1
|
Chung KP. Cytoplasmic inheritance: The transmission of plastid and mitochondrial genomes across cells and generations. PLANT PHYSIOLOGY 2025; 198:kiaf168. [PMID: 40304456 PMCID: PMC12079397 DOI: 10.1093/plphys/kiaf168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/24/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
In photosynthetic organisms, genetic material is stored in the nucleus and the two cytoplasmic organelles: plastids and mitochondria. While both the nuclear and cytoplasmic genomes are essential for survival, the inheritance of these genomes is subject to distinct laws. Cytoplasmic inheritance differs fundamentally from nuclear inheritance through two unique processes: vegetative segregation and uniparental inheritance. To illustrate the significance of these processes in shaping cytoplasmic inheritance, I will trace the journey of plastid and mitochondrial genomes, following their transmission from parents to progeny. The cellular and molecular mechanisms regulating their transmission along the path are explored. By providing a framework that encompasses the inheritance of both plastid and mitochondrial genomes across cells and generations, I aim to present a comprehensive overview of cytoplasmic inheritance and highlight the intricate interplay of cellular processes that determine inheritance patterns. I will conclude this review by summarizing recent breakthroughs in the field that have significantly advanced our understanding of cytoplasmic inheritance. This knowledge has paved the way for achieving the first instance of controlled cytoplasmic inheritance in plants, unlocking the potential to harness cytoplasmic genetics for crop improvement.
Collapse
Affiliation(s)
- Kin Pan Chung
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen 6708 PB, the Netherlands
| |
Collapse
|
2
|
Cai Y, Gao X, Mao J, Liu Y, Tong L, Chen X, Liu Y, Kou W, Chang C, Foster T, Yao J, Cornille A, Tahir MM, Liu Z, Yan Z, Lin S, Ma F, Ma J, Xing L, An N, Zuo X, Lv Y, Zhao Z, Li W, Li Q, Zhao C, Hu Y, Liu H, Wang C, Shi X, Ma D, Fei Z, Jiang Y, Zhang D. Genome sequencing of 'Fuji' apple clonal varieties reveals genetic mechanism of the spur-type morphology. Nat Commun 2024; 15:10082. [PMID: 39572540 PMCID: PMC11582680 DOI: 10.1038/s41467-024-54428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Somatic variations can give rise to bud sports with advantageous traits, serving as the foundation for bud sport breeding in perennial plants. Here, we report a fully phased genome assembly of 'Fuji' apple, enabling comprehensive identification of somatic variants across 74 clonally propagated 'Fuji' varieties. Phylogenetic analysis indicates that spur-type and early-maturation traits in 'Fuji' sport varieties arise from multiple independent events. Several putative functional somatic variants have been identified, including a spur-type-specific deletion in the promoter of the TCP transcription factor gene MdTCP11. DNA methylation level of the deletion-associated miniature inverted-repeat transposable element is lower in spur-type varieties compared to standard-type varieties, while the expression of MdTCP11 is significantly higher. Overexpression of MdTCP11 in apple decreases plant height, highlighting its important role in the development of spur-type apple varieties. This study sheds light on the cloning history of 'Fuji' and provides valuable resources for apple breeding.
Collapse
Affiliation(s)
- Yudong Cai
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Xiuhua Gao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Jiangping Mao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China.
| | - Yu Liu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Lu Tong
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Xilong Chen
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Yandong Liu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Wenyan Kou
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Chuanjun Chang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Toshi Foster
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Auckland, 1142, New Zealand
| | - Jialong Yao
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Auckland, 1142, New Zealand
| | - Amandine Cornille
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette, France
| | - Muhammad Mobeen Tahir
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Zhi Liu
- Liaoning Institute of Polomogy, Yingkou, 115009, Liaoning, P. R. China
| | - Zhongye Yan
- Liaoning Institute of Polomogy, Yingkou, 115009, Liaoning, P. R. China
| | - Siyi Lin
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Fengwang Ma
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Juanjuan Ma
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Libo Xing
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Na An
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Xiya Zuo
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Yanrong Lv
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Zhengyang Zhao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Wenqiang Li
- China Apple Research System Xian Guoyou Association, Qianxian, 713300, Shaanxi, P. R. China
| | - Qianjin Li
- Apple Industry R&D Center of Luochuan County, Luochuan, 727400, Shaanxi, P. R. China
| | - Caiping Zhao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Yanan Hu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Hangkong Liu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Chao Wang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Xueyan Shi
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Doudou Ma
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA.
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China.
| | - Dong Zhang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China.
| |
Collapse
|
3
|
Pinoti VF, Ferreira PB, Strini EJ, Lubini G, Thomé V, Cruz JO, Aziani R, Quiapim AC, Pinto APA, Araujo APU, De Paoli HC, Pranchevicius MCS, Goldman MHS. SCI1, a flower regulator of cell proliferation, and its partners NtCDKG2 and NtRH35 interact with the splicing machinery. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6312-6330. [PMID: 39113673 DOI: 10.1093/jxb/erae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/07/2024] [Indexed: 11/01/2024]
Abstract
Successful plant reproduction depends on the adequate development of floral organs controlled by cell proliferation and other processes. The Stigma/style cell-cycle inhibitor 1 (SCI1) gene regulates cell proliferation and affects the final size of the female reproductive organ. To unravel the molecular mechanism exerted by Nicotiana tabacum SCI1 in cell proliferation control, we searched for its interaction partners through semi-in vivo pull-down experiments, uncovering a cyclin-dependent kinase, NtCDKG;2. Bimolecular fluorescence complementation and co-localization experiments showed that SCI1 interacts with NtCDKG;2 and its cognate NtCyclin L in nucleoli and splicing speckles. The screening of a yeast two-hybrid cDNA library using SCI1 as bait revealed a novel DEAD-box RNA helicase (NtRH35). Interaction between the NtCDKG;2-NtCyclin L complex and NtRH35 is also shown. Subcellular localization experiments showed that SCI1, NtRH35, and the NtCDKG;2-NtCyclin L complex associate with each other within splicing speckles. The yeast two-hybrid screening of NtCDKG;2 and NtRH35 identified the conserved spliceosome components U2a', NF-κB activating protein (NKAP), and CACTIN. This work presents SCI1 and its interactors, the NtCDKG;2-NtCyclin L complex and NtRH35, as new spliceosome-associated proteins. Our findings reveal a network of interactions and indicate that SCI1 may regulate cell proliferation through the splicing process, providing new insights into the intricate molecular pathways governing plant development.
Collapse
Affiliation(s)
- Vitor F Pinoti
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Pedro B Ferreira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Edward J Strini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Greice Lubini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Vanessa Thomé
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Joelma O Cruz
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Rodrigo Aziani
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Andréa C Quiapim
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Andressa P A Pinto
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Ana Paula U Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Henrique C De Paoli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | | | - Maria Helena S Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
4
|
Satake A, Imai R, Fujino T, Tomimoto S, Ohta K, Na'iem M, Indrioko S, Widiyatno W, Purnomo S, Morales AM, Nizhynska V, Tani N, Suyama Y, Sasaki E, Kasahara M. Somatic mutation rates scale with time not growth rate in long-lived tropical trees. eLife 2024; 12:RP88456. [PMID: 39441734 PMCID: PMC11498935 DOI: 10.7554/elife.88456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The rates of appearance of new mutations play a central role in evolution. However, mutational processes in natural environments and their relationship with growth rates are largely unknown, particular in tropical ecosystems with high biodiversity. Here, we examined the somatic mutation landscapes of two tropical trees, Shorea laevis (slow-growing) and S. leprosula (fast-growing), in central Borneo, Indonesia. Using newly constructed genomes, we identified a greater number of somatic mutations in tropical trees than in temperate trees. In both species, we observed a linear increase in the number of somatic mutations with physical distance between branches. However, we found that the rate of somatic mutation accumulation per meter of growth was 3.7-fold higher in S. laevis than in S. leprosula. This difference in the somatic mutation rate was scaled with the slower growth rate of S. laevis compared to S. leprosula, resulting in a constant somatic mutation rate per year between the two species. We also found that somatic mutations are neutral within an individual, but those mutations transmitted to the next generation are subject to purifying selection. These findings suggest that somatic mutations accumulate with absolute time and older trees have a greater contribution towards generating genetic variation.
Collapse
Affiliation(s)
- Akiko Satake
- Department of Biology, Faculty of Science, Kyushu UniversityFukuokaJapan
| | - Ryosuke Imai
- Department of Biology, Faculty of Science, Kyushu UniversityFukuokaJapan
| | - Takeshi Fujino
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoChibaJapan
| | - Sou Tomimoto
- Department of Biology, Faculty of Science, Kyushu UniversityFukuokaJapan
| | - Kayoko Ohta
- Department of Biology, Faculty of Science, Kyushu UniversityFukuokaJapan
| | | | - Sapto Indrioko
- Faculty of Forestry, Universitas Gadjah MadaSlemanIndonesia
| | | | | | - Almudena Molla Morales
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of SciencesViennaAustria
| | - Viktoria Nizhynska
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of SciencesViennaAustria
| | - Naoki Tani
- Forestry Division, Japan International Research Center for Agricultural SciencesTsukubaJapan
- Faculty of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| | - Yoshihisa Suyama
- Field Science Center, Graduate School of Agricultural Science, Tohoku UniversityOsakiJapan
| | - Eriko Sasaki
- Department of Biology, Faculty of Science, Kyushu UniversityFukuokaJapan
| | - Masahiro Kasahara
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoChibaJapan
| |
Collapse
|
5
|
Waneka G, Pate B, Monroe JG, Sloan DB. Exploring the Relationship Between Gene Expression and Low-Frequency Somatic Mutations in Arabidopsis with Duplex Sequencing. Genome Biol Evol 2024; 16:evae213. [PMID: 39365161 PMCID: PMC11489876 DOI: 10.1093/gbe/evae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
Intragenomic mutation rates can vary dramatically due to transcription-associated mutagenesis or transcription-coupled repair, which vary based on local epigenomic modifications that are nonuniformly distributed across genomes. One feature associated with decreased mutation is higher expression level, which depends on environmental cues. To understand the magnitude of expression-dependent mutation rate variation, we perturbed expression through a heat treatment in Arabidopsis thaliana. We quantified gene expression to identify differentially expressed genes, which we then targeted for mutation detection using duplex sequencing. This approach provided a highly accurate measurement of the frequency of rare somatic mutations in vegetative plant tissues, which has been a recent source of uncertainty. Somatic mutations in plants may be useful for understanding drivers of DNA damage and repair in the germline since plants experience late germline segregation and both somatic and germline cells share common repair machinery. We included mutant lines lacking mismatch repair (MMR) and base excision repair (BER) capabilities to understand how repair mechanisms may drive biased mutation accumulation. We found wild-type (WT) and BER mutant mutation frequencies to be very low (mean variant frequency 1.8 × 10-8 and 2.6 × 10-8, respectively), while MMR mutant frequencies were significantly elevated (1.13 × 10-6). Interestingly, in the MMR mutant lines, there was no difference in the somatic mutation frequencies between temperature treatments or between highly versus lowly expressed genes. The extremely low somatic variant frequencies in WT plants indicate that larger datasets will be needed to address fundamental evolutionary questions about whether environmental change leads to gene-specific changes in mutation rate.
Collapse
Affiliation(s)
- Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Braden Pate
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - J Grey Monroe
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Chen Y, Burian A, Johannes F. Somatic epigenetic drift during shoot branching: a cell lineage-based model. Genetics 2024; 227:iyae091. [PMID: 38809088 DOI: 10.1093/genetics/iyae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Plant architecture is shaped by the production of new organs, most of which emerge postembryonically. This process includes the formation of new lateral branches along existing shoots. Current evidence supports a detached-meristem model as the cellular basis of lateral shoot initiation. In this model, a small number of undifferentiated cells are sampled from the periphery of the shoot apical meristem (SAM) to act as precursors for axillary buds, which eventually develop into new shoots. Repeated branching thus creates cellular bottlenecks (i.e. somatic drift) that affect how de novo (epi)genetic mutations propagate through the plant body during development. Somatic drift could be particularly relevant for stochastic DNA methylation gains and losses (i.e. spontaneous epimutations), as they have been shown to arise rapidly with each cell division. Here, we formalize a special case of the detached-meristem model, where precursor cells are randomly sampled from the SAM periphery in a way that maximizes cell lineage independence. We show that somatic drift during repeated branching gives rise to a mixture of cellular phylogenies within the SAM over time. This process is dependent on the number of branch points, the strength of drift as well as the epimutation rate. Our model predicts that cell-to-cell DNA methylation heterogeneity in the SAM converges to nonzero states during development, suggesting that epigenetic variation is an inherent property of the SAM cell population. Our insights have direct implications for empirical studies of somatic (epi)genomic diversity in long-lived perennial and clonal species using bulk or single-cell sequencing approaches.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Mathematics, Technical University of Munich, Garching 85748, Germany
- Department of Molecular Life Sciences, Plant Epigenomics, Technical University of Munich, Freising 85354, Germany
| | - Agata Burian
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice 40-032, Poland
| | - Frank Johannes
- Department of Molecular Life Sciences, Plant Epigenomics, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
7
|
Khachaturyan M, Santer M, Reusch TBH, Dagan T. Heteroplasmy Is Rare in Plant Mitochondria Compared with Plastids despite Similar Mutation Rates. Mol Biol Evol 2024; 41:msae135. [PMID: 38934796 PMCID: PMC11245704 DOI: 10.1093/molbev/msae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Plant cells harbor two membrane-bound organelles containing their own genetic material-plastids and mitochondria. Although the two organelles coexist and coevolve within the same plant cells, they differ in genome copy number, intracellular organization, and mode of segregation. How these attributes affect the time to fixation or, conversely, loss of neutral alleles is currently unresolved. Here, we show that mitochondria and plastids share the same mutation rate, yet plastid alleles remain in a heteroplasmic state significantly longer compared with mitochondrial alleles. By analyzing genetic variants across populations of the marine flowering plant Zostera marina and simulating organelle allele dynamics, we examine the determinants of allele segregation and allele fixation. Our results suggest that the bottlenecks on the cell population, e.g. during branching or seeding, and stratification of the meristematic tissue are important determinants of mitochondrial allele dynamics. Furthermore, we suggest that the prolonged plastid allele dynamics are due to a yet unknown active plastid partition mechanism. The dissimilarity between plastid and mitochondrial novel allele fixation at different levels of organization may manifest in differences in adaptation processes. Our study uncovers fundamental principles of organelle population genetics that are essential for further investigations of long-term evolution and molecular dating of divergence events.
Collapse
Affiliation(s)
- Marina Khachaturyan
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| | - Mario Santer
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| |
Collapse
|
8
|
Chen W, Wang P, Liu C, Han Y, Zhao F. Male Germ Cell Specification in Plants. Int J Mol Sci 2024; 25:6643. [PMID: 38928348 PMCID: PMC11204311 DOI: 10.3390/ijms25126643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Germ cells (GCs) serve as indispensable carriers in both animals and plants, ensuring genetic continuity across generations. While it is generally acknowledged that the timing of germline segregation differs significantly between animals and plants, ongoing debates persist as new evidence continues to emerge. In this review, we delve into studies focusing on male germ cell specifications in plants, and we summarize the core gene regulatory circuits in germ cell specification, which show remarkable parallels to those governing meristem homeostasis. The similarity in germline establishment between animals and plants is also discussed.
Collapse
Affiliation(s)
- Wenqian Chen
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
| | - Pan Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
| | - Chan Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
| | - Yuting Han
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
| | - Feng Zhao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China; (W.C.); (P.W.); (C.L.); (Y.H.)
- Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai 201108, China
| |
Collapse
|
9
|
Volkava D, Riha K. Growing old while staying young : The unique mechanisms that defy aging in plants. EMBO Rep 2024; 25:934-938. [PMID: 38279018 PMCID: PMC10933334 DOI: 10.1038/s44319-024-00062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
Although plants age like any other organisms, they have evolved to defy death for millennia and potentially forever.
Collapse
Affiliation(s)
- Darya Volkava
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Karel Riha
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
| |
Collapse
|
10
|
Poethig RS, Fouracre J. Temporal regulation of vegetative phase change in plants. Dev Cell 2024; 59:4-19. [PMID: 38194910 PMCID: PMC10783531 DOI: 10.1016/j.devcel.2023.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
During their vegetative growth, plants reiteratively produce leaves, buds, and internodes at the apical end of the shoot. The identity of these organs changes as the shoot develops. Some traits change gradually, but others change in a coordinated fashion, allowing shoot development to be divided into discrete juvenile and adult phases. The transition between these phases is called vegetative phase change. Historically, vegetative phase change has been studied because it is thought to be associated with an increase in reproductive competence. However, this is not true for all species; indeed, heterochronic variation in the timing of vegetative phase change and flowering has made important contributions to plant evolution. In this review, we describe the molecular mechanism of vegetative phase change, how the timing of this process is controlled by endogenous and environmental factors, and its ecological and evolutionary significance.
Collapse
Affiliation(s)
- R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jim Fouracre
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
11
|
Broz AK, Sloan DB, Johnston IG. Stochastic organelle genome segregation through Arabidopsis development and reproduction. THE NEW PHYTOLOGIST 2024; 241:896-910. [PMID: 37925790 PMCID: PMC10841260 DOI: 10.1111/nph.19288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
Organelle DNA (oDNA) in mitochondria and plastids is vital for plant (and eukaryotic) life. Selection against damaged oDNA is mediated in part by segregation - sorting different oDNA types into different cells in the germline. Plants segregate oDNA very rapidly, with oDNA recombination protein MSH1 a key driver of this segregation, but we have limited knowledge of the dynamics of this segregation within plants and between generations. Here, we reveal how oDNA evolves through Arabidopsis thaliana development and reproduction. We combine stochastic modelling, Bayesian inference, and model selection with new and existing tissue-specific oDNA measurements from heteroplasmic Arabidopsis plant lines through development and between generations. Segregation proceeds gradually but continually during plant development, with a more rapid increase between inflorescence formation and the next generation. When MSH1 is compromised, the majority of observed segregation can be achieved through partitioning at cell divisions. When MSH1 is functional, mtDNA segregation is far more rapid; we show that increased oDNA gene conversion is a plausible mechanism quantitatively explaining this acceleration. These findings reveal the quantitative, time-dependent details of oDNA segregation in Arabidopsis. We also discuss the support for different models of the plant germline provided by these observations.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Bergen, 5007, Norway
- Computational Biology Unit, University of Bergen, Bergen, 5007, Norway
| |
Collapse
|
12
|
Rocha DM, Nogueira FM, André T, de Araujo Mariath JE, Vanzela ALL. Evolutionary features of microspore and pollen grain development in Cyperaceae. PLANT REPRODUCTION 2023; 36:333-342. [PMID: 37532894 DOI: 10.1007/s00497-023-00477-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
KEY MESSAGE Asymmetric meiosis leading to the release of pollen grains as pseudomonads is a synapomorphy in Cyperaceae, but differences in microspore development are relevant in the family's evolutionary history. Cyperaceae members present atypical microsporogenesis, in which one meiotic product is functional while the other three degenerate, culminating in pseudomonad pollen formation. Differences during development, such as pseudomonad shape and degenerative microspore positioning, are seen throughout the family, but no phylogenetic interpretation has been made regarding these variances thus far. In this study, we analyzed the early- and late-diverging sedge genera Hypolytrum and Eleocharis, respectively, while comparing them to data available in the literature and conducting an ancestral character reconstruction for pseudomonad traits. Light microscopy results show that pseudomonad development in Hypolytrum is homologous to several other sedge genera, presenting apical degenerative microspores. However, pseudomonads are round and centrally arranged in the anther locule in this case, which consists of a pleisiomorphic trait for the family. The basal positioning of degenerative microspores is restricted to Rhynchospora, consisting of an apomorphic trait for this genus. Despite these differences, ultrastructural analysis of Eleocharis pseudomonad revealed shared features with other genera studied, which include variations in chromatin condensation and cytoplasmic turnover in functional cells. These common features seem related to the different cellular fates seen during microspore development and further corroborate the synapomorphic status of pseudomonads in sedges.
Collapse
Affiliation(s)
- Danilo Massuia Rocha
- Laboratório de Citogenética e Diversidade Vegetal (LCDV), Universidade Estadual de Londrina (UEL), Londrina, PR, 86057-970, Brazil.
| | - Fernanda Mayara Nogueira
- Faculdade de Filosofia Ciências e Letras de Ribeirao Preto (FFCLRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, 14040-901, Brazil
| | - Thiago André
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - Jorge Ernesto de Araujo Mariath
- Laboratório de Anatomia Vegetal - LAVeg, Instituto de Biociências, Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, RS, 9500, Brazil
| | - André Luís Laforga Vanzela
- Laboratório de Citogenética e Diversidade Vegetal (LCDV), Universidade Estadual de Londrina (UEL), Londrina, PR, 86057-970, Brazil
| |
Collapse
|
13
|
Barcenilla BB, Meyers AD, Castillo-González C, Young P, Min JH, Song J, Phadke C, Land E, Canaday E, Perera IY, Bailey SM, Aquilano R, Wyatt SE, Shippen DE. Arabidopsis telomerase takes off by uncoupling enzyme activity from telomere length maintenance in space. Nat Commun 2023; 14:7854. [PMID: 38030615 PMCID: PMC10686995 DOI: 10.1038/s41467-023-41510-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/07/2023] [Indexed: 12/01/2023] Open
Abstract
Spaceflight-induced changes in astronaut telomeres have garnered significant attention in recent years. While plants represent an essential component of future long-duration space travel, the impacts of spaceflight on plant telomeres and telomerase have not been examined. Here we report on the telomere dynamics of Arabidopsis thaliana grown aboard the International Space Station. We observe no changes in telomere length in space-flown Arabidopsis seedlings, despite a dramatic increase in telomerase activity (up to 150-fold in roots), as well as elevated genome oxidation. Ground-based follow up studies provide further evidence that telomerase is induced by different environmental stressors, but its activity is uncoupled from telomere length. Supporting this conclusion, genetically engineered super-telomerase lines with enhanced telomerase activity maintain wildtype telomere length. Finally, genome oxidation is inversely correlated with telomerase activity levels. We propose a redox protective capacity for Arabidopsis telomerase that may promote survivability in harsh environments.
Collapse
Affiliation(s)
- Borja Barbero Barcenilla
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Alexander D Meyers
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
- NASA Postdoctoral Program, Oak Ridge Associated Universities, Kennedy Space Center FL, Merritt Island, FL, 32899, USA
| | - Claudia Castillo-González
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Pierce Young
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Ji-Hee Min
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Jiarui Song
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Chinmay Phadke
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Eric Land
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Emma Canaday
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| | - Imara Y Perera
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Roberto Aquilano
- National Technological University, Rosario Regional Faculty, Zeballos 1341, S2000, Rosario, Argentina
| | - Sarah E Wyatt
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
14
|
Briffa A, Hollwey E, Shahzad Z, Moore JD, Lyons DB, Howard M, Zilberman D. Millennia-long epigenetic fluctuations generate intragenic DNA methylation variance in Arabidopsis populations. Cell Syst 2023; 14:953-967.e17. [PMID: 37944515 DOI: 10.1016/j.cels.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/18/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Methylation of CG dinucleotides (mCGs), which regulates eukaryotic genome functions, is epigenetically propagated by Dnmt1/MET1 methyltransferases. How mCG is established and transmitted across generations despite imperfect enzyme fidelity is unclear. Whether mCG variation in natural populations is governed by genetic or epigenetic inheritance also remains mysterious. Here, we show that MET1 de novo activity, which is enhanced by existing proximate methylation, seeds and stabilizes mCG in Arabidopsis thaliana genes. MET1 activity is restricted by active demethylation and suppressed by histone variant H2A.Z, producing localized mCG patterns. Based on these observations, we develop a stochastic mathematical model that precisely recapitulates mCG inheritance dynamics and predicts intragenic mCG patterns and their population-scale variation given only CG site spacing. Our results demonstrate that intragenic mCG establishment, inheritance, and variance constitute a unified epigenetic process, revealing that intragenic mCG undergoes large, millennia-long epigenetic fluctuations and can therefore mediate evolution on this timescale.
Collapse
Affiliation(s)
- Amy Briffa
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Elizabeth Hollwey
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK; Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | - Zaigham Shahzad
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK; Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Jonathan D Moore
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - David B Lyons
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK.
| | - Daniel Zilberman
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK; Institute of Science and Technology, 3400 Klosterneuburg, Austria.
| |
Collapse
|
15
|
Horton CA, Alexandari AM, Hayes MGB, Marklund E, Schaepe JM, Aditham AK, Shah N, Suzuki PH, Shrikumar A, Afek A, Greenleaf WJ, Gordân R, Zeitlinger J, Kundaje A, Fordyce PM. Short tandem repeats bind transcription factors to tune eukaryotic gene expression. Science 2023; 381:eadd1250. [PMID: 37733848 DOI: 10.1126/science.add1250] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/26/2023] [Indexed: 09/23/2023]
Abstract
Short tandem repeats (STRs) are enriched in eukaryotic cis-regulatory elements and alter gene expression, yet how they regulate transcription remains unknown. We found that STRs modulate transcription factor (TF)-DNA affinities and apparent on-rates by about 70-fold by directly binding TF DNA-binding domains, with energetic impacts exceeding many consensus motif mutations. STRs maximize the number of weakly preferred microstates near target sites, thereby increasing TF density, with impacts well predicted by statistical mechanics. Confirming that STRs also affect TF binding in cells, neural networks trained only on in vivo occupancies predicted effects identical to those observed in vitro. Approximately 90% of TFs preferentially bound STRs that need not resemble known motifs, providing a cis-regulatory mechanism to target TFs to genomic sites.
Collapse
Affiliation(s)
- Connor A Horton
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Amr M Alexandari
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Michael G B Hayes
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Emil Marklund
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julia M Schaepe
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Arjun K Aditham
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Nilay Shah
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Avanti Shrikumar
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Ariel Afek
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- The University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Polly M Fordyce
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94110, USA
| |
Collapse
|
16
|
Feeley KJ, Bernal-Escobar M, Fortier R, Kullberg AT. Tropical Trees Will Need to Acclimate to Rising Temperatures-But Can They? PLANTS (BASEL, SWITZERLAND) 2023; 12:3142. [PMID: 37687387 PMCID: PMC10490527 DOI: 10.3390/plants12173142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
For tropical forests to survive anthropogenic global warming, trees will need to avoid rising temperatures through range shifts and "species migrations" or tolerate the newly emerging conditions through adaptation and/or acclimation. In this literature review, we synthesize the available knowledge to show that although many tropical tree species are shifting their distributions to higher, cooler elevations, the rates of these migrations are too slow to offset ongoing changes in temperatures, especially in lowland tropical rainforests where thermal gradients are shallow or nonexistent. We also show that the rapidity and severity of global warming make it unlikely that tropical tree species can adapt (with some possible exceptions). We argue that the best hope for tropical tree species to avoid becoming "committed to extinction" is individual-level acclimation. Although several new methods are being used to test for acclimation, we unfortunately still do not know if tropical tree species can acclimate, how acclimation abilities vary between species, or what factors may prevent or facilitate acclimation. Until all of these questions are answered, our ability to predict the fate of tropical species and tropical forests-and the many services that they provide to humanity-remains critically impaired.
Collapse
Affiliation(s)
- Kenneth J. Feeley
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA; (M.B.-E.); (R.F.); (A.T.K.)
| | | | | | | |
Collapse
|
17
|
Hollwey E, Briffa A, Howard M, Zilberman D. Concepts, mechanisms and implications of long-term epigenetic inheritance. Curr Opin Genet Dev 2023; 81:102087. [PMID: 37441873 DOI: 10.1016/j.gde.2023.102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Many modes and mechanisms of epigenetic inheritance have been elucidated in eukaryotes. Most of them are relatively short-term, generally not exceeding one or a few organismal generations. However, emerging evidence indicates that one mechanism, cytosine DNA methylation, can mediate epigenetic inheritance over much longer timescales, which are mostly or completely inaccessible in the laboratory. Here we discuss the evidence for, and mechanisms and implications of, such long-term epigenetic inheritance. We argue that compelling evidence supports the long-term epigenetic inheritance of gene body methylation, at least in the model angiosperm Arabidopsis thaliana, and that variation in such methylation can therefore serve as an epigenetic basis for phenotypic variation in natural populations.
Collapse
Affiliation(s)
| | - Amy Briffa
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Daniel Zilberman
- Institute of Science and Technology, 3400 Klosterneuburg, Austria.
| |
Collapse
|
18
|
Bhushan S, Singh AK, Thakur Y, Baskar R. Persistence of parental age effect on somatic mutation rates across generations in Arabidopsis. BMC PLANT BIOLOGY 2023; 23:152. [PMID: 36944916 PMCID: PMC10031922 DOI: 10.1186/s12870-023-04150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
In the model plant Arabidopsis thaliana, parental age is known to affect somatic mutation rates in their immediate progeny and here we show that this age dependent effect persists across successive generations. Using a set of detector lines carrying the mutated uidA gene, we examined if a particular parental age maintained across five consecutive generations affected the rates of base substitution (BSR), intrachromosomal recombination (ICR), frameshift mutation (FS), and transposition. The frequency of functional GUS reversions were assessed in seedlings as a function of identical/different parental ages across generations. In the context of a fixed parental age, BSR/ICR rates were unaffected in the first three generations, then dropped significantly in the 4th and increased in most instances in the 5th generation (e.g. BSR (F1 38 = 0.9, F2 38 = 1.14, F3 38 = 1.02, F4 38 = 0.5, F5 38 = 0.76)). On the other hand, with advancing parental ages, BSR/ICR rates remained high in the first two/three generations, with a striking resemblance in the pattern of mutation rates (BSR (F1 38 = 0.9, F1 43 = 0.53, F1 48 = 0.79, F1 53 = 0.83 and F2 38 = 1.14, F2 43 = 0.57, F2 48 = 0.64, F2 53 = 0.94). We adopted a novel approach of identifying and tagging flowers pollinated on a particular day, thereby avoiding biases due to potential emasculation induced stress responses. Our results suggest a time component in counting the number of generations a plant has passed through self-fertilization at a particular age in determining the somatic mutation rates.
Collapse
Affiliation(s)
- Shashi Bhushan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
| | - Amit Kumar Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg Cédex, 67084, France
| | - Yogendra Thakur
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
| | - Ramamurthy Baskar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India.
| |
Collapse
|
19
|
Feng X, Pan S, Tu H, Huang J, Xiao C, Shen X, You L, Zhao X, Chen Y, Xu D, Qu X, Hu H. IQ67 DOMAIN protein 21 is critical for indentation formation in pavement cell morphogenesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:721-738. [PMID: 36263896 DOI: 10.1111/jipb.13393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/15/2022] [Indexed: 05/26/2023]
Abstract
In plants, cortical microtubules anchor to the plasma membrane in arrays and play important roles in cell shape. However, the molecular mechanism of microtubule binding proteins, which connect the plasma membrane and cortical microtubules in cell morphology remains largely unknown. Here, we report that a plasma membrane and microtubule dual-localized IQ67 domain protein, IQD21, is critical for cotyledon pavement cell (PC) morphogenesis in Arabidopsis. iqd21 mutation caused increased indentation width, decreased lobe length, and similar lobe number of PCs, whereas IQD21 overexpression had a different effect on cotyledon PC shape. Weak overexpression led to increased lobe number, decreased indentation width, and similar lobe length, while moderate or great overexpression resulted in decreased lobe number, indentation width, and lobe length of PCs. Live-cell observations revealed that IQD21 accumulation at indentation regions correlates with lobe initiation and outgrowth during PC development. Cell biological and genetic approaches revealed that IQD21 promotes transfacial microtubules anchoring to the plasma membrane via its polybasic sites and bundling at the indentation regions in both periclinal and anticlinal walls. IQD21 controls cortical microtubule organization mainly through promoting Katanin 1-mediated microtubule severing during PC interdigitation. These findings provide the genetic evidence that transfacial microtubule arrays play a determinant role in lobe formation, and the insight into the molecular mechanism of IQD21 in transfacial microtubule organization at indentations and puzzle-shaped PC development.
Collapse
Affiliation(s)
- Xinhua Feng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shujuan Pan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haifu Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junjie Huang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430070, China
| | - Chuanlei Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyan Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yongqiang Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Danyun Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaolu Qu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
20
|
Lyons DB, Briffa A, He S, Choi J, Hollwey E, Colicchio J, Anderson I, Feng X, Howard M, Zilberman D. Extensive de novo activity stabilizes epigenetic inheritance of CG methylation in Arabidopsis transposons. Cell Rep 2023; 42:112132. [PMID: 36827183 DOI: 10.1016/j.celrep.2023.112132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Cytosine methylation within CG dinucleotides (mCG) can be epigenetically inherited over many generations. Such inheritance is thought to be mediated by a semiconservative mechanism that produces binary present/absent methylation patterns. However, we show here that, in Arabidopsis thaliana h1ddm1 mutants, intermediate heterochromatic mCG is stably inherited across many generations and is quantitatively associated with transposon expression. We develop a mathematical model that estimates the rates of semiconservative maintenance failure and de novo methylation at each transposon, demonstrating that mCG can be stably inherited at any level via a dynamic balance of these activities. We find that DRM2-the core methyltransferase of the RNA-directed DNA methylation pathway-catalyzes most of the heterochromatic de novo mCG, with de novo rates orders of magnitude higher than previously thought, whereas chromomethylases make smaller contributions. Our results demonstrate that stable epigenetic inheritance of mCG in plant heterochromatin is enabled by extensive de novo methylation.
Collapse
Affiliation(s)
| | | | | | | | - Elizabeth Hollwey
- John Innes Centre, Norwich NR4 7UH, UK; Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | - Jack Colicchio
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ian Anderson
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaoqi Feng
- John Innes Centre, Norwich NR4 7UH, UK; Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | | | - Daniel Zilberman
- John Innes Centre, Norwich NR4 7UH, UK; Institute of Science and Technology, 3400 Klosterneuburg, Austria.
| |
Collapse
|
21
|
Ji Y, Chen X, Lin S, Traw MB, Tian D, Yang S, Wang L, Huang J. High level of somatic mutations detected in a diploid banana wild relative Musa basjoo. Mol Genet Genomics 2023; 298:67-77. [PMID: 36283995 DOI: 10.1007/s00438-022-01959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/27/2022] [Indexed: 01/10/2023]
Abstract
Plants are thought to lack an early segregating germline and often retain both asexual and sexual reproduction, both of which may allow somatic mutations to enter the gametes or clonal progeny, and thereby impact plant evolution. It is yet unclear how often these somatic mutations occur during plant development and what proportion is transmitted to their sexual or cloned offspring. Asexual "seedless" propagation has contributed greatly to the breeding in many fruit crops, such as citrus, grapes and bananas. Whether plants in these lineages experience substantial somatic mutation accumulation is unknown. To estimate the somatic mutation accumulation and inheritance among a clonal population of plant, here we assess somatic mutation accumulation in Musa basjoo, a diploid banana wild relative, using 30 whole-genome resequenced samples collected from five structures, including leaves, sheaths, panicle, roots and underground rhizome connecting three clonal individuals. We observed 18.5 high proportion de novo somatic mutations on average between each two adjacent clonal suckers, equivalent to ~ 2.48 × 10-8 per site per asexual generation, higher than the per site per sexual generation rates (< 1 × 10-8) reported in Arabidopsis and peach. Interestingly, most of these inter-ramet somatic mutations were shared simultaneously in different tissues of the same individual with a high level of variant allele fractions, suggesting that these somatic mutations arise early in ramet development and that each individual may develop only from a few apical stem cells. These results thus suggest substantial mutation accumulation in a wild relative of banana. Our work reveals the significance of somatic mutation in Musa basjoo genetics variations and contribute to the trait improvement breeding of bananas and other asexual clonal crops.
Collapse
Affiliation(s)
- Yilun Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaonan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shengqiu Lin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Milton Brian Traw
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Ju Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
22
|
He S, Feng X. DNA methylation dynamics during germline development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2240-2251. [PMID: 36478632 PMCID: PMC10108260 DOI: 10.1111/jipb.13422] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
DNA methylation plays essential homeostatic functions in eukaryotic genomes. In animals, DNA methylation is also developmentally regulated and, in turn, regulates development. In the past two decades, huge research effort has endorsed the understanding that DNA methylation plays a similar role in plant development, especially during sexual reproduction. The power of whole-genome sequencing and cell isolation techniques, as well as bioinformatics tools, have enabled recent studies to reveal dynamic changes in DNA methylation during germline development. Furthermore, the combination of these technological advances with genetics, developmental biology and cell biology tools has revealed functional methylation reprogramming events that control gene and transposon activities in flowering plant germlines. In this review, we discuss the major advances in our knowledge of DNA methylation dynamics during male and female germline development in flowering plants.
Collapse
Affiliation(s)
- Shengbo He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of AgricultureSouth China Agricultural UniversityGuangzhou510642China
| | - Xiaoqi Feng
- John Innes Centre, Colney LaneNorwichNR4 7UHUK
| |
Collapse
|
23
|
Duan Y, Yan J, Zhu Y, Zhang C, Tao X, Ji H, Zhang M, Wang X, Wang L. Limited accumulation of high-frequency somatic mutations in a 1700-year-old Osmanthus fragrans tree. TREE PHYSIOLOGY 2022; 42:2040-2049. [PMID: 35640149 DOI: 10.1093/treephys/tpac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Lifespan varies greatly between and within species. Mutation accumulation is considered an important factor explaining this life-history trait. However, direct assessment of somatic mutations in long-lived species is still rare. In this study, we sequenced a 1700-year-old sweet olive tree and analysed the high-frequency somatic mutations accumulated in its six primary branches. We found the lowest per-year mutation accumulation rate in this oldest tree among those studied via the whole-genome sequencing approach. Investigation of mutation profiles suggests that this low rate of high-frequency mutation was unlikely to result from strong purifying selection. More intriguingly, on a per-branching scale, the high-frequency mutation accumulation rate was similar among the long-lived individuals such as oak, wild peach and sweet olive investigated here. We therefore suggest the possibility that the accumulation of high-frequency somatic mutations in very long-lived trees might have an upper boundary due to both the possible limited number of stem cell divisions and the early segregation of the stem cell lineage.
Collapse
Affiliation(s)
- Yifan Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Jiping Yan
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Yue Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Cheng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Xiuhua Tao
- Vegetable and Flowers Research Institute, Jiangxi Academy of Agricultural Sciences, 1738 Liantang Middle Blvd, Nanchang 330200, China
| | - Hongli Ji
- Vegetable and Flowers Research Institute, Jiangxi Academy of Agricultural Sciences, 1738 Liantang Middle Blvd, Nanchang 330200, China
| | - Min Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Xianrong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Qixia District. Nanjing 210023, China
| |
Collapse
|
24
|
Nguyen V, Gutzat R. Epigenetic regulation in the shoot apical meristem. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102267. [PMID: 35985107 DOI: 10.1016/j.pbi.2022.102267] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Epigenetic mechanisms form the basis of cellular memory, developmental decisions, and the cellular immune system that defends against transposons and viruses. Organs develop from the shoot apical meristem (SAM) to shape the plant's areal phenotype, and stem cells in the SAM serve as a functional germline. While many details on the regulation of stem cell pool size, organ initiation, and patterning at the meristem periphery are known, we know surprisingly little about the molecular characteristics of SAM cells, including their epigenome and how it changes during development. Here, we summarize information on epigenetic regulation of selected genes necessary for stem cell maintenance. As recent evidence suggests that SAM stem cells might be a hotspot of transposon activation, we discuss this aspect of epigenetic control in the meristem and speculate on mechanisms that maintain the flexibility of SAM stem cells in response to developmental or environmental cues.
Collapse
Affiliation(s)
- Vu Nguyen
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, 1030, Austria
| | - Ruben Gutzat
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, 1030, Austria.
| |
Collapse
|
25
|
Broz AK, Keene A, Fernandes Gyorfy M, Hodous M, Johnston IG, Sloan DB. Sorting of mitochondrial and plastid heteroplasmy in Arabidopsis is extremely rapid and depends on MSH1 activity. Proc Natl Acad Sci U S A 2022; 119:e2206973119. [PMID: 35969753 PMCID: PMC9407294 DOI: 10.1073/pnas.2206973119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
The fate of new mitochondrial and plastid mutations depends on their ability to persist and spread among the numerous organellar genome copies within a cell (heteroplasmy). The extent to which heteroplasmies are transmitted across generations or eliminated through genetic bottlenecks is not well understood in plants, in part because their low mutation rates make these variants so infrequent. Disruption of MutS Homolog 1 (MSH1), a gene involved in plant organellar DNA repair, results in numerous de novo point mutations, which we used to quantitatively track the inheritance of single nucleotide variants in mitochondrial and plastid genomes in Arabidopsis. We found that heteroplasmic sorting (the fixation or loss of a variant) was rapid for both organelles, greatly exceeding rates observed in animals. In msh1 mutants, plastid variants sorted faster than those in mitochondria and were typically fixed or lost within a single generation. Effective transmission bottleneck sizes (N) for plastids and mitochondria were N ∼ 1 and 4, respectively. Restoring MSH1 function further increased the rate of heteroplasmic sorting in mitochondria (N ∼ 1.3), potentially because of its hypothesized role in promoting gene conversion as a mechanism of DNA repair, which is expected to homogenize genome copies within a cell. Heteroplasmic sorting also favored GC base pairs. Therefore, recombinational repair and gene conversion in plant organellar genomes can potentially accelerate the elimination of heteroplasmies and bias the outcome of this sorting process.
Collapse
Affiliation(s)
- Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Alexandra Keene
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | | | - Mychaela Hodous
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, 5007, Norway
- Computational Biology Unit, University of Bergen, Bergen, 5007, Norway
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
26
|
Cruzan MB, Streisfeld MA, Schwoch JA. Fitness effects of somatic mutations accumulating during vegetative growth. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10188-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractThe unique life form of plants promotes the accumulation of somatic mutations that can be passed to offspring in the next generation, because the same meristem cells responsible for vegetative growth also generate gametes for sexual reproduction. However, little is known about the consequences of somatic mutation accumulation for offspring fitness. We evaluate the fitness effects of somatic mutations in Mimulus guttatus by comparing progeny from self-pollinations made within the same flower (autogamy) to progeny from self-pollinations made between stems on the same plant (geitonogamy). The effects of somatic mutations are evident from this comparison, as autogamy leads to homozygosity of a proportion of somatic mutations, but progeny from geitonogamy remain heterozygous for mutations unique to each stem. In two different experiments, we find consistent fitness effects of somatic mutations from individual stems. Surprisingly, several progeny groups from autogamous crosses displayed increases in fitness compared to progeny from geitonogamy crosses, likely indicating that beneficial somatic mutations occurred in some stems. These results support the hypothesis that somatic mutations accumulate during vegetative growth, but they are filtered by different forms of selection that occur throughout development, resulting in the culling of expressed deleterious mutations and the retention of beneficial mutations.
Collapse
|
27
|
Strini EJ, Bertolino LT, San Martin JAB, Souza HAO, Pessotti F, Pinoti VF, Ferreira PB, De Paoli HC, Lubini G, Del-Bem LE, Quiapim AC, Mondin M, Araujo APU, Eloy NB, Barberis M, Goldman MHS. Stigma/Style Cell-Cycle Inhibitor 1, a Regulator of Cell Proliferation, Interacts With a Specific 14-3-3 Protein and Is Degraded During Cell Division. FRONTIERS IN PLANT SCIENCE 2022; 13:857745. [PMID: 35444668 PMCID: PMC9013909 DOI: 10.3389/fpls.2022.857745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The final shape and size of plant organs are determined by a network of genes that modulate cell proliferation and expansion. Among those, SCI1 (Stigma/style Cell-cycle Inhibitor 1) functions by inhibiting cell proliferation during pistil development. Alterations in SCI1 expression levels can lead to remarkable stigma/style size changes. Recently, we demonstrated that SCI1 starts to be expressed at the specification of the Nicotiana tabacum floral meristem and is expressed at all floral meristematic cells. To elucidate how SCI1 regulates cell proliferation, we screened a stigma/style cDNA library through the yeast two-hybrid (Y2H) system, using SCI1 as bait. Among the interaction partners, we identified the 14-3-3D protein of the Non-Epsilon group. The interaction between SCI1 and 14-3-3D was confirmed by pulldown and co-immunoprecipitation experiments. 14-3-3D forms homo- and heterodimers in the cytoplasm of plant cells and interacts with SCI1 in the nucleus, as demonstrated by Bimolecular Fluorescence Complementation (BiFC). Analyses of SCI1-GFP fluorescence through the cell-cycle progression revealed its presence in the nucleoli during interphase and prophase. At metaphase, SCI1-GFP fluorescence faded and was no longer detected at anaphase, reappearing at telophase. Upon treatment with the 26S proteasome inhibitor MG132, SCI1-GFP was stabilized during cell division. Site-directed mutagenesis of seven serines into alanines in the predicted 14-3-3 binding sites on the SCI1 sequence prevented its degradation during mitosis. Our results demonstrate that SCI1 degradation at the beginning of metaphase is dependent on the phosphorylation of serine residues and on the action of the 26S proteasome. We concluded that SCI1 stability/degradation is cell-cycle regulated, consistent with its role in fine-tuning cell proliferation.
Collapse
Affiliation(s)
- Edward J. Strini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Lígia T. Bertolino
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Juca A. B. San Martin
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Hebréia A. O. Souza
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Francine Pessotti
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Vitor F. Pinoti
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Pedro B. Ferreira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Henrique C. De Paoli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Greice Lubini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz-Eduardo Del-Bem
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andréa C. Quiapim
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mateus Mondin
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil
| | - Ana Paula U. Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Nubia B. Eloy
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil
| | - Matteo Barberis
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Maria Helena S. Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
28
|
Adamek K, Jones AMP, Torkamaneh D. Accumulation of somatic mutations leads to genetic mosaicism in cannabis. THE PLANT GENOME 2022; 15:e20169. [PMID: 34806848 DOI: 10.1002/tpg2.20169] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/22/2021] [Indexed: 05/22/2023]
Abstract
Cannabis (Cannabis sativa L.) is typically propagated using stem cuttings taken from mother plants to produce genetically uniform propagules. However, producers anecdotally report that clonal lines deteriorate over time and eventually produce clones with less vigor and lower cannabinoid levels than the original mother plant. While the cause of this deterioration has not been investigated, one potential contributor is the accumulation of somatic mutations within the plant. To test this, we used deep sequencing of whole genomes (>50×) to compare the variability within an individual cannabis cultivar Honey Banana plant sampled at the bottom, middle, and top. We called over six million sequence variants based on a reference genome and found that the top had the most by a sizable amount. Comparing the variants among the samples uncovered that nearly 600,000 (34%) were unique to the top while the bottom only contained 148,000 (12%), and middle with 77,000 (9%) unique variants. Bioinformatics tools were used to identify mutations in critical cannabinoid-terpene biosynthesis pathways. While none were identified as high impact, four genes contained more than double the average level of nucleotide diversity (π) in or near the gene. Two genes code for essential enzymes required for the cannabinoid pathway while the other two are in the terpene pathways, demonstrating that mutations were accumulating within these pathways and could influence their function. Overall, a measurable number of intraplant genetic diversity was discovered that could impact long-term genetic fidelity of clonal lines and potentially contribute to the observed decline in vigor and cannabinoid content.
Collapse
Affiliation(s)
- Kristian Adamek
- Dep. of Plant Agriculture, Univ. of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | |
Collapse
|
29
|
Monroe JG, Srikant T, Carbonell-Bejerano P, Becker C, Lensink M, Exposito-Alonso M, Klein M, Hildebrandt J, Neumann M, Kliebenstein D, Weng ML, Imbert E, Ågren J, Rutter MT, Fenster CB, Weigel D. Mutation bias reflects natural selection in Arabidopsis thaliana. Nature 2022; 602:101-105. [PMID: 35022609 PMCID: PMC8810380 DOI: 10.1038/s41586-021-04269-6] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
Since the first half of the twentieth century, evolutionary theory has been dominated by the idea that mutations occur randomly with respect to their consequences1. Here we test this assumption with large surveys of de novo mutations in the plant Arabidopsis thaliana. In contrast to expectations, we find that mutations occur less often in functionally constrained regions of the genome-mutation frequency is reduced by half inside gene bodies and by two-thirds in essential genes. With independent genomic mutation datasets, including from the largest Arabidopsis mutation accumulation experiment conducted to date, we demonstrate that epigenomic and physical features explain over 90% of variance in the genome-wide pattern of mutation bias surrounding genes. Observed mutation frequencies around genes in turn accurately predict patterns of genetic polymorphisms in natural Arabidopsis accessions (r = 0.96). That mutation bias is the primary force behind patterns of sequence evolution around genes in natural accessions is supported by analyses of allele frequencies. Finally, we find that genes subject to stronger purifying selection have a lower mutation rate. We conclude that epigenome-associated mutation bias2 reduces the occurrence of deleterious mutations in Arabidopsis, challenging the prevailing paradigm that mutation is a directionless force in evolution.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
- Department of Plant Sciences, University of California Davis, Davis, CA, USA.
| | - Thanvi Srikant
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | | | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Faculty of Biology, Ludwig Maximilian University, Martinsried, Germany
| | - Mariele Lensink
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Marie Klein
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Julia Hildebrandt
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Manuela Neumann
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Daniel Kliebenstein
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Mao-Lun Weng
- Department of Biology, Westfield State University, Westfield, MA, USA
| | - Eric Imbert
- ISEM, University of Montpellier, Montpellier, France
| | - Jon Ågren
- Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| | - Matthew T Rutter
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Charles B Fenster
- Oak Lake Field Station, South Dakota State University, Brookings, SD, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
30
|
Kitamura S, Satoh K, Oono Y. Detection and characterization of genome-wide mutations in M1 vegetative cells of gamma-irradiated Arabidopsis. PLoS Genet 2022; 18:e1009979. [PMID: 35051177 PMCID: PMC8775353 DOI: 10.1371/journal.pgen.1009979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/04/2021] [Indexed: 11/20/2022] Open
Abstract
Radiation-induced mutations have been detected by whole-genome sequencing analyses of self-pollinated generations of mutagenized plants. However, large DNA alterations and mutations in non-germline cells were likely missed. In this study, in order to detect various types of mutations in mutagenized M1 plants, anthocyanin pigmentation was used as a visible marker of mutations. Arabidopsis seeds heterozygous for the anthocyanin biosynthetic genes were irradiated with gamma-rays. Anthocyanin-less vegetative sectors resulting from a loss of heterozygosity were isolated from the gamma-irradiated M1 plants. The whole-genome sequencing analysis of the sectors detected various mutations, including structural variations (SVs) and large deletions (≥100 bp), both of which have been less characterized in the previous researches using gamma-irradiated plant genomes of M2 or later generations. Various types of rejoined sites were found in SVs, including no-insertion/deletion (indel) sites, only-deletion sites, only-insertion sites, and indel sites, but the rejoined sites with 0–5 bp indels represented most of the SVs. Examinations of the junctions of rearrangements (SVs and large deletions), medium deletions (10–99 bp), and small deletions (2–9 bp) revealed unique features (i.e., frequency of insertions and microhomology) at the rejoined sites. These results suggest that they were formed preferentially via different processes. Additionally, mutations that occurred in putative single M1 cells were identified according to the distribution of their allele frequency. The estimated mutation frequencies and spectra of the M1 cells were similar to those of previously analyzed M2 cells, with the exception of the greater proportion of rearrangements in the M1 cells. These findings suggest there are no major differences in the small mutations (<100 bp) between vegetative and germline cells. Thus, this study generated valuable information that may help clarify the nature of gamma-irradiation-induced mutations and their occurrence in cells that develop into vegetative or reproductive tissues. Mutations that occur in plant genome are not only related to plant evolution and speciation in nature, and also useful to identify novel gene functions and to develop new cultivars. Ionizing radiations induce various types of mutations throughout genomes in individual cells of an irradiated/mutagenized plant. However, current knowledge on radiation-induced genome-wide mutations in plants relied on the analyses of self-pollinated generations (M2 or later generations) of the mutagenized plants (M1 generation). Thus, mutations that are hardly transmitted to the next generation and those occurred in non-germline cells could not be investigated. Here, using anthocyanin pigmentation as a visible marker to reduce the genomic complexity in M1 plants, we achieved reliable detection of radiation-induced genome-wide mutations. We demonstrated that rearrangements, which were hardly detected in previous analyses using M2 genomes, occurred substantially often in gamma-irradiated M1 cells. We also revealed that mutation profile of the M1 cells was comparable with that of M2 genomes reported in previous analyses, except for the higher proportion of rearrangements in the M1 genome. Together with unique features at rejoined sites of rearrangements, medium deletions, and small deletions in the M1 genome, our findings are helpful to know the nature of genome-wide mutations induced by gamma-irradiation.
Collapse
Affiliation(s)
- Satoshi Kitamura
- Project “Ion Beam Mutagenesis”, Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology, Takasaki, Japan
- * E-mail:
| | - Katsuya Satoh
- Project “Ion Beam Mutagenesis”, Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology, Takasaki, Japan
| | - Yutaka Oono
- Project “Ion Beam Mutagenesis”, Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology, Takasaki, Japan
| |
Collapse
|
31
|
Ludovici GM, Chierici A, de Souza SO, d’Errico F, Iannotti A, Malizia A. Effects of Ionizing Radiation on Flora Ten Years after the Fukushima Dai-ichi Disaster. PLANTS (BASEL, SWITZERLAND) 2022; 11:222. [PMID: 35050110 PMCID: PMC8781571 DOI: 10.3390/plants11020222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
The aim of this work is to analyze the effects of ionizing radiation and radionuclides (like 137Cs) in several higher plants located around the Fukushima Dai-ichi Nuclear Power Plant (FNPP), evaluating both their adaptive processes and evolution. After the FNPP accident in March 2011 much attention was focused to the biological consequences of ionizing radiation and radionuclides released in the area surrounding the nuclear plant. This unexpected mishap led to the emission of radionuclides in aerosol and gaseous forms from the power plant, which contaminated a large area, including wild forest, cities, farmlands, mountains, and the sea, causing serious problems. Large quantities of 131I, 137Cs, and 134Cs were detected in the fallout. People were evacuated but the flora continued to be affected by the radiation exposure and by the radioactive dusts' fallout. The response of biota to FNPP irradiation was a complex interaction among radiation dose, dose rate, temporal and spatial variation, varying radiation sensitivities of the different plants' species, and indirect effects from other events. The repeated ionizing radiations, acute or chronic, guarantee an adaptation of the plant species, demonstrating a radio-resistance. Consequently, ionizing radiation affects the genetic structure, especially during chronic irradiation, reducing genetic variability. This reduction is associated with the different susceptibility of plant species to chronic stress. This would confirm the adaptive theory associated with this phenomenon. The effects that ionizing radiation has on different life forms are examined in this review using the FNPP disaster as a case study focusing the attention ten years after the accident.
Collapse
Affiliation(s)
- Gian Marco Ludovici
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy; (G.M.L.); (A.I.)
| | - Andrea Chierici
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy; (A.C.); (F.d.)
| | - Susana Oliveira de Souza
- Physics Department, Federal University of Sergipe, UFS, Av. Marechal Rondon, s/n Jardim Rosa Elze, São Cristóvão SE 49100-000, Brazil;
| | - Francesco d’Errico
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy; (A.C.); (F.d.)
| | - Alba Iannotti
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy; (G.M.L.); (A.I.)
| | - Andrea Malizia
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via di Motpellier 1, 00133 Rome, Italy
| |
Collapse
|
32
|
Ren Y, He Z, Liu P, Traw B, Sun S, Tian D, Yang S, Jia Y, Wang L. Somatic Mutation Analysis in Salix suchowensis Reveals Early-Segregated Cell Lineages. Mol Biol Evol 2021; 38:5292-5308. [PMID: 34562099 PMCID: PMC8662653 DOI: 10.1093/molbev/msab286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long-lived plants face the challenge of ever-increasing mutational burden across their long lifespan. Early sequestration of meristematic stem cells is supposed to efficiently slow down this process, but direct measurement of somatic mutations that accompanies segregated cell lineages in plants is still rare. Here, we tracked somatic mutations in 33 leaves and 22 adventitious roots from 22 stem-cuttings across eight major branches of a shrub willow (Salix suchowensis). We found that most mutations propagated separately in leaves and roots, providing clear evidence for early segregation of underlying cell lineages. By combining lineage tracking with allele frequency analysis, our results revealed a set of mutations shared by distinct branches, but were exclusively present in leaves and not in roots. These mutations were likely propagated by rapidly dividing somatic cell lineages which survive several iterations of branching, distinct from the slowly dividing axillary stem cell lineages. Leaf is thus contributed by both slowly and rapidly dividing cell lineages, leading to varied fixation chances of propagated mutations. By contrast, each root likely arises from a single founder cell within the adventitious stem cell lineages. Our findings give straightforward evidence that early segregation of meristems slows down mutation accumulation in axillary meristems, implying a plant "germline" paralog to the germline of animals through convergent evolution.
Collapse
Affiliation(s)
- Yifan Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhen He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Pingyu Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Brian Traw
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shucun Sun
- Department of Ecology, School of Life Science, Nanjing University, Nanjing, China
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanxiao Jia
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
33
|
Cell division in the shoot apical meristem is a trigger for miR156 decline and vegetative phase transition in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2115667118. [PMID: 34750273 DOI: 10.1073/pnas.2115667118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
What determines the rate at which a multicellular organism matures is a fundamental question in biology. In plants, the decline of miR156 with age serves as an intrinsic, evolutionarily conserved timer for the juvenile-to-adult phase transition. However, the way in which age regulates miR156 abundance is poorly understood. Here, we show that the rate of decline in miR156 is correlated with developmental age rather than chronological age. Mechanistically, we found that cell division in the apical meristem is a trigger for miR156 decline. The transcriptional activity of MIR156 genes is gradually attenuated by the deposition of the repressive histone mark H3K27me3 along with cell division. Our findings thus provide a plausible explanation of why the maturation program of a multicellular organism is unidirectional and irreversible under normal growth conditions and suggest that cell quiescence is the fountain of youth in plants.
Collapse
|
34
|
Matosevich R, Efroni I. The quiescent center and root regeneration. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6739-6745. [PMID: 34324634 PMCID: PMC8513162 DOI: 10.1093/jxb/erab319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/03/2021] [Indexed: 05/26/2023]
Abstract
Since its discovery by F.A.L Clowes, extensive research has been dedicated to identifying the functions of the quiescent center (QC). One of the earliest hypotheses was that it serves a key role in regeneration of the root meristem. Recent works provided support for this hypothesis and began to elucidate the molecular mechanisms underlying this phenomenon. There are two scenarios to consider when assessing the role of the QC in regeneration: one, when the damage leaves the QC intact; and the other, when the QC itself is destroyed. In the first scenario, multiple factors are recruited to activate QC cell division in order to replace damaged cells, but whether the QC has a role in the second scenario is less clear. Both using gene expression studies and following the cell division pattern have shown that the QC is assembled gradually, only to appear as a coherent identity late in regeneration. Similar late emergence of the QC was observed during the de novo formation of the lateral root meristem. These observations can lead to the conclusion that the QC has no role in regeneration. However, activities normally occurring in QC cells, such as local auxin biosynthesis, are still found during regeneration but occur in different cells in the regenerating meristem. Thus, we explore an alternative hypothesis, that following destruction of the QC, QC-related gene activity is temporarily distributed to other cells in the regenerating meristem, and only coalesce into a distinct cell identity when regeneration is complete.
Collapse
Affiliation(s)
- Rotem Matosevich
- The Institute of Plant Sciences, Faculty of Agriculture, The Hebrew University, Rehovot, Israel
| | - Idan Efroni
- The Institute of Plant Sciences, Faculty of Agriculture, The Hebrew University, Rehovot, Israel
| |
Collapse
|
35
|
Linde AM, Eklund DM, Cronberg N, Bowman JL, Lagercrantz U. Rates and patterns of molecular evolution in bryophyte genomes, with focus on complex thalloid liverworts, Marchantiopsida. Mol Phylogenet Evol 2021; 165:107295. [PMID: 34438050 DOI: 10.1016/j.ympev.2021.107295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/30/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Plants commonly referred to as "bryophytes" belong to three major lineages of non-vascular plants: the liverworts, the hornworts and the mosses. They are unique among land plants in having a dominant haploid generation and a short-lived diploid sporophytic generation. The dynamics of selection acting on a haploid genome differs from those acting on a diploid genome: new mutations are directly exposed to selection. The general aim of this paper is to investigate the diversification rateof bryophytes - measured as silent site substitution rate representing neutral evolution (mutation rate) and the nonsynonymous to synonymous substitution rate ratio (dN/dS) representing selective evolution - and compare it with earlier studies on vascular plants. Results show that the silent site substitution rate is lower for liverworts as compared to angiosperms, but not as low as for gymnosperms. The selection pressure, measured as dN/dS, isnot remarkably lower for bryophytes as compared to other diploid dominant plants as would be expected by the masking hypothesis, indicating that other factors are more important than ploidy.
Collapse
Affiliation(s)
- Anna-Malin Linde
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | - D Magnus Eklund
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | - Nils Cronberg
- Biodiversity, Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden.
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Ulf Lagercrantz
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| |
Collapse
|
36
|
Stability across the Whole Nuclear Genome in the Presence and Absence of DNA Mismatch Repair. Cells 2021; 10:cells10051224. [PMID: 34067668 PMCID: PMC8156620 DOI: 10.3390/cells10051224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/06/2023] Open
Abstract
We describe the contribution of DNA mismatch repair (MMR) to the stability of the eukaryotic nuclear genome as determined by whole-genome sequencing. To date, wild-type nuclear genome mutation rates are known for over 40 eukaryotic species, while measurements in mismatch repair-defective organisms are fewer in number and are concentrated on Saccharomyces cerevisiae and human tumors. Well-studied organisms include Drosophila melanogaster and Mus musculus, while less genetically tractable species include great apes and long-lived trees. A variety of techniques have been developed to gather mutation rates, either per generation or per cell division. Generational rates are described through whole-organism mutation accumulation experiments and through offspring–parent sequencing, or they have been identified by descent. Rates per somatic cell division have been estimated from cell line mutation accumulation experiments, from systemic variant allele frequencies, and from widely spaced samples with known cell divisions per unit of tissue growth. The latter methods are also used to estimate generational mutation rates for large organisms that lack dedicated germlines, such as trees and hyphal fungi. Mechanistic studies involving genetic manipulation of MMR genes prior to mutation rate determination are thus far confined to yeast, Arabidopsis thaliana, Caenorhabditis elegans, and one chicken cell line. A great deal of work in wild-type organisms has begun to establish a sound baseline, but far more work is needed to uncover the variety of MMR across eukaryotes. Nonetheless, the few MMR studies reported to date indicate that MMR contributes 100-fold or more to genome stability, and they have uncovered insights that would have been impossible to obtain using reporter gene assays.
Collapse
|
37
|
Lesaffre T, Billiard S. On Deleterious Mutations in Perennials: Inbreeding Depression, Mutation Load, and Life-History Evolution. Am Nat 2021; 197:E143-E155. [PMID: 33908825 DOI: 10.1086/713499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractIn angiosperms, perennials typically present much higher levels of inbreeding depression than annuals. One hypothesis to explain this pattern stems from the observation that inbreeding depression is expressed across multiple life stages in angiosperms. It posits that increased inbreeding depression in more long-lived species could be explained by differences in the way mutations affect fitness, through the life stages at which they are expressed. In this study, we investigate this hypothesis. We combine a physiological growth model and multilocus population genetics approaches to describe a full genotype-to-phenotype-to-fitness map. We study the behavior of mutations affecting growth or survival and explore their consequences in terms of inbreeding depression and mutation load. Although our results agree with empirical data only within a narrow range of conditions, we argue that they may point us toward the type of traits capable of generating high inbreeding depression in long-lived species-that is, traits under sufficiently strong selection, on which selection decreases sharply as life expectancy increases. Then we study the role deleterious mutations maintained at mutation-selection balance may play in the joint evolution of growth and survival strategies.
Collapse
|
38
|
Bezmenova AV, Zvyagina EA, Fedotova AV, Kasianov AS, Neretina TV, Penin AA, Bazykin GA, Kondrashov AS. Rapid Accumulation of Mutations in Growing Mycelia of a Hypervariable Fungus Schizophyllum commune. Mol Biol Evol 2021; 37:2279-2286. [PMID: 32243532 PMCID: PMC7403608 DOI: 10.1093/molbev/msaa083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The basidiomycete Schizophyllum commune has the highest level of genetic polymorphism known among living organisms. In a previous study, it was also found to have a moderately high per-generation mutation rate of 2×10−8, likely contributing to its high polymorphism. However, this rate has been measured only in an experiment on Petri dishes, and it is unclear how it translates to natural populations. Here, we used an experimental design that measures the rate of accumulation of de novo mutations in a linearly growing mycelium. We show that S. commune accumulates mutations at a rate of 1.24×10−7 substitutions per nucleotide per meter of growth, or ∼2.04×10−11 per nucleotide per cell division. In contrast to what has been observed in a number of species with extensive vegetative growth, this rate does not decline in the course of propagation of a mycelium. As a result, even a moderate per-cell-division mutation rate in S. commune can translate into a very high per-generation mutation rate when the number of cell divisions between consecutive meiosis is large.
Collapse
Affiliation(s)
| | | | - Anna V Fedotova
- Center of Life Sciences, Skoltech, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Artem S Kasianov
- Kharkevich Institute for Information Transmission Problems, Moscow, Russia.,Vavilov Institute of General Genetics, Moscow, Russia
| | - Tatiana V Neretina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Kharkevich Institute for Information Transmission Problems, Moscow, Russia.,N. A. Pertsov White Sea Biological Station, Lomonosov Moscow State University, Primorskiy, Russia
| | - Aleksey A Penin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Kharkevich Institute for Information Transmission Problems, Moscow, Russia
| | - Georgii A Bazykin
- Center of Life Sciences, Skoltech, Moscow, Russia.,Kharkevich Institute for Information Transmission Problems, Moscow, Russia
| | - Alexey S Kondrashov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
39
|
Burian A. Does Shoot Apical Meristem Function as the Germline in Safeguarding Against Excess of Mutations? FRONTIERS IN PLANT SCIENCE 2021; 12:707740. [PMID: 34421954 PMCID: PMC8374955 DOI: 10.3389/fpls.2021.707740] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/19/2021] [Indexed: 05/04/2023]
Abstract
A genetic continuity of living organisms relies on the germline which is a specialized cell lineage producing gametes. Essential in the germline functioning is the protection of genetic information that is subjected to spontaneous mutations. Due to indeterminate growth, late specification of the germline, and unique longevity, plants are expected to accumulate somatic mutations during their lifetime that leads to decrease in individual and population fitness. However, protective mechanisms, similar to those in animals, exist in plant shoot apical meristem (SAM) allowing plants to reduce the accumulation and transmission of mutations. This review describes cellular- and tissue-level mechanisms related to spatio-temporal distribution of cell divisions, organization of stem cell lineages, and cell fate specification to argue that the SAM functions analogous to animal germline.
Collapse
|
40
|
Belfield EJ, Brown C, Ding ZJ, Chapman L, Luo M, Hinde E, van Es SW, Johnson S, Ning Y, Zheng SJ, Mithani A, Harberd NP. Thermal stress accelerates Arabidopsis thaliana mutation rate. Genome Res 2020; 31:40-50. [PMID: 33334733 PMCID: PMC7849391 DOI: 10.1101/gr.259853.119] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 10/28/2020] [Indexed: 01/07/2023]
Abstract
Mutations are the source of both genetic diversity and mutational load. However, the effects of increasing environmental temperature on plant mutation rates and relative impact on specific mutational classes (e.g., insertion/deletion [indel] vs. single nucleotide variant [SNV]) are unknown. This topic is important because of the poorly defined effects of anthropogenic global temperature rise on biological systems. Here, we show the impact of temperature increase on Arabidopsis thaliana mutation, studying whole genome profiles of mutation accumulation (MA) lineages grown for 11 successive generations at 29°C. Whereas growth of A. thaliana at standard temperature (ST; 23°C) is associated with a mutation rate of 7 × 10−9 base substitutions per site per generation, growth at stressful high temperature (HT; 29°C) is highly mutagenic, increasing the mutation rate to 12 × 10−9. SNV frequency is approximately two- to threefold higher at HT than at ST, and HT-growth causes an ∼19- to 23-fold increase in indel frequency, resulting in a disproportionate increase in indels (vs. SNVs). Most HT-induced indels are 1–2 bp in size and particularly affect homopolymeric or dinucleotide A or T stretch regions of the genome. HT-induced indels occur disproportionately in nucleosome-free regions, suggesting that much HT-induced mutational damage occurs during cell-cycle phases when genomic DNA is packaged into nucleosomes. We conclude that stressful experimental temperature increases accelerate plant mutation rates and particularly accelerate the rate of indel mutation. Increasing environmental temperatures are thus likely to have significant mutagenic consequences for plants growing in the wild and may, in particular, add detrimentally to mutational load.
Collapse
Affiliation(s)
- Eric J Belfield
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Carly Brown
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Zhong Jie Ding
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom.,State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Lottie Chapman
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom.,Faculty of Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Mengqian Luo
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom.,Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Eleanor Hinde
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Sam W van Es
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom.,Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87 Umeå, Sweden
| | - Sophie Johnson
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Youzheng Ning
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom.,Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Aziz Mithani
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore 54792, Pakistan
| | - Nicholas P Harberd
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
41
|
Estimation of the SNP Mutation Rate in Two Vegetatively Propagating Species of Duckweed. G3-GENES GENOMES GENETICS 2020; 10:4191-4200. [PMID: 32973000 PMCID: PMC7642947 DOI: 10.1534/g3.120.401704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutation rate estimates for vegetatively reproducing organisms are rare, despite their frequent occurrence across the tree of life. Here we report mutation rate estimates in two vegetatively reproducing duckweed species, Lemna minor and Spirodela polyrhiza We use a modified approach to estimating mutation rates by taking into account the reduction in mutation detection power that occurs when new individuals are produced from multiple cell lineages. We estimate an extremely low per generation mutation rate in both species of duckweed and note that allelic coverage at de novo mutation sites is very skewed. We also find no substantial difference in mutation rate between mutation accumulation lines propagated under benign conditions and those grown under salt stress. Finally, we discuss the implications of interpreting mutation rate estimates in vegetatively propagating organisms.
Collapse
|
42
|
Ludovici GM, Oliveira de Souza S, Chierici A, Cascone MG, d'Errico F, Malizia A. Adaptation to ionizing radiation of higher plants: From environmental radioactivity to chernobyl disaster. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 222:106375. [PMID: 32791372 DOI: 10.1016/j.jenvrad.2020.106375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this work is to highlight the effects of ionizing radiation on the genetic material in higher plants by assessing both adaptive processes as well as the evolution of plant species. The effects that the ionizing radiation has on greenery following a nuclear accident, was examined by taking the Chernobyl Nuclear Power Plant disaster as a case study. The genetic and evolutionary effects that ionizing radiation had on plants after the Chernobyl accident were highlighted. The response of biota to Chernobyl irradiation was a complex interaction among radiation dose, dose rate, temporal and spatial variation, varying radiation sensitivities of the different plants' species, and indirect effects from other events. Ionizing radiation causes water radiolysis, generating highly reactive oxygen species (ROS). ROS induce the rapid activation of detoxifying enzymes. DeoxyriboNucleic Acid (DNA) is the object of an attack by both, the hydroxyl ions and the radiation itself, thus triggering a mechanism both direct and indirect. The effects on DNA are harmful to the organism and the long-term development of the species. Dose-dependent aberrations in chromosomes are often observed after irradiation. Although multiple DNA repair mechanisms exist, double-strand breaks (DSBs or DNA-DSBs) are often subject to errors. Plants DSBs repair mechanisms mainly involve homologous and non-homologous dependent systems, the latter especially causing a loss of genetic information. Repeated ionizing radiation (acute or chronic) ensures that plants adapt, demonstrating radioresistance. An adaptive response has been suggested for this phenomenon. As a result, ionizing radiation influences the genetic structure, especially during chronic irradiation, reducing genetic variability. This reduction may be associated with the fact that particular plant species are more subject to chronic stress, confirming the adaptive theory. Therefore, the genomic effects of ionizing radiation demonstrate their likely involvement in the evolution of plant species.
Collapse
Affiliation(s)
| | | | - Andrea Chierici
- Department of Industrial Engineering, University of Rome Tor Vergata, Italy; Department of Civil and Industrial Engineering, University of Pisa, Italy
| | | | - Francesco d'Errico
- Department of Civil and Industrial Engineering, University of Pisa, Italy
| | - Andrea Malizia
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy.
| |
Collapse
|
43
|
Blackwell AR, Dluzewska J, Szymanska-Lejman M, Desjardins S, Tock AJ, Kbiri N, Lambing C, Lawrence EJ, Bieluszewski T, Rowan B, Higgins JD, Ziolkowski PA, Henderson IR. MSH2 shapes the meiotic crossover landscape in relation to interhomolog polymorphism in Arabidopsis. EMBO J 2020; 39:e104858. [PMID: 32935357 PMCID: PMC7604573 DOI: 10.15252/embj.2020104858] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022] Open
Abstract
During meiosis, DNA double-strand breaks undergo interhomolog repair to yield crossovers between homologous chromosomes. To investigate how interhomolog sequence polymorphism affects crossovers, we sequenced multiple recombinant populations of the model plant Arabidopsis thaliana. Crossovers were elevated in the diverse pericentromeric regions, showing a local preference for polymorphic regions. We provide evidence that crossover association with elevated diversity is mediated via the Class I crossover formation pathway, although very high levels of diversity suppress crossovers. Interhomolog polymorphism causes mismatches in recombining molecules, which can be detected by MutS homolog (MSH) mismatch repair protein heterodimers. Therefore, we mapped crossovers in a msh2 mutant, defective in mismatch recognition, using multiple hybrid backgrounds. Although total crossover numbers were unchanged in msh2 mutants, recombination was remodelled from the diverse pericentromeres towards the less-polymorphic sub-telomeric regions. Juxtaposition of megabase heterozygous and homozygous regions causes crossover remodelling towards the heterozygous regions in wild type Arabidopsis, but not in msh2 mutants. Immunostaining showed that MSH2 protein accumulates on meiotic chromosomes during prophase I, consistent with MSH2 regulating meiotic recombination. Our results reveal a pro-crossover role for MSH2 in regions of higher sequence diversity in A. thaliana.
Collapse
Affiliation(s)
| | - Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Maja Szymanska-Lejman
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Stuart Desjardins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Nadia Kbiri
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | | | - Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Tomasz Bieluszewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Beth Rowan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
44
|
Orr AJ, Padovan A, Kainer D, Külheim C, Bromham L, Bustos-Segura C, Foley W, Haff T, Hsieh JF, Morales-Suarez A, Cartwright RA, Lanfear R. A phylogenomic approach reveals a low somatic mutation rate in a long-lived plant. Proc Biol Sci 2020; 287:20192364. [PMID: 32156194 PMCID: PMC7126060 DOI: 10.1098/rspb.2019.2364] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Somatic mutations can have important effects on the life history, ecology, and evolution of plants, but the rate at which they accumulate is poorly understood and difficult to measure directly. Here, we develop a method to measure somatic mutations in individual plants and use it to estimate the somatic mutation rate in a large, long-lived, phenotypically mosaic Eucalyptus melliodora tree. Despite being 100 times larger than Arabidopsis, this tree has a per-generation mutation rate only ten times greater, which suggests that this species may have evolved mechanisms to reduce the mutation rate per unit of growth. This adds to a growing body of evidence that illuminates the correlated evolutionary shifts in mutation rate and life history in plants.
Collapse
Affiliation(s)
- Adam J Orr
- The Biodesign Institute and the School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Amanda Padovan
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia.,CSIRO Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| | - David Kainer
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Carsten Külheim
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia.,School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Lindell Bromham
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Carlos Bustos-Segura
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - William Foley
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Tonya Haff
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | - Ji-Fan Hsieh
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| | | | - Reed A Cartwright
- The Biodesign Institute and the School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Robert Lanfear
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia.,Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
45
|
Zhao J, Shen F, Gao Y, Wang D, Wang K. Parallel Bud Mutation Sequencing Reveals that Fruit Sugar and Acid Metabolism Potentially Influence Stress in Malus. Int J Mol Sci 2019; 20:E5988. [PMID: 31795097 PMCID: PMC6928686 DOI: 10.3390/ijms20235988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
Apple sugar and acid are the most important traits of apple fruit. Bud sport cultivars can provide abundant research materials for functional gene studies in apple. In this study, using bud sport materials with a rather different sugar and acid flavor, i.e., "Jonathan" and "Sweet Jonathan", we profiled the whole genome variations and transcriptional regulatory network during fruit developmental stages using whole genome sequencing and RNA-sequencing. Variation analysis identified 4,198,955 SNPs, 319,494 InDels, and 32,434 SVs between the two cultivars. In total, 4313 differentially expressed genes among all of the d 44,399 genes expressed were identified between the two cultivars during fruit development, and functional analysis revealed stress response and signal transduction related genes were enriched. Using 24,047 genes with a more variable expression value, we constructed 28 co-expression modules by weighted correlation network analysis. Deciphering of 14 co-expression modules associated with sugar or acid accumulation during fruit development revealed the hub genes associated with sugar and acid metabolism, e.g., MdDSP4, MdINVE, and MdSTP7. Furthermore, exploration of the intra network of the co-expression module indicated the close relationship between sugar and acid metabolism or sugar and stress. Motif-based sequence analysis of the 17 differentially expressed ATP-binding cassette transporter genes and Yeast one-hybrid assay identified and confirmed a transcription factor, MdBPC6, regulating the ATP-binding cassette (ABC) transporter genes and potentially participating in the apple fruit development or stress response. Collectively, all of the results demonstrated the use of parallel bud mutation sequencing and identified hub genes, and inferred regulatory relationships providing new information about apple fruit sugar and acid accumulation or stress response.
Collapse
Affiliation(s)
- Jirong Zhao
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture, Xingcheng 125100, China; (J.Z.); (Y.G.); (D.W.)
- College of Life Science, Yan’an University, Shanxi Key Lab of Chinese Jujube, Yan’an 716000, China
| | - Fei Shen
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100193, China;
| | - Yuan Gao
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture, Xingcheng 125100, China; (J.Z.); (Y.G.); (D.W.)
| | - Dajiang Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture, Xingcheng 125100, China; (J.Z.); (Y.G.); (D.W.)
| | - Kun Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture, Xingcheng 125100, China; (J.Z.); (Y.G.); (D.W.)
| |
Collapse
|
46
|
Schoen DJ, Schultz ST. Somatic Mutation and Evolution in Plants. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024955] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Somatic mutations are common in plants, and they may accumulate and be passed on to gametes. The determinants of somatic mutation accumulation include the intraorganismal selective effect of mutations, the number of cell divisions that separate the zygote from the formation of gametes, and shoot apical meristem structure and branching. Somatic mutations can promote the evolution of diploidy, polyploidy, sexual recombination, outcrossing, clonality, and separate sexes, and they may contribute genetic variability in many other traits. The amplification of beneficial mutations via intraorganismal selection may relax selection to reduce the genomic mutation rate or to protect the germline in plants. The total rate of somatic mutation, the distribution of selective effects and fates in the plant body, and the degree to which the germline is sheltered from somatic mutations are still poorly understood. Our knowledge can be improved through empirical estimates of mutation rates and effects on cell lineages and whole organisms, such as estimates of the reduction in fitness of progeny produced by within- versus between-flower crosses on the same plant, mutation coalescent studies within the canopy, and incorporation of somatic mutation into theoretical models of plant evolutionary genetics.
Collapse
Affiliation(s)
- Daniel J. Schoen
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Stewart T. Schultz
- Department of Ecology, Agronomy, and Aquaculture, University of Zadar, 23000 Zadar, Croatia
| |
Collapse
|
47
|
Leesutthiphonchai W, Judelson HS. Phytophthora infestans Sporangia Produced in Artificial Media and Plant Lesions Have Subtly Divergent Transcription Profiles but Equivalent Infection Potential and Aggressiveness. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1077-1087. [PMID: 30908943 DOI: 10.1094/mpmi-12-18-0349-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sporangia of the potato late blight agent Phytophthora infestans are often used in studies of pathogen biology and plant responses to infection. Investigations of spore biology can be challenging in oomycetes because their sporangia are physiologically active and change in response to environmental factors and aging. Whether sporangia from artificial media and plant lesions are functionally equivalent has been a topic of debate. To address these issues, we compared the transcriptomes and infection ability of sporangia from rye-sucrose media, potato and tomato leaflets, and potato tubers. Small differences were observed between the mRNA profiles of sporangia from all sources, including variation in genes encoding metabolic enzymes, cell-wall-degrading enzymes, and ABC transporters. Small differences in sporangia age also resulted in variation in the transcriptome. Taking care to use sporangia of similar maturity, we observed that those sourced from media or plant lesions had similar rates of zoospore release and cyst germination. There were also no differences in infection rates or aggressiveness on leaflets, based on single-spore inoculation assays. Such results are discordant with those of a recent publication in this journal. Nevertheless, we conclude that sporangia from plant and media cultures are functionally similar and emphasize the importance of using "best practices" in experiments with sporangia to obtain reliable results.
Collapse
Affiliation(s)
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| |
Collapse
|
48
|
He T, Lamont BB, Pausas JG. Fire as a key driver of Earth's biodiversity. Biol Rev Camb Philos Soc 2019; 94:1983-2010. [PMID: 31298472 DOI: 10.1111/brv.12544] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022]
Abstract
Many terrestrial ecosystems are fire prone, such that their composition and structure are largely due to their fire regime. Regions subject to regular fire have exceptionally high levels of species richness and endemism, and fire has been proposed as a major driver of their diversity, within the context of climate, resource availability and environmental heterogeneity. However, current fire-management practices rarely take into account the ecological and evolutionary roles of fire in maintaining biodiversity. Here, we focus on the mechanisms that enable fire to act as a major ecological and evolutionary force that promotes and maintains biodiversity over numerous spatiotemporal scales. From an ecological perspective, the vegetation, topography and local weather conditions during a fire generate a landscape with spatial and temporal variation in fire-related patches (pyrodiversity), and these produce the biotic and environmental heterogeneity that drives biodiversity across local and regional scales. There have been few empirical tests of the proposition that 'pyrodiversity begets biodiversity' but we show that biodiversity should peak at moderately high levels of pyrodiversity. Overall species richness is greatest immediately after fire and declines monotonically over time, with postfire successional pathways dictated by animal habitat preferences and varying lifespans among resident plants. Theory and data support the 'intermediate disturbance hypothesis' when mean patch species diversity is correlated with mean fire intervals. Postfire persistence, recruitment and immigration allow species with different life histories to coexist. From an evolutionary perspective, fire drives population turnover and diversification by promoting a wide range of adaptive responses to particular fire regimes. Among 39 comparisons, the number of species in 26 fire-prone lineages is much higher than that in their non-fire-prone sister lineages. Fire and its byproducts may have direct mutagenic effects, producing novel genotypes that can lead to trait innovation and even speciation. A paradigm shift aimed at restoring biodiversity-maintaining fire regimes across broad landscapes is required among the fire research and management communities. This will require ecologists and other professionals to spread the burgeoning fire-science knowledge beyond scientific publications to the broader public, politicians and media.
Collapse
Affiliation(s)
- Tianhua He
- School of Molecular and Life Sciences, Curtin University, Perth, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Australia
| | - Byron B Lamont
- School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | | |
Collapse
|
49
|
Eberhard S, Valuchova S, Ravat J, Fulneček J, Jolivet P, Bujaldon S, Lemaire SD, Wollman FA, Teixeira MT, Riha K, Xu Z. Molecular characterization of Chlamydomonas reinhardtii telomeres and telomerase mutants. Life Sci Alliance 2019; 2:2/3/e201900315. [PMID: 31160377 PMCID: PMC6549138 DOI: 10.26508/lsa.201900315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022] Open
Abstract
This study characterizes the sequence, end structure, and length distribution of Chlamydomonas reinhardtii telomeres and shows that telomerase mutants are defective in telomere maintenance. Telomeres are repeated sequences found at the end of the linear chromosomes of most eukaryotes and are required for chromosome integrity. Expression of the reverse-transcriptase telomerase allows for extension of telomeric repeats to counteract natural telomere shortening. Although Chlamydomonas reinhardtii, a photosynthetic unicellular green alga, is widely used as a model organism in photosynthesis and flagella research, and for biotechnological applications, the biology of its telomeres has not been investigated in depth. Here, we show that the C. reinhardtii (TTTTAGGG)n telomeric repeats are mostly nondegenerate and that the telomeres form a protective structure, with a subset ending with a 3′ overhang and another subset presenting a blunt end. Although telomere size and length distributions are stable under various standard growth conditions, they vary substantially between 12 genetically close reference strains. Finally, we identify CrTERT, the gene encoding the catalytic subunit of telomerase and show that telomeres shorten progressively in mutants of this gene. Telomerase mutants eventually enter replicative senescence, demonstrating that telomerase is required for long-term maintenance of telomeres in C. reinhardtii.
Collapse
Affiliation(s)
- Stephan Eberhard
- Sorbonne Université, CNRS, UMR 7141, Institut de Biologie Physico-Chimique, Biologie du Chloroplaste et Perception de la Lumière chez les Micro-algues, Paris, France
| | - Sona Valuchova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Julie Ravat
- Sorbonne Université, CNRS, UMR 7141, Institut de Biologie Physico-Chimique, Biologie du Chloroplaste et Perception de la Lumière chez les Micro-algues, Paris, France
| | - Jaroslav Fulneček
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pascale Jolivet
- Sorbonne Université, PSL Research University, CNRS, UMR 8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Sandrine Bujaldon
- Sorbonne Université, CNRS, UMR 7141, Institut de Biologie Physico-Chimique, Biologie du Chloroplaste et Perception de la Lumière chez les Micro-algues, Paris, France
| | - Stéphane D Lemaire
- Sorbonne Université, PSL Research University, CNRS, UMR 8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Francis-André Wollman
- Sorbonne Université, CNRS, UMR 7141, Institut de Biologie Physico-Chimique, Biologie du Chloroplaste et Perception de la Lumière chez les Micro-algues, Paris, France
| | - Maria Teresa Teixeira
- Sorbonne Université, PSL Research University, CNRS, UMR 8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Karel Riha
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zhou Xu
- Sorbonne Université, PSL Research University, CNRS, UMR 8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France .,Sorbonne Université, CNRS, UMR 7238, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
| |
Collapse
|
50
|
Wang L, Ji Y, Hu Y, Hu H, Jia X, Jiang M, Zhang X, Zhao L, Zhang Y, Jia Y, Qin C, Yu L, Huang J, Yang S, Hurst LD, Tian D. The architecture of intra-organism mutation rate variation in plants. PLoS Biol 2019; 17:e3000191. [PMID: 30964866 PMCID: PMC6456163 DOI: 10.1371/journal.pbio.3000191] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/06/2019] [Indexed: 12/30/2022] Open
Abstract
Given the disposability of somatic tissue, selection can favor a higher mutation rate in the early segregating soma than in germline, as seen in some animals. Although in plants intra-organismic mutation rate heterogeneity is poorly resolved, the same selectionist logic can predict a lower rate in shoot than in root and in longer-lived terminal tissues (e.g., leaves) than in ontogenetically similar short-lived ones (e.g., petals), and that mutation rate heterogeneity should be deterministic with no significant differences between biological replicates. To address these expectations, we sequenced 754 genomes from various tissues of eight plant species. Consistent with a selectionist model, the rate of mutation accumulation per unit time in shoot apical meristem is lower than that in root apical tissues in perennials, in which a high proportion of mutations in shoots are themselves transmissible, but not in annuals, in which somatic mutations tend not to be transmissible. Similarly, the number of mutations accumulated in leaves is commonly lower than that within a petal of the same plant, and there is no more heterogeneity in accumulation rates between replicate branches than expected by chance. High mutation accumulation in runners of strawberry is, we argue, the exception that proves the rule, as mutation transmission patterns indicate that runner has a restricted germline. However, we also find that in vitro callus tissue has a higher mutation rate (per unit time) than the wild-grown comparator, suggesting nonadaptive mutational "fragility". As mutational fragility does not obviously explain why the shoot-root difference varies with plant longevity, we conclude that some mutation rate variation between tissues is consistent with selectionist theory but that a mechanistic null of mutational fragility should be considered.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yilun Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yingwen Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Huaying Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xianqin Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Mengmeng Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lina Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanchun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanxiao Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chao Qin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Luyao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ju Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Laurence D. Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|