1
|
Park J, Hagan K, DuBose TB, Maldonado RS, McNabb RP, Dubra A, Izatt JA, Farsiu S. Deep compressed multichannel adaptive optics scanning light ophthalmoscope. SCIENCE ADVANCES 2025; 11:eadr5912. [PMID: 40344063 PMCID: PMC12063668 DOI: 10.1126/sciadv.adr5912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 04/07/2025] [Indexed: 05/11/2025]
Abstract
Adaptive optics scanning light ophthalmoscopy (AOSLO) reveals individual retinal cells and their function, microvasculature, and micropathologies in vivo. As compared to the single-channel offset pinhole and two-channel split-detector nonconfocal AOSLO designs, by providing multidirectional imaging capabilities, a recent generation of multidetector and (multi-)offset aperture AOSLO modalities has been demonstrated to provide critical information about retinal microstructures. However, increasing detection channels requires expensive optical components and/or critically increases imaging time. To address this issue, we present an innovative combination of machine learning and optics as an integrated technology to compressively capture 12 nonconfocal channel AOSLO images simultaneously. Imaging of healthy participants and diseased subjects using the proposed deep compressed multichannel AOSLO showed enhanced visualization of rods, cones, and mural cells with over an order-of-magnitude improvement in imaging speed as compared to conventional offset aperture imaging. To facilitate the adaptation and integration with other in vivo microscopy systems, we made optical design, acquisition, and computational reconstruction codes open source.
Collapse
Affiliation(s)
- Jongwan Park
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kristen Hagan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Ramiro S. Maldonado
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Ryan P. McNabb
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Alfredo Dubra
- Byers Eye Institute, Stanford University, Stanford, CA, USA
| | - Joseph A. Izatt
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Wang X, Hoshi S, Liu R, Corradetti G, Ip M, Sarraf D, Sadda SR, Zhang Y. Photoreceptor Function and Structure in Retinal Areas With Intraretinal Hyperreflective Foci in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2025; 66:27. [PMID: 39928312 PMCID: PMC11812613 DOI: 10.1167/iovs.66.2.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/19/2025] [Indexed: 02/11/2025] Open
Abstract
Purpose To assess retinal light sensitivity in regions with intraretinal hyperreflective foci (IHRFs) in eyes with intermediate age-related macular degeneration (AMD) and examine the photoreceptor structure in these areas using adaptive optics scanning laser ophthalmoscopy (AOSLO) and optical coherence tomography (OCT). Methods A retrospective analysis was conducted on 82 eyes of 57 subjects (age: 76.4 ± 7.0 years) with intermediate AMD. IHRFs were identified in OCT B-scans. Drusen and subretinal drusenoid deposits (SDDs) were evaluated using multimodal imaging. Photoreceptor structure was assessed with AOSLO, and choroidal and retinal thicknesses were measured in areas with IHRFs. In 16 eyes, mesopic and scotopic light sensitivities were compared in regions with and without IHRFs but with similar SDD/drusen load in the same eye. Results Retinal areas with IHRFs had significantly reduced mesopic (17.19 ± 5.68 dB vs. 18.49 ± 5.35 dB, P = 0.0029) and scotopic (8.39 ± 5.67 dB vs. 9.72 ± 6.28 dB, P = 0.0096) light sensitivity compared to areas without IHRFs. AOSLO revealed disrupted cone photoreceptor structure in IHRF regions. Choroidal thickness beneath areas with IHRFs was thinner than in those without IHRFs (196.71 ± 73.31 µm vs. 202.37 ± 70.64 µm, P = 0.0211). Retinal thickness in regions with IHRFs was not significantly different from those without IHRFs (320.40 ± 31.16 µm vs. 316.92 ± 26.32 µm, P = 0.3537). Conclusions IHRF presence is associated with localized reduced visual function and photoreceptor degeneration in intermediate AMD. Prospective studies are warranted to further investigate the mechanisms of photoreceptor and sensitivity loss in the context of IHRF.
Collapse
Affiliation(s)
- Xiaolin Wang
- Doheny Eye Institute, Pasadena, California, United States
| | - Sujin Hoshi
- Doheny Eye Institute, Pasadena, California, United States
- Department of Ophthalmology, University of California–Los Angeles, Los Angeles, California, United States
- Department of Ophthalmology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ruixue Liu
- Doheny Eye Institute, Pasadena, California, United States
| | - Giulia Corradetti
- Doheny Eye Institute, Pasadena, California, United States
- Department of Ophthalmology, University of California–Los Angeles, Los Angeles, California, United States
| | - Michael Ip
- Doheny Eye Institute, Pasadena, California, United States
- Department of Ophthalmology, University of California–Los Angeles, Los Angeles, California, United States
| | - David Sarraf
- Department of Ophthalmology, University of California–Los Angeles, Los Angeles, California, United States
- Stein Eye Institute, Los Angeles, California, United States
| | - SriniVas R. Sadda
- Doheny Eye Institute, Pasadena, California, United States
- Department of Ophthalmology, University of California–Los Angeles, Los Angeles, California, United States
| | - Yuhua Zhang
- Doheny Eye Institute, Pasadena, California, United States
- Department of Ophthalmology, University of California–Los Angeles, Los Angeles, California, United States
| |
Collapse
|
3
|
Tarhan M, Meller D, Hammer M. Hyperautofluorescent material inside areas of macular atrophy may reveal non-lipofuscin fluorophores in late stage AMD. Acta Ophthalmol 2025; 103:e66-e75. [PMID: 39177106 PMCID: PMC11704839 DOI: 10.1111/aos.16752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE To characterize fundus autofluorescence (FAF) in complete (cRORA) and incomplete retinal pigment epithelium and outer retinal atrophy (iRORA) by fluorescence lifetime imaging ophthalmology (FLIO). METHODS Overall, 98 macular atrophy (MA) lesions in 42 eyes of 37 age-related macular degeneration (AMD) patients (mean age: 80.9 ± 5.8 years), 25 of them classified as iRORA and 73 as cRORA by OCT, were investigated by FLIO in a short (SSC: 498-560 nm) and a long wavelength channel (LSC: 560-720 nm). Differences of FAF lifetimes and peak emission wavelength (PEW) between atrophic lesions and intact retinal pigment epithelium (RPE) in the outer ring of the ETDRS grid were considered. RESULTS FAF lifetimes in MA were longer and PEW were significantly (p < 0.001) shorter than in intact RPE by 112 ± 78 ps (SSC), 91 ± 64 ps (LSC), 27 ± 18 nm (PEW) in iRORA and by 227 ± 112 ps (SSC), 167 ± 81 ps (LSC), and 54 ± 17 nm (PEW) in cRORA. 37% of iRORA and 24% of cRORA were hyperautofluorescent in SSC. Persistent sub-RPE-BL material in MA was newly found as a hyperautofluorescent entity with lifetimes considerably longer than that of drusen and RPE. CONCLUSIONS Despite RPE and, thus, lipofuscin are greatly absent in MA, considerable FAF, preferably at short wavelengths, was found in those lesions. Drusen, persistent sub-RPE-BL material, basal laminar deposits, persistent activated RPE, and sclera were identified as putative sources of this fluorescence. FLIO can help to characterize respective fluorophores.
Collapse
Affiliation(s)
- Melih Tarhan
- Department of OphthalmologyUniversity Hospital JenaJenaGermany
| | - Daniel Meller
- Department of OphthalmologyUniversity Hospital JenaJenaGermany
| | - Martin Hammer
- Department of OphthalmologyUniversity Hospital JenaJenaGermany
- Department of OphthalmologyUniversity Hospital BonnBonnGermany
- Center for Medical Optics and PhotonicsUniversity of JenaJenaGermany
| |
Collapse
|
4
|
Bedggood P, Ding Y, Dierickx D, Dubra A, Metha A. Quantification of optical lensing by cellular structures in the living human eye. BIOMEDICAL OPTICS EXPRESS 2025; 16:473-498. [PMID: 39958845 PMCID: PMC11828430 DOI: 10.1364/boe.547734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 02/18/2025]
Abstract
Cells and other microscopic phase objects can be visualized in the living retina, non-invasively, using non-confocal light detection schemes in adaptive optics scanning light ophthalmoscopes (AOSLOs). There is not yet widespread agreement regarding the origin of image contrast, nor the best way to render multichannel images. Here, we present data to support the interpretation that variations in the intensity of non-confocal images approximate a direct linear mapping of the prismatic deflection of the scanned beam. We advance a simple geometric framework in which local 2D image gradients are used to estimate the spherocylindrical refractive power for each element of the tissue. This framework combines all available information from the non-confocal image channels simultaneously, reducing noise and directional bias. We show that image derivatives can be computed with a scalable, separable gradient operator that minimizes directional errors; this further mitigates noise and directional bias as compared with previous filtering approaches. Strategies to render the output of split-detector gradient operations have been recently described for the visualization of immune cells, blood flow, and photoreceptors; our framework encompasses these methods as rendering astigmatic refractive power. In addition to astigmatic power, we advocate the use of the mean spherical equivalent power, which appears to minimize artifacts even for highly directional micro-structures such as immune cell processes. We highlight examples of positive, negative, and astigmatic power that match expectations according to the known refractive indices and geometries of the relevant structures (for example, a blood vessel filled with plasma acts as a negatively powered cylindrical lens). The examples highlight the benefits of the proposed scheme for the visualization of diverse phase objects including rod and cone inner segments, immune cells near the inner limiting membrane, flowing blood cells, the intravascular cell-free layer, and anatomical details of the vessel wall.
Collapse
Affiliation(s)
- Phillip Bedggood
- Department of Optometry and Vision Sciences, University of Melbourne, 3010, Australia
| | - Yifu Ding
- Department of Optometry and Vision Sciences, University of Melbourne, 3010, Australia
| | - David Dierickx
- Department of Optometry and Vision Sciences, University of Melbourne, 3010, Australia
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA
| | - Andrew Metha
- Department of Optometry and Vision Sciences, University of Melbourne, 3010, Australia
| |
Collapse
|
5
|
Song X, Guo T, Ma S, Zhou F, Tian J, Liu Z, Liu J, Li H, Chen Y, Chai X, Li L. Spatially Selective Retinal Ganglion Cell Activation Using Low Invasive Extraocular Temporal Interference Stimulation. Int J Neural Syst 2025; 35:2450066. [PMID: 39318031 DOI: 10.1142/s0129065724500667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Conventional retinal implants involve complex surgical procedures and require invasive implantation. Temporal Interference Stimulation (TIS) has achieved noninvasive and focused stimulation of deep brain regions by delivering high-frequency currents with small frequency differences on multiple electrodes. In this study, we conducted in silico investigations to evaluate extraocular TIS's potential as a novel visual restoration approach. Different from the previously published retinal TIS model, the new model of extraocular TIS incorporated a biophysically detailed retinal ganglion cell (RGC) population, enabling a more accurate simulation of retinal outputs under electrical stimulation. Using this improved model, we made the following major discoveries: (1) the maximum value of TIS envelope electric potential ([Formula: see text] showed a strong correlation with TIS-induced RGC activation; (2) the preferred stimulating/return electrode (SE/RE) locations to achieve focalized TIS were predicted; (3) the performance of extraocular TIS was better than same-frequency sinusoidal stimulation (SSS) in terms of lower RGC threshold and more focused RGC activation; (4) the optimal stimulation parameters to achieve lower threshold and focused activation were identified; and (5) spatial selectivity of TIS could be improved by integrating current steering strategy and reducing electrode size. This study provides insights into the feasibility and effectiveness of a low-invasive stimulation approach in enhancing vision restoration.
Collapse
Affiliation(s)
- Xiaoyu Song
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Saidong Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Feng Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiaxin Tian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhengyang Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiao Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Heng Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yao Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xinyu Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Liming Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
6
|
Villarreal DL, Krautschneider W. Spatially Localized Visual Perception Estimation by Means of Prosthetic Vision Simulation. J Imaging 2024; 10:294. [PMID: 39590758 PMCID: PMC11595353 DOI: 10.3390/jimaging10110294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Retinal prosthetic devices aim to repair some vision in visually impaired patients by electrically stimulating neural cells in the visual system. Although there have been several notable advancements in the creation of electrically stimulated small dot-like perceptions, a deeper comprehension of the physical properties of phosphenes is still necessary. This study analyzes the influence of two independent electrode array topologies to achieve single-localized stimulation while the retina is electrically stimulated: a two-dimensional (2D) hexagon-shaped array reported in clinical studies and a patented three-dimensional (3D) linear electrode carrier. For both, cell stimulation is verified in COMSOL Multiphysics by developing a lifelike 3D computational model that includes the relevant retinal interface elements and dynamics of the voltage-gated ionic channels. The evoked percepts previously described in clinical studies using the 2D array are strongly associated with our simulation-based findings, allowing for the development of analytical models of the evoked percepts. Moreover, our findings identify differences between visual sensations induced by the arrays. The 2D array showed drawbacks during stimulation; similarly, the state-of-the-art 2D visual prostheses provide only dot-like visual sensations in close proximity to the electrode. The 3D design could offer a technique for improving cell selectivity because it requires low-intensity threshold activation which results in volumes of stimulation similar to the volume surrounded by a solitary RGC. Our research establishes a proof-of-concept technique for determining the utility of the 3D electrode array for selectively activating individual RGCs at the highest density via small-sized electrodes while maintaining electrochemical safety.
Collapse
Affiliation(s)
- Diego Luján Villarreal
- Departamento de Mecatrónica y Biomédica, Escuela de Ingeniería y Ciencias, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey 64700, Mexico
| | - Wolfgang Krautschneider
- Institut für Integrierte Schaltungen, Hamburg University of Technology, D-21073 Hamburg, Germany;
| |
Collapse
|
7
|
Węgrzyn P, Kulesza W, Wielgo M, Tomczewski S, Galińska A, Bałamut B, Kordecka K, Cetinkaya O, Foik A, Zawadzki RJ, Borycki D, Wojtkowski M, Curatolo A. In vivo volumetric analysis of retinal vascular hemodynamics in mice with spatio-temporal optical coherence tomography. NEUROPHOTONICS 2024; 11:0450031-4500322. [PMID: 39380716 PMCID: PMC11460669 DOI: 10.1117/1.nph.11.4.045003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
Significance Microcirculation and neurovascular coupling are important parameters to study in neurological and neuro-ophthalmic conditions. As the retina shares many similarities with the cerebral cortex and is optically accessible, a special focus is directed to assessing the chorioretinal structure, microvasculature, and hemodynamics of mice, a vital animal model for vision and neuroscience research. Aim We aim to introduce an optical imaging tool enabling in vivo volumetric mouse retinal monitoring of vascular hemodynamics with high temporal resolution. Approach We translated the spatio-temporal optical coherence tomography (STOC-T) technique into the field of small animal imaging by designing a new optical system that could compensate for the mouse eye refractive error. We also developed post-processing algorithms, notably for the assessment of (i) localized hemodynamics from the analysis of pulse wave-induced Doppler artifact modulation and (ii) retinal tissue displacement from phase-sensitive measurements. Results We acquired high-quality, in vivo volumetric mouse retina images at a rate of 113 Hz over a lateral field of view of ∼ 500 μ m . We presented high-resolution en face images of the retinal and choroidal structure and microvasculature from various layers, after digital aberration correction. We were able to measure the pulse wave velocity in capillaries of the outer plexiform layer with a mean speed of 0.35 mm/s and identified venous and arterial pulsation frequency and phase delay. We quantified the modulation amplitudes of tissue displacement near major vessels (with peaks of 150 nm), potentially carrying information about the biomechanical properties of the retinal layers involved. Last, we identified the delays between retinal displacements due to the passing of venous and arterial pulse waves. Conclusions The developed STOC-T system provides insights into the hemodynamics of the mouse retina and choroid that could be beneficial in the study of neurovascular coupling and vasculature and flow speed anomalies in neurological and neuro-ophthalmic conditions.
Collapse
Affiliation(s)
- Piotr Węgrzyn
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
- University of Warsaw, Faculty of Physics, Warsaw, Poland
| | - Wiktor Kulesza
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Maciej Wielgo
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Sławomir Tomczewski
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Anna Galińska
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Bartłomiej Bałamut
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Katarzyna Kordecka
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Onur Cetinkaya
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Andrzej Foik
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Robert J. Zawadzki
- University of California Davis, Department of Ophthalmology and Vision Science, Sacramento, California, United States
| | - Dawid Borycki
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
| | - Maciej Wojtkowski
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
- Nicolaus Copernicus University, Faculty of Physics, Astronomy and Informatics, Toruń, Poland
| | - Andrea Curatolo
- International Centre for Translational Eye Research, Warsaw, Poland
- Polish Academy of Sciences, Institute of Physical Chemistry, Warsaw, Poland
- Politecnico di Milano, Department of Physics, Milan, Italy
| |
Collapse
|
8
|
Marte ME, Kurokawa K, Jung H, Liu Y, Bernucci MT, King BJ, Miller DT. Characterizing Presumed Displaced Retinal Ganglion Cells in the Living Human Retina of Healthy and Glaucomatous Eyes. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 39259176 PMCID: PMC11401130 DOI: 10.1167/iovs.65.11.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Purpose The purpose of this study was to investigate the large somas presumed to be displaced retinal ganglion cells (dRGCs) located in the inner nuclear layer (INL) of the living human retina. Whereas dRGCs have previously been studied in mammals and human donor tissue, they have never been investigated in the living human retina. Methods Five young, healthy subjects and three subjects with varying types of glaucoma were imaged at multiple locations in the macula using adaptive optics optical coherence tomography. In the acquired volumes, bright large somas at the INL border with the inner plexiform layer were identified, and the morphometric biomarkers of soma density, en face diameter, and spatial distribution were measured at up to 13 degrees retinal eccentricity. Susceptibility to glaucoma was assessed. Results In the young, healthy individuals, mean density of the bright, large somas was greatest foveally (550 and 543 cells/mm2 at 2 degrees temporal and nasal, respectively) and decreased with increasing retinal eccentricity (38 cells/mm2 at 13 degrees temporal, the farthest we measured). Soma size distribution showed the opposite trend with diameters and size variation increasing with retinal eccentricity, from 12.7 ± 1.8 µm at 2 degrees to 15.7 ± 3.5 µm at 13 degrees temporal, and showed evidence of a bimodal distribution in more peripheral locations. Within and adjacent to the arcuate defects of the subjects with glaucoma, density of the bright large somas was significantly lower than found in the young, healthy individuals. Conclusions Our results suggest that the bright, large somas at the INL border are likely comprised of dRGCs but amacrine cells may contribute too. These somas appear highly susceptible to glaucomatous damage.
Collapse
Affiliation(s)
- Mary E Marte
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Kazuhiro Kurokawa
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - HaeWon Jung
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Yan Liu
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Marcel T Bernucci
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Brett J King
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Donald T Miller
- Indiana University School of Optometry, Bloomington, Indiana, United States
| |
Collapse
|
9
|
Ashbery D, Baez HC, Kanarr RE, Kunala K, Power D, Chu CJ, Schallek J, McGregor JE. In Vivo Visualization of Intravascular Patrolling Immune Cells in the Primate Eye. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 39283618 PMCID: PMC11407476 DOI: 10.1167/iovs.65.11.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Purpose Insight into the immune status of the living eye is essential as we seek to understand ocular disease and develop new treatments. The nonhuman primate (NHP) is the gold standard preclinical model for therapeutic development in ophthalmology, owing to the similar visual system and immune landscape in the NHP relative to the human. Here, we demonstrate the utility of phase-contrast adaptive optics scanning light ophthalmoscope (AOSLO) to visualize immune cell dynamics on the cellular scale, label-free in the NHP. Methods Phase-contrast AOSLO was used to image preselected areas of retinal vasculature in five NHP eyes. Images were registered to correct for eye motion, temporally averaged, and analyzed for immune cell activity. Cell counts, dimensions, velocities, and frequency per vessel were determined manually and compared between retinal arterioles and venules. Based on cell appearance and circularity index, cells were divided into three morphologies: ovoid, semicircular, and flattened. Results Immune cells were observed migrating along vascular endothelium with and against blood flow. Cell velocity did not significantly differ between morphology or vessel type and was independent of blow flood. Venules had a significantly higher cell frequency than arterioles. A higher proportion of cells resembled "flattened" morphology in arterioles. Based on cell speeds, morphologies, and behaviors, we identified these cells as nonclassical patrolling monocytes (NCPMs). Conclusions Phase-contrast AOSLO has the potential to reveal the once hidden behaviors of single immune cells in retinal circulation and can do so without the requirement of added contrast agents that may disrupt immune cell behavior.
Collapse
Affiliation(s)
- Drew Ashbery
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Hector C Baez
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | - Rye E Kanarr
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Karteek Kunala
- Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Derek Power
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Colin J Chu
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Jesse Schallek
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
- Department of Neuroscience, University of Rochester, Rochester, New York, United States
| | - Juliette E McGregor
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| |
Collapse
|
10
|
Rui Y, Zhang M, Lee DM, Snyder VC, Raghuraman R, Gofas-Salas E, Mecê P, Yadav S, Tiruveedhula P, Grieve K, Sahel JA, Errera MH, Rossi EA. Label-Free Imaging of Inflammation at the Level of Single Cells in the Living Human Eye. OPHTHALMOLOGY SCIENCE 2024; 4:100475. [PMID: 38881602 PMCID: PMC11179426 DOI: 10.1016/j.xops.2024.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 06/18/2024]
Abstract
Purpose Putative microglia were recently detected using adaptive optics ophthalmoscopy in healthy eyes. Here we evaluate the use of nonconfocal adaptive optics scanning light ophthalmoscopy (AOSLO) for quantifying the morphology and motility of presumed microglia and other immune cells in eyes with retinal inflammation from uveitis and healthy eyes. Design Observational exploratory study. Participants Twelve participants were imaged, including 8 healthy participants and 4 posterior uveitis patients recruited from the clinic of 1 of the authors (M.H.E.). Methods The Pittsburgh AOSLO imaging system was used with a custom-designed 7-fiber optical fiber bundle for simultaneous confocal and nonconfocal multioffset detection. The inner retina was imaged at several locations at multiple timepoints in healthy participants and uveitis patients to generate time-lapse images. Main Outcome Measures Microglia and macrophages were manually segmented from nonconfocal AOSLO images, and their morphological characteristics quantified (including soma size, diameter, and circularity). Cell soma motion was quantified across time for periods of up to 30 minutes and their speeds were calculated by measuring their displacement over time. Results A spectrum of cell morphologies was detected in healthy eyes from circular amoeboid cells to elongated cells with visible processes, resembling activated and ramified microglia, respectively. Average soma diameter was 16.1 ± 0.9 μm. Cell movement was slow in healthy eyes (0.02 μm/sec on average), but macrophage-like cells moved rapidly in some uveitis patients (up to 3 μm/sec). In an eye with infectious uveitis, many macrophage-like cells were detected; during treatment their quantity and motility decreased as vision improved. Conclusions In vivo adaptive optics ophthalmoscopy offers promise as a potentially powerful tool for detecting and monitoring inflammation and response to treatment at a cellular level in the living eye. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Yuhua Rui
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
- Eye Center of Xiangya Hospital, Central South University Hunan Key Laboratory of Ophthalmology Changsha, Hunan, China
| | - Min Zhang
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Daniel M.W. Lee
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering Pittsburgh, Pennsylvania
| | - Valerie C. Snyder
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Rashmi Raghuraman
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Elena Gofas-Salas
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | - Pedro Mecê
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, Paris, France
| | - Sanya Yadav
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Marie-Hélène Errera
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Ethan A. Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Zhang F, Kovalick K, Raghavendra A, Soltanian-Zadeh S, Farsiu S, Hammer DX, Liu Z. In vivo imaging of human retinal ganglion cells using optical coherence tomography without adaptive optics. BIOMEDICAL OPTICS EXPRESS 2024; 15:4675-4688. [PMID: 39346995 PMCID: PMC11427184 DOI: 10.1364/boe.533249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 10/01/2024]
Abstract
Retinal ganglion cells play an important role in human vision, and their degeneration results in glaucoma and other neurodegenerative diseases. Imaging these cells in the living human retina can greatly improve the diagnosis and treatment of glaucoma. However, owing to their translucent soma and tight packing arrangement within the ganglion cell layer (GCL), successful imaging has only been achieved with sophisticated research-grade adaptive optics (AO) systems. For the first time we demonstrate that GCL somas can be resolved and cell morphology can be quantified using non-AO optical coherence tomography (OCT) devices with optimal parameter configuration and post-processing.
Collapse
Affiliation(s)
- Furu Zhang
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Katherine Kovalick
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Achyut Raghavendra
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | | | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
12
|
De Bruyn H, Johnson M, Moretti M, Ahmed S, Mujat M, Akula JD, Glavan T, Mihalek I, Aslaksen S, Molday LL, Molday RS, Berkowitz BA, Fulton AB. The Surviving, Not Thriving, Photoreceptors in Patients with ABCA4 Stargardt Disease. Diagnostics (Basel) 2024; 14:1545. [PMID: 39061682 PMCID: PMC11275370 DOI: 10.3390/diagnostics14141545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Stargardt disease (STGD1), associated with biallelic variants in the ABCA4 gene, is the most common heritable macular dystrophy and is currently untreatable. To identify potential treatment targets, we characterized surviving STGD1 photoreceptors. We used clinical data to identify macular regions with surviving STGD1 photoreceptors. We compared the hyperreflective bands in the optical coherence tomographic (OCT) images that correspond to structures in the STGD1 photoreceptor inner segments to those in controls. We used adaptive optics scanning light ophthalmoscopy (AO-SLO) to study the distribution of cones and AO-OCT to evaluate the interface of photoreceptors and retinal pigment epithelium (RPE). We found that the profile of the hyperreflective bands differed dramatically between patients with STGD1 and controls. AO-SLOs showed patches in which cone densities were similar to those in healthy retinas and others in which the cone population was sparse. In regions replete with cones, there was no debris at the photoreceptor-RPE interface. In regions with sparse cones, there was abundant debris. Our results raise the possibility that pharmaceutical means may protect surviving photoreceptors and so mitigate vision loss in patients with STGD1.
Collapse
Affiliation(s)
- Hanna De Bruyn
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (H.D.B.)
| | - Megan Johnson
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Madelyn Moretti
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Saleh Ahmed
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mircea Mujat
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA;
| | - James D. Akula
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (H.D.B.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomislav Glavan
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Mihalek
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Sigrid Aslaksen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, 5009 Bergen, Norway
| | - Laurie L. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Bruce A. Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Anne B. Fulton
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115, USA; (H.D.B.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Nguyen TD, Chen YI, Nguyen AT, Yonas S, Sripati MP, Kuo YA, Hong S, Litvinov M, He Y, Yeh HC, Grady Rylander H. Two-photon autofluorescence lifetime assay of rabbit photoreceptors and retinal pigment epithelium during light-dark visual cycles in rabbit retina. BIOMEDICAL OPTICS EXPRESS 2024; 15:3094-3111. [PMID: 38855698 PMCID: PMC11161359 DOI: 10.1364/boe.511806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 06/11/2024]
Abstract
Two-photon excited fluorescence (TPEF) is a powerful technique that enables the examination of intrinsic retinal fluorophores involved in cellular metabolism and the visual cycle. Although previous intensity-based TPEF studies in non-human primates have successfully imaged several classes of retinal cells and elucidated aspects of both rod and cone photoreceptor function, fluorescence lifetime imaging (FLIM) of the retinal cells under light-dark visual cycle has yet to be fully exploited. Here we demonstrate a FLIM assay of photoreceptors and retinal pigment epithelium (RPE) that reveals key insights into retinal physiology and adaptation. We found that photoreceptor fluorescence lifetimes increase and decrease in sync with light and dark exposure, respectively. This is likely due to changes in all-trans-retinol and all-trans-retinal levels in the outer segments, mediated by phototransduction and visual cycle activity. During light exposure, RPE fluorescence lifetime was observed to increase steadily over time, as a result of all-trans-retinol accumulation during the visual cycle and decreasing metabolism caused by the lack of normal perfusion of the sample. Our system can measure the fluorescence lifetime of intrinsic retinal fluorophores on a cellular scale, revealing differences in lifetime between retinal cell classes under different conditions of light and dark exposure.
Collapse
Affiliation(s)
- Trung Duc Nguyen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Yuan-I Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Anh-Thu Nguyen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Siem Yonas
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Manasa P Sripati
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Yu-An Kuo
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Soonwoo Hong
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Mitchell Litvinov
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Yujie He
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Texas Materials Institute, University of Texas at Austin, Austin, TX, USA
| | - H Grady Rylander
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
14
|
Kalitzeos A, Michaelides M, Dubra A. Minimum intensity projection of embossed quadrant-detection images for improved photoreceptor mosaic visualisation. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1349297. [PMID: 39148554 PMCID: PMC11325185 DOI: 10.3389/fopht.2024.1349297] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/12/2024] [Indexed: 08/17/2024]
Abstract
Non-confocal split-detection imaging reveals the cone photoreceptor inner segment mosaic in a plethora of retinal conditions, with the potential of providing insight to ageing, disease, and response to treatment processes, in vivo, and allows the screening of candidates for cell rescue therapies. This imaging modality complements confocal reflectance adaptive optics scanning light ophthalmoscopy, which relies on the waveguiding properties of cones, as well as their orientation toward the pupil. Split-detection contrast, however, is directional, with each cone inner segment appearing as opposite dark and bright semicircles, presenting a challenge for either manual or automated cell identification. Quadrant-detection imaging, an evolution of split detection, could be used to generate images without directional dependence. Here, we demonstrate how the embossed-filtered quadrant-detection images, originally proposed by Migacz et al. for visualising hyalocytes, can also be used to generate photoreceptor mosaic images with better and non-directional contrast for improved visualisation. As a surrogate of visualisation improvement between legacy split-detection images and the images resulting from the method described herein, we provide preliminary results of simple image processing routines that may enable the automated identification of generic image features, as opposed to complex algorithms developed specifically for photoreceptor identification, in pathological retinas.
Collapse
Affiliation(s)
- Angelos Kalitzeos
- Institute of Ophthalmology, University College London, London, United Kingdom
- National Institute for Health and Care Research, Biomedical Research Centre, Moorfields Eye Hospital, London, United Kingdom
| | - Michel Michaelides
- Institute of Ophthalmology, University College London, London, United Kingdom
- National Institute for Health and Care Research, Biomedical Research Centre, Moorfields Eye Hospital, London, United Kingdom
| | - Alfredo Dubra
- Byers Eye Institute, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
15
|
Lee S, Choi SS, Meleppat RK, Zawadzki RJ, Doble N. High-speed, phase contrast retinal and blood flow imaging using an adaptive optics partially confocal multi-line ophthalmoscope. BIOMEDICAL OPTICS EXPRESS 2024; 15:1815-1830. [PMID: 38495707 PMCID: PMC10942708 DOI: 10.1364/boe.507449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/18/2023] [Accepted: 01/14/2024] [Indexed: 03/19/2024]
Abstract
High-speed, phase contrast retinal and blood flow imaging using an adaptive optics partially confocal multi-line ophthalmosocope (AO-pcMLO) is described. It allows for simultaneous confocal and phase contrast imaging with various directional multi-line illumination by using a single 2D camera and a digital micromirror device (DMD). Both vertical and horizontal line illumination directions were tested, for photoreceptor and vascular imaging. The phase contrast imaging provided improved visualization of retinal structures such as cone inner segments, vessel walls and red blood cells with images being acquired at frame rates up to 500 Hz. Blood flow velocities of small vessels (<40 µm in diameter) were measured using kymographs for capillaries and cross-correlation between subsequent images for arterioles or venules. Cardiac-related pulsatile patterns were observed with normal resting heart-beat rate, and instantaneous blood flow velocities from 0.7 to 20 mm/s were measured.
Collapse
Affiliation(s)
- Soohyun Lee
- College of Optometry, The Ohio State University, 338 West 10th Avenue, Columbus, Ohio 43210, USA
| | - Stacey S. Choi
- College of Optometry, The Ohio State University, 338 West 10th Avenue, Columbus, Ohio 43210, USA
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University, 915 Olentangy River Road, Suite 5000, Ohio 43212, USA
| | - Ratheesh K. Meleppat
- UC Davis Eye Center, Department of Ophthalmology and Vision Science, University of California, Davis, 4860 Y Street, Suite 2400, Sacramento, California 95817, USA
- UC Davis EyePod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California, Davis, 4320 Tupper Hall, Davis, California 95616, USA
| | - Robert J. Zawadzki
- UC Davis Eye Center, Department of Ophthalmology and Vision Science, University of California, Davis, 4860 Y Street, Suite 2400, Sacramento, California 95817, USA
- UC Davis EyePod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California, Davis, 4320 Tupper Hall, Davis, California 95616, USA
| | - Nathan Doble
- College of Optometry, The Ohio State University, 338 West 10th Avenue, Columbus, Ohio 43210, USA
- Department of Ophthalmology and Visual Sciences, Havener Eye Institute, The Ohio State University, 915 Olentangy River Road, Suite 5000, Ohio 43212, USA
| |
Collapse
|
16
|
Luo T, Gilbert RN, Sapoznik KA, Walker BR, Burns SA. Automatic montaging of adaptive optics SLO retinal images based on graph theory. BIOMEDICAL OPTICS EXPRESS 2024; 15:1021-1037. [PMID: 38404321 PMCID: PMC10890876 DOI: 10.1364/boe.505013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/27/2024]
Abstract
We present a fully automatic montage pipeline for adaptive optics SLO retinal images. It contains a flexible module to estimate the translation between pairwise images. The user can change modules to accommodate the alignment of the dataset using the most appropriate alignment technique, provided that it estimates the translation between image pairs and provides a quantitative confidence metric for the match between 0 and 1. We use these pairwise comparisons and associated metrics to construct a graph where nodes represent frames and edges represent the overlap relations. We use a small diameter spanning tree to determine the best pairwise alignment for each image based on the entire set of image relations. The final stage of the pipeline is a blending module that uses dynamic programming to improve the smoothness of the transition between frames. Data sets ranging from 26 to 119 images were obtained from individuals aged 24 to 81 years with a mix of visually normal control eyes and eyes with glaucoma or diabetes. The resulting automatically generated montages were qualitatively and quantitatively compared to results from semi-automated alignment. Data sets were specifically chosen to include both high quality and medium quality data. The results obtained from the automatic method are comparable or better than results obtained by an experienced operator performing semi-automated montaging. For the plug-in pairwise alignment module, we tested a technique that utilizes SIFT + RANSAC, Normalized cross-correlation (NCC) and a combination of the two. This pipeline produces consistent results not only on outer retinal layers, but also on inner retinal layers such as a nerve fiber layer or images of the vascular complexes, even when images are not of excellent quality.
Collapse
Affiliation(s)
- Ting Luo
- School of Optometry, Indiana University, 800 E. Atwater Ave, Bloomington, IN 47405, USA
| | - Robert N. Gilbert
- School of Optometry, Indiana University, 800 E. Atwater Ave, Bloomington, IN 47405, USA
| | - Kaitlyn A. Sapoznik
- School of Optometry, Indiana University, 800 E. Atwater Ave, Bloomington, IN 47405, USA
- College of Optometry, University of Houston, 4401 Martin Luther King Blvd, Houston, TX 77204, USA
| | - Brittany R. Walker
- School of Optometry, Indiana University, 800 E. Atwater Ave, Bloomington, IN 47405, USA
| | - Stephen A. Burns
- School of Optometry, Indiana University, 800 E. Atwater Ave, Bloomington, IN 47405, USA
| |
Collapse
|
17
|
Huang BB, Fukuyama H, Burns SA, Fawzi AA. Imaging the Retinal Vascular Mural Cells In Vivo: Elucidating the Timeline of Their Loss in Diabetic Retinopathy. Arterioscler Thromb Vasc Biol 2024; 44:465-476. [PMID: 38152885 PMCID: PMC10842708 DOI: 10.1161/atvbaha.123.320169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Vascular mural cells (VMCs) are integral components of the retinal vasculature with critical homeostatic functions such as maintaining the inner blood-retinal barrier and vascular tone, as well as supporting the endothelial cells. Histopathologic donor eye studies have shown widespread loss of pericytes and smooth muscle cells, the 2 main VMC types, suggesting these cells are critical to the pathogenesis of diabetic retinopathy (DR). There remain, however, critical gaps in our knowledge regarding the timeline of VMC demise in human DR. METHODS In this study, we address this gap using adaptive optics scanning laser ophthalmoscopy to quantify retinal VMC density in eyes with no retinal disease (healthy), subjects with diabetes without diabetic retinopathy, and those with clinical DR and diabetic macular edema. We also used optical coherence tomography angiography to quantify capillary density of the superficial and deep capillary plexuses in these eyes. RESULTS Our results indicate significant VMC loss in retinal arterioles before the appearance of classic clinical signs of DR (diabetes without diabetic retinopathy versus healthy, 5.0±2.0 versus 6.5±2.0 smooth muscle cells per 100 µm; P<0.05), while a significant reduction in capillary VMC density (5.1±2.3 in diabetic macular edema versus 14.9±6.0 pericytes per 100 µm in diabetes without diabetic retinopathy; P=0.01) and capillary density (superficial capillary plexus vessel density, 37.6±3.8 in diabetic macular edema versus 45.5±2.4 in diabetes without diabetic retinopathy; P<0.0001) is associated with more advanced stages of clinical DR, particularly diabetic macular edema. CONCLUSIONS Our results offer a new framework for understanding the pathophysiologic course of VMC compromise in DR, which may facilitate the development and monitoring of therapeutic strategies aimed at VMC preservation and potentially the prevention of clinical DR and its associated morbidity. Imaging retinal VMCs provides an unparalleled opportunity to visualize these cells in vivo and may have wider implications in a range of diseases where these cells are disrupted.
Collapse
Affiliation(s)
- Bonnie B. Huang
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hisashi Fukuyama
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Ophthalmology, Hyogo Medical University, Hyogo, Japan
| | | | - Amani A. Fawzi
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
18
|
Mujat M, Sampani K, Patel AH, Zambrano R, Sun JK, Wollstein G, Ferguson RD, Schuman JS, Iftimia N. Motion Contrast, Phase Gradient, and Simultaneous OCT Images Assist in the Interpretation of Dark-Field Images in Eyes with Retinal Pathology. Diagnostics (Basel) 2024; 14:184. [PMID: 38248061 PMCID: PMC10814023 DOI: 10.3390/diagnostics14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The cellular-level visualization of retinal microstructures such as blood vessel wall components, not available with other imaging modalities, is provided with unprecedented details by dark-field imaging configurations; however, the interpretation of such images alone is sometimes difficult since multiple structural disturbances may be present in the same time. Particularly in eyes with retinal pathology, microstructures may appear in high-resolution retinal images with a wide range of sizes, sharpnesses, and brightnesses. In this paper we show that motion contrast and phase gradient imaging modalities, as well as the simultaneous acquisition of depth-resolved optical coherence tomography (OCT) images, provide additional insight to help understand the retinal neural and vascular structures seen in dark-field images and may enable improved diagnostic and treatment plans.
Collapse
Affiliation(s)
- Mircea Mujat
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA; (A.H.P.); (R.D.F.); (N.I.)
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA 02115, USA; (K.S.); (J.K.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ankit H. Patel
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA; (A.H.P.); (R.D.F.); (N.I.)
| | - Ronald Zambrano
- Department of Ophthalmology, New York University School of Medicine, New York, NY 10017, USA; (R.Z.); (G.W.)
| | - Jennifer K. Sun
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA 02115, USA; (K.S.); (J.K.S.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Gadi Wollstein
- Department of Ophthalmology, New York University School of Medicine, New York, NY 10017, USA; (R.Z.); (G.W.)
| | - R. Daniel Ferguson
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA; (A.H.P.); (R.D.F.); (N.I.)
| | | | - Nicusor Iftimia
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA; (A.H.P.); (R.D.F.); (N.I.)
| |
Collapse
|
19
|
Ye C, Kwapong WR, Tang B, Liu J, Tao W, Lu K, Pan R, Wang A, Liao L, Yang T, Cao L, Wang Y, Jiang S, Zhang X, Liu M, Wu B. Association between functional network connectivity, retina structure and microvasculature, and visual performance in patients after thalamic stroke: An exploratory multi-modality study. Brain Behav 2024; 14:e3385. [PMID: 38376035 PMCID: PMC10794127 DOI: 10.1002/brb3.3385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Neuro-ophthalmologic symptoms and retinal changes have been increasingly observed following thalamic stroke, and there is mounting evidence indicating distinct alterations occurring in the vision-related functional network. However, the intrinsic correlations between these changes are not yet fully understood. Our objective was to explore the altered patterns of functional network connectivity and retina parameters, and their correlations with visual performance in patients with thalamic stroke. METHODS We utilized resting-state functional MRI to obtain multi-modular functional connectivity (FC), and optical coherence tomography-angiography to measure various retina parameters, such as the retinal nerve fiber layer (RNFL), ganglion cell-inner plexiform layer (GCIPL), superficial vascular complex (SVC), and deep vascular complex. Visual acuity (VA) was used as a metric for visual performance. RESULTS We included 46 patients with first-ever unilateral thalamic stroke (mean age 59.74 ± 10.02 years, 33 males). Significant associations were found between FC of attention-to-default mode and SVC, RNFL, and GCIPL, as well as between FC of attention-to-visual and RNFL (p < .05). Both RNFL and GCIPL exhibited significant associations with FC of visual-to-visual (p < .05). Only GCIPL showed an association with VA (p = .038). Stratified analysis based on a disease duration of 6 months revealed distinct and significant linking patterns in multi-modular FC and specific retina parameters, with varying correlations with VA in each subgroup. CONCLUSION These findings provide valuable insight into the neural basis of the associations between brain network dysfunction and impaired visual performance in patients with thalamic stroke. Our novel findings have the potential to inform future targeted and individualized therapies. However, further comprehensive studies are necessary to validate our results.
Collapse
Affiliation(s)
- Chen Ye
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduChina
- Center of Cerebrovascular DiseasesWest China Hospital, Sichuan UniversityChengduChina
| | - William Robert Kwapong
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduChina
- Center of Cerebrovascular DiseasesWest China Hospital, Sichuan UniversityChengduChina
| | - Biqiu Tang
- Department of Radiology, Huaxi MR Research Center (HMRRC)West China Hospital, Sichuan UniversityChengduChina
| | - Junfeng Liu
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduChina
- Center of Cerebrovascular DiseasesWest China Hospital, Sichuan UniversityChengduChina
| | - Wendan Tao
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduChina
- Center of Cerebrovascular DiseasesWest China Hospital, Sichuan UniversityChengduChina
| | - Kun Lu
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduChina
| | - Ruosu Pan
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduChina
| | - Anmo Wang
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduChina
| | - Lanhua Liao
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduChina
| | - Tang Yang
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduChina
| | - Le Cao
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduChina
| | - Youjie Wang
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuai Jiang
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduChina
| | - Xuening Zhang
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduChina
| | - Ming Liu
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduChina
- Center of Cerebrovascular DiseasesWest China Hospital, Sichuan UniversityChengduChina
| | - Bo Wu
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduChina
- Center of Cerebrovascular DiseasesWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
20
|
Cheng AMS, Chalam KV, Brar VS, Yang DTY, Bhatt J, Banoub RG, Gupta SK. Recent Advances in Imaging Macular Atrophy for Late-Stage Age-Related Macular Degeneration. Diagnostics (Basel) 2023; 13:3635. [PMID: 38132220 PMCID: PMC10742961 DOI: 10.3390/diagnostics13243635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness worldwide. In late-stage AMD, geographic atrophy (GA) of dry AMD or choroidal neovascularization (CNV) of neovascular AMD eventually results in macular atrophy (MA), leading to significant visual loss. Despite the development of innovative therapies, there are currently no established effective treatments for MA. As a result, early detection of MA is critical in identifying later central macular involvement throughout time. Accurate and early diagnosis is achieved through a combination of clinical examination and imaging techniques. Our review of the literature depicts advances in retinal imaging to identify biomarkers of progression and risk factors for late AMD. Imaging methods like fundus photography; dye-based angiography; fundus autofluorescence (FAF); near-infrared reflectance (NIR); optical coherence tomography (OCT); and optical coherence tomography angiography (OCTA) can be used to detect and monitor the progression of retinal atrophy. These evolving diverse imaging modalities optimize detection of pathologic anatomy and measurement of visual function; they may also contribute to the understanding of underlying mechanistic pathways, particularly the underlying MA changes in late AMD.
Collapse
Affiliation(s)
- Anny M. S. Cheng
- Department of Ophthalmology, Broward Health, Fort Lauderdale, FL 33064, USA; (A.M.S.C.); (R.G.B.)
- Specialty Retina Center, Coral Springs, FL 33067, USA;
- Department of Ophthalmology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Kakarla V. Chalam
- Department of Ophthalmology, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Vikram S. Brar
- Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - David T. Y. Yang
- College of Biological Science, University of California, Davis, Sacramento, CA 95616, USA;
| | - Jineel Bhatt
- Specialty Retina Center, Coral Springs, FL 33067, USA;
| | - Raphael G. Banoub
- Department of Ophthalmology, Broward Health, Fort Lauderdale, FL 33064, USA; (A.M.S.C.); (R.G.B.)
- Specialty Retina Center, Coral Springs, FL 33067, USA;
| | - Shailesh K. Gupta
- Department of Ophthalmology, Broward Health, Fort Lauderdale, FL 33064, USA; (A.M.S.C.); (R.G.B.)
- Specialty Retina Center, Coral Springs, FL 33067, USA;
| |
Collapse
|
21
|
Mujat M, Sampani K, Patel AH, Sun JK, Iftimia N. Cellular-Level Analysis of Retinal Blood Vessel Walls Based on Phase Gradient Images. Diagnostics (Basel) 2023; 13:3399. [PMID: 37998535 PMCID: PMC10670340 DOI: 10.3390/diagnostics13223399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Diseases such as diabetes affect the retinal vasculature and the health of the neural retina, leading to vision problems. We describe here an imaging method and analysis procedure that enables characterization of the retinal vessel walls with cellular-level resolution, potentially providing markers for eye diseases. Adaptive optics scanning laser ophthalmoscopy is used with a modified detection scheme to include four simultaneous offset aperture channels. The magnitude of the phase gradient derived from these offset images is used to visualize the structural characteristics of the vessels. The average standard deviation image provides motion contrast and enables segmentation of the vessel lumen. Segmentation of blood vessel walls provides quantitative measures of geometrical characteristics of the vessel walls, including vessel and lumen diameters, wall thickness, and wall-to-lumen ratio. Retinal diseases may affect the structural integrity of the vessel walls, their elasticity, their permeability, and their geometrical characteristics. The ability to measure these changes is valuable for understanding the vascular effects of retinal diseases, monitoring disease progression, and drug testing. In addition, loss of structural integrity of the blood vessel wall may result in microaneurysms, a hallmark lesion of diabetic retinopathy, which may rupture or leak and further create vision impairment. Early identification of such structural abnormalities may open new treatment avenues for disease management and vision preservation. Functional testing of retinal circuitry through high-resolution measurement of vasodilation as a response to controlled light stimulation of the retina (neurovascular coupling) is another application of our method and can provide an unbiased evaluation of one's vision and enable early detection of retinal diseases and monitoring treatment results.
Collapse
Affiliation(s)
- Mircea Mujat
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA; (A.H.P.); (N.I.)
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA 02115, USA; (K.S.); (J.K.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ankit H. Patel
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA; (A.H.P.); (N.I.)
| | - Jennifer K. Sun
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA 02115, USA; (K.S.); (J.K.S.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Nicusor Iftimia
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA; (A.H.P.); (N.I.)
| |
Collapse
|
22
|
Schmetterer L, Scholl H, Garhöfer G, Janeschitz-Kriegl L, Corvi F, Sadda SR, Medeiros FA. Endpoints for clinical trials in ophthalmology. Prog Retin Eye Res 2023; 97:101160. [PMID: 36599784 DOI: 10.1016/j.preteyeres.2022.101160] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
With the identification of novel targets, the number of interventional clinical trials in ophthalmology has increased. Visual acuity has for a long time been considered the gold standard endpoint for clinical trials, but in the recent years it became evident that other endpoints are required for many indications including geographic atrophy and inherited retinal disease. In glaucoma the currently available drugs were approved based on their IOP lowering capacity. Some recent findings do, however, indicate that at the same level of IOP reduction, not all drugs have the same effect on visual field progression. For neuroprotection trials in glaucoma, novel surrogate endpoints are required, which may either include functional or structural parameters or a combination of both. A number of potential surrogate endpoints for ophthalmology clinical trials have been identified, but their validation is complicated and requires solid scientific evidence. In this article we summarize candidates for clinical endpoints in ophthalmology with a focus on retinal disease and glaucoma. Functional and structural biomarkers, as well as quality of life measures are discussed, and their potential to serve as endpoints in pivotal trials is critically evaluated.
Collapse
Affiliation(s)
- Leopold Schmetterer
- Singapore Eye Research Institute, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore; Academic Clinical Program, Duke-NUS Medical School, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland.
| | - Hendrik Scholl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Lucas Janeschitz-Kriegl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Federico Corvi
- Eye Clinic, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Italy
| | - SriniVas R Sadda
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Felipe A Medeiros
- Vision, Imaging and Performance Laboratory, Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| |
Collapse
|
23
|
Hammer DX, Kovalick K, Liu Z, Chen C, Saeedi OJ, Harrison DM. Cellular-Level Visualization of Retinal Pathology in Multiple Sclerosis With Adaptive Optics. Invest Ophthalmol Vis Sci 2023; 64:21. [PMID: 37971733 PMCID: PMC10664728 DOI: 10.1167/iovs.64.14.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
Purpose To apply adaptive optics-optical coherence tomography (AO-OCT) to quantify multiple sclerosis (MS)-induced changes in axonal bundles in the macular nerve fiber layer, ganglion cell somas, and macrophage-like cells at the vitreomacular interface. Methods We used AO-OCT imaging in a pilot study of MS participants (n = 10), including those without and with a history of optic neuritis (ON, n = 4), and healthy volunteers (HV, n = 9) to reveal pathologic changes to inner retinal cells and structures affected by MS. Results We found that nerve fiber layer axonal bundles had 38% lower volume in MS participants (1.5 × 10-3 mm3) compared to HVs (2.4 × 10-3 mm3; P < 0.001). Retinal ganglion cell (RGC) density was 51% lower in MS participants (12.3 cells/mm2 × 1000) compared to HVs (25.0 cells/mm2 × 1000; P < 0.001). Spatial differences across the macula were observed in RGC density. RGC diameter was 15% higher in MS participants (11.7 µm) compared to HVs (10.1 µm; P < 0.001). A nonsignificant trend of higher density of macrophage-like cells in MS eyes was also observed. For all AO-OCT measures, outcomes were worse for MS participants with a history of ON compared to MS participants without a history of ON. AO-OCT measures were associated with key visual and physical disabilities in the MS cohort. Conclusions Our findings demonstrate the utility of AO-OCT for highly sensitive and specific detection of neurodegenerative changes in MS. Moreover, the results shed light on the mechanisms that underpin specific neuronal pathology that occurs when MS attacks the retina. The new findings support the further development of AO-based biomarkers for MS.
Collapse
Affiliation(s)
- Daniel X. Hammer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Katherine Kovalick
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Zhuolin Liu
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Chixiang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Osamah J. Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Daniel M. Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Neurology, Baltimore VA Medical Center, Baltimore, Maryland, United States
| |
Collapse
|
24
|
Sapoznik KA, Gast TJ, Carmichael-Martins A, Walker BR, Warner RL, Burns SA. Retinal Arteriolar Wall Remodeling in Diabetes Captured With AOSLO. Transl Vis Sci Technol 2023; 12:16. [PMID: 37962539 PMCID: PMC10653262 DOI: 10.1167/tvst.12.11.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Purpose Adaptive optics scanning laser ophthalmoscopy (AOSLO) enables the visualization and measurement of the retinal microvasculature structure in humans. We investigated the hypothesis that diabetes mellitus (DM) induces remodeling to the wall structure in small retinal arterioles. These alterations may allow better understanding of vascular remodeling in DM. Methods We imaged retinal arterioles in one eye of 48 participants (26 with DM and 22 healthy controls) with an AOSLO. Structural metrics of 274 arteriole segments (203 with DM and 71 healthy controls) ≤ 50 µm in outer diameter (OD) were quantified and we compared differences in wall thickness (WT), wall-to-lumen ratio (WLR), inner diameter (ID), OD, and arteriolar index ratio (AIR) between controls and participants with DM. We also compared the individual AIR (iAIR) in groups of individuals. Results The WLR, WT, and AIRs were significantly different in the arteriole segments of DM participants (P < 0.001). The iAIR was significantly deviated in the DM group (P < 0.001) and further division of the participants with DM into groups revealed that there was an effect of the presence of diabetic retinopathy (DR) on the iAIR (P < 0.001). Conclusions DM induces remodeling of wall structure in small retinal arterioles and in groups of individuals. The use of AIR allows us to assess remodeling independently of vessel size in the retina and to compute an index for each individual subject. Translational Relevance High-resolution retinal imaging allows noninvasive assessment of small retinal vessel remodeling in DM that can improve our understanding of DM and DR in living humans.
Collapse
Affiliation(s)
- Kaitlyn A. Sapoznik
- School of Optometry, Indiana University, Bloomington, IN, USA
- College of Optometry, University of Houston, Houston, TX, USA
| | - Thomas J. Gast
- School of Optometry, Indiana University, Bloomington, IN, USA
| | | | | | - Raymond L. Warner
- School of Optometry, Indiana University, Bloomington, IN, USA
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
25
|
Soucy JR, Aguzzi EA, Cho J, Gilhooley MJ, Keuthan C, Luo Z, Monavarfeshani A, Saleem MA, Wang XW, Wohlschlegel J, Baranov P, Di Polo A, Fortune B, Gokoffski KK, Goldberg JL, Guido W, Kolodkin AL, Mason CA, Ou Y, Reh TA, Ross AG, Samuels BC, Welsbie D, Zack DJ, Johnson TV. Retinal ganglion cell repopulation for vision restoration in optic neuropathy: a roadmap from the RReSTORe Consortium. Mol Neurodegener 2023; 18:64. [PMID: 37735444 PMCID: PMC10514988 DOI: 10.1186/s13024-023-00655-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Retinal ganglion cell (RGC) death in glaucoma and other optic neuropathies results in irreversible vision loss due to the mammalian central nervous system's limited regenerative capacity. RGC repopulation is a promising therapeutic approach to reverse vision loss from optic neuropathies if the newly introduced neurons can reestablish functional retinal and thalamic circuits. In theory, RGCs might be repopulated through the transplantation of stem cell-derived neurons or via the induction of endogenous transdifferentiation. The RGC Repopulation, Stem Cell Transplantation, and Optic Nerve Regeneration (RReSTORe) Consortium was established to address the challenges associated with the therapeutic repair of the visual pathway in optic neuropathy. In 2022, the RReSTORe Consortium initiated ongoing international collaborative discussions to advance the RGC repopulation field and has identified five critical areas of focus: (1) RGC development and differentiation, (2) Transplantation methods and models, (3) RGC survival, maturation, and host interactions, (4) Inner retinal wiring, and (5) Eye-to-brain connectivity. Here, we discuss the most pertinent questions and challenges that exist on the path to clinical translation and suggest experimental directions to propel this work going forward. Using these five subtopic discussion groups (SDGs) as a framework, we suggest multidisciplinary approaches to restore the diseased visual pathway by leveraging groundbreaking insights from developmental neuroscience, stem cell biology, molecular biology, optical imaging, animal models of optic neuropathy, immunology & immunotolerance, neuropathology & neuroprotection, materials science & biomedical engineering, and regenerative neuroscience. While significant hurdles remain, the RReSTORe Consortium's efforts provide a comprehensive roadmap for advancing the RGC repopulation field and hold potential for transformative progress in restoring vision in patients suffering from optic neuropathies.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Erika A Aguzzi
- The Institute of Ophthalmology, University College London, London, England, UK
| | - Julie Cho
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael James Gilhooley
- The Institute of Ophthalmology, University College London, London, England, UK
- Moorfields Eye Hospital, London, England, UK
| | - Casey Keuthan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Aboozar Monavarfeshani
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Meher A Saleem
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, FL, USA
| | - Xue-Wei Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Petr Baranov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, OR, USA
| | - Kimberly K Gokoffski
- Department of Ophthalmology, Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Alex L Kolodkin
- The Solomon H Snyder, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carol A Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, College of Physicians and Surgeons, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Yvonne Ou
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Ahmara G Ross
- Departments of Ophthalmology and Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, Callahan Eye Hospital, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Derek Welsbie
- Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California, San Diego, CA, USA
| | - Donald J Zack
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas V Johnson
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular & Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA.
| |
Collapse
|
26
|
Tong J, Khou V, Trinh M, Alonso‐Caneiro D, Zangerl B, Kalloniatis M. Derivation of human retinal cell densities using high-density, spatially localized optical coherence tomography data from the human retina. J Comp Neurol 2023; 531:1108-1125. [PMID: 37073514 PMCID: PMC10953454 DOI: 10.1002/cne.25483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/20/2023]
Abstract
This study sought to identify demographic variations in retinal thickness measurements from optical coherence tomography (OCT), to enable the calculation of cell density parameters across the neural layers of the healthy human macula. From macular OCTs (n = 247), ganglion cell (GCL), inner nuclear (INL), and inner segment-outer segment (ISOS) layer measurements were extracted using a customized high-density grid. Variations with age, sex, ethnicity, and refractive error were assessed with multiple linear regression analyses, with age-related distributions further assessed using hierarchical cluster analysis and regression models. Models were tested on a naïve healthy cohort (n = 40) with Mann-Whitney tests to determine generalizability. Quantitative cell density data were calculated from histological data from previous human studies. Eccentricity-dependent variations in OCT retinal thickness closely resemble topographic cell density maps from human histological studies. Age was consistently identified as significantly impacting retinal thickness (p = .0006, .0007, and .003 for GCL, INL and ISOS), with gender affecting ISOS only (p < .0001). Regression models demonstrated that age-related changes in the GCL and INL begin in the 30th decade and were linear for the ISOS. Model testing revealed significant differences in INL and ISOS thickness (p = .0008 and .0001; however, differences fell within the OCT's axial resolution. Qualitative comparisons show close alignment between OCT and histological cell densities when using unique, high-resolution OCT data, and correction for demographics-related variability. Overall, this study describes a process to calculate in vivo cell density from OCT for all neural layers of the human retina, providing a framework for basic science and clinical investigations.
Collapse
Affiliation(s)
- Janelle Tong
- Centre for Eye HealthUniversity of New South Wales (UNSW)New South WalesSydneyAustralia
- School of Optometry and Vision ScienceUniversity of New South Wales (UNSW)New South WalesSydneyAustralia
| | - Vincent Khou
- Centre for Eye HealthUniversity of New South Wales (UNSW)New South WalesSydneyAustralia
- School of Optometry and Vision ScienceUniversity of New South Wales (UNSW)New South WalesSydneyAustralia
| | - Matt Trinh
- Centre for Eye HealthUniversity of New South Wales (UNSW)New South WalesSydneyAustralia
- School of Optometry and Vision ScienceUniversity of New South Wales (UNSW)New South WalesSydneyAustralia
| | - David Alonso‐Caneiro
- School of Optometry and Vision ScienceCentre for Vision and Eye ResearchContact Lens and Visual Optics LaboratoryQueensland University of TechnologyQueenslandBrisbaneAustralia
- School of Science, Technology and EngineeringUniversity of Sunshine CoastQueenslandSippy DownsAustralia
| | - Barbara Zangerl
- School of Optometry and Vision ScienceUniversity of New South Wales (UNSW)New South WalesSydneyAustralia
- Coronary Care UnitRoyal Prince Alfred HospitalNew South WalesSydneyAustralia
| | - Michael Kalloniatis
- Centre for Eye HealthUniversity of New South Wales (UNSW)New South WalesSydneyAustralia
- School of Optometry and Vision ScienceUniversity of New South Wales (UNSW)New South WalesSydneyAustralia
- Department of OptometrySchool of MedicineDeakin UniversityVictoriaWaurn PondsAustralia
| |
Collapse
|
27
|
Abstract
The human retina is amenable to direct, noninvasive visualization using a wide array of imaging modalities. In the ∼140 years since the publication of the first image of the living human retina, there has been a continued evolution of retinal imaging technology. Advances in image acquisition and processing speed now allow real-time visualization of retinal structure, which has revolutionized the diagnosis and management of eye disease. Enormous advances have come in image resolution, with adaptive optics (AO)-based systems capable of imaging the retina with single-cell resolution. In addition, newer functional imaging techniques provide the ability to assess function with exquisite spatial and temporal resolution. These imaging advances have had an especially profound impact on the field of inherited retinal disease research. Here we will review some of the advances and applications of AO retinal imaging in patients with inherited retinal disease.
Collapse
Affiliation(s)
- Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, California 94143-4081, USA
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin Eye Institute, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
28
|
Sabesan R, Grieve K, Hammer DX, Ji N, Marcos S. Introduction to the Feature Issue on Adaptive Optics for Biomedical Applications. BIOMEDICAL OPTICS EXPRESS 2023; 14:1772-1776. [PMID: 37078031 PMCID: PMC10110319 DOI: 10.1364/boe.488044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 05/03/2023]
Abstract
The guest editors introduce a feature issue commemorating the 25th anniversary of adaptive optics in biomedical research.
Collapse
Affiliation(s)
- Ramkumar Sabesan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, and CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Na Ji
- Department of Physics, Department of Molecular & Cellular Biology, University of California, Berkeley, CA 94720, USA
| | - Susana Marcos
- Visual Optics and Biophotonics Laboratory, Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Calle Serrano 121, Madrid, 28006, Spain
- Center for Visual Sciences; The Institute of Optics and Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
29
|
Wang X, Sadda SR, Ip MS, Sarraf D, Zhang Y. In Vivo Longitudinal Measurement of Cone Photoreceptor Density in Intermediate Age-Related Macular Degeneration. Am J Ophthalmol 2023; 248:60-75. [PMID: 36436549 PMCID: PMC10038851 DOI: 10.1016/j.ajo.2022.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE To evaluate cone photoreceptor density in clinically unremarkable retinal regions in patients with age-related macular degeneration (AMD) using adaptive optics scanning laser ophthalmoscopy (AOSLO). DESIGN Prospective case series with normal comparison group. METHODS Ten eyes of 7 patients with intermediate AMD were studied, including 4 with predominantly subretinal drusenoid deposits (SDD) and 3 without SDD. Macular regions with a clinical absence of AMD-associated lesions were identified by cone packing structure on AOSLO and optical coherence tomography. Cone density was measured in 1174 clinically unremarkable regions within the central subfield (CSF), the inner (IR), and outer rings (OR) of the Early Treatment Diabetic Retinopathy Study grid over 39.6 ± 3.3 months and compared with age-matched normal values obtained in 17 participants. RESULTS Cone density decreased at 98.3% of the examined locations over time in the eyes with AMD. In the CSF, IR, and OR, cones declined by -255 ± 135, -133 ± 45, and -59 ± 24 cones/degree2/year, respectively, in eyes with SDD, and by -212 ± 89, -83 ± 37, and -27 ± 18 cones/degree2/year, respectively, in eyes without SDD. The percentage of retinal loci with cone density lower than normal (Z score < -2) increased over the follow-up: from 42% at the baseline to 80% at the last visit in eyes with SDD and from 31% to 70% in eyes without SDD. CONCLUSIONS AOSLO revealed cone photoreceptor loss in regions that appear otherwise unremarkable clinically. These findings may help explain the loss of mesopic sensitivity reported in these areas in eyes with intermediate AMD.
Collapse
Affiliation(s)
- Xiaolin Wang
- From the Doheny Eye Institute (X.W., S.R.S., M.I., Y.Z.), Pasadena, California
| | - SriniVas R Sadda
- From the Doheny Eye Institute (X.W., S.R.S., M.I., Y.Z.), Pasadena, California; Department of Ophthalmology, University of California-Los Angeles (S.R.S., M.I., D.S., Y.Z.), Los Angeles, California
| | - Michael S Ip
- From the Doheny Eye Institute (X.W., S.R.S., M.I., Y.Z.), Pasadena, California; Department of Ophthalmology, University of California-Los Angeles (S.R.S., M.I., D.S., Y.Z.), Los Angeles, California
| | - David Sarraf
- Department of Ophthalmology, University of California-Los Angeles (S.R.S., M.I., D.S., Y.Z.), Los Angeles, California; Stein Eye Institute (David Sarraf), Los Angeles, California, USA
| | - Yuhua Zhang
- From the Doheny Eye Institute (X.W., S.R.S., M.I., Y.Z.), Pasadena, California; Department of Ophthalmology, University of California-Los Angeles (S.R.S., M.I., D.S., Y.Z.), Los Angeles, California.
| |
Collapse
|
30
|
Lee B, Jeong S, Lee J, Kim TS, Braaf B, Vakoc BJ, Oh WY. Wide-Field Three-Dimensional Depth-Invariant Cellular-Resolution Imaging of the Human Retina. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2203357. [PMID: 36642824 PMCID: PMC10023497 DOI: 10.1002/smll.202203357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Three-dimensional (3D) cellular-resolution imaging of the living human retina over a large field of view will bring a great impact in clinical ophthalmology, potentially finding new biomarkers for early diagnosis and improving the pathophysiological understanding of ocular diseases. While hardware-based and computational adaptive optics (AO) optical coherence tomography (OCT) have been developed to achieve cellular-resolution retinal imaging, these approaches support limited 3D imaging fields, and their high cost and intrinsic hardware complexity limit their practical utility. Here, this work demonstrates 3D depth-invariant cellular-resolution imaging of the living human retina over a 3 × 3 mm field of view using the first intrinsically phase-stable multi-MHz retinal swept-source OCT and novel computational defocus and aberration correction methods. Single-acquisition imaging of photoreceptor cells, retinal nerve fiber layer, and retinal capillaries is presented across unprecedented imaging fields. By providing wide-field 3D cellular-resolution imaging in the human retina using a standard point-scan architecture routinely used in the clinic, this platform proposes a strategy for expanded utilization of high-resolution retinal imaging in both research and clinical settings.
Collapse
Affiliation(s)
- ByungKun Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sunhong Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Joosung Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tae Shik Kim
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston 02140, USA
| | - Boy Braaf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston 02140, USA
| | - Benjamin J. Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston 02140, USA
| | - Wang-Yuhl Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
31
|
Williams DR, Burns SA, Miller DT, Roorda A. Evolution of adaptive optics retinal imaging [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:1307-1338. [PMID: 36950228 PMCID: PMC10026580 DOI: 10.1364/boe.485371] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 05/02/2023]
Abstract
This review describes the progress that has been achieved since adaptive optics (AO) was incorporated into the ophthalmoscope a quarter of a century ago, transforming our ability to image the retina at a cellular spatial scale inside the living eye. The review starts with a comprehensive tabulation of AO papers in the field and then describes the technological advances that have occurred, notably through combining AO with other imaging modalities including confocal, fluorescence, phase contrast, and optical coherence tomography. These advances have made possible many scientific discoveries from the first maps of the topography of the trichromatic cone mosaic to exquisitely sensitive measures of optical and structural changes in photoreceptors in response to light. The future evolution of this technology is poised to offer an increasing array of tools to measure and monitor in vivo retinal structure and function with improved resolution and control.
Collapse
Affiliation(s)
- David R. Williams
- The Institute of Optics and the Center for
Visual Science, University of Rochester,
Rochester NY, USA
| | - Stephen A. Burns
- School of Optometry, Indiana
University at Bloomington, Bloomington IN, USA
| | - Donald T. Miller
- School of Optometry, Indiana
University at Bloomington, Bloomington IN, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry and
Vision Science, University of California at Berkeley, Berkeley CA, USA
| |
Collapse
|
32
|
Soltanian-Zadeh S, Liu Z, Liu Y, Lassoued A, Cukras CA, Miller DT, Hammer DX, Farsiu S. Deep learning-enabled volumetric cone photoreceptor segmentation in adaptive optics optical coherence tomography images of normal and diseased eyes. BIOMEDICAL OPTICS EXPRESS 2023; 14:815-833. [PMID: 36874491 PMCID: PMC9979662 DOI: 10.1364/boe.478693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/11/2023]
Abstract
Objective quantification of photoreceptor cell morphology, such as cell diameter and outer segment length, is crucial for early, accurate, and sensitive diagnosis and prognosis of retinal neurodegenerative diseases. Adaptive optics optical coherence tomography (AO-OCT) provides three-dimensional (3-D) visualization of photoreceptor cells in the living human eye. The current gold standard for extracting cell morphology from AO-OCT images involves the tedious process of 2-D manual marking. To automate this process and extend to 3-D analysis of the volumetric data, we propose a comprehensive deep learning framework to segment individual cone cells in AO-OCT scans. Our automated method achieved human-level performance in assessing cone photoreceptors of healthy and diseased participants captured with three different AO-OCT systems representing two different types of point scanning OCT: spectral domain and swept source.
Collapse
Affiliation(s)
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yan Liu
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Ayoub Lassoued
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Catherine A. Cukras
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donald T. Miller
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
33
|
Zhang P, Wahl DJ, Mocci J, Miller EB, Bonora S, Sarunic MV, Zawadzki RJ. Adaptive optics scanning laser ophthalmoscopy and optical coherence tomography (AO-SLO-OCT) system for in vivo mouse retina imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:299-314. [PMID: 36698677 PMCID: PMC9841993 DOI: 10.1364/boe.473447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 05/02/2023]
Abstract
Optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) are imaging technologies invented in the 1980s that have revolutionized the field of in vivo retinal diagnostics and are now commonly used in ophthalmology clinics as well as in vision science research. Adaptive optics (AO) technology enables high-fidelity correction of ocular aberrations, resulting in improved resolution and sensitivity for both SLO and OCT systems. The potential of gathering multi-modal cellular-resolution information in a single instrument is of great interest to the ophthalmic imaging community. Although similar instruments have been developed for imaging the human retina, developing such a system for mice will benefit basic science research and should help with further dissemination of AO technology. Here, we present our work integrating OCT into an existing mouse retinal AO-SLO system, resulting in a multi-modal AO-enhanced imaging system of the living mouse eye. The new system allows either independent or simultaneous data acquisition of AO-SLO and AO-OCT, depending on the requirements of specific scientific experiments. The system allows a data acquisition speed of 200 kHz A-scans/pixel rate for OCT and SLO, respectively. It offers ∼6 µm axial resolution for AO-OCT and a ∼1 µm lateral resolution for AO-SLO-OCT imaging.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Daniel J. Wahl
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
| | - Jacopo Mocci
- Dynamic Optics srl, Piazza Zanellato 5, 35131, Padova, Italy
| | - Eric B. Miller
- Center for Neuroscience, University of California, Davis, CA 95616, USA
| | - Stefano Bonora
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
| | - Marinko V. Sarunic
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
- Medical Physics and Biomedical Engineering, University College London, United Kingdom
- Institute of Ophthalmology, University College London, United Kingdom
| | - Robert J. Zawadzki
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
- UC Davis Eye Center, Dept. of Ophthalmology & Vision Science, University of California Davis, 4860 Y Street, Suite 2400, Sacramento, California 95817, USA
| |
Collapse
|
34
|
Morgan JIW, Chui TYP, Grieve K. Twenty-five years of clinical applications using adaptive optics ophthalmoscopy [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:387-428. [PMID: 36698659 PMCID: PMC9841996 DOI: 10.1364/boe.472274] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 05/02/2023]
Abstract
Twenty-five years ago, adaptive optics (AO) was combined with fundus photography, thereby initiating a new era in the field of ophthalmic imaging. Since that time, clinical applications of AO ophthalmoscopy to investigate visual system structure and function in both health and disease abound. To date, AO ophthalmoscopy has enabled visualization of most cell types in the retina, offered insight into retinal and systemic disease pathogenesis, and been integrated into clinical trials. This article reviews clinical applications of AO ophthalmoscopy and addresses remaining challenges for AO ophthalmoscopy to become fully integrated into standard ophthalmic care.
Collapse
Affiliation(s)
- Jessica I. W. Morgan
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Contributed equally
| | - Toco Y. P. Chui
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
- Contributed equally
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, and CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
- Contributed equally
| |
Collapse
|
35
|
Pinhas A, Migacz JV, Zhou DB, Castanos Toral MV, Otero-Marquez O, Israel S, Sun V, Gillette PN, Sredar N, Dubra A, Glassberg J, Rosen RB, Chui TY. Insights into Sickle Cell Disease through the Retinal Microvasculature: Adaptive Optics Scanning Light Ophthalmoscopy Correlates of Clinical OCT Angiography. OPHTHALMOLOGY SCIENCE 2022; 2:100196. [PMID: 36531581 PMCID: PMC9754983 DOI: 10.1016/j.xops.2022.100196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 05/06/2023]
Abstract
PURPOSE Clinical OCT angiography (OCTA) of the retinal microvasculature offers a quantitative correlate to systemic disease burden and treatment efficacy in sickle cell disease (SCD). The purpose of this study was to use the higher resolution of adaptive optics scanning light ophthalmoscopy (AOSLO) to elucidate OCTA features of parafoveal microvascular compromise identified in SCD patients. DESIGN Case series of 11 SCD patients and 1 unaffected control. PARTICIPANTS A total of 11 eyes of 11 SCD patients (mean age, 33 years; range, 23-44; 8 female, 3 male) and 1 eye of a 34-year-old unaffected control. METHODS Ten sequential 3 × 3 mm parafoveal OCTA full vascular slab scans were obtained per eye using a commercial spectral domain OCT system (Avanti RTVue-XR; Optovue). These were used to identify areas of compromised perfusion near the foveal avascular zone (FAZ), designated as regions of interest (ROIs). Immediately thereafter, AOSLO imaging was performed on these ROIs to examine the cellular details of abnormal perfusion. Each participant was imaged at a single cross-sectional time point. Additionally, 2 of the SCD patients were imaged prospectively 2 months after initial imaging to study compromised capillary segments across time and with treatment. MAIN OUTCOME MEASURES Detection and characterization of parafoveal perfusion abnormalities identified using OCTA and resolved using AOSLO imaging. RESULTS We found evidence of abnormal blood flow on OCTA and AOSLO imaging among all 11 SCD patients with diverse systemic and ocular histories. Adaptive optics scanning light ophthalmoscopy imaging revealed a spectrum of phenomena, including capillaries with intermittent blood flow, blood cell stasis, and sites of thrombus formation. Adaptive optics scanning light ophthalmoscopy imaging was able to resolve single sickled red blood cells, rouleaux formations, and blood cell-vessel wall interactions. OCT angiography and AOSLO imaging were sensitive enough to document improved retinal perfusion in an SCD patient 2 months after initiation of oral hydroxyurea therapy. CONCLUSIONS Adaptive optics scanning light ophthalmoscopy imaging was able to reveal the cellular details of perfusion abnormalities detected using clinical OCTA. The synergy between these clinical and laboratory imaging modalities presents a promising avenue in the management of SCD through the development of noninvasive ocular biomarkers to prognosticate progression and measure the response to systemic treatment.
Collapse
Key Words
- ADD, airy disk diameter
- AOSLO, adaptive optics scanning light ophthalmoscopy
- Adaptive optics
- BCVA, best-corrected visual acuity
- D, diopters
- FA, fluorescein angiography
- FAZ, foveal avascular zone
- HbSC, hemoglobin SC
- HbSS, hemoglobin SS
- IOP, intraocular pressure
- OCT angiography
- OCTA, OCT angiography
- Oculomics
- RBC, red blood cell
- ROI, region of interest
- Retinal microvasculature
- SCD, sickle cell disease
- SCR, sickle cell retinopathy
- Sickle cell disease
Collapse
Affiliation(s)
- Alexander Pinhas
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Justin V. Migacz
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Davis B. Zhou
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maria V. Castanos Toral
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Oscar Otero-Marquez
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Sharon Israel
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
- Department of Human Biology, City University of New York Hunter College, New York, New York
| | - Vincent Sun
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Peter N. Gillette
- Department of Hematology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Nripun Sredar
- Department of Ophthalmology, Stanford University, Palo Alto, California
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, California
| | | | - Richard B. Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Toco Y.P. Chui
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
- Icahn School of Medicine at Mount Sinai, New York, New York
- Correspondence: Toco Y.P. Chui, PhD, New York Eye and Ear Infirmary of Mount Sinai, 310 E 14th Street, New York, NY 10003.
| |
Collapse
|
36
|
In vivo chromatic and spatial tuning of foveolar retinal ganglion cells in Macaca fascicularis. PLoS One 2022; 17:e0278261. [PMID: 36445926 PMCID: PMC9707781 DOI: 10.1371/journal.pone.0278261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/13/2022] [Indexed: 11/30/2022] Open
Abstract
The primate fovea is specialized for high acuity chromatic vision, with the highest density of cone photoreceptors and a disproportionately large representation in visual cortex. The unique visual properties conferred by the fovea are conveyed to the brain by retinal ganglion cells, the somas of which lie at the margin of the foveal pit. Microelectrode recordings of these centermost retinal ganglion cells have been challenging due to the fragility of the fovea in the excised retina. Here we overcome this challenge by combining high resolution fluorescence adaptive optics ophthalmoscopy with calcium imaging to optically record functional responses of foveal retinal ganglion cells in the living eye. We use this approach to study the chromatic responses and spatial transfer functions of retinal ganglion cells using spatially uniform fields modulated in different directions in color space and monochromatic drifting gratings. We recorded from over 350 cells across three Macaca fascicularis primates over a time period of weeks to months. We find that the majority of the L vs. M cone opponent cells serving the most central foveolar cones have spatial transfer functions that peak at high spatial frequencies (20-40 c/deg), reflecting strong surround inhibition that sacrifices sensitivity at low spatial frequencies but preserves the transmission of fine detail in the retinal image. In addition, we fit to the drifting grating data a detailed model of how ganglion cell responses draw on the cone mosaic to derive receptive field properties of L vs. M cone opponent cells at the very center of the foveola. The fits are consistent with the hypothesis that foveal midget ganglion cells are specialized to preserve information at the resolution of the cone mosaic. By characterizing the functional properties of retinal ganglion cells in vivo through adaptive optics, we characterize the response characteristics of these cells in situ.
Collapse
|
37
|
Stapley V, Anderson RS, Saunders K, Mulholland PJ. Examining the concordance of retinal ganglion cell counts generated using measures of structure and function. Ophthalmic Physiol Opt 2022; 42:1338-1352. [PMID: 36065739 PMCID: PMC9826349 DOI: 10.1111/opo.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE There are several indirect methods used to estimate retinal ganglion cell (RGC) count in an individual eye, but there is limited information as to the agreement between these methods. In this work, RGC receptive field (RGC-RF) count underlying a spot stimulus (0.43°, Goldmann III) was calculated and compared using three different methods. METHODS RGC-RF count was calculated at a retinal eccentricity of 2.32 mm for 44 healthy adult participants (aged 18-58 years, refractive error -9.75 DS to +1.75 DS) using: (i) functional measures of achromatic peripheral grating resolution acuity (PGRA), (ii) structural measures of RGC-layer thickness (OCT-model, based on the method outlined by Raza and Hood) and (iii) scaling published histology density data to simulate a global expansion in myopia (Histology-Balloon). RESULTS Whilst average RGC-RF counts from the OCT-model (median 105.3, IQR 99.6-111.0) and the Histology-Balloon model (median 107.5, IQR 97.7-114.6) were similar, PGRA estimates were approximately 65% lower (median 37.7, IQR 33.8-46.0). However, there was poor agreement between all three methods (Bland-Altman 95% limits of agreement; PGRA/OCT: 55.4; PGRA/Histology-Balloon 59.3; OCT/Histology-Balloon: 52.4). High intersubject variability in RGC-RF count was evident using all three methods. CONCLUSIONS The lower PGRA RGC-RF counts may be the result of targeting only a specific subset of functional RGCs, as opposed to the coarser approach of the OCT-model and Histology-Balloon, which include all RGCs, and also likely displaced amacrine cells. In the absence of a 'ground truth', direct measure of RGC-RF count, it is not possible to determine which method is most accurate, and each has limitations. However, what is clear is the poor agreement found between the methods prevents direct comparison of RGC-RF counts between studies utilising different methodologies and highlights the need to utilise the same method in longitudinal work.
Collapse
Affiliation(s)
- Victoria Stapley
- Centre for Optometry & Vision Science, Biomedical Sciences Research InstituteUlster UniversityColeraineUK
| | - Roger S. Anderson
- Centre for Optometry & Vision Science, Biomedical Sciences Research InstituteUlster UniversityColeraineUK,National Institute for Health Research (NIHR)Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Kathryn Saunders
- Centre for Optometry & Vision Science, Biomedical Sciences Research InstituteUlster UniversityColeraineUK
| | - Pádraig J. Mulholland
- Centre for Optometry & Vision Science, Biomedical Sciences Research InstituteUlster UniversityColeraineUK,National Institute for Health Research (NIHR)Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| |
Collapse
|
38
|
Liu Z, Zhang F, Zucca K, Agrawal A, Hammer DX. Ultrahigh-speed multimodal adaptive optics system for microscopic structural and functional imaging of the human retina. BIOMEDICAL OPTICS EXPRESS 2022; 13:5860-5878. [PMID: 36733751 PMCID: PMC9872887 DOI: 10.1364/boe.462594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 05/02/2023]
Abstract
We describe the design and performance of a multimodal and multifunctional adaptive optics (AO) system that combines scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) for simultaneous retinal imaging at 13.4 Hz. The high-speed AO-OCT channel uses a 3.4 MHz Fourier-domain mode-locked (FDML) swept source. The system achieves exquisite resolution and sensitivity for pan-macular and transretinal visualization of retinal cells and structures while providing a functional assessment of the cone photoreceptors. The ultra-high speed also enables wide-field scans for clinical usability and angiography for vascular visualization. The FDA FDML-AO system is a powerful platform for studying various retinal and neurological diseases for vision science research, retina physiology investigation, and biomarker development.
Collapse
Affiliation(s)
- Zhuolin Liu
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Furu Zhang
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
- Co-first author
| | - Kelvy Zucca
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Anant Agrawal
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| |
Collapse
|
39
|
Caravaca-Rodriguez D, Gaytan SP, Suaning GJ, Barriga-Rivera A. Implications of Neural Plasticity in Retinal Prosthesis. Invest Ophthalmol Vis Sci 2022; 63:11. [PMID: 36251317 DOI: 10.1167/iovs.63.11.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Retinal degenerative diseases such as retinitis pigmentosa cause a progressive loss of photoreceptors that eventually prevents the affected person from perceiving visual sensations. The absence of a visual input produces a neural rewiring cascade that propagates along the visual system. This remodeling occurs first within the retina. Then, subsequent neuroplastic changes take place at higher visual centers in the brain, produced by either the abnormal neural encoding of the visual inputs delivered by the diseased retina or as the result of an adaptation to visual deprivation. While retinal implants can activate the surviving retinal neurons by delivering electric current, the unselective activation patterns of the different neural populations that exist in the retinal layers differ substantially from those in physiologic vision. Therefore, artificially induced neural patterns are being delivered to a brain that has already undergone important neural reconnections. Whether or not the modulation of this neural rewiring can improve the performance for retinal prostheses remains a critical question whose answer may be the enabler of improved functional artificial vision and more personalized neurorehabilitation strategies.
Collapse
Affiliation(s)
- Daniel Caravaca-Rodriguez
- Department of Applied Physics III, Technical School of Engineering, Universidad de Sevilla, Sevilla, Spain
| | - Susana P Gaytan
- Department of Physiology, Universidad de Sevilla, Sevilla, Spain
| | - Gregg J Suaning
- School of Biomedical Engineering, University of Sydney, Sydney, Australia
| | - Alejandro Barriga-Rivera
- Department of Applied Physics III, Technical School of Engineering, Universidad de Sevilla, Sevilla, Spain.,School of Biomedical Engineering, University of Sydney, Sydney, Australia
| |
Collapse
|
40
|
Li K, Yin Q, Ren J, Song H, Zhang J. Automatic quantification of cone photoreceptors in adaptive optics scanning light ophthalmoscope images using multi-task learning. BIOMEDICAL OPTICS EXPRESS 2022; 13:5187-5201. [PMID: 36425624 PMCID: PMC9664876 DOI: 10.1364/boe.471426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 05/02/2023]
Abstract
Adaptive optics scanning light ophthalmoscope (AO-SLO) can directly image the cone photoreceptor mosaic in the living human retina, which offers a potentially great tool to detect cone-related ocular pathologies by quantifying the changes in the cone mosaic. However, manual quantification is very time-consuming and automation is highly desirable. In this paper, we developed a fully automatic method based on multi-task learning to identify and quantify cone photoreceptors. By including cone edges in the labels as the third dimension of the classification, our method provided more accurate and reliable results than the two previously reported methods. We trained and validated our network in an open data set consisting of over 200,000 cones, and achieved a 99.20% true positive rate, 0.71% false positive rate, and 99.24% Dice's coefficient on the test set consisting of 44,634 cones. All are better than the reported methods. In addition, the reproducibility of all three methods was also tested and compared, and the result showed the performance of our method was generally closer to the gold standard. Bland-Altman plots show that our method was more stable and accurate than the other two methods. Then ablation experiment was further done, and the result shows that multi-task learning is essential to achieving accurate quantifications. Finally, our method was also extended to segment the cones to extract the size information. Overall, the method proposed here demonstrated great performance in terms of accuracy and reliability, which can be used to efficiently quantify the subtle changes associated with the progression of many diseases affecting cones.
Collapse
Affiliation(s)
- Kaiwen Li
- Advanced Ophthalmology Laboratory (AOL), Robotrak Technologies, Nanjing, 210000, China
| | - Qi Yin
- Advanced Ophthalmology Laboratory (AOL), Robotrak Technologies, Nanjing, 210000, China
| | - Ji Ren
- Advanced Ophthalmology Laboratory (AOL), Robotrak Technologies, Nanjing, 210000, China
| | - Hongxin Song
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China
| | - Jie Zhang
- Advanced Ophthalmology Laboratory (AOL), Robotrak Technologies, Nanjing, 210000, China
| |
Collapse
|
41
|
Vienola KV, Zhang M, Snyder VC, Dansingani KK, Sahel JA, Rossi EA. Near infrared autofluorescence imaging of retinal pigmented epithelial cells using 663 nm excitation. Eye (Lond) 2022; 36:1878-1883. [PMID: 34462582 PMCID: PMC9499940 DOI: 10.1038/s41433-021-01754-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Fundus autofluorescence (AF) using adaptive optics scanning laser ophthalmoscopy (AOSLO) enables morphometric analysis of individual retinal pigmented epithelial (RPE) cells. However, only a few excitation wavelengths in the visible and near-infrared have been evaluated. Visible light excitation (<600 nm) presents additional safety hazards and is uncomfortable for patients. Near-infrared excitation (>700 nm) overcomes those problems but introduces others, including decreased AF signal and cone signatures that obscure RPE structure. Here we investigated the use of an intermediate wavelength, 663 nm, for excitation and compared it to 795 nm. METHODS Subjects were imaged using AOSLO equipped with a detection channel to collect AF emission between 814 and 850 nm. Two light sources (663 and 795 nm) were used to excite the retinal fluorophores. We recorded 90 s videos and registered them with custom software to integrate AF images for analysis. RESULTS We imaged healthy eyes and an eye with pattern dystrophy. Similar AF microstructures were detected with each excitation source, despite ~4 times lower excitation power with 663 nm. The signal-to-noise values showed no meaningful difference between 663 nm and 795 nm excitation and a similar trend was observed for image contrast between the two excitation wavelengths. CONCLUSIONS Lower light levels can be used with shorter wavelength excitation to achieve comparable images of the microstructure of the RPE as have been obtained using higher light levels at longer wavelengths. Further experiments are needed to fully characterize AF across spectrum and determine the optimal excitation and emission bandwidths that balance efficiency, patient comfort, and efficacy.
Collapse
Affiliation(s)
- Kari V Vienola
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA, USA.
| | - Min Zhang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Valerie C Snyder
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kunal K Dansingani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ethan A Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
42
|
Jo Y, Lee YR, Hong JH, Kim DY, Kwon J, Choi M, Kim M, Choi W. Through-skull brain imaging in vivo at visible wavelengths via dimensionality reduction adaptive-optical microscopy. SCIENCE ADVANCES 2022; 8:eabo4366. [PMID: 35895824 PMCID: PMC9328682 DOI: 10.1126/sciadv.abo4366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/13/2022] [Indexed: 05/25/2023]
Abstract
Compensation of sample-induced optical aberrations is crucial for visualizing microscopic structures deep within biological tissues. However, strong multiple scattering poses a fundamental limitation for identifying and correcting the tissue-induced aberrations. Here, we introduce a label-free deep-tissue imaging technique termed dimensionality reduction adaptive-optical microscopy (DReAM) to selectively attenuate multiple scattering. We established a theoretical framework in which dimensionality reduction of a time-gated reflection matrix can attenuate uncorrelated multiple scattering while retaining a single-scattering signal with a strong wave correlation, irrespective of sample-induced aberrations. We performed mouse brain imaging in vivo through the intact skull with the probe beam at visible wavelengths. Despite the strong scattering and aberrations, DReAM offered a 17-fold enhancement of single scattering-to-multiple scattering ratio and provided high-contrast images of neural fibers in the brain cortex with the diffraction-limited spatial resolution of 412 nanometers and a 33-fold enhanced Strehl ratio.
Collapse
Affiliation(s)
- Yonghyeon Jo
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Physics, Korea University, Seoul 02855, Republic of Korea
| | - Ye-Ryoung Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Physics, Korea University, Seoul 02855, Republic of Korea
- Institute of Basic Science, Korea University, Seoul 02841, Republic of Korea
| | - Jin Hee Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Physics, Korea University, Seoul 02855, Republic of Korea
| | - Dong-Young Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Physics, Korea University, Seoul 02855, Republic of Korea
| | - Junhwan Kwon
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- The Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
- Bio & Medical Health Division, Korea Testing Laboratory, 10, Chungui-ro, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Myunghwan Choi
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- The Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Moonseok Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Wonshik Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Physics, Korea University, Seoul 02855, Republic of Korea
| |
Collapse
|
43
|
Alexopoulos P, Madu C, Wollstein G, Schuman JS. The Development and Clinical Application of Innovative Optical Ophthalmic Imaging Techniques. Front Med (Lausanne) 2022; 9:891369. [PMID: 35847772 PMCID: PMC9279625 DOI: 10.3389/fmed.2022.891369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
The field of ophthalmic imaging has grown substantially over the last years. Massive improvements in image processing and computer hardware have allowed the emergence of multiple imaging techniques of the eye that can transform patient care. The purpose of this review is to describe the most recent advances in eye imaging and explain how new technologies and imaging methods can be utilized in a clinical setting. The introduction of optical coherence tomography (OCT) was a revolution in eye imaging and has since become the standard of care for a plethora of conditions. Its most recent iterations, OCT angiography, and visible light OCT, as well as imaging modalities, such as fluorescent lifetime imaging ophthalmoscopy, would allow a more thorough evaluation of patients and provide additional information on disease processes. Toward that goal, the application of adaptive optics (AO) and full-field scanning to a variety of eye imaging techniques has further allowed the histologic study of single cells in the retina and anterior segment. Toward the goal of remote eye care and more accessible eye imaging, methods such as handheld OCT devices and imaging through smartphones, have emerged. Finally, incorporating artificial intelligence (AI) in eye images has the potential to become a new milestone for eye imaging while also contributing in social aspects of eye care.
Collapse
Affiliation(s)
- Palaiologos Alexopoulos
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Chisom Madu
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
| | - Joel S. Schuman
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
- Department of Electrical and Computer Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
44
|
Van Gelder RN, Chiang MF, Dyer MA, Greenwell TN, Levin LA, Wong RO, Svendsen CN. Regenerative and restorative medicine for eye disease. Nat Med 2022; 28:1149-1156. [PMID: 35715505 PMCID: PMC10718186 DOI: 10.1038/s41591-022-01862-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022]
Abstract
Causes of blindness differ across the globe; in higher-income countries, most blindness results from the degeneration of specific classes of cells in the retina, including retinal pigment epithelium (RPE), photoreceptors, and retinal ganglion cells. Advances over the past decade in retinal regenerative medicine have allowed each of these cell types to be produced ex vivo from progenitor stem cells. Here, we review progress in applying these technologies to cell replacement - with the goal of vision restoration in degenerative disease. We discuss the landscape of human clinical trials for RPE transplantation and advanced preclinical studies for other cell types. We also review progress toward in situ repair of retinal degeneration using endogenous progenitor cells. Finally, we provide a high-level overview of progress toward prosthetic ocular vision restoration, including advanced photovoltaic devices, opsin-based gene therapy, and small-molecule photoswitches. Progress in each of these domains is at or near the human clinical-trial stage, bringing the audacious goal of vision restoration within sight.
Collapse
Affiliation(s)
- Russell N Van Gelder
- Karalis-Johnson Retina Center, Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Pathology and Laboratory Medicine, University of Washington School of Medicine, Seattle, WA, USA.
- Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, WA, USA.
| | - Michael F Chiang
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude's Research Hospital, Memphis, TN, USA
| | - Thomas N Greenwell
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Leonard A Levin
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Rachel O Wong
- Karalis-Johnson Retina Center, Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
45
|
Shao W, Yi J. Non-interferometric volumetric imaging in living human retina by confocal oblique scanning laser ophthalmoscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:3576-3592. [PMID: 35781976 PMCID: PMC9208584 DOI: 10.1364/boe.457408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Three-dimensional (3D) imaging of the human retina is instrumental in vision science and ophthalmology. While interferometric retinal imaging is well established by optical coherence tomography (OCT), non-interferometric volumetric imaging in the human retina has been challenging up to date. Here, we report confocal oblique scanning laser ophthalmoscopy (CoSLO) to fill that void and harness non-interferometric optical contrast in 3D. CoSLO decouples the illumination and detection by utilizing oblique laser scanning and oblique imaging to achieve ∼4x better axial resolution than conventional SLO. By combining remote focusing, CoSLO permits the acquisition of depth signals in parallel and over a large field of view. Confocal gating is introduced by a linear sensor array to improve the contrast and resolution. For the first time, we reported non-interferometric 3D human retinal imaging with >20° viewing angle, and revealed detailed features in the inner, outer retina, and choroid. CoSLO shows potential to be another useful technique by offering 3D non-interferometric contrasts.
Collapse
Affiliation(s)
- Wenjun Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, 21231, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland, 21231, USA
| | - Ji Yi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, 21231, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland, 21231, USA
| |
Collapse
|
46
|
Italiano ML, Guo T, Lovell NH, Tsai D. Improving the spatial resolution of artificial vision using midget retinal ganglion cell populations modelled at the human fovea. J Neural Eng 2022; 19. [PMID: 35609556 DOI: 10.1088/1741-2552/ac72c2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Retinal prostheses seek to create artificial vision by stimulating surviving retinal neurons of patients with profound vision impairment. Notwithstanding tremendous research efforts, the performance of all implants tested to date has remained rudimentary, incapable of overcoming the threshold for legal blindness. To maximize the perceptual efficacy of retinal prostheses, a device must be capable of controlling retinal neurons with greater spatiotemporal precision. Most studies of retinal stimulation were derived from either non-primate species or the peripheral primate retina. We investigated if artificial stimulation could leverage the high spatial resolution afforded by the neural substrates at the primate fovea and surrounding regions to achieve improved percept qualities. APPROACH We began by developing a new computational model capable of generating anatomically accurate retinal ganglion cell (RGC) populations within the human central retina. Next, multiple RGC populations across the central retina were stimulated in-silico to compare clinical and recently proposed neurostimulation configurations based on their ability to improve perceptual efficacy and reduce activation thresholds. MAIN RESULTS Our model uniquely upholds eccentricity-dependent characteristics such as RGC density and dendritic field diameter, whilst incorporating anatomically accurate features such as axon projection and three-dimensional RGC layering, features often forgone in favor of reduced computational complexity. Following epiretinal stimulation, the RGCs in our model produced response patterns in shapes akin to the complex percepts reported in clinical trials. Our results also demonstrated that even within the neuron-dense central retina, epiretinal stimulation using a multi-return hexapolar electrode arrangement could reliably achieve spatially focused RGC activation and could achieve single-cell excitation in 74% of all tested locations. SIGNIFICANCE This study establishes an anatomically accurate three-dimensional model of the human central retina and demonstrates the potential for an epiretinal hexapolar configuration to achieve consistent, spatially confined retinal responses, even within the neuron-dense foveal region. Our results promote the prospect and optimization of higher spatial resolution in future epiretinal implants.
Collapse
Affiliation(s)
- Michael Lewis Italiano
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Sydney, New South Wales, 2052, AUSTRALIA
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Sydney, New South Wales, 2052, AUSTRALIA
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Sydney, New South Wales, 2052, AUSTRALIA
| | - David Tsai
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Sydney, New South Wales, 2052, AUSTRALIA
| |
Collapse
|
47
|
Giannini JP, Lu R, Bower AJ, Fariss R, Tam J. Visualizing retinal cells with adaptive optics imaging modalities using a translational imaging framework. BIOMEDICAL OPTICS EXPRESS 2022; 13:3042-3055. [PMID: 35774328 PMCID: PMC9203084 DOI: 10.1364/boe.454560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 05/18/2023]
Abstract
Adaptive optics reflectance-based retinal imaging has proved a valuable tool for the noninvasive visualization of cells in the living human retina. Many subcellular features that remain at or below the resolution limit of current in vivo techniques may be more easily visualized with the same modalities in an ex vivo setting. While most microscopy techniques provide significantly higher resolution, enabling the visualization of fine cellular detail in ex vivo retinal samples, they do not replicate the reflectance-based imaging modalities of in vivo retinal imaging. Here, we introduce a strategy for imaging ex vivo samples using the same imaging modalities as those used for in vivo retinal imaging, but with increased resolution. We also demonstrate the ability of this approach to perform protein-specific fluorescence imaging and reflectance imaging simultaneously, enabling the visualization of nearly transparent layers of the retina and the classification of cone photoreceptor types.
Collapse
|
48
|
Abstract
The eye, the photoreceptive organ used to perceive the external environment, is of great importance to humans. It has been proven that some diseases in humans are accompanied by fundus changes; therefore, the health status of people may be interpreted from retinal images. However, the human eye is not a perfect refractive system for the existence of ocular aberrations. These aberrations not only affect the ability of human visual discrimination and recognition, but restrict the observation of the fine structures of human eye and reduce the possibility of exploring the mechanisms of eye disease. Adaptive optics (AO) is a technique that corrects optical wavefront aberrations. Once integrated into ophthalmoscopes, AO enables retinal imaging at the cellular level. This paper illustrates the principle of AO in correcting wavefront aberrations in human eyes, and then reviews the applications and advances of AO in ophthalmology, including the adaptive optics fundus camera (AO-FC), the adaptive optics scanning laser ophthalmoscope (AO-SLO), the adaptive optics optical coherence tomography (AO-OCT), and their combined multimodal imaging technologies. The future development trend of AO in ophthalmology is also prospected.
Collapse
|
49
|
Prevalence of Macular Microcystoid Lacunae in Autosomal Dominant Optic Atrophy Assessed With Adaptive Optics. J Neuroophthalmol 2022; 42:328-333. [PMID: 35439206 DOI: 10.1097/wno.0000000000001592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND To assess the prevalence of macular microcystoid lacunae in patients with autosomal dominant optic atrophy (ADOA) and its association with visual function and inner retinal morphology. METHODS The study included 140 participants with ADOA, with a mean age of 44 (SD ±19, range 7-82) years. Study participants with a genetically verified sequence variant in the OPA1 gene were examined with best-corrected visual acuity, contrast sensitivity, optical coherence tomography (Spectralis, Heidelberg) and adaptive optics fundus photography (rtx1, Imagine Eyes). Optically empty microcystoid spaces in the ganglion cell layer and inner plexiform layer were mapped by inspection of the 2 sets of images. Data were analyzed with a mixed model adjusted for age and sex with family and individual as random effect. RESULTS Microcystoid lacunae were present in 32 of 140 participants (23%) including 18 males and 14 females. Microcystoid lacunae were associated with younger age (P = 0.0503) and a smaller nerve fiber layer volume (P = 0.035). No association was found between presence of microcystoid lacunae and visual acuity (P = 0.2), contrast sensitivity (P = 0.8), axial length (P = 0.7), or ganglion cell layer volume (P = 0.2). The analysis showed moderately reduced visual acuity in patients with microcystoid lacunae. Normal and severely impaired visual function were seen only in participants without microcystoid lacunae. CONCLUSION In ADOA, macular microcystoid lacunae were found in 23% of the study participants and tended to be present in younger participants with moderate visual acuity reduction and a smaller nerve fiber layer volume. Further studies are needed to investigate whether cavities left by dead ganglion cells are predictors of decrease in visual function.
Collapse
|
50
|
Song X, Qiu S, Shivdasani MN, Zhou F, Liu Z, Ma S, Chai X, Chen Y, Cai X, Guo T, Li L. An in-silico analysis of electrically-evoked responses of midget and parasol retinal ganglion cells in different retinal regions. J Neural Eng 2022; 19. [PMID: 35255486 DOI: 10.1088/1741-2552/ac5b18] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/07/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Visual outcomes provided by present retinal prostheses that primarily target retinal ganglion cells (RGCs) through epiretinal stimulation remain rudimentary, partly due to the limited knowledge of retinal responses under electrical stimulation. Better understanding of how different retinal regions can be quantitatively controlled with high spatial accuracy, will be beneficial to the design of micro-electrode arrays (MEAs) and stimulation strategies for next-generation wide-view, high-resolution epiretinal implants. METHODS A computational model was developed to assess neural activity at different eccentricities (2 mm and 5 mm) within the human retina. This model included midget and parasol RGCs with anatomically accurate cell distribution and cell-specific morphological information. We then performed in silico investigations of region-specific RGC responses to epiretinal electrical stimulation using varied electrode sizes (5 µm - 210 µm diameter), emulating both commercialized retinal implants and recently-developed prototype devices. RESULTS Our model of epiretinal stimulation predicted RGC population excitation analogous to the complex percepts reported in human subjects. Following this, our simulations suggest that midget and parasol RGCs have characteristic regional differences in excitation under preferred electrode sizes. Relatively central (2 mm) regions demonstrated higher number of excited RGCs but lower overall activated receptive field (RF) areas under the same stimulus amplitudes (two-way ANOVA, p < 0.05). Furthermore, the activated RGC numbers per unit active RF area (number-RF ratio) were significantly higher in central than in peripheral regions, and higher in the midget than in the parasol population under all tested electrode sizes (two-way ANOVA, p < 0.05). Our simulations also suggested that smaller electrodes exhibit a higher range of controllable stimulation parameters to achieve pre-defined performance of RGC excitation. ..
Collapse
Affiliation(s)
- Xiaoyu Song
- , Shanghai Jiao Tong University, Dongchuan Road, Shanghai Minhang District No. 800, Shanghai, 200240, CHINA
| | - Shirong Qiu
- Shanghai Jiao Tong University, Dongchuan Road, Shanghai Minhang District No. 800, Shanghai, 200240, CHINA
| | - Mohit N Shivdasani
- Graduate School of Biomedical Engineering, University of New South Wales, Lower Ground, Samuels Building (F25), Kensington, New South Wales, 2052, AUSTRALIA
| | - Feng Zhou
- Shanghai Jiao Tong University, Dongchuan Road, Shanghai Minhang District No. 800, Shanghai, 200240, CHINA
| | - Zhengyang Liu
- Shanghai Jiao Tong University, Dongchuan Road, Shanghai Minhang District No. 800, Shanghai, 200240, CHINA
| | - Saidong Ma
- Shanghai Jiao Tong University, Dongchuan Road, Shanghai Minhang District No. 800, Shanghai, 200240, CHINA
| | - Xinyu Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, 200240, CHINA
| | - Yao Chen
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200040, Shanghai, 200240, CHINA
| | - Xuan Cai
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, Shanghai, 200233, CHINA
| | - Tianruo Guo
- the University of New South Wales, Lower Ground, Samuels Building (F25), Sydney, 2052, AUSTRALIA
| | - Liming Li
- Shanghai Jiao Tong University, Dongchuan Road, Shanghai Minhang District No. 800, Shanghai, 200240, CHINA
| |
Collapse
|