Canelones, Uruguay
| | - Héctor Oberti
- Laboratorio de Bioproducción, Plataforma de Bioinsumos. Instituto Nacional de Investigación Agropecuaria, estación experimental Wilson Ferreira Aldunate, Ruta 48, km, 10, Canelones, Uruguay
| | - Eduardo Abreo
- Laboratorio de Bioproducción, Plataforma de Bioinsumos. Instituto Nacional de Investigación Agropecuaria, estación experimental Wilson Ferreira Aldunate, Ruta 48, km, 10, Canelones, Uruguay.
| | - Nicolas Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Plata (UNLP), calles 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
21
|
Hu J, Rao W, Chen F, Zhou X, Wang J, Lin L, Fan G. The Altered Lipid Composition and Key Lipid Metabolic Enzymes in Thiacloprid-Resistant Myzus persicae, with Special Attention Paid to the Function of MpTHEM6a. Int J Mol Sci 2024; 25:12112. [PMID: 39596181 PMCID: PMC11594901 DOI: 10.3390/ijms252212112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Neonicotinoid resistance is increasingly prevalent in the agricultural pest Myzus persicae. Lipids play a critical role in insect defense systems, but their contribution to insect neonicotinoid resistance is disregarded. We conducted metabolomics and transcriptomics studies on M. persicae thiacloprid-resistant (THG-R) and -susceptible (FFJ-S) populations. A total of 149 lipid metabolites were identified, with 90 upregulated and 59 downregulated in THG-R compared to in FFJ-S. Metabolites in the arachidonic acid (AA) pathway substantially varied between THG-R and FFJ-S. For example, arachidonic acid, (±)11-HETE, and prostaglandin B1 were significantly upregulated, while prostaglandin A1, tetranor-PGDM, 8,15-diHETE, and (±)11(12)-EET were significantly decreased in THG-R. Transcriptomics profiles and qPCR indicated that lipid metabolic enzymes, including fatty acid synthase (FAS), the elongase of very-long-chain fatty acids (ELO), fatty acid desaturase (FAD), and phospholipase (PL) genes, were not overexpressed in THG-R. Among the twelve thioesterase genes, only MpTHEM6a was significantly upregulated in THG-R. Knocking down the expression of MpTHEM6a in THG-R significantly increased the toxicity of the three neonicotinoids, reduced the lifespan of adults, and decreased the number of nonviable nymphs produced by female adults. The metabolites AA, (±)11-HETE, and prostaglandin B1 are potential biomarkers in neonicotinoid-resistant M. persicae. MpTHEM6a may become a potential target for combating neonicotinoid-resistant M. persicae.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guocheng Fan
- Fujian Engineering Research Center for Green Pest Management, Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| |
Collapse
|
22
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
23
|
Sovi A, Adoha CJ, Yovogan B, Cross CL, Dee DP, Konkon AK, Sidick A, Accrombessi M, Ahouandjinou MJ, Ossè R, Dangbénon E, Towakinou L, Agbangla C, Padonou GG, Churcher TS, Ngufor C, Cook J, Protopopoff N, Akogbéto MC, Messenger LA. The effect of next-generation, dual-active-ingredient, long-lasting insecticidal net deployment on insecticide resistance in malaria vectors in Benin: results of a 3-year, three-arm, cluster-randomised, controlled trial. Lancet Planet Health 2024; 8:e894-e905. [PMID: 39515347 DOI: 10.1016/s2542-5196(24)00232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Insecticide resistance among malaria vector species now occurs in 84 malaria-endemic countries and territories worldwide. Novel vector-control interventions, including long-lasting insecticidal nets (LLINs) that incorporate new active ingredients with distinct modes of action, are urgently needed to delay the evolution and spread of resistance and to alleviate reversals in malaria-control gains. We aimed to assess the longitudinal effect of two dual-active-ingredient LLINs on insecticide resistance during a cluster-randomised, controlled trial in Benin. METHODS This 3-year, three-arm, cluster-randomised, controlled trial was conducted between Oct 17, 2019, and Oct 24, 2022, in three districts in southern Benin, to compare the effects of LLINs containing chlorfenapyr-pyrethroid or pyriproxyfen-pyrethroid with LLINs containing pyrethroid only. In 19 292 mosquitoes (Anopheles gambiae sensu lato) collected over 36 months-3 months of baseline followed by 3 years post-intervention-we measured longitudinal phenotypic insecticide resistance profiles using bioassays and genotypic resistance profiles using quantitative, real-time, reverse transcriptase PCR of metabolic resistance genes in two clusters per trial group. The trial was registered with ClinicalTrials.gov, NCT03931473. FINDINGS In all three trial groups, a significant effect of LLINs on insecticide resistance selection was evident, with the median lethal dose (LD50) of α-cypermethrin approximately halving between baseline and 12 months post-LLIN distribution (pyrethroid-only LLIN cluster 21: LD50 78·78 μg/ml [95% CI 65·75-94·48] vs 35·93 [29·41-43.86] and cluster 31: 79·26 [65·40-96·44] vs 38·71 [30·88-48·53]; chlorfenapyr-pyrethroid LLIN cluster 43: 104·30 [82·97-133·58] vs 43·99 [35·30-54·86]; and pyriproxyfen-pyrethroid LLIN cluster 36: 63·76 [52·14-77·75] vs 37·96 [30·88-46·69] and cluster 53: 77·67 [57·63-104·56] vs 39·72 [29·26-53·97]). Over the subsequent 2 years, the LD50 of α-cypermethrin increased past baseline values in all three trial groups (year 3 pyrethroid-only LLIN cluster 21: 141·01 [111·70-181·90] and cluster 31: 115·15 [93·90-143·09]; chlorfenapyr-pyrethroid LLIN cluster 43: 97·00 [77·24-123·54] and cluster 55: 126·99 [102·34-161·26]; and pyriproxyfen-pyrethroid LLIN cluster 36: 142·29 [112·32-184·84] and cluster 53: 109·88 [79·31-157·70]). We observed minimal reductions in chlorfenapyr susceptibility and variable but significant reductions in fertility after pyriproxyfen exposure, with an overall trend of increasing susceptibility across trial years. Several metabolic genes were implicated in resistance selection, including CYP6P4 in the pyriproxyfen-pyrethroid LLIN group, which encodes an enzyme known to metabolise pyriproxyfen in vitro, and CYP6P3 and CYP9K1 in the chlorfenapyr-pyrethroid LLIN group, both of which encode enzymes that are involved in pro-insecticide activation. INTERPRETATION After 24 months of use, chlorfenapyr-pyrethroid LLINs no longer mitigated pyrethroid resistance selection in this area of southern Benin, which has high malaria transmission dominated by highly resistant A gambiae sensu lato. This finding raises issues for current net-procurement schedules, which are based on an operational net lifespan of 3 years. Knowledge of the effects of next-generation LLINs on insecticide-resistance selection is crucial for the pragmatic design of prospective resistance-management strategies. FUNDING UNITAID and The Global Fund to Fight AIDS, Tuberculosis and Malaria.
Collapse
Affiliation(s)
- Arthur Sovi
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin; Faculty of Infectious and Tropical Diseases, Department of Disease Control, London, UK; London School of Hygiene and Tropical Medicine, London, UK; Faculté d'Agronomie, Université de Parakou, Parakou, Benin
| | - Constantin J Adoha
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin; Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Boulais Yovogan
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin; Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Chad L Cross
- Department of Epidemiology and Biostatistics, University of Nevada, Las Vegas, NV, USA; Parasitology and Vector Biology Laboratory (UNLV PARAVEC Lab), University of Nevada, Las Vegas, NV, USA
| | - Dominic P Dee
- School of Public Health, University of Nevada, Las Vegas, Las Vegas, NV, USA; MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | | | | | - Manfred Accrombessi
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin; Faculty of Infectious and Tropical Diseases, Department of Disease Control, London, UK
| | | | - Razaki Ossè
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | | | - Linda Towakinou
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Clément Agbangla
- Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Germain Gil Padonou
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin; Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Thomas S Churcher
- School of Public Health, University of Nevada, Las Vegas, Las Vegas, NV, USA; MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Corine Ngufor
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin; Faculty of Infectious and Tropical Diseases, Department of Disease Control, London, UK
| | - Jackie Cook
- MRC International Statistics and Epidemiology Group, London, UK
| | - Natacha Protopopoff
- Faculty of Infectious and Tropical Diseases, Department of Disease Control, London, UK
| | | | - Louisa A Messenger
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin; Faculty of Infectious and Tropical Diseases, Department of Disease Control, London, UK; Parasitology and Vector Biology Laboratory (UNLV PARAVEC Lab), University of Nevada, Las Vegas, NV, USA; Department of Environmental and Occupational Health, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
24
|
Toprak U, İnak E, Nauen R. Lipid Metabolism as a Target Site in Pest Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39466572 DOI: 10.1007/5584_2024_822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Lipid metabolism is essential to insect life as insects use lipids for their development, reproduction, flight, diapause, and a wide range of other functions. The central organ for insect lipid metabolism is the fat body, which is analogous to mammalian adipose tissue and liver, albeit less structured. Various other systems including the midgut, brain, and neural organs also contribute functionally to insect lipid metabolism. Lipid metabolism is under the control of core lipogenic [e.g. acetyl-CoA-carboxylase (ACC), fatty acid synthase (FAS), perilipin 2 (LSD2)], and lipolytic (lipases, perilipin 1) enzymes that are primarily expressed in the fat body, as well as hormones [insulin-like peptides (ILP), adipokinetic hormone (AKH)], transcription factors (SREBPs, foxO, and CREB), secondary messengers (calcium) and post-translational modifications (phosphorylation). Essential roles of the fat body, together with the fact that proper coordination of lipid metabolism is critical for insects, render lipid metabolism an attractive target site in pest control. In the current chapter, we focus on pest control tactics that target insect lipid metabolism. Various classes of traditional chemical insecticides [e.g. organophosphates, pyrethroids, neonicotinoids, and chitin synthesis inhibitors (Sects. 2.1 and 2.2)] have been shown to interfere with lipid metabolism, albeit it is not their primary site of action. However, the discovery of "lipid biosynthesis inhibitors", tetronic and tetramic acid derivatives commonly known as ketoenols (Sect. 2.3), was a milestone in applied entomology as they directly target lipid biosynthesis, particularly in sucking pests. Spirodiclofen, spiromesifen, and spirotetramat targeting ACC act against various insect and mite pests, while spiropidion and spidoxamat have been introduced to the market only recently. Efforts have concentrated on the development of chemical alternatives, such as hormone agonists and antagonists (Sect. 2.4), dsRNA-based pesticides that depend on RNA interference, which have great potential in pest control (Sect. 2.5) and other eco-friendly alternatives (Sect. 2.6).
Collapse
Affiliation(s)
- Umut Toprak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey.
| | - Emre İnak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Monheim, Germany.
| |
Collapse
|
25
|
Camacho E, Dong Y, Chrissian C, Cordero RJ, Saravia RG, Anglero-Rodriguez Y, Smith DF, Jacobs E, Hartshorn I, Patiño-Medina JA, DePasquale M, Dziedzic A, Jedlicka A, Smith B, Mlambo G, Tripathi A, Broderick NA, Stark RE, Dimopoulos G, Casadevall A. Dietary L-3,4-dihydroxyphenylalanine (L-DOPA) augments cuticular melanization in Anopheles mosquitos while reducing their lifespan and malaria parasite burden. RESEARCH SQUARE 2024:rs.3.rs-5167892. [PMID: 39483913 PMCID: PMC11527263 DOI: 10.21203/rs.3.rs-5167892/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA), a naturally occurring tyrosine derivative, is prevalent in environments that include mosquito habitats, potentially serving as part of their diet. Given its role as a precursor for melanin synthesis we investigated the effect of dietary L-DOPA on mosquito physiology and immunity to Plasmodium falciparum and Cryptococcus neoformans infection. Dietary L-DOPA was incorporated into mosquito melanin via a non-canonical pathway and had profound transcriptional effects that were associated with enhanced immunity, increased pigmentation, and reduced lifespan. Increased melanization resulted in an enhanced capacity to absorb electromagnetic radiation that affected mosquito temperatures. Bacteria in the mosquito microbiome were sources of dopamine, which is a substrate for melanization. Our results illustrate how an environmentally abundant amino acid analogue can affect mosquito physiology and suggest its potential usefulness as an environmentally friendly vector control agent to reduce malaria transmission, warranting further research and field studies.
Collapse
|
26
|
Dyer NA, Lucas ER, Nagi SC, McDermott DP, Brenas JH, Miles A, Clarkson CS, Mawejje HD, Wilding CS, Halfon MS, Asma H, Heinz E, Donnelly MJ. Mechanisms of transcriptional regulation in Anopheles gambiae revealed by allele-specific expression. Proc Biol Sci 2024; 291:20241142. [PMID: 39288798 PMCID: PMC11407855 DOI: 10.1098/rspb.2024.1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 09/19/2024] Open
Abstract
Malaria control relies on insecticides targeting the mosquito vector, but this is increasingly compromised by insecticide resistance, which can be achieved by elevated expression of detoxifying enzymes that metabolize the insecticide. In diploid organisms, gene expression is regulated both in cis, by regulatory sequences on the same chromosome, and by trans acting factors, affecting both alleles equally. Differing levels of transcription can be caused by mutations in cis-regulatory modules (CRM), but few of these have been identified in mosquitoes. We crossed bendiocarb-resistant and susceptible Anopheles gambiae strains to identify cis-regulated genes that might be responsible for the resistant phenotype using RNAseq, and CRM sequences controlling gene expression in insecticide resistance relevant tissues were predicted using machine learning. We found 115 genes showing allele-specific expression (ASE) in hybrids of insecticide susceptible and resistant strains, suggesting cis-regulation is an important mechanism of gene expression regulation in A. gambiae. The genes showing ASE included a higher proportion of Anopheles-specific genes on average younger than genes with balanced allelic expression.
Collapse
Affiliation(s)
- Naomi A. Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Eric R. Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Sanjay C. Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Daniel P. McDermott
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Jon H. Brenas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, UK
| | - Alistair Miles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, UK
| | - Chris S. Clarkson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, UK
| | - Henry D. Mawejje
- Infectious Diseases Research Collaboration (IDRC), Plot 2C Nakasero Hill Road, PO Box 7475, Kampala, Uganda
| | - Craig S. Wilding
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, LiverpoolL3 3AF, UK
| | - Marc S. Halfon
- Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo-State University of New York, 955 Main Street, Buffalo, NY14203, USA
| | - Hasiba Asma
- Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo-State University of New York, 955 Main Street, Buffalo, NY14203, USA
| | - Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, GlasgowG4 0RE, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| |
Collapse
|
27
|
Adams K, Roux O. No sexual pheromones in Anopheles mosquitoes? CURRENT OPINION IN INSECT SCIENCE 2024; 64:101227. [PMID: 38936474 DOI: 10.1016/j.cois.2024.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/16/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Swarming behavior is the cornerstone of the anopheline mating system. At dusk, males congregate in monospecific swarms in which females come to find a mate once in their lives. Although many Anopheles species coexist in sympatry, hybrids are infrequent, suggesting the existence of strong premating reproductive barriers. Chemical cues, particularly pheromones, often play a crucial role in bringing sexes together in a species-specific manner among insects. While the existence of sexual pheromones in Anopheles species has been postulated, only a few studies developed experimental designs to investigate their presence. Here, we discuss the contrasting and debatable findings regarding both long-range and contact sex pheromones in the context of swarm ecology in Anopheles species.
Collapse
Affiliation(s)
- Kelsey Adams
- Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA; Howard Hughes Medical Institute, Chevy Chase, USA
| | - Olivier Roux
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France.
| |
Collapse
|
28
|
Wang YC, Chang YW, Xie HF, Gong WR, Wu CD, Du YZ. The cytochrome P450 gene CYP4g1 driven by high temperature confers abamectin tolerance on Liriomyza trifolii through promoting cuticular hydrocarbons biosynthesis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106012. [PMID: 39084804 DOI: 10.1016/j.pestbp.2024.106012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Liriomyza trifolii, an invasive pest, poses a substantial threat to horticultural and vegetable plants. It spreads rapidly, especially in hot weather, leading to large-scale outbreaks with strong thermotolerance and insecticide resistance. In this study, mortality and LtCYP4g1 expression in L. trifolii were evaluated after thermal and insecticides exposure. Furthermore, functional verification of LtCYP4g1 was conducted through RNA interference and bacterial survival assays in Escherichia coli containing recombinant LtCYP4g1 protein. Results indicated that a short time exposure to high temperature incresed insecticide tolerance of L. trifolii, attributed to decreased mortality and induced LtCYP4g1 expression; LtCYP4g1 was involved in stimulating synthesis of cuticular hydrocarbons (CHCs) and elevating epicuticle lipid content and thickness, and E. coli cells overexpressing LtCYP4g1 exhibited significant tolerance to thermal and insecticide stress. In general, P450-mediated tolerance of L. trifolii was enhanced by high temperature, with LtCYP4g1 playing a role in promoting biosynthesis of CHCs for thickening epidermal lipid barrier and reducing cuticular penetration. This study provides a framework for delving into the function of CYP450s in insecticide detoxification and illustrates the role of global warming in driving the evolution of L. trifolii.
Collapse
Affiliation(s)
- Yu-Cheng Wang
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225000, China
| | - Ya-Wen Chang
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225000, China
| | - Hong-Fang Xie
- Plant Protection and Quarantine Station of Nanjing City, Nanjing 210029, Jiangsu Province, China
| | - Wei-Rong Gong
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing 210036, China
| | - Cheng-Dong Wu
- Pukou Agricultural Technology Extension Center of Nanjing City, Pukou 211800, China
| | - Yu-Zhou Du
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225000, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China.
| |
Collapse
|
29
|
Hancock PA, Ochomo E, Messenger LA. Genetic surveillance of insecticide resistance in African Anopheles populations to inform malaria vector control. Trends Parasitol 2024; 40:604-618. [PMID: 38760258 DOI: 10.1016/j.pt.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Insecticide resistance in malaria vector populations poses a major threat to malaria control, which relies largely on insecticidal interventions. Contemporary vector-control strategies focus on combatting resistance using multiple insecticides with differing modes of action within the mosquito. However, diverse genetic resistance mechanisms are present in vector populations, and continue to evolve. Knowledge of the spatial distribution of these genetic mechanisms, and how they impact the efficacy of different insecticidal products, is critical to inform intervention deployment decisions. We developed a catalogue of genetic-resistance mechanisms in African malaria vectors that could guide molecular surveillance. We highlight situations where intervention deployment has led to resistance evolution and spread, and identify challenges in understanding and mitigating the epidemiological impacts of resistance.
Collapse
Affiliation(s)
- Penelope A Hancock
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya; Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, USA; Parasitology and Vector Biology (PARAVEC) Laboratory, School of Public Health, University of Nevada, Las Vegas, USA
| |
Collapse
|
30
|
Ito R, Kamiya M, Takayama K, Mori S, Matsumoto R, Takebayashi M, Ojima H, Fujimura S, Yamamoto H, Ohno M, Ihara M, Okajima T, Yamashita A, Colman F, Lycett GJ, Sattelle DB, Matsuda K. Unravelling nicotinic receptor and ligand features underlying neonicotinoid knockdown actions on the malaria vector mosquito Anopheles gambiae. Open Biol 2024; 14:240057. [PMID: 39043224 PMCID: PMC11265914 DOI: 10.1098/rsob.240057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
With the spread of resistance to long-established insecticides targeting Anopheles malaria vectors, understanding the actions of compounds newly identified for vector control is essential. With new commercial vector-control products containing neonicotinoids under development, we investigate the actions of 6 neonicotinoids (imidacloprid, thiacloprid, clothianidin, dinotefuran, nitenpyram and acetamiprid) on 13 Anopheles gambiae nicotinic acetylcholine receptor (nAChR) subtypes produced by expression of combinations of the Agα1, Agα2, Agα3, Agα8 and Agβ1 subunits in Xenopus laevis oocytes, the Drosophila melanogaster orthologues of which we have previously shown to be important in neonicotinoid actions. The presence of the Agα2 subunit reduces neonicotinoid affinity for the mosquito nAChRs, whereas the Agα3 subunit increases it. Crystal structures of the acetylcholine binding protein (AChBP), an established surrogate for the ligand-binding domain, with dinotefuran bound, shows a unique target site interaction through hydrogen bond formation and CH-N interaction at the tetrahydrofuran ring. This is of interest as dinotefuran is also under trial as the toxic element in baited traps. Multiple regression analyses show a correlation between the efficacy of neonicotinoids for the Agα1/Agα2/Agα8/Agβ1 nAChR, their hydrophobicity and their rate of knockdown of adult female An. gambiae, providing new insights into neonicotinoid features important for malaria vector control.
Collapse
Affiliation(s)
- Ryo Ito
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Masaki Kamiya
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Koichi Takayama
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Sumito Mori
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Rei Matsumoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Mayuka Takebayashi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Hisanori Ojima
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Shota Fujimura
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Haruki Yamamoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Masayuki Ohno
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Toshihide Okajima
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Atsuko Yamashita
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Fraser Colman
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Gareth J. Lycett
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - David B. Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, London WC1E 6JF, UK
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
31
|
Mugenzi LMJ, Tekoh TA, Ntadoun ST, Chi AD, Gadji M, Menze BD, Tchouakui M, Irving H, Wondji MJ, Weedall GD, Hearn J, Wondji CS. Association of a rapidly selected 4.3kb transposon-containing structural variation with a P450-based resistance to pyrethroids in the African malaria vector Anopheles funestus. PLoS Genet 2024; 20:e1011344. [PMID: 39074161 PMCID: PMC11309504 DOI: 10.1371/journal.pgen.1011344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/08/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024] Open
Abstract
Deciphering the evolutionary forces controlling insecticide resistance in malaria vectors remains a prerequisite to designing molecular tools to detect and assess resistance impact on control tools. Here, we demonstrate that a 4.3kb transposon-containing structural variation is associated with pyrethroid resistance in central/eastern African populations of the malaria vector Anopheles funestus. In this study, we analysed Pooled template sequencing data and direct sequencing to identify an insertion of 4.3kb containing a putative retro-transposon in the intergenic region of two P450s CYP6P5-CYP6P9b in mosquitoes of the malaria vector Anopheles funestus from Uganda. We then designed a PCR assay to track its spread temporally and regionally and decipher its role in insecticide resistance. The insertion originates in or near Uganda in East Africa, where it is fixed and has spread to high frequencies in the Central African nation of Cameroon but is still at low frequency in West Africa and absent in Southern Africa. A marked and rapid selection was observed with the 4.3kb-SV frequency increasing from 3% in 2014 to 98% in 2021 in Cameroon. A strong association was established between this SV and pyrethroid resistance in field populations and is reducing pyrethroid-only nets' efficacy. Genetic crosses and qRT-PCR revealed that this SV enhances the expression of CYP6P9a/b but not CYP6P5. Within this structural variant (SV), we identified putative binding sites for transcription factors associated with the regulation of detoxification genes. An inverse correlation was observed between the 4.3kb SV and malaria parasite infection, indicating that mosquitoes lacking the 4.3kb SV were more frequently infected compared to those possessing it. Our findings highlight the underexplored role and rapid spread of SVs in the evolution of insecticide resistance and provide additional tools for molecular surveillance of insecticide resistance.
Collapse
Affiliation(s)
- Leon M. J. Mugenzi
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Theofelix A. Tekoh
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science University of Buea, Buea, Cameroon
| | - Stevia T. Ntadoun
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Achille D. Chi
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Mahamat Gadji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - Benjamin D. Menze
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Magellan Tchouakui
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Murielle J. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Gareth D. Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College, An Lòchran, 10 Inverness Campus, Inverness, Scotland, United Kingdom
| | - Charles S. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
32
|
Girotti JR, Calderón-Fernández GM. Lipid Metabolism in Insect Vectors of Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38954247 DOI: 10.1007/5584_2024_811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
According to the World Health Organization vector-borne diseases account for more than 17% of all infectious diseases, causing more than 700,000 deaths annually. Vectors are organisms that are able to transmit infectious pathogens between humans, or from animals to humans. Many of these vectors are hematophagous insects, which ingest the pathogen from an infected host during a blood meal, and later transmit it into a new host. Malaria, dengue, African trypanosomiasis, yellow fever, leishmaniasis, Chagas disease, and many others are examples of diseases transmitted by insects.Both the diet and the infection with pathogens trigger changes in many metabolic pathways, including lipid metabolism, compared to other insects. Blood contains mostly proteins and is very poor in lipids and carbohydrates. Thus, hematophagous insects attempt to efficiently digest and absorb diet lipids and also rely on a large de novo lipid biosynthesis based on utilization of proteins and carbohydrates as carbon source. Blood meal triggers essential physiological processes as molting, excretion, and oogenesis; therefore, lipid metabolism and utilization of lipid storage should be finely synchronized and regulated regarding that, in order to provide the necessary energy source for these events. Also, pathogens have evolved mechanisms to hijack essential lipids from the insect host by interfering in the biosynthesis, catabolism, and transport of lipids, which pose challenges to reproduction, survival, fitness, and other insect traits.In this chapter, we have tried to collect and highlight the current knowledge and recent discoveries on the metabolism of lipids in insect vectors of diseases related to the hematophagous diet and pathogen infection.
Collapse
Affiliation(s)
- Juan R Girotti
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Gustavo M Calderón-Fernández
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
33
|
Spadar A, Collins E, Messenger LA, Clark TG, Campino S. Uncovering the genetic diversity in Aedes aegypti insecticide resistance genes through global comparative genomics. Sci Rep 2024; 14:13447. [PMID: 38862628 PMCID: PMC11166649 DOI: 10.1038/s41598-024-64007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Aedes aegypti is vector of many arboviruses including Zika, dengue, yellow fever, West Nile, and Chikungunya. Its control efforts are hampered by widespread insecticide resistance reported in the Americas and Asia, while data from Africa is more limited. Here we use publicly available 729 Ae. aegypti whole-genome sequencing samples from 15 countries, including nine in Africa, to investigate the genetic diversity in four insecticide resistance linked genes: ace-1, GSTe2, rdl and vgsc. Apart from vgsc, the other genes have been less investigated in Ae. aegypti, and almost no genetic diversity information is available. Among the four genes, we identified 1,829 genetic variants including 474 non-synonymous substitutions, some of which have been previously documented, as well as putative copy number variations in GSTe2 and vgsc. Global insecticide resistance phenotypic data demonstrated variable resistance in geographic areas with resistant genotypes. Overall, our work provides the first global catalogue and geographic distribution of known and new amino-acid mutations and duplications that can be used to guide the identification of resistance drivers in Ae. aegypti and thereby support monitoring efforts and strategies for vector control.
Collapse
Affiliation(s)
- Anton Spadar
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Emma Collins
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, Las Vegas, NV, USA
- Parasitology and Vector Biology Laboratory (UNLV PARAVEC Lab), School of Public Health, University of Nevada, Las Vegas, NV, USA
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
34
|
Wu L, Xu Y, Li L, Cao D, Liu F, Zhao H. Matrix metalloproteinase 2 contributes to adult eclosion and immune response in the small hive beetle, Aethina tumida. INSECT SCIENCE 2024; 31:733-747. [PMID: 37751529 DOI: 10.1111/1744-7917.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/08/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
During the pupal-adult eclosion process of holometabolous insects, the old cuticle is shed and replaced by a completely different new cuticle that requires tanning and expansion, along with extensive extracellular matrix (ECM) remodeling. In vertebrates, matrix metalloproteinases (MMPs), a class of zinc-dependent endopeptidases, play key roles in regulating the ECM that surrounds cells. However, little is known about these extracellular proteinases available in insects. The small hive beetle (SHB), Aethina tumida, is a widespread invasive parasite of honey bees. In this study, 6 MMP homologs were identified in the SHB genome. RNA interference experiments showed that all 6 AtMmps are not required for the larval-pupal transition, only AtMmp2 was essential for pupal-adult eclosion in SHB. Knockdown of AtMmp2 resulted in eclosion defects and wing expansion failure, as well as mortality within 3 d of adult eclosion. Transcriptomic analysis revealed that knockdown of AtMmp2 significantly increased expression of the Toll and Imd pathways, chitin metabolism, and cross-linking (such as the pro-phenoloxidase activating cascade pathway and the tyrosine-mediated cuticle sclerotization and pigmentation pathway). These data revealed evolutionarily conserved functions of Mmp2 in controlling adult eclosion and wing expansion, also provided a preliminary exploration of the novel function of regulating Toll and Imd pathways, as well as new insights into how MMPs regulate insect development and defense barriers.
Collapse
Affiliation(s)
- Lixian Wu
- Guangdong Key Laboratssory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yajing Xu
- Guangdong Key Laboratssory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liangbin Li
- Guangdong Key Laboratssory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Dainan Cao
- Guangdong Key Laboratssory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fang Liu
- Guangdong Key Laboratssory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hongxia Zhao
- Guangdong Key Laboratssory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
35
|
Zhang X, Liu M, Cheng A, Moussian B, Zhang J, Dong W. Role of CYP311A1 in wing development of Drosophila melanogaster. INSECT SCIENCE 2024; 31:748-758. [PMID: 38445520 DOI: 10.1111/1744-7917.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 03/07/2024]
Abstract
Lipid homeostasis is crucial for growth and development of organisms. Several cytochrome P450 monooxygenases (CYPs) are involved in lipid metabolism. The function of Cyp311a1 in the anterior midgut as a regulator of phosphatidylethanolamine (PE) metabolism in Drosophila melanogaster has been demonstrated, as depletion of Cyp311a1 caused larval growth arrest that was partially rescued by supplying PE. In this study, we investigated the role of CYP311A1 in wing morphogenesis in Drosophila. Using the GAL4-UAS system, Cyp311a1 was selectively knocked down in the wing disc. A deformed wing phenotype was observed in flies with reduced Cyp311a1 transcripts. BODIPY and oil red O staining revealed a reduction of neutral lipids in the wing disc after the depletion of Cyp311a1. In addition, we observed an enhanced sensitivity to Eosin Y penetration in the wings of Cyp311a1 knocked-down flies. Moreover, the reduction of CYP311A1 function in developing wings does not affect cell proliferation and apoptosis, but entails disordered Phalloidin or Cadherin distribution, suggesting an abnormal cell morphology and cell cortex structure in wing epithelial cells. Taken together, our results suggest that Cyp311a1 is needed for wing morphogenesis by participating in lipid assembly and cell homeostasis.
Collapse
Affiliation(s)
- Xubo Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Mengqi Liu
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Andi Cheng
- College of Life Science, Shanxi University, Taiyuan, China
| | - Bernard Moussian
- INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, Université Côte d'Azur, Nice, France
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Wei Dong
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
36
|
Pu J, Chung H. New and emerging mechanisms of insecticide resistance. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101184. [PMID: 38458436 DOI: 10.1016/j.cois.2024.101184] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The continuous use of insecticides over the last eight decades has led to the development of resistance to these insecticides. Research in the last few decades showed that the mechanisms underlying resistance are diverse but can generally be classified under several modes of resistance such as target-site resistance, metabolic resistance, and penetration resistance. In this review, we highlight new discoveries in insecticide resistance research made over the past few years, including an emerging new mode of resistance, sequestration resistance, where the overexpression of olfactory proteins binds and sequesters insecticides in resistant strains, as well as recent research on how posttranscriptional regulation can impact resistance. Future research will determine the generality of these emerging mechanisms across insect species.
Collapse
Affiliation(s)
- Jian Pu
- College of Agriculture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Henry Chung
- Department of Entomology, and Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
37
|
Huang X, Kaufman PE, Athrey GN, Fredregill C, Slotman MA. Unveiling candidate genes for metabolic resistance to malathion in Aedes albopictus through RNA sequencing-based transcriptome profiling. PLoS Negl Trop Dis 2024; 18:e0012243. [PMID: 38865422 PMCID: PMC11168629 DOI: 10.1371/journal.pntd.0012243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Aedes albopictus, also known as the Asian tiger mosquito, is indigenous to the tropical forests of Southeast Asia. Ae. albopictus is expanding across the globe at alarming rates, raising concern over the transmission of mosquito-borne diseases, such as dengue, West Nile fever, yellow fever, and chikungunya fever. Since Ae. albopictus was reported in Houston (Harris County, Texas) in 1985, this species has rapidly expanded to at least 32 states across the United States. Public health efforts aimed at controlling Ae. albopictus, including surveillance and adulticide spraying operations, occur regularly in Harris County. Despite rotation of insecticides to mitigate the development of resistance, multiple mosquito species including Culex quinquefasciatus and Aedes aegypti in Harris County show organophosphate and pyrethroid resistance. Aedes albopictus shows relatively low resistance levels as compared to Ae. aegypti, but kdr-mutation and the expression of detoxification genes have been reported in Ae. albopictus populations elsewhere. To identify potential candidate detoxification genes contributing to metabolic resistance, we used RNA sequencing of field-collected malathion-resistant and malathion-susceptible, and laboratory-maintained susceptible colonies of Ae. albopictus by comparing the relative expression of transcripts from three major detoxification superfamilies involved in malathion resistance due to metabolic detoxification. Between these groups, we identified 12 candidate malathion resistance genes and among these, most genes correlated with metabolic detoxification of malathion, including four P450 and one alpha esterase. Our results reveal the metabolic detoxification and potential cuticular-based resistance mechanisms associated with malathion resistance in Ae. albopictus in Harris County, Texas.
Collapse
Affiliation(s)
- Xinyue Huang
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Phillip E. Kaufman
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Giridhar N. Athrey
- Department of Poultry Science, Texas A&M University, College Station, Texas, United States of America
| | - Chris Fredregill
- Harris County Public Health, Mosquito & Vector Control Division, Houston, Texas, United States of America
| | - Michel A. Slotman
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
38
|
Furnival-Adams J, Kiuru C, Sagna AB, Mouline K, Maia M, Chaccour C. Ivermectin resistance mechanisms in ectoparasites: a scoping review. Parasitol Res 2024; 123:221. [PMID: 38787430 PMCID: PMC11126493 DOI: 10.1007/s00436-024-08223-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Ivermectin mass drug administration has been used for decades to target human and veterinary ectoparasites, and is currently being considered for use against malaria vectors. Although there have been few reports of resistance to date in human ectoparasites, we must anticipate the development of resistance in mosquitoes in the future. Hence, through this review, we mapped the existing evidence on ivermectin resistance mechanisms in human ectoparasites. A search was conducted on the 8th November 2023 through databases, PubMed, Web of Science, and Google Scholar, using terms related to ivermectin, human and veterinary ectoparasites, and resistance. Abstracts (5893) were screened by JFA and CK. Data on the study organism, the type of resistance, the analysis methods, and, where applicable, the gene loci of interest were extracted from the studies. Details of the methodology and results of each study were summarised narratively and in a table. Eighteen studies were identified describing ivermectin resistance in ectoparasites. Two studies described target site resistance; and 16 studies reported metabolic resistance and/or changes in efflux pump expression. The studies investigated genetic mutations in resistant organisms, detoxification, and efflux pump expression in resistant versus susceptible organisms, and the effect of synergists on mortality or detoxification enzyme/efflux pump transcription. To date, very few studies have been conducted examining the mechanisms of ivermectin resistance in ectoparasites, with only two on Anopheles spp. Of the existing studies, most examined detoxification and efflux pump gene expression, and only two studies in lice investigated target-site resistance. Further research in this field should be encouraged, to allow for close monitoring in ivermectin MDA programmes, and the development of resistance mitigation strategies.
Collapse
Affiliation(s)
- Joanna Furnival-Adams
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain.
| | - Caroline Kiuru
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigação Em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Karine Mouline
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Marta Maia
- Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Carlos Chaccour
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
- Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
39
|
Zhou X, Yuan H, Ye N, Rong C, Li Y, Jiang X, Cao H, Huang Y. CYP4G subfamily genes mediate larval integument development in Spodoptera frugiperda. JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae115. [PMID: 38783401 DOI: 10.1093/jee/toae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Cytochrome P450 (CYP) 4G subfamily is closely related to the synthesis of cuticular hydrocarbons, leading to the enhanced desiccation and insecticide resistance of pests. However, functions of CYP4Gs in larval integument development remain unknown in Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), which is a major transboundary migratory pest and become a common pest in China. On the basis of the genome and transcriptome datasets of S. frugiperda, CYP4G74, CYP4G75, CYP4G108, and CYP4G109 were identified, which contained the conserved domains of P450s and CYP4Gs. The spatial and temporal expression analysis showed that CYP4G74 and CYP4G75 were significantly highly expressed in adults and larval integuments, while CYP4G108 and CYP4G109 had low expressions in larval integuments. After silencing CYP4G74 and CYP4G75 by RNA interference, abnormal integument development occurred in larvae, some of which became smaller and dead, indicating important roles of CYP4G74 and CYP4G75 in the synthesis and development of integuments. The results clarify the functions of CYP4Gs in S. frugiperda and provide potential targets for the control of this pest.
Collapse
Affiliation(s)
- Xue Zhou
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Hao Yuan
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Nuojun Ye
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Changfeng Rong
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yiyu Li
- Institute of New Rural Development, Anhui Agricultural University, Hefei 230036, China
| | - Xingchuan Jiang
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yong Huang
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
40
|
Wang X, Dai W, Zhang C. Transcription Factors AhR and ARNT Regulate the Expression of CYP6SX1 and CYP3828A1 Involved in Insecticide Detoxification in Bradysia odoriphaga. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10805-10813. [PMID: 38712504 DOI: 10.1021/acs.jafc.4c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) mediate the responses of adaptive metabolism to various xenobiotics. Here, we found that BoAhR and BoARNT are highly expressed in the midgut of Bradysia odoriphaga larvae. The expression of BoAhR and BoARNT was significantly increased after exposure to imidacloprid and phoxim. The knockdown of BoAhR and BoARNT significantly decreased the expression of CYP6SX1 and CYP3828A1 as well as P450 enzyme activity and caused a significant increase in the sensitivity of larvae to imidacloprid and phoxim. Exposure to β-naphthoflavone (BNF) significantly increased the expression of BoAhR, BoARNT, CYP6SX1, and CYP3828A1 as well as P450 activity and decreased larval sensitivity to imidacloprid and phoxim. Furthermore, CYP6SX1 and CYP3828A1 were significantly induced by imidacloprid and phoxim, and the silencing of these two genes significantly reduced larval tolerance to imidacloprid and phoxim. Taken together, the BoAhR/BoARNT pathway plays key roles in larval tolerance to imidacloprid and phoxim by regulating the expression of CYP6SX1 and CYP3828A1.
Collapse
Affiliation(s)
- Xinxiang Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wu Dai
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunni Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
41
|
Summer M, Tahir HM, Ali S, Nawaz S, Abaidullah R, Mumtaz S, Ali A, Gormani AH. Nanobiopesticides as an Alternative and Sustainable Solution to Tackle Pest Outbreaks. JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY 2024; 96. [DOI: 10.2317/0022-8567-96.4.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Affiliation(s)
- Muhammad Summer
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Saira Nawaz
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Rimsha Abaidullah
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shumaila Mumtaz
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
42
|
Saizonou H, Impoinvil LM, Derilus D, Omoke D, Okeyo S, Dada N, Corredor C, Mulder N, Lenhart A, Ochomo E, Djogbénou LS. Transcriptomic analysis of Anopheles gambiae from Benin reveals overexpression of salivary and cuticular proteins associated with cross-resistance to pyrethroids and organophosphates. BMC Genomics 2024; 25:348. [PMID: 38582836 PMCID: PMC10998338 DOI: 10.1186/s12864-024-10261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Insecticide resistance (IR) is one of the major threats to malaria vector control programs in endemic countries. However, the mechanisms underlying IR are poorly understood. Thus, investigating gene expression patterns related to IR can offer important insights into the molecular basis of IR in mosquitoes. In this study, RNA-Seq was used to characterize gene expression in Anopheles gambiae surviving exposure to pyrethroids (deltamethrin, alphacypermethrin) and an organophosphate (pirimiphos-methyl). RESULTS Larvae of An. gambiae s.s. collected from Bassila and Djougou in Benin were reared to adulthood and phenotyped for IR using a modified CDC intensity bottle bioassay. The results showed that mosquitoes from Djougou were more resistant to pyrethroids (5X deltamethrin: 51.7% mortality; 2X alphacypermethrin: 47.4%) than Bassila (1X deltamethrin: 70.7%; 1X alphacypermethrin: 77.7%), while the latter were more resistant to pirimiphos-methyl (1.5X: 48.3% in Bassila and 1X: 21.5% in Djougou). RNA-seq was then conducted on resistant mosquitoes, non-exposed mosquitoes from the same locations and the laboratory-susceptible An. gambiae s.s. Kisumu strain. The results showed overexpression of detoxification genes, including cytochrome P450s (CYP12F2, CYP12F3, CYP4H15, CYP4H17, CYP6Z3, CYP9K1, CYP4G16, and CYP4D17), carboxylesterase genes (COEJHE5E, COE22933) and glutathione S-transferases (GSTE2 and GSTMS3) in all three resistant mosquito groups analyzed. Genes encoding cuticular proteins (CPR130, CPR10, CPR15, CPR16, CPR127, CPAP3-C, CPAP3-B, and CPR76) were also overexpressed in all the resistant groups, indicating their potential role in cross resistance in An. gambiae. Salivary gland protein genes related to 'salivary cysteine-rich peptide' and 'salivary secreted mucin 3' were also over-expressed and shared across all resistant groups. CONCLUSION Our results suggest that in addition to metabolic enzymes, cuticular and salivary gland proteins could play an important role in cross-resistance to multiple classes of insecticides in Benin. These genes warrant further investigation to validate their functional role in An. gambiae resistance to insecticides.
Collapse
Affiliation(s)
- Helga Saizonou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi (UAC), Abomey-Calavi, Benin.
| | - Lucy Mackenzie Impoinvil
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dieunel Derilus
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Diana Omoke
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
| | - Stephen Okeyo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
| | - Nsa Dada
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi (UAC), Abomey-Calavi, Benin
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Claudia Corredor
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nicola Mulder
- Human, Heredity, and Health in Africa H3ABionet network, Cape Town, South Africa
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric Ochomo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi (UAC), Abomey-Calavi, Benin.
- Regional Institute of Public Health (IRSP), Ouidah, Benin.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
43
|
Scharf ME, Lee CY. Insecticide resistance in social insects: assumptions, realities, and possibilities. CURRENT OPINION IN INSECT SCIENCE 2024; 62:101161. [PMID: 38237732 DOI: 10.1016/j.cois.2024.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Insecticide resistance is an evolved ability to survive insecticide exposure. Compared with nonsocial insects, eusocial insects have lower numbers of documented cases of resistance. Eusocial insects include beneficial and pest species that can be incidentally or purposely targeted with insecticides. The central goal of this review is to explore factors that either limit resistance or the ability to detect it in eusocial insects. We surveyed the literature and found that resistance has been documented in bees, but in other pest groups such as ants and termites, the evidence is more sparse. We suggest the path forward for better understanding eusocial resistance should include more tractable experimental models, comprehensive geographic sampling, and targeted testing of the impacts of social, symbiont, genetic, and ecological factors.
Collapse
|
44
|
Omoke D, Impoinvil LM, Derilus D, Okeyo S, Saizonou H, Mulder N, Dada N, Lenhart A, Djogbénou L, Ochomo E. Whole transcriptomic analysis reveals overexpression of salivary gland and cuticular proteins genes in insecticide-resistant Anopheles arabiensis from Western Kenya. BMC Genomics 2024; 25:313. [PMID: 38532318 DOI: 10.1186/s12864-024-10182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Effective vector control is key to malaria prevention. However, this is now compromised by increased insecticide resistance due to continued reliance on insecticide-based control interventions. In Kenya, we have observed heterogenous resistance to pyrethroids and organophosphates in Anopheles arabiensis which is one of the most widespread malaria vectors in the country. We investigated the gene expression profiles of insecticide resistant An. arabiensis populations from Migori and Siaya counties in Western Kenya using RNA-Sequencing. Centers for Disease Control and Prevention (CDC) bottle assays were conducted using deltamethrin (DELTA), alphacypermethrin (ACYP) and pirimiphos-methyl (PMM) to determine the resistance status in both sites. RESULTS Mosquitoes from Migori had average mortalities of 91%, 92% and 58% while those from Siaya had 85%, 86%, and 30% when exposed to DELTA, ACYP and PMM, respectively. RNA-Seq analysis was done on pools of mosquitoes which survived exposure ('resistant'), mosquitoes that were not exposed, and the insecticide-susceptible An. arabiensis Dongola strain. Gene expression profiles of resistant mosquitoes from both Migori and Siaya showed an overexpression mainly of salivary gland proteins belonging to both the short and long form D7 genes, and cuticular proteins (including CPR9, CPR10, CPR15, CPR16). Additionally, the overexpression of detoxification genes including cytochrome P450s (CYP9M1, CYP325H1, CYP4C27, CYP9L1 and CYP307A1), 2 carboxylesterases and a glutathione-S-transferase (GSTE4) were also shared between DELTA, ACYP, and PMM survivors, pointing to potential contribution to cross resistance to both pyrethroid and organophosphate insecticides. CONCLUSION This study provides novel insights into the molecular basis of insecticide resistance in An. arabiensis in Western Kenya and suggests that salivary gland proteins and cuticular proteins are associated with resistance to multiple classes of insecticides.
Collapse
Affiliation(s)
- Diana Omoke
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya.
| | - Lucy Mackenzie Impoinvil
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, USA
| | - Dieunel Derilus
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, USA
| | - Stephen Okeyo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
| | | | | | - Nsa Dada
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Tropical Infectious Disease Research Center, University of Abomey- Calavi, Abomey Calavi, Benin
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, USA
| | - Luc Djogbénou
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, USA
- Tropical Infectious Disease Research Center, University of Abomey- Calavi, Abomey Calavi, Benin
| | - Eric Ochomo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya.
| |
Collapse
|
45
|
Fadel AN, Ibrahim SS, Sandeu MM, Tatsinkou CGM, Menze BD, Irving H, Hearn J, Nagi SC, Weedall GD, Terence E, Tchapga W, Wanji S, Wondji CS. Exploring the molecular mechanisms of increased intensity of pyrethroid resistance in Central African population of a major malaria vector Anopheles coluzzii. Evol Appl 2024; 17:e13641. [PMID: 38410533 PMCID: PMC10895554 DOI: 10.1111/eva.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 01/01/2024] [Indexed: 02/28/2024] Open
Abstract
Molecular mechanisms driving the escalation of pyrethroid resistance in the major malaria mosquitoes of Central Africa remain largely uncharacterized, hindering effective management strategies. Here, resistance intensity and the molecular mechanisms driving it were investigated in a population of Anopheles coluzzii from northern Cameroon. High levels of pyrethroid and organochloride resistance were observed in An. coluzzii population, with no mortality for 1× permethrin; only 11% and 33% mortalities for 5× and 10× permethrin diagnostic concentrations, and <2% mortalities for deltamethrin and DDT, respectively. Moderate bendiocarb resistance (88% mortality) and full susceptibility to malathion were observed. Synergist bioassays with piperonyl butoxide recovered permethrin susceptibility, with mortalities increasing to 53.39%, and 87.30% for 5× and 10× permethrin, respectively, implicating P450 monooxygenases. Synergist bioassays with diethyl maleate (DEM) recovered permethrin and DDT susceptibilities (mortalities increasing to 34.75% and 14.88%, respectively), implicating glutathione S-transferases. RNA-seq-based genome-wide transcriptional analyses supported by quantitative PCR identified glutathione S-transferase, GSTe2 (RNA-seqFC = 2.93 and qRT-PCRFC = 8.4, p < 0.0043) and CYP450, CYP6Z2 (RNA-seqFC = 2.39 and qRT-PCRFC = 11.7, p < 0.0177) as the most overexpressed detoxification genes in the pyrethroid-resistant mosquitoes, compared to mosquitoes of the susceptible Ngousso colony. Other overexpressed genes include P450s, CYP6M2 (FC = 1.68, p < 0.0114), CYP4G16 (FC = 2.02, p < 0.0005), and CYP4G17 (FC = 1.86, p < 0.0276). While high frequency of the 1014F kdr mutation (50%) and low frequencies of 1014S (6.61%) and 1575Y (10.29%) were observed, no ace-1 mutation was detected in bendiocarb-resistant populations, suggesting the preeminent role of metabolic mechanism. Overexpression of metabolic resistance genes (including GSTe2 and CYP6Z2 known to confer resistance to multiple insecticides) in An. coluzzii from the Sudan Savannah of Cameroon highlights the need for alternative management strategies to reduce malaria burden in northern Cameroon.
Collapse
Affiliation(s)
- Amen N. Fadel
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Microbiology and ParasitologyUniversity of BueaBueaCameroon
| | - Sulaiman S. Ibrahim
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of BiochemistryBayero UniversityKanoNigeria
- Vector Biology DepartmentLiverpool School of Tropical Medicine (LSTM)LiverpoolUK
| | - Maurice M. Sandeu
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Microbiology and Infectious DiseasesSchool of Veterinary Medicine and SciencesUniversity of NgaoundéréNgaoundéréCameroon
| | | | | | - Helen Irving
- Vector Biology DepartmentLiverpool School of Tropical Medicine (LSTM)LiverpoolUK
| | - Jack Hearn
- Centre of Epidemiology and Planetary HealthNorth FacultyVeterinary & Animal ScienceScotland's Rural CollegeInvernessUK
| | - Sanjay C. Nagi
- Vector Biology DepartmentLiverpool School of Tropical Medicine (LSTM)LiverpoolUK
| | - Gareth D. Weedall
- School of Biological and Environmental SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Ebai Terence
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
| | - Williams Tchapga
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
| | - Samuel Wanji
- Department of Microbiology and ParasitologyUniversity of BueaBueaCameroon
| | - Charles S. Wondji
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
- Vector Biology DepartmentLiverpool School of Tropical Medicine (LSTM)LiverpoolUK
| |
Collapse
|
46
|
Li W, Yang W, Shi Y, Yang X, Liu S, Liao X, Shi L. Comprehensive analysis of the overexpressed cytochrome P450-based insecticide resistance mechanism in Spodoptera litura. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132605. [PMID: 37748309 DOI: 10.1016/j.jhazmat.2023.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Cytochrome P450s play critical roles in the metabolic resistance of insecticides in insects. Previous findings showed that enhanced P450 activity was an important mechanism mediating indoxacarb resistance, and multiple P450 genes were upregulated in indoxacarb resistant strains of Spodoptera litura. However, the functions of these P450 genes in insecticide resistance remain unknown. Here, the P450 inhibitor PBO effectively decreased the resistance of S. litura to indoxacarb. Ten upregulated P450 genes were characterized, all of which were overexpressed in response to indoxacarb induction. Knockdown of nine P450 genes decreased cell viability against indoxacarb, and further silencing of three genes (CYP339A1, CYP340G2, CYP321A19) in larvae enhanced the sensitivity to indoxacarb. Transgenic overexpression of these three genes increased resistance to indoxacarb in Drosophila melanogaster. Moreover, molecular modeling and docking predicted that these three P450 proteins could bind tightly to indoxacarb and N-decarbomethoxylated metabolite (DCJW). Interestingly, these three P450 genes may also mediate cross-resistance to chlorantraniliprole, λ-cyhalothrin and imidacloprid. Additionally, heterologous expression and metabolic assays confirmed that three recombinant P450s could effectively metabolize indoxacarb and DCJW. This study strongly demonstrates that multiple overexpressed mitochondrial and microsomal P450 genes were involved in insecticide resistance in S. litura.
Collapse
Affiliation(s)
- Wenlin Li
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wen Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yao Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiyu Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shuangqing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiaolan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| | - Li Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
47
|
Cai T, Wang X, Liu B, Zhao H, Liu C, Zhang X, Zhang Y, Gao H, Schal C, Zhang F. A cuticular protein, BgCPLCP1, contributes to insecticide resistance by thickening the cockroach endocuticle. Int J Biol Macromol 2024; 254:127642. [PMID: 37898258 DOI: 10.1016/j.ijbiomac.2023.127642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Overuse of insecticides has led to severe environmental problems. Insect cuticle, which consists mainly of chitin, proteins and a thin outer lipid layer, serves multiple functions. Its prominent role is as a physical barrier that impedes the penetration of xenobiotics, including insecticides. Blattella germanica (L.) is a major worldwide indoor pest that causes allergic disease and asthma. Extensive use of pyrethroid insecticides, including β-cypermethrin, has selected for the rapid and independent evolution of resistance in cockroach populations on a global scale. We demonstrated that BgCPLCP1, the first CPLCP (cuticular proteins of low complexity with a highly repetitive proline-rich region) family cuticular protein in order Blattodea, contributes to insecticide penetration resistance. Silencing BgCPLCP1 resulted in 85.0 %-85.7 % and 81.0 %-82.0 % thinner cuticle (and especially thinner endocuticle) in the insecticide-susceptible (S) and β-cypermethrin-resistant (R) strains, respectively. The thinner and more permeable cuticles resulted in 14.4 % and 20.0 % lower survival of β-cypermethrin-treated S- and R-strain cockroaches, respectively. This study advances our understanding of cuticular penetration resistance in insects and opens opportunities for the development of new efficiently and environmentally friendly insecticides targeting the CPLCP family of cuticular proteins.
Collapse
Affiliation(s)
- Tong Cai
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Xuejun Wang
- Shandong Center for Disease Control and Prevention, Jinan 250013, China
| | - Baorui Liu
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Haizheng Zhao
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Caixia Liu
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Xiancui Zhang
- School of Life Science, Huzhou University, Huzhou 313000, China
| | - Yuting Zhang
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Huiyuan Gao
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.
| | - Fan Zhang
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
48
|
Anwar S, Ahmed B, Qadir MI. Arboviruses: Transmission and Host Resistance. Crit Rev Eukaryot Gene Expr 2024; 34:15-31. [PMID: 38073439 DOI: 10.1615/critreveukaryotgeneexpr.2023049820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
In this review, there is a complete description of the classes of arboviruses, their evolutionary process, virus characterization, disease transmission methods; it also describes about the vectors involved in transmission and their mood of transmission, both biologically as well as non-biologically and, about host, the resistance mechanism in host, and artificial methods of preventing those viral transmissions. Arboviruses transmitted to hosts by some vectors such as mosquitoes, ticks, etc. The virus replicates in the host can be prevented by some host resistance mechanisms like RNA interference (RNAi), which degrade virus RNA by its antiviral activity, insect repellents, IGRs, and PI technology.
Collapse
Affiliation(s)
- Sidra Anwar
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Bilal Ahmed
- University of Science And Technology of Fujairah, UAE; School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Muhammad Imran Qadir
- Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
49
|
Kefi M, Konstantinos P, Balabanidou V, Sarafoglou C, Tsakireli D, Douris V, Monastirioti M, Maréchal JD, Feyereisen R, Vontas J. Insights into unique features of Drosophila CYP4G enzymes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104041. [PMID: 38008364 DOI: 10.1016/j.ibmb.2023.104041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
The cytochrome P450 enzymes of the CYP4G subfamily are some of the most intriguing insect P450s in terms of structure and function. In Drosophila, CYP4G1 is highly expressed in the oenocytes and is the last enzyme in the biosynthesis of cuticular hydrocarbons, while CYP4G15 is expressed in the brain and is of unknown function. Both proteins have a CYP4G-specific and characteristic amino acid sequence insertion corresponding to a loop between the G and H helices whose function is unclear. Here we address these enigmatic structural and functional features of Drosophila CYP4Gs. First, we used reverse genetics to generate D. melanogaster strains in which all or part of the CYP4G-specific loop was removed from CYP4G1. We showed that the full loop was not needed for proper folding of the P450, but it is essential for function, and that just a short stretch of six amino acids is required for the enzyme's ability to make hydrocarbons. Second, we confirmed by immunocytochemistry that CYP4G15 is expressed in the brain and showed that it is specifically associated with the cortex glia cell subtype. We then expressed CYP4G15 ectopically in oenocytes, revealing that it can produce of a blend of hydrocarbons, albeit to quantitatively lower levels resulting in only a partial rescue of CYP4G1 knockdown flies. The CYP4G1 structural variants studied here should facilitate the biochemical characterization of CYP4G enzymes. Our results also raise the question of the putative role of hydrocarbons and their synthesis by cortex glial cells.
Collapse
Affiliation(s)
- Mary Kefi
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Parasyris Konstantinos
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Chara Sarafoglou
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Dimitra Tsakireli
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Greece
| | - Vassilis Douris
- Department of Biological Applications and Technology, University of Ioannina, 45110, Ioannina, Greece; Biomedical Research Institute (BRI), Foundation for Research and Technology (FORTH), University Campus, 451 10, Ioannina, Greece
| | - Maria Monastirioti
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Greece.
| |
Collapse
|
50
|
Skorokhod O, Vostokova E, Gilardi G. The role of P450 enzymes in malaria and other vector-borne infectious diseases. Biofactors 2024; 50:16-32. [PMID: 37555735 DOI: 10.1002/biof.1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
Vector-borne infectious diseases are still an important global health problem. Malaria is the most important among them, mainly pediatric, life-threatening disease. Malaria and other vector-borne disorders caused by parasites, bacteria, and viruses have a strong impact on public health and significant economic costs. Most vector-borne diseases could be prevented by vector control, with attention to the ecological and biodiversity conservation aspects. Chemical control with pesticides and insecticides is widely used as a measure of prevention although increasing resistance to insecticides is a serious issue in vector control. Metabolic resistance is the most common mechanism and poses a big challenge. Insect enzyme systems, including monooxygenase CYP P450 enzymes, are employed by vectors mainly to metabolize insecticides thus causing resistance. The discovery and application of natural specific inhibitors/blockers of vector P450 enzymes as synergists for commonly used pesticides will contribute to the "greening" of insecticides. Besides vector CYPs, host CYP enzymes could also be exploited to fight against vector-borne diseases: using mostly their detoxifying properties and involvement in the immune response. Here, we review published research data on P450 enzymes from all players in vector-borne infections, that is, pathogens, vectors, and hosts, regarding the potential role of CYPs in disease. We discuss strategies on how to exploit cytochromes P450 in vector-borne disease control.
Collapse
Affiliation(s)
- Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Ekaterina Vostokova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|