1
|
Mu W, Darian JC, Sung WK, Guo X, Yang T, Tang MWM, Chen Z, Tong SKH, Chik IWS, Davidson RL, Edmunds SC, Wei T, Tsui SKW. The haplotype-resolved T2T genome for Bauhinia × blakeana sheds light on the genetic basis of flower heterosis. Gigascience 2025; 14:giaf044. [PMID: 40276955 PMCID: PMC12012898 DOI: 10.1093/gigascience/giaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/20/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND The Hong Kong orchid tree Bauhinia × blakeana Dunn has long been proposed to be a sterile interspecific hybrid exhibiting flower heterosis when compared to its likely parental species, Bauhinia purpurea L. and Bauhinia variegata L. Here, we report comparative genomic and transcriptomic analyses of the 3 Bauhinia species. FINDINGS We generated chromosome-level assemblies for the parental species and applied a trio-binning approach to construct a haplotype-resolved telomere-to-telomere (T2T) genome for B. blakeana. Comparative chloroplast genome analysis confirmed B. purpurea as the maternal parent. Transcriptome profiling of flower tissues highlighted a closer resemblance of B. blakeana to its maternal parent. Differential gene expression analyses revealed distinct expression patterns among the 3 species, particularly in biosynthetic and metabolic processes. To investigate the genetic basis of flower heterosis observed in B. blakeana, we focused on gene expression patterns within pigment biosynthesis-related pathways. High-parent dominance and overdominance expression patterns were observed, particularly in genes associated with carotenoid biosynthesis. Additionally, allele-specific expression analysis revealed a balanced contribution of maternal and paternal alleles in shaping the gene expression patterns in B. blakeana. CONCLUSIONS Our study offers valuable insights into the genome architecture of hybrid B. blakeana, establishing a comprehensive genomic and transcriptomic resource for future functional genetics research within the Bauhinia genus. It also serves as a model for exploring the characteristics of hybrid species using T2T haplotype-resolved genomes, providing a novel approach to understanding genetic interactions and evolutionary mechanisms in complex genomes with high heterozygosity.
Collapse
Affiliation(s)
- Weixue Mu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | | - Wing-Kin Sung
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- JC STEM Laboratory of Computational Genomics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Hong Kong Genome Institute, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China
| | - Xing Guo
- BGI Research, East Lake High-Tech Development Zone, Wuhan 430074, China
| | - Tuo Yang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China
| | - Mandy Wai Man Tang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ziqiang Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Steve Kwan Hok Tong
- BGI Genomics, Tai Po, N.T., Hong Kong SAR, China
- International DNA Research Centre, Kowloon, Hong Kong SAR, China
| | | | - Robert L Davidson
- School of Physics, Engineering & Computer Science, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom
| | - Scott C Edmunds
- GigaScience Press, BGI Hong Kong Tech Co. Ltd., Sheung Wan, Hong Kong SAR, China
| | - Tong Wei
- BGI Research, East Lake High-Tech Development Zone, Wuhan 430074, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
2
|
Zhang X, Tang C, Jiang B, Zhang R, Li M, Wu Y, Yao Z, Huang L, Luo Z, Zou H, Yang Y, Wu M, Chen A, Wu S, Hou X, Liu X, Fei Z, Fu J, Wang Z. Refining polyploid breeding in sweet potato through allele dosage enhancement. NATURE PLANTS 2025; 11:36-48. [PMID: 39668213 DOI: 10.1038/s41477-024-01873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
Allele dosage plays a key role in the phenotypic variation of polyploids. Here we present a genome-wide variation map of hexaploid sweet potato that captures allele dosage information, constructed from deep sequencing of 294 hexaploid accessions. Genome-wide association studies identified quantitative trait loci with dosage effects on 23 agronomic traits. Our analyses reveal that sweet potato breeding has progressively increased the dosage of favourable alleles to enhance trait performance. Notably, the Mesoamerican gene pool has evolved towards higher dosages of favourable alleles at multiple loci, which have been increasingly introgressed into modern Chinese cultivars. We substantiated the breeding-driven dosage accumulation through transgenic validation of IbEXPA4, an expansin gene influencing tuberous root weight. In addition, we explored causative sequence variations that alter the expression of the Orange gene, which regulates flesh colour. Our findings illuminate the breeding history of sweet potato and establish a foundation for leveraging allele dosages in polyploid breeding practices.
Collapse
Affiliation(s)
- Xiangbo Zhang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Chaochen Tang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Bingzhi Jiang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Rong Zhang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Ming Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yaoyao Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhufang Yao
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Lifei Huang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Zhongxia Luo
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Hongda Zou
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Yiling Yang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Minyi Wu
- Guangdong Provincial Key Laboratory of Applied Botany, and State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ao Chen
- Guangdong Provincial Key Laboratory of Applied Botany, and State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shan Wu
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany, and State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xu Liu
- Guangdong Provincial Key Laboratory of Applied Botany, and State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA.
| | - Junjie Fu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Zhangying Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China.
| |
Collapse
|
3
|
Wang C, Wang Z, Cai Y, Zhu Z, Yu D, Hong L, Wang Y, Lv W, Zhao Q, Si L, Liu K, Han B. A higher-yield hybrid rice is achieved by assimilating a dominant heterotic gene in inbred parental lines. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1669-1680. [PMID: 38450899 PMCID: PMC11123404 DOI: 10.1111/pbi.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 03/08/2024]
Abstract
The exploitation of heterosis to integrate parental advantages is one of the fastest and most efficient ways of rice breeding. The genomic architecture of heterosis suggests that the grain yield is strongly correlated with the accumulation of numerous rare superior alleles with positive dominance. However, the improvements in yield of hybrid rice have shown a slowdown or even plateaued due to the limited availability of complementary superior alleles. In this study, we achieved a considerable increase in grain yield of restorer lines by inducing an alternative splicing event in a heterosis gene OsMADS1 through CRISPR-Cas9, which accounted for approximately 34.1%-47.5% of yield advantage over their corresponding inbred rice cultivars. To achieve a higher yield in hybrid rice, we crossed the gene-edited restorer parents harbouring OsMADS1GW3p6 with the sterile lines to develop new rice hybrids. In two-line hybrid rice Guang-liang-you 676 (GLY676), the yield of modified hybrids carrying the homozygous heterosis gene OsMADS1GW3p6 significantly exceeded that of the original hybrids with heterozygous OsMADS1. Similarly, the gene-modified F1 hybrids with heterozygous OsMADS1GW3p6 increased grain yield by over 3.4% compared to the three-line hybrid rice Quan-you-si-miao (QYSM) with the homozygous genotype of OsMADS1. Our study highlighted the great potential in increasing the grain yield of hybrid rice by pyramiding a single heterosis gene via CRISPR-Cas9. Furthermore, these results demonstrated that the incomplete dominance of heterosis genes played a major role in yield-related heterosis and provided a promising strategy for breeding higher-yielding rice varieties above what is currently achievable.
Collapse
Affiliation(s)
- Changsheng Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Ziqun Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Yunxiao Cai
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Zhou Zhu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Danheng Yu
- Department of Life Sciences, Imperial College LondonSouth KensingtonLondonUK
| | - Lei Hong
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Yongchun Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Wei Lv
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Qiang Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Lizhen Si
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Kun Liu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
4
|
Yuan J, Zhao J, Sun Y, Wang Y, Li Y, Ni A, Zong Y, Ma H, Wang P, Shi L, Chen J. The mRNA-lncRNA landscape of multiple tissues uncovers key regulators and molecular pathways that underlie heterosis for feed intake and efficiency in laying chickens. Genet Sel Evol 2023; 55:69. [PMID: 37803296 PMCID: PMC10559425 DOI: 10.1186/s12711-023-00834-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/24/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Heterosis is routinely exploited to improve animal performance. However, heterosis and its underlying molecular mechanism for feed intake and efficiency have been rarely explored in chickens. Feed efficiency continues to be an important breeding goal trait since feed accounts for 60 to 70% of the total production costs in poultry. Here, we profiled the mRNA-lncRNA landscape of 96 samples of the hypothalamus, liver and duodenum mucosa from White Leghorn (WL), Beijing-You chicken (YY), and their reciprocal crosses (WY and YW) to elucidate the regulatory mechanisms of heterosis. RESULTS We observed negative heterosis for both feed intake and residual feed intake (RFI) in YW during the laying period from 43 to 46 weeks of age. Analysis of the global expression pattern showed that non-additivity was a major component of the inheritance of gene expression in the three tissues for YW but not for WY. The YW-specific non-additively expressed genes (YWG) and lncRNA (YWL) dominated the total number of non-additively expressed genes and lncRNA in the hypothalamus and duodenum mucosa. Enrichment analysis of YWG showed that mitochondria components and oxidation phosphorylation (OXPHOS) pathways were shared among the three tissues. The OXPHOS pathway was enriched by target genes for YWL with non-additive inheritance of expression in the liver and duodenum mucosa. Weighted gene co-expression network analysis revealed divergent co-expression modules associated with feed intake and RFI in the three tissues from WL, YW, and YY. Among the negatively related modules, the OXPHOS pathway was enriched by hub genes in the three tissues, which supports the critical role of oxidative phosphorylation. Furthermore, protein quantification of ATP5I was highly consistent with ATP5I expression in the liver, which suggests that, in crossbred YW, non-additive gene expression is down-regulated and decreases ATP production through oxidative phosphorylation, resulting in negative heterosis for feed intake and efficiency. CONCLUSIONS Our results demonstrate that non-additively expressed genes and lncRNA involved in oxidative phosphorylation in the hypothalamus, liver, and duodenum mucosa are key regulators of the negative heterosis for feed intake and RFI in layer chickens. These findings should facilitate the rational choice of suitable parents for producing crossbred chickens.
Collapse
Affiliation(s)
- Jingwei Yuan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jinmeng Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yanyan Sun
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yuanmei Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yunlei Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Aixin Ni
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yunhe Zong
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Hui Ma
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Panlin Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Lei Shi
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
5
|
Cui L, Yang B, Xiao S, Gao J, Baud A, Graham D, McBride M, Dominiczak A, Schafer S, Aumatell RL, Mont C, Teruel AF, Hübner N, Flint J, Mott R, Huang L. Dominance is common in mammals and is associated with trans-acting gene expression and alternative splicing. Genome Biol 2023; 24:215. [PMID: 37773188 PMCID: PMC10540365 DOI: 10.1186/s13059-023-03060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Dominance and other non-additive genetic effects arise from the interaction between alleles, and historically these phenomena play a major role in quantitative genetics. However, most genome-wide association studies (GWAS) assume alleles act additively. RESULTS We systematically investigate both dominance-here representing any non-additive within-locus interaction-and additivity across 574 physiological and gene expression traits in three mammalian stocks: F2 intercross pigs, rat heterogeneous stock, and mice heterogeneous stock. Dominance accounts for about one quarter of heritable variance across all physiological traits in all species. Hematological and immunological traits exhibit the highest dominance variance, possibly reflecting balancing selection in response to pathogens. Although most quantitative trait loci (QTLs) are detectable as additive QTLs, we identify 154, 64, and 62 novel dominance QTLs in pigs, rats, and mice respectively that are undetectable as additive QTLs. Similarly, even though most cis-acting expression QTLs are additive, gene expression exhibits a large fraction of dominance variance, and trans-acting eQTLs are enriched for dominance. Genes causal for dominance physiological QTLs are less likely to be physically linked to their QTLs but instead act via trans-acting dominance eQTLs. In addition, thousands of eQTLs are associated with alternatively spliced isoforms with complex additive and dominant architectures in heterogeneous stock rats, suggesting a possible mechanism for dominance. CONCLUSIONS Although heritability is predominantly additive, many mammalian genetic effects are dominant and likely arise through distinct mechanisms. It is therefore advantageous to consider both additive and dominance effects in GWAS to improve power and uncover causality.
Collapse
Affiliation(s)
- Leilei Cui
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
- UCL Genetics Institute, University College London, London, WC1E 6BT, UK
- Human Aging Research Institute and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Jiangxi, China
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Bin Yang
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Shijun Xiao
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Jun Gao
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Amelie Baud
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Delyth Graham
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | - Martin McBride
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | - Anna Dominiczak
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Regina Lopez Aumatell
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Carme Mont
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Albert Fernandez Teruel
- Departamento de Psiquiatría y Medicina Legal, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Norbert Hübner
- Genetics and Genomics of Cardiovascular Diseases Research Group, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jonathan Flint
- Department of Psychiatry and Behavioral Sciences, Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Richard Mott
- UCL Genetics Institute, University College London, London, WC1E 6BT, UK.
| | - Lusheng Huang
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
6
|
Yuan W, Beitel F, Srikant T, Bezrukov I, Schäfer S, Kraft R, Weigel D. Pervasive under-dominance in gene expression underlying emergent growth trajectories in Arabidopsis thaliana hybrids. Genome Biol 2023; 24:200. [PMID: 37667232 PMCID: PMC10478501 DOI: 10.1186/s13059-023-03043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Complex traits, such as growth and fitness, are typically controlled by a very large number of variants, which can interact in both additive and non-additive fashion. In an attempt to gauge the relative importance of both types of genetic interactions, we turn to hybrids, which provide a facile means for creating many novel allele combinations. RESULTS We focus on the interaction between alleles of the same locus, i.e., dominance, and perform a transcriptomic study involving 141 random crosses between different accessions of the plant model species Arabidopsis thaliana. Additivity is rare, consistently observed for only about 300 genes enriched for roles in stress response and cell death. Regulatory rare-allele burden affects the expression level of these genes but does not correlate with F1 rosette size. Non-additive, dominant gene expression in F1 hybrids is much more common, with the vast majority of genes (over 90%) being expressed below the parental average. Unlike in the additive genes, regulatory rare-allele burden in the dominant gene set is strongly correlated with F1 rosette size, even though it only mildly covaries with the expression level of these genes. CONCLUSIONS Our study underscores under-dominance as the predominant gene action associated with emergence of rosette growth trajectories in the A. thaliana hybrid model. Our work lays the foundation for understanding molecular mechanisms and evolutionary forces that lead to dominance complementation of rare regulatory alleles.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
| | - Fiona Beitel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
| | - Thanvi Srikant
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
| | - Ilja Bezrukov
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
| | - Sabine Schäfer
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
| | - Robin Kraft
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
7
|
Putra AR, Yen JDL, Fournier-Level A. Forecasting trait responses in novel environments to aid seed provenancing under climate change. Mol Ecol Resour 2023; 23:565-580. [PMID: 36308465 DOI: 10.1111/1755-0998.13728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/28/2022]
Abstract
Revegetation projects face the major challenge of sourcing optimal plant material. This is often done with limited information about plant performance and increasingly requires factoring resilience to climate change. Functional traits can be used as quantitative indices of plant performance and guide seed provenancing, but trait values expected under novel conditions are often unknown. To support climate-resilient provenancing efforts, we develop a trait prediction model that integrates the effect of genetic variation with fine-scale temperature variation. We train our model on multiple field plantings of Arabidopsis thaliana and predict two relevant fitness traits-days-to-bolting and fecundity-across the species' European range. Prediction accuracy was high for days-to-bolting and moderate for fecundity, with the majority of trait variation explained by temperature differences between plantings. Projection under future climate predicted a decline in fecundity, although this response was heterogeneous across the range. In response, we identified novel genotypes that could be introduced to genetically offset the fitness decay. Our study highlights the value of predictive models to aid seed provenancing and improve the success of revegetation projects.
Collapse
Affiliation(s)
- Andhika R Putra
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jian D L Yen
- Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, Australia
| | | |
Collapse
|
8
|
Lu J, Zhen S, Zhang J, Xie Y, He C, Wang X, Wang Z, Zhang S, Li Y, Cui Y, Wang G, Wang J, Liu J, Li L, Gu R, Zheng X, Fu J. Combined population transcriptomic and genomic analysis reveals cis-regulatory differentiation of non-coding RNAs in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:16. [PMID: 36662257 DOI: 10.1007/s00122-023-04293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Long intergenic non-coding RNA (lincRNA), cis-acting expression quantitative trait locus (cis-eQTL), maize, regulatory evolution. The law of genetic variation during domestication explains the evolutionary mechanism and provides a theoretical basis for improving existing varieties of maize. Previous studies focused on exploiting regulatory variations controlling the expression of protein-coding genes rather than of non-protein-coding genes. Here, we examined the genetic and evolutionary features of long non-coding RNAs from intergenic regions (long intergenic non-coding RNAs, lincRNAs) using population-scale transcriptome data and identified 1168 lincRNAs with cis-acting expression quantitative trait loci (cis-eQTLs). We found that lincRNAs are more likely to be regulated by cis-eQTLs, which exert stronger effects than the protein-coding genes. During maize domestication and improvement, upregulated alleles of lincRNAs, which originated from both standing variation and new mutation, accumulate more frequently and show larger effect sizes than the coding genes. A stronger signature of genetic differentiation was observed in their regulatory regions compared to those of randomly sampled lincRNAs. In addition, we found that cis-regulatory differentiation of lincRNAs is related to the sequence conservation of lincRNA transcripts. Non-conserved lincRNAs more tend to gain upregulated alleles and show a stronger relationship with selected traits than conserved lincRNAs between maize and its wild relatives. Our findings in maize improve the understanding of cis-regulatory variation in lincRNA genes during domestication and improvement and provide an effective approach for prioritizing candidates for further investigation.
Collapse
Affiliation(s)
- Jiawen Lu
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sihan Zhen
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Zhang
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuxin Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cheng He
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoli Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zheyuan Wang
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Song Zhang
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongxiang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Jianhua Wang
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Riliang Gu
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
9
|
Andreou GM, Messer M, Tong H, Nikoloski Z, Laitinen RAE. Heritability of temperature-mediated flower size plasticity in Arabidopsis thaliana. QUANTITATIVE PLANT BIOLOGY 2023; 4:e4. [PMID: 37077703 PMCID: PMC10095859 DOI: 10.1017/qpb.2023.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 05/03/2023]
Abstract
Phenotypic plasticity is a heritable trait that provides sessile organisms a strategy to rapidly mitigate negative effects of environmental change. Yet, we have little understanding of the mode of inheritance and genetic architecture of plasticity in different focal traits relevant to agricultural applications. This study builds on our recent discovery of genes controlling temperature-mediated flower size plasticity in Arabidopsis thaliana and focuses on dissecting the mode of inheritance and combining ability of plasticity in the context of plant breeding. We created a full diallel cross using 12 A. thaliana accessions displaying different temperature-mediated flower size plasticities, scored as the fold change between two temperatures. Griffing's analysis of variance in flower size plasticity indicated that non-additive genetic action shapes this trait and pointed at challenges and opportunities when breeding for reduced plasticity. Our findings provide an outlook of flower size plasticity that is important for developing resilient crops for future climates.
Collapse
Affiliation(s)
- Gregory M. Andreou
- Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Michaela Messer
- Molecular Mechanisms of Plant Adaptation Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Hao Tong
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Roosa A. E. Laitinen
- Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Molecular Mechanisms of Plant Adaptation Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Author for correspondence: Roosa A. E. Laitinen, E-mail:
| |
Collapse
|
10
|
Xie J, Wang W, Yang T, Zhang Q, Zhang Z, Zhu X, Li N, Zhi L, Ma X, Zhang S, Liu Y, Wang X, Li F, Zhao Y, Jia X, Zhou J, Jiang N, Li G, Liu M, Liu S, Li L, Zeng A, Du M, Zhang Z, Li J, Zhang Z, Li Z, Zhang H. Large-scale genomic and transcriptomic profiles of rice hybrids reveal a core mechanism underlying heterosis. Genome Biol 2022; 23:264. [PMID: 36550554 PMCID: PMC9773586 DOI: 10.1186/s13059-022-02822-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Heterosis is widely used in agriculture. However, its molecular mechanisms are still unclear in plants. Here, we develop, sequence, and record the phenotypes of 418 hybrids from crosses between two testers and 265 rice varieties from a mini-core collection. RESULTS Phenotypic analysis shows that heterosis is dependent on genetic backgrounds and environments. By genome-wide association study of 418 hybrids and their parents, we find that nonadditive QTLs are the main genetic contributors to heterosis. We show that nonadditive QTLs are more sensitive to the genetic background and environment than additive ones. Further simulations and experimental analysis support a novel mechanism, homo-insufficiency under insufficient background (HoIIB), underlying heterosis. We propose heterosis in most cases is not due to heterozygote advantage but homozygote disadvantage under the insufficient genetic background. CONCLUSION The HoIIB model elucidates that genetic background insufficiency is the intrinsic mechanism of background dependence, and also the core mechanism of nonadditive effects and heterosis. This model can explain most known hypotheses and phenomena about heterosis, and thus provides a novel theory for hybrid rice breeding in future.
Collapse
Affiliation(s)
- Jianyin Xie
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weiping Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Tao Yang
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Quan Zhang
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhifang Zhang
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiaoyang Zhu
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Ni Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Linran Zhi
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiaoqian Ma
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Shuyang Zhang
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yan Liu
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xueqiang Wang
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Fengmei Li
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Sanya Nanfan Research Institute of Hainan University, Sanya, 572024, China
| | - Yan Zhao
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xuewei Jia
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jieyu Zhou
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Ningjia Jiang
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572024, China
| | - Gangling Li
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Miaosong Liu
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Shijin Liu
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lin Li
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - An Zeng
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Sanya Nanfan Research Institute of Hainan University, Sanya, 572024, China
- Sanya Institute of China Agricultural University, Sanya, 572024, China
| | - Mengke Du
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Sanya Nanfan Research Institute of Hainan University, Sanya, 572024, China
| | - Zhanying Zhang
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinjie Li
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Ziding Zhang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Zichao Li
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572024, China.
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100193, China.
| | - Hongliang Zhang
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education / Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
- Sanya Nanfan Research Institute of Hainan University, Sanya, 572024, China.
- Sanya Institute of China Agricultural University, Sanya, 572024, China.
| |
Collapse
|
11
|
Wang Y, Xia J, Huang L, Lin Q, Cai Q, Xie H, He W, Wei Y, Xie H, Tang W, Wu W, Zhang J. Transcriptome Analyses Indicate Significant Association of Increased Non-Additive and Allele-Specific Gene Expression with Hybrid Weakness in Rice ( Oryza sativa L.). LIFE (BASEL, SWITZERLAND) 2022; 12:life12081278. [PMID: 36013457 PMCID: PMC9410013 DOI: 10.3390/life12081278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022]
Abstract
The heterosis in hybrid rice is highly affected by the environment and hybrid weakness occurs frequently depending on the genotypes of the hybrid and its parents. Hybrid weakness was also observed in our field experiments on nine rice hybrids produced by 3 × 3 incomplete diallel crosses. Among the nine hybrids, five displayed mid-parent heterosis (MPH) for grain yield per plant, while four showed mid-parent hybrid weakness (MPHW). A sequencing analysis of transcriptomes in panicles at the seed-filling stage revealed a significant association between enhanced non-additive gene expression (NAE) and allele-specific gene expression (ASE) with hybrid weakness. High proportions of ASE genes, with most being of mono-allele expression, were detected in the four MPHW hybrids, ranging from 22.65% to 45.97%; whereas only 4.80% to 5.69% of ASE genes were found in the five MPH hybrids. Moreover, an independence test indicated that the enhancements of NAE and ASE in the MPHW hybrids were significantly correlated. Based on the results of our study, we speculated that an unfavorable environment might cause hybrid weakness by enhancing ASE and NAE at the transcriptome level.
Collapse
Affiliation(s)
- Yingheng Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China
- National Rice Engineering Research Center of China, Fuzhou 350003, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350003, China
- Incubator of National Key Laboratory of Fujian Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology of China, Fuzhou 350003, China
- Base of South China, State Key Laboratory of Hybrid Rice, Fuzhou 350003, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou 350003, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou 350003, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Jing Xia
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Likun Huang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiang Lin
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China
- National Rice Engineering Research Center of China, Fuzhou 350003, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350003, China
- Incubator of National Key Laboratory of Fujian Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology of China, Fuzhou 350003, China
- Base of South China, State Key Laboratory of Hybrid Rice, Fuzhou 350003, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou 350003, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou 350003, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China
- National Rice Engineering Research Center of China, Fuzhou 350003, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350003, China
- Incubator of National Key Laboratory of Fujian Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology of China, Fuzhou 350003, China
- Base of South China, State Key Laboratory of Hybrid Rice, Fuzhou 350003, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou 350003, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou 350003, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China
- National Rice Engineering Research Center of China, Fuzhou 350003, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350003, China
- Incubator of National Key Laboratory of Fujian Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology of China, Fuzhou 350003, China
- Base of South China, State Key Laboratory of Hybrid Rice, Fuzhou 350003, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou 350003, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou 350003, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Wei He
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China
- National Rice Engineering Research Center of China, Fuzhou 350003, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350003, China
- Incubator of National Key Laboratory of Fujian Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology of China, Fuzhou 350003, China
- Base of South China, State Key Laboratory of Hybrid Rice, Fuzhou 350003, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou 350003, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou 350003, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China
- National Rice Engineering Research Center of China, Fuzhou 350003, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350003, China
- Incubator of National Key Laboratory of Fujian Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology of China, Fuzhou 350003, China
- Base of South China, State Key Laboratory of Hybrid Rice, Fuzhou 350003, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou 350003, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou 350003, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China
- National Rice Engineering Research Center of China, Fuzhou 350003, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350003, China
- Incubator of National Key Laboratory of Fujian Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology of China, Fuzhou 350003, China
- Base of South China, State Key Laboratory of Hybrid Rice, Fuzhou 350003, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou 350003, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou 350003, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Weiqi Tang
- Marine and Agricultural Biotechnology Laboratory, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Correspondence: (W.T.); (W.W.); (J.Z.)
| | - Weiren Wu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (W.T.); (W.W.); (J.Z.)
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China
- National Rice Engineering Research Center of China, Fuzhou 350003, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350003, China
- Incubator of National Key Laboratory of Fujian Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Science and Technology of China, Fuzhou 350003, China
- Base of South China, State Key Laboratory of Hybrid Rice, Fuzhou 350003, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350003, China
- Fuzhou Branch, National Rice Improvement Center of China, Fuzhou 350003, China
- Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou 350003, China
- Fujian Key Laboratory of Rice Molecular Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Correspondence: (W.T.); (W.W.); (J.Z.)
| |
Collapse
|
12
|
Tan B, Ingvarsson PK. Integrating genome-wide association mapping of additive and dominance genetic effects to improve genomic prediction accuracy in Eucalyptus. THE PLANT GENOME 2022; 15:e20208. [PMID: 35441826 DOI: 10.1002/tpg2.20208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies (GWAS) is a powerful and widely used approach to decipher the genetic control of complex traits. Still, a significant challenge for dissecting quantitative traits in forest trees is statistical power. This study uses a population consisting of 1,123 samples derived from two successive generations of crosses between Eucalyptus grandis (W. Hill) and E. urophylla (S.T. Blake). All samples have been phenotyped for growth and wood property traits and genotyped using the EuChip60K chip, yielding 37,832 informative single nucleotide polymorphisms (SNPs). We use multi-locus GWAS models to assess additive and dominance effects to identify markers associated with growth and wood property traits in the eucalypt hybrids. Additive and dominance association models identified 78 and 82 significant SNPs across all traits, respectively, which captured between 39 and 86% of the genomic-based heritability. We also used SNPs identified from the GWAS and SNPs using less stringent significance thresholds to evaluate predictive abilities in a genomic selection framework. Genomic selection models based on the top 1% SNPs captured a substantially greater proportion of the genetic variance of traits compared with when we used all SNPs for model training. The prediction ability of estimated breeding values improved significantly for all traits when using either the top 1% SNPs or SNPs identified using a relaxed p value threshold (p < 10-3 ). This study also highlights the added value of incorporating dominance effects for identifying genomic regions controlling growth traits in trees. Moreover, integrating GWAS results into genomic selection method provides enhanced power relative to discrete associations for identifying genomic variation potentially valuable for forest tree breeding.
Collapse
Affiliation(s)
- Biyue Tan
- Umeå Plant Science Centre, Dep. of Ecology and Environmental Science, Umeå Univ., Umeå, SE-90187, Sweden
- Stora Enso AB, Nacka, SE-131 04, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Dep. of Plant Biology, Uppsala BioCenter, Swedish Univ. of Agricultural Sciences, Uppsala, SE-750 07, Sweden
| |
Collapse
|
13
|
Liu W, Zhang Y, He H, He G, Deng XW. From hybrid genomes to heterotic trait output: Challenges and opportunities. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102193. [PMID: 35219140 DOI: 10.1016/j.pbi.2022.102193] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/19/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Heterosis (or hybrid vigor) has been widely used in crop seed breeding to improve many key economic traits. Nevertheless, the genetic and molecular basis of this important phenomenon has long remained elusive, constraining its flexible and effective exploitation. Advanced genomic approaches are efficient in characterizing the mechanism of heterosis. Here, we review how the omics approaches, including genomic, transcriptomic, and population genetics methods such as genome-wide association studies, can reveal how hybrid genomes outperform parental genomes in plants. This information opens up opportunities for genomic exploration and manipulation of heterosis in crop breeding.
Collapse
Affiliation(s)
- Wenwen Liu
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yilin Zhang
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hang He
- Peking University Institute of Advanced Agricultural Sciences, 699 Binhu Road, Xiashan Ecological and Economic Development Zone, Weifang, Shandong, 261325, China
| | - Guangming He
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Xing Wang Deng
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China; Peking University Institute of Advanced Agricultural Sciences, 699 Binhu Road, Xiashan Ecological and Economic Development Zone, Weifang, Shandong, 261325, China.
| |
Collapse
|
14
|
Castillo-Bravo R, Fort A, Cashell R, Brychkova G, McKeown PC, Spillane C. Parent-of-Origin Effects on Seed Size Modify Heterosis Responses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:835219. [PMID: 35330872 PMCID: PMC8940307 DOI: 10.3389/fpls.2022.835219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 05/05/2023]
Abstract
Parent-of-origin effects arise when a phenotype depends on whether it is inherited maternally or paternally. Parent-of-origin effects can exert a strong influence on F1 seed size in flowering plants, an important agronomic and life-history trait that can contribute to biomass heterosis. Here we investigate the natural variation in the relative contributions of the maternal and paternal genomes to F1 seed size across 71 reciprocal pairs of F1 hybrid diploids and the parental effect on F1 seed size heterosis. We demonstrate that the paternally derived genome influences F1 seed size more significantly than previously appreciated. We further demonstrate (by disruption of parental genome dosage balance in F1 triploid seeds) that hybridity acts as an enhancer of genome dosage effects on F1 seed size, beyond that observed from hybridity or genome dosage effects on their own. Our findings indicate that interactions between genetic hybridity and parental genome dosage can enhance heterosis effects in plants, opening new avenues for boosting heterosis breeding in crop plants.
Collapse
|
15
|
Suri GK, Braich S, Noy DM, Rosewarne GM, Cogan NOI, Kaur S. Advances in lentil production through heterosis: Evaluating generations and breeding systems. PLoS One 2022; 17:e0262857. [PMID: 35180225 PMCID: PMC8856536 DOI: 10.1371/journal.pone.0262857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/06/2022] [Indexed: 11/19/2022] Open
Abstract
Heterosis is defined as increased performance of the F1 hybrid relative to its parents. In the current study, a cohort of populations and parents were created to evaluate and understand heterosis across generations (i.e., F1 to F3) in lentil, a self-pollinated annual diploid (2n = 2× = 14) crop species. Lentil plants were evaluated for heterotic traits in terms of plant height, biomass fresh weight, seed number, yield per plant and 100 grain weight. A total of 47 selected lentil genotypes were cross hybridized to generate 72 F1 hybrids. The F1 hybrids from the top five crosses exhibited between 31%-62% heterosis for seed number with reference to the better parent. The five best performing heterotic crosses were selected with a negative control for evaluation at the subsequent F2 generation and only the tails of the distribution taken forward to be assessed in the F3 generation as a sub selection. Overall, heterosis decreases across the subsequent generations for all traits studied. However, some individual genotypes were identified at the F2 and sub-selected F3 generations with higher levels of heterosis than the best F1 mean value (hybrid mimics). The phenotypic data for the selected F2 and sub selected F3 hybrids were analysed, and the study suggested that 100 grain weight was the biggest driver of yield followed by seed number. A genetic diversity analysis of all the F1 parents failed to correlate genetic distance and divergence among parents with heterotic F1's. Therefore, genetic distance was not a key factor to determine heterosis in lentil. The study highlights the challenges associated with different breeding systems for heterosis (i.e., F1 hybrid-based breeding systems and/or via hybrid mimics) but demonstrates the potential significant gains that could be achieved in lentil productivity.
Collapse
Affiliation(s)
- Gurpreet Kaur Suri
- Agriculture Victoria, AgriBio, The Centre for AgriBioscience, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Shivraj Braich
- Agriculture Victoria, AgriBio, The Centre for AgriBioscience, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Dianne M. Noy
- Agriculture Victoria, Grains Innovation Park, Horsham
| | | | - Noel O. I. Cogan
- Agriculture Victoria, AgriBio, The Centre for AgriBioscience, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Sukhjiwan Kaur
- Agriculture Victoria, AgriBio, The Centre for AgriBioscience, Bundoora, Victoria, Australia
| |
Collapse
|
16
|
Adams PE, Crist AB, Young EM, Willis JH, Phillips PC, Fierst JL. Slow Recovery from Inbreeding Depression Generated by the Complex Genetic Architecture of Segregating Deleterious Mutations. Mol Biol Evol 2022; 39:msab330. [PMID: 34791426 PMCID: PMC8789292 DOI: 10.1093/molbev/msab330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The deleterious effects of inbreeding have been of extreme importance to evolutionary biology, but it has been difficult to characterize the complex interactions between genetic constraints and selection that lead to fitness loss and recovery after inbreeding. Haploid organisms and selfing organisms like the nematode Caenorhabditis elegans are capable of rapid recovery from the fixation of novel deleterious mutation; however, the potential for recovery and genomic consequences of inbreeding in diploid, outcrossing organisms are not well understood. We sought to answer two questions: 1) Can a diploid, outcrossing population recover from inbreeding via standing genetic variation and new mutation? and 2) How does allelic diversity change during recovery? We inbred C. remanei, an outcrossing relative of C. elegans, through brother-sister mating for 30 generations followed by recovery at large population size. Inbreeding reduced fitness but, surprisingly, recovery from inbreeding at large populations sizes generated only very moderate fitness recovery after 300 generations. We found that 65% of ancestral single nucleotide polymorphisms (SNPs) were fixed in the inbred population, far fewer than the theoretical expectation of ∼99%. Under recovery, 36 SNPs across 30 genes involved in alimentary, muscular, nervous, and reproductive systems changed reproducibly across replicates, indicating that strong selection for fitness recovery does exist. Our results indicate that recovery from inbreeding depression via standing genetic variation and mutation is likely to be constrained by the large number of segregating deleterious variants present in natural populations, limiting the capacity for recovery of small populations.
Collapse
Affiliation(s)
- Paula E Adams
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Anna B Crist
- Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Ellen M Young
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Janna L Fierst
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
17
|
Wang Y, Yuan J, Sun Y, Li Y, Wang P, Shi L, Ni A, Zong Y, Zhao J, Bian S, Ma H, Chen J. Genetic Basis of Sexual Maturation Heterosis: Insights From Ovary lncRNA and mRNA Repertoire in Chicken. Front Endocrinol (Lausanne) 2022; 13:951534. [PMID: 35966096 PMCID: PMC9363637 DOI: 10.3389/fendo.2022.951534] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 01/02/2023] Open
Abstract
Sexual maturation is fundamental to the reproduction and production performance, heterosis of which has been widely used in animal crossbreeding. However, the underlying mechanism have long remained elusive, despite its profound biological and agricultural significance. In the current study, the reciprocal crossing between White Leghorns and Beijing You chickens were performed to measure the sexual maturation heterosis, and the ovary lncRNAs and mRNAs of purebreds and crossbreeds were profiled to illustrate molecular mechanism of heterosis. Heterosis larger than 20% was found for pubic space and oviduct length, whereas age at first egg showed negative heterosis in both crossbreeds. We identified 1170 known lncRNAs and 1994 putative lncRNAs in chicken ovary using a stringent pipeline. Gene expression pattern showed that nonadditivity was predominant, and the proportion of nonadditive lncRNAs and genes was similar between two crossbreeds, ranging from 44.24% to 49.15%. A total of 200 lncRNAs and 682 genes were shared by two crossbreeds, respectively. GO and KEGG analysis showed that the common genes were significantly enriched in the cell cycle, animal organ development, gonad development, ECM-receptor interaction, calcium signaling pathway and GnRH signaling pathway. Weighted gene co-expression network analysis (WGCNA) identified that 7 out of 20 co-expressed lncRNA-mRNA modules significantly correlated with oviduct length and pubic space. Interestingly, genes harbored in seven modules were also enriched in the similar biological process and pathways, in which nonadditive lncRNAs, such as MSTRG.17017.1 and MSTRG.6475.20, were strongly associated with nonadditive genes, such as CACNA1C and TGFB1 to affect gonad development and GnRH signaling pathway, respectively. Moreover, the results of real-time quantitative PCR (RT-qPCR) correlated well with the transcriptome data. Integrated with positive heterosis of serum GnRH and melatonin content detected in crossbreeds, we speculated that nonadditive genes involved in the GnRH signaling pathway elevated the gonad development, leading to the sexual maturation heterosis. We characterized a systematic landscape of ovary lncRNAs and mRNAs related to sexual maturation heterosis in chicken. The quantitative exploration of hybrid transcriptome changes lays foundation for genetic improvement of sexual maturation traits and provides insights into endocrine control of sexual maturation.
Collapse
|
18
|
Dafna A, Halperin I, Oren E, Isaacson T, Tzuri G, Meir A, Schaffer AA, Burger J, Tadmor Y, Buckler ES, Gur A. Underground heterosis for yield improvement in melon. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6205-6218. [PMID: 0 DOI: 10.1093/jxb/erab219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/13/2021] [Indexed: 05/15/2023]
Abstract
Abstract
Heterosis, the superiority of hybrids over their parents, is a major genetic force associated with plant fitness and crop yield enhancement. We investigated root-mediated yield heterosis in melons (Cucumis melo) by characterizing a common variety grafted onto 190 hybrid rootstocks, resulting from crossing 20 diverse inbreds in a diallel-mating scheme. Hybrid rootstocks improved yield by more than 40% compared with their parents, and the best hybrid yield outperformed the reference commercial variety by 65% under both optimal and minimal irrigation treatments. To characterize the genetics of underground heterosis we conducted whole genome re-sequencing of the 20 founder lines, and showed that parental genetic distance was no predictor for the level of heterosis. Through inference of the 190 hybrid genotypes from their parental genomes, followed by genome-wide association analysis, we mapped multiple quantitative trait loci for root-mediated yield. Yield enhancement of the four best-performing hybrid rootstocks was validated in multiple experiments with four different scion varieties. Our grafting approach is complementary to the common roots genetic approach that focuses mainly on variation in root system architecture, and is a step towards discovery of candidate genes involved in root function and yield enhancement.
Collapse
Affiliation(s)
- Asaf Dafna
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ilan Halperin
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elad Oren
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tal Isaacson
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Galil Tzuri
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Ayala Meir
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Arthur A Schaffer
- Plant Science Institute, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, Rishon LeZiyyon 7507101, Israel
| | - Joseph Burger
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Yaakov Tadmor
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Edward S Buckler
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY 14853, USA
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Amit Gur
- Plant Science Institute, Agricultural Research Organization, Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay 3009500, Israel
| |
Collapse
|
19
|
Mai C, Wen C, Xu Z, Xu G, Chen S, Zheng J, Sun C, Yang N. Genetic basis of negative heterosis for growth traits in chickens revealed by genome-wide gene expression pattern analysis. J Anim Sci Biotechnol 2021; 12:52. [PMID: 33865443 PMCID: PMC8053289 DOI: 10.1186/s40104-021-00574-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/21/2021] [Indexed: 11/18/2022] Open
Abstract
Background Heterosis is an important biological phenomenon that has been extensively utilized in agricultural breeding. However, negative heterosis is also pervasively observed in nature, which can cause unfavorable impacts on production performance. Compared with systematic studies of positive heterosis, the phenomenon of negative heterosis has been largely ignored in genetic studies and breeding programs, and the genetic mechanism of this phenomenon has not been thoroughly elucidated to date. Here, we used chickens, the most common agricultural animals worldwide, to determine the genetic and molecular mechanisms of negative heterosis. Results We performed reciprocal crossing experiments with two distinct chicken lines and found that the body weight presented widely negative heterosis in the early growth of chickens. Negative heterosis of carcass traits was more common than positive heterosis, especially breast muscle mass, which was over − 40% in reciprocal progenies. Genome-wide gene expression pattern analyses of breast muscle tissues revealed that nonadditivity, including dominance and overdominace, was the major gene inheritance pattern. Nonadditive genes, including a substantial number of genes encoding ATPase and NADH dehydrogenase, accounted for more than 68% of differentially expressed genes in reciprocal crosses (4257 of 5587 and 3617 of 5243, respectively). Moreover, nonadditive genes were significantly associated with the biological process of oxidative phosphorylation, which is the major metabolic pathway for energy release and animal growth and development. The detection of ATP content and ATPase activity for purebred and crossbred progenies further confirmed that chickens with lower muscle yield had lower ATP concentrations but higher hydrolysis activity, which supported the important role of oxidative phosphorylation in negative heterosis for growth traits in chickens. Conclusions These findings revealed that nonadditive genes and their related oxidative phosphorylation were the major genetic and molecular factors in the negative heterosis of growth in chickens, which would be beneficial to future breeding strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00574-2.
Collapse
Affiliation(s)
- Chunning Mai
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Chaoliang Wen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Zhiyuan Xu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Sirui Chen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
20
|
Waller DM. Addressing Darwin's dilemma: Can pseudo-overdominance explain persistent inbreeding depression and load? Evolution 2021; 75:779-793. [PMID: 33598971 DOI: 10.1111/evo.14189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/06/2021] [Accepted: 01/30/2021] [Indexed: 01/01/2023]
Abstract
Darwin spent years investigating the effects of self-fertilization, concluding that "nature abhors perpetual self-fertilization." Given that selection purges inbred populations of strongly deleterious mutations and drift fixes mild mutations, why does inbreeding depression (ID) persist in highly inbred taxa and why do no purely selfing taxa exist? Background selection, associations and interference among loci, and drift within small inbred populations all limit selection while often increasing fixation. These mechanisms help to explain why more inbred populations in most species consistently show more fixed load. This drift load is manifest in the considerable heterosis regularly observed in between-population crosses. Such heterosis results in subsequent high ID, suggesting a mechanism by which small populations could retain variation and inbreeding load. Multiple deleterious recessive mutations linked in repulsion generate pseudo-overdominance. Many tightly linked load loci could generate a balanced segregating load high enough to sustain ID over many generations. Such pseudo-overdominance blocks (or "PODs") are more likely to occur in regions of low recombination. They should also result in clear genetic signatures including genomic hotspots of heterozygosity; distinct haplotypes supporting alleles at intermediate frequency; and high linkage disequilibrium in and around POD regions. Simulation and empirical studies tend to support these predictions. Additional simulations and comparative genomic analyses should explore POD dynamics in greater detail to resolve whether PODs exist in sufficient strength and number to account for why ID and load persist within inbred lineages.
Collapse
Affiliation(s)
- Donald M Waller
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
21
|
Blein T, Balzergue C, Roulé T, Gabriel M, Scalisi L, François T, Sorin C, Christ A, Godon C, Delannoy E, Martin-Magniette ML, Nussaume L, Hartmann C, Gautheret D, Desnos T, Crespi M. Landscape of the Noncoding Transcriptome Response of Two Arabidopsis Ecotypes to Phosphate Starvation. PLANT PHYSIOLOGY 2020; 183:1058-1072. [PMID: 32404413 PMCID: PMC7333710 DOI: 10.1104/pp.20.00446] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/30/2020] [Indexed: 05/22/2023]
Abstract
Root architecture varies widely between species; it even varies between ecotypes of the same species, despite strong conservation of the coding portion of their genomes. By contrast, noncoding RNAs evolve rapidly between ecotypes and may control their differential responses to the environment, since several long noncoding RNAs (lncRNAs) are known to quantitatively regulate gene expression. Roots from ecotypes Columbia and Landsberg erecta of Arabidopsis (Arabidopsis thaliana) respond differently to phosphate starvation. Here, we compared transcriptomes (mRNAs, lncRNAs, and small RNAs) of root tips from these two ecotypes during early phosphate starvation. We identified thousands of lncRNAs that were largely conserved at the DNA level in these ecotypes. In contrast to coding genes, many lncRNAs were specifically transcribed in one ecotype and/or differentially expressed between ecotypes independent of phosphate availability. We further characterized these ecotype-related lncRNAs and studied their link with small interfering RNAs. Our analysis identified 675 lncRNAs differentially expressed between the two ecotypes, including antisense RNAs targeting key regulators of root-growth responses. Misregulation of several lincRNAs showed that at least two ecotype-related lncRNAs regulate primary root growth in ecotype Columbia. RNA-sequencing analysis following deregulation of lncRNA NPC48 revealed a potential link with root growth and transport functions. This exploration of the noncoding transcriptome identified ecotype-specific lncRNA-mediated regulation in root apexes. The noncoding genome may harbor further mechanisms involved in ecotype adaptation of roots to different soil environments.
Collapse
Affiliation(s)
- Thomas Blein
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
| | - Coline Balzergue
- Aix Marseille University, Commisariat à l'Énergie Atomique, Centre Nationale de la Recherche, Bioscience and Biotechnology Institute of Aix-Marseilles, Unité Mixte de Recherche 7265 Signalisation pour l'Adaptation des Végétaux à leur Environnement (UMR7265 SAVE), 13108 Saint Paul-Lez-Durance, France
| | - Thomas Roulé
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
| | - Marc Gabriel
- Institute for Integrative Biology of the Cell, Commisariat à l'Énergie Atomique, Centre Nationale de la Recherche, Université Paris Sud, 91198 Gif sur Yvette, France
| | - Laetitia Scalisi
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
| | - Tracy François
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
| | - Céline Sorin
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
| | - Aurélie Christ
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
| | - Christian Godon
- Aix Marseille University, Commisariat à l'Énergie Atomique, Centre Nationale de la Recherche, Bioscience and Biotechnology Institute of Aix-Marseilles, Unité Mixte de Recherche 7265 Signalisation pour l'Adaptation des Végétaux à leur Environnement (UMR7265 SAVE), 13108 Saint Paul-Lez-Durance, France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
- Unité Mixte de Recherche MIA-Paris (UMR MIA-Paris), AgroParisTech, Institut National de la Recherche Agronomique, Université Paris-Saclay, 75005 Paris, France
| | - Laurent Nussaume
- Aix Marseille University, Commisariat à l'Énergie Atomique, Centre Nationale de la Recherche, Bioscience and Biotechnology Institute of Aix-Marseilles, Unité Mixte de Recherche 7265 Signalisation pour l'Adaptation des Végétaux à leur Environnement (UMR7265 SAVE), 13108 Saint Paul-Lez-Durance, France
| | - Caroline Hartmann
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
| | - Daniel Gautheret
- Institute for Integrative Biology of the Cell, Commisariat à l'Énergie Atomique, Centre Nationale de la Recherche, Université Paris Sud, 91198 Gif sur Yvette, France
| | - Thierry Desnos
- Aix Marseille University, Commisariat à l'Énergie Atomique, Centre Nationale de la Recherche, Bioscience and Biotechnology Institute of Aix-Marseilles, Unité Mixte de Recherche 7265 Signalisation pour l'Adaptation des Végétaux à leur Environnement (UMR7265 SAVE), 13108 Saint Paul-Lez-Durance, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay, Université de Paris, 91405 Orsay, France
| |
Collapse
|
22
|
Mehraj H, Kawanabe T, Shimizu M, Miyaji N, Akter A, Dennis ES, Fujimoto R. In Arabidopsis thaliana Heterosis Level Varies among Individuals in an F 1 Hybrid Population. PLANTS 2020; 9:plants9040414. [PMID: 32230994 PMCID: PMC7238264 DOI: 10.3390/plants9040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 11/28/2022]
Abstract
Heterosis or hybrid vigour is a phenomenon in which hybrid progeny exhibit superior yield and biomass to parental lines and has been used to breed F1 hybrid cultivars in many crops. A similar level of heterosis in all F1 individuals is expected as they are genetically identical. However, we found variation in rosette size in individual F1 plants from a cross between C24 and Columbia-0 accessions of Arabidopsis thaliana. Big-sized F1 plants had 26.1% larger leaf area in the first and second leaves than medium-sized F1 plants at 14 days after sowing in spite of the identical genetic background. We identified differentially expressed genes between big- and medium-sized F1 plants by microarray; genes involved in the category of stress response were overrepresented. We made transgenic plants overexpressing 21 genes, which were differentially expressed between the two size classes, and some lines had increased plant size at 14 or 21 days after sowing but not at all time points during development. Change of expression levels in stress-responsive genes among individual F1 plants could generate the variation in plant size of individual F1 plants in A. thaliana.
Collapse
Affiliation(s)
- Hasan Mehraj
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan; (H.M.); (N.M.); (A.A.)
| | - Takahiro Kawanabe
- School of Agriculture, Tokai University, Toroku, Higashi-ku, Kumamoto 862-8652, Japan
- Correspondence: (T.K.); (R.F.)
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Narita, Kitakami, Iwate 024-0003, Japan;
| | - Naomi Miyaji
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan; (H.M.); (N.M.); (A.A.)
| | - Ayasha Akter
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan; (H.M.); (N.M.); (A.A.)
- Department of Horticulture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Elizabeth S. Dennis
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia;
- University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan; (H.M.); (N.M.); (A.A.)
- Correspondence: (T.K.); (R.F.)
| |
Collapse
|
23
|
Fournier T, Abou Saada O, Hou J, Peter J, Caudal E, Schacherer J. Extensive impact of low-frequency variants on the phenotypic landscape at population-scale. eLife 2019; 8:49258. [PMID: 31647416 PMCID: PMC6892612 DOI: 10.7554/elife.49258] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) allow to dissect complex traits and map genetic variants, which often explain relatively little of the heritability. One potential reason is the preponderance of undetected low-frequency variants. To increase their allele frequency and assess their phenotypic impact in a population, we generated a diallel panel of 3025 yeast hybrids, derived from pairwise crosses between natural isolates and examined a large number of traits. Parental versus hybrid regression analysis showed that while most phenotypic variance is explained by additivity, a third is governed by non-additive effects, with complete dominance having a key role. By performing GWAS on the diallel panel, we found that associated variants with low frequency in the initial population are overrepresented and explain a fraction of the phenotypic variance as well as an effect size similar to common variants. Overall, we highlighted the relevance of low-frequency variants on the phenotypic variation.
Collapse
Affiliation(s)
- Téo Fournier
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Omar Abou Saada
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Jing Hou
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Jackson Peter
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Elodie Caudal
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | | |
Collapse
|
24
|
Implications of Gene Inheritance Patterns on the Heterosis of Abdominal Fat Deposition in Chickens. Genes (Basel) 2019; 10:genes10100824. [PMID: 31635393 PMCID: PMC6826362 DOI: 10.3390/genes10100824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/05/2019] [Accepted: 10/17/2019] [Indexed: 12/23/2022] Open
Abstract
Heterosis, a phenomenon characterized by the superior performance of hybrid individuals relative to their parents, has been widely utilized in livestock and crop breeding, while the underlying genetic basis remains elusive in chickens. Here, we performed a reciprocal crossing experiment with broiler and layer chickens and conducted RNA sequencing on liver tissues for reciprocal crosses and their parental lines to identify inheritance patterns of gene expression. Our results showed that heterosis of the abdominal fat percentage was 69.28%–154.71% in reciprocal crosses. Over-dominant genes of reciprocal crosses were significantly enriched in three biological pathways, namely, butanoate metabolism, the synthesis and degradation of ketone bodies, and valine, leucine, and isoleucine degradation. Among these shared over-dominant genes, we found that a lipid-related gene, HMGCL, was enriched in these pathways. Furthermore, we validated this gene as over-dominant using qRT-PCR. Although no shared significant pathway was detected in the high-parent dominant genes of reciprocal crosses, high-parent dominant gene expression was the major gene inheritance pattern in reciprocal crosses and we could not exclude the effect of high-parent dominant genes. These findings suggest that non-additive genes play important roles in the heterosis of important traits in chickens and have important implications regarding our understanding of heterosis.
Collapse
|
25
|
Togninalli M, Seren Ü, Meng D, Fitz J, Nordborg M, Weigel D, Borgwardt K, Korte A, Grimm DG. The AraGWAS Catalog: a curated and standardized Arabidopsis thaliana GWAS catalog. Nucleic Acids Res 2019; 46:D1150-D1156. [PMID: 29059333 PMCID: PMC5753280 DOI: 10.1093/nar/gkx954] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/06/2017] [Indexed: 12/21/2022] Open
Abstract
The abundance of high-quality genotype and phenotype data for the model organism Arabidopsis thaliana enables scientists to study the genetic architecture of many complex traits at an unprecedented level of detail using genome-wide association studies (GWAS). GWAS have been a great success in A. thaliana and many SNP-trait associations have been published. With the AraGWAS Catalog (https://aragwas.1001genomes.org) we provide a publicly available, manually curated and standardized GWAS catalog for all publicly available phenotypes from the central A. thaliana phenotype repository, AraPheno. All GWAS have been recomputed on the latest imputed genotype release of the 1001 Genomes Consortium using a standardized GWAS pipeline to ensure comparability between results. The catalog includes currently 167 phenotypes and more than 222 000 SNP-trait associations with P < 10−4, of which 3887 are significantly associated using permutation-based thresholds. The AraGWAS Catalog can be accessed via a modern web-interface and provides various features to easily access, download and visualize the results and summary statistics across GWAS.
Collapse
Affiliation(s)
- Matteo Togninalli
- Machine Learning and Computational Biology Lab, Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4056 Basel, Switzerland
| | - Ümit Seren
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Dazhe Meng
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria.,Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90007, USA
| | - Joffrey Fitz
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Karsten Borgwardt
- Machine Learning and Computational Biology Lab, Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4056 Basel, Switzerland
| | - Arthur Korte
- Center for Computational and Theoretical Biology, University Würzburg, 97074 Würzburg, Germany
| | - Dominik G Grimm
- Machine Learning and Computational Biology Lab, Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4056 Basel, Switzerland
| |
Collapse
|
26
|
Vacher M, Small I. Simulation of heterosis in a genome-scale metabolic network provides mechanistic explanations for increased biomass production rates in hybrid plants. NPJ Syst Biol Appl 2019; 5:24. [PMID: 31341636 PMCID: PMC6639380 DOI: 10.1038/s41540-019-0101-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/28/2019] [Indexed: 01/13/2023] Open
Abstract
Heterosis, or hybrid vigour, is said to occur when F1 individuals exhibit increased performance for a number of traits compared to their parental lines. Improved traits can include increased size, better yield, faster development and a higher tolerance to pathogens or adverse conditions. The molecular basis for the phenomenon remains disputed, despite many decades of theorising and experimentation. In this study, we add a genetics layer to a constraint-based model of plant (Arabidopsis) primary metabolism and show that we can realistically reproduce and quantify heterosis in a highly complex trait (the rate of biomass production). The results demonstrate that additive effects coupled to the complex patterns of epistasis generated by a large metabolic network are sufficient to explain most or all the heterosis seen in typical F1 hybrids. Such models provide a simple approach to exploring and understanding heterosis and should assist in designing breeding strategies to exploit this phenomenon in the future.
Collapse
Affiliation(s)
- Michael Vacher
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009 Australia
- Present Address: Australian eHealth Research Centre, Commonwealth Scientific and Industrial Research Organisation, Floreat, WA 6014 Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009 Australia
| |
Collapse
|
27
|
Dissecting a heterotic gene through GradedPool-Seq mapping informs a rice-improvement strategy. Nat Commun 2019; 10:2982. [PMID: 31278256 PMCID: PMC6611799 DOI: 10.1038/s41467-019-11017-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Hybrid rice breeding for exploiting hybrid vigor, heterosis, has greatly increased grain yield. However, the heterosis-related genes associated with rice grain production remain largely unknown, partly because comprehensive mapping of heterosis-related traits is still labor-intensive and time-consuming. Here, we present a quantitative trait locus (QTL) mapping method, GradedPool-Seq, for rapidly mapping QTLs by whole-genome sequencing of graded-pool samples from F2 progeny via bulked-segregant analysis. We implement this method and map-based cloning to dissect the heterotic QTL GW3p6 from the female line. We then generate the near isogenic line NIL-FH676::GW3p6 by introgressing the GW3p6 allele from the female line Guangzhan63-4S into the male inbred line Fuhui676. The NIL-FH676::GW3p6 exhibits grain yield highly increased compared to Fuhui676. This study demonstrates that it may be possible to achieve a high level of grain production in inbred rice lines without the need to construct hybrids. Developing hybrid rice cultivars requires time consuming random crossing. Here, the authors develop a new next generation sequencing-based quantitative trait locus mapping method to dissect heterotic gene OsMADS1 and demonstrate the feasibility of pyramiding two genes to achieve large heterotic effect.
Collapse
|
28
|
Vasseur F, Fouqueau L, de Vienne D, Nidelet T, Violle C, Weigel D. Nonlinear phenotypic variation uncovers the emergence of heterosis in Arabidopsis thaliana. PLoS Biol 2019; 17:e3000214. [PMID: 31017902 PMCID: PMC6481775 DOI: 10.1371/journal.pbio.3000214] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Heterosis describes the phenotypic superiority of hybrids over their parents in traits related to agronomic performance and fitness. Understanding and predicting nonadditive inheritance such as heterosis is crucial for evolutionary biology as well as for plant and animal breeding. However, the physiological bases of heterosis remain debated. Moreover, empirical data in various species have shown that diverse genetic and molecular mechanisms are likely to explain heterosis, making it difficult to predict its emergence and amplitude from parental genotypes alone. In this study, we examined a model of physiological dominance initially proposed by Sewall Wright to explain the nonadditive inheritance of traits like metabolic fluxes at the cellular level. We evaluated Wright's model for two fitness-related traits at the whole-plant level, growth rate and fruit number, using 450 hybrids derived from crosses among natural accessions of A. thaliana. We found that allometric relationships between traits constrain phenotypic variation in a nonlinear and similar manner in hybrids and accessions. These allometric relationships behave predictably, explaining up to 75% of heterosis amplitude, while genetic distance among parents at best explains 7%. Thus, our findings are consistent with Wright's model of physiological dominance and suggest that the emergence of heterosis on plant performance is an intrinsic property of nonlinear relationships between traits. Furthermore, our study highlights the potential of a geometric approach of phenotypic relationships for predicting heterosis of major components of crop productivity and yield.
Collapse
Affiliation(s)
- François Vasseur
- Max Planck Institute for Developmental Biology, Tübingen, Germany
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier, EPHE, IRD, Montpellier, France
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, UMR759, Montpellier, France
| | - Louise Fouqueau
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier, EPHE, IRD, Montpellier, France
| | - Dominique de Vienne
- GQE–Le Moulon, INRA, Univ Paris-Sud, CNRS, AgroParisTech, Univ Paris-Saclay, Gif-sur-Yvette, France
| | - Thibault Nidelet
- SPO, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Cyrille Violle
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier, EPHE, IRD, Montpellier, France
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
29
|
Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis. Proc Natl Acad Sci U S A 2019; 116:5653-5658. [PMID: 30833384 PMCID: PMC6431163 DOI: 10.1073/pnas.1820513116] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Utilization of heterosis has greatly increased productivity of many crops globally. Allele-specific expression (ASE) has been suggested as a mechanism for causing heterosis. We performed a genome-wide analysis of ASE in three tissues of an elite rice hybrid grown under four conditions. The analysis identified 3,270 genes showing various patterns of ASE in response to developmental and environmental cues, which provides a glimpse of the ASE landscape in the hybrid genome. We showed that the ASE patterns may have distinct implications in the genetic basis of heterosis, especially in light of the classical dominance and overdominance hypotheses. The genes showing ASE provide the candidates for future studies of the genetic and molecular mechanism of heterosis. Utilization of heterosis has greatly increased the productivity of many crops worldwide. Although tremendous progress has been made in characterizing the genetic basis of heterosis using genomic technologies, molecular mechanisms underlying the genetic components are much less understood. Allele-specific expression (ASE), or imbalance between the expression levels of two parental alleles in the hybrid, has been suggested as a mechanism of heterosis. Here, we performed a genome-wide analysis of ASE by comparing the read ratios of the parental alleles in RNA-sequencing data of an elite rice hybrid and its parents using three tissues from plants grown under four conditions. The analysis identified a total of 3,270 genes showing ASE (ASEGs) in various ways, which can be classified into two patterns: consistent ASEGs such that the ASE was biased toward one parental allele in all tissues/conditions, and inconsistent ASEGs such that ASE was found in some but not all tissues/conditions, including direction-shifting ASEGs in which the ASE was biased toward one parental allele in some tissues/conditions while toward the other parental allele in other tissues/conditions. The results suggested that these patterns may have distinct implications in the genetic basis of heterosis: The consistent ASEGs may cause partial to full dominance effects on the traits that they regulate, and direction-shifting ASEGs may cause overdominance. We also showed that ASEGs were significantly enriched in genomic regions that were differentially selected during rice breeding. These ASEGs provide an index of the genes for future pursuit of the genetic and molecular mechanism of heterosis.
Collapse
|
30
|
Hao Y, Wang H, Yang X, Zhang H, He C, Li D, Li H, Wang G, Wang J, Fu J. Genomic Prediction using Existing Historical Data Contributing to Selection in Biparental Populations: A Study of Kernel Oil in Maize. THE PLANT GENOME 2019; 12. [PMID: 30951098 DOI: 10.3835/plantgenome2018.05.0025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Maize ( L.) kernel oil provides high-quality nutrition for animal feed and human health. A certain number of maize breeding programs seek to enhance oil concentration and composition. Genomic selection (GS), which entails selection based on genomic estimated breeding values (GEBVs), has proven to be efficient in breeding programs. Here, we estimate the robustness of predictions for the oil traits of maize kernels in biparental recombination inbred lines (RILs) using a GS model built based on an association population. Most statistical models, including ridge regression-best linear unbiased prediction (RR-BLUP), showed high prediction accuracy in the training population through a cross validation procedure. The training population size was more important than marker density and a statistical model for prediction performance. Using the optimized GS model, prediction of the biparental RIL population showed medium-high prediction accuracy (0.68) compared with prediction using only oil associated markers ( = 0.43). The potential to apply the GS model to another RIL population that is genetically less related to the training population was also examined, showing promising prediction accuracy in the top selected lines. Our results proved that genomic prediction using existing data is robust for the prediction of polygenic traits with moderate to high heritability.
Collapse
|
31
|
Decoupling the Variances of Heterosis and Inbreeding Effects Is Evidenced in Yeast's Life-History and Proteomic Traits. Genetics 2018; 211:741-756. [PMID: 30509954 DOI: 10.1534/genetics.118.301635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/28/2018] [Indexed: 11/18/2022] Open
Abstract
Heterosis (hybrid vigor) and inbreeding depression, commonly considered as corollary phenomena, could nevertheless be decoupled under certain assumptions according to theoretical population genetics works. To explore this issue on real data, we analyzed the components of genetic variation in a population derived from a half-diallel cross between strains from Saccharomyces cerevisiae and S. uvarum, two related yeast species involved in alcoholic fermentation. A large number of phenotypic traits, either molecular (coming from quantitative proteomics) or related to fermentation and life history, were measured during alcoholic fermentation. Because the parental strains were included in the design, we were able to distinguish between inbreeding effects, which measure phenotypic differences between inbred and hybrids, and heterosis, which measures phenotypic differences between a specific hybrid and the other hybrids sharing a common parent. The sources of phenotypic variation differed depending on the temperature, indicating the predominance of genotype-by-environment interactions. Decomposing the total genetic variance into variances of additive (intra- and interspecific) effects, of inbreeding effects, and of heterosis (intra- and interspecific) effects, we showed that the distribution of variance components defined clear-cut groups of proteins and traits. Moreover, it was possible to cluster fermentation and life-history traits into most proteomic groups. Within groups, we observed positive, negative, or null correlations between the variances of heterosis and inbreeding effects. To our knowledge, such a decoupling had never been experimentally demonstrated. This result suggests that, despite a common evolutionary history of individuals within a species, the different types of traits have been subject to different selective pressures.
Collapse
|
32
|
van Hulten MHA, Paulo MJ, Kruijer W, Blankestijn-De Vries H, Kemperman B, Becker FFM, Yang J, Lauss K, Stam ME, van Eeuwijk FA, Keurentjes JJB. Assessment of heterosis in two Arabidopsis thaliana common-reference mapping populations. PLoS One 2018; 13:e0205564. [PMID: 30312352 PMCID: PMC6185836 DOI: 10.1371/journal.pone.0205564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 09/27/2018] [Indexed: 12/01/2022] Open
Abstract
Hybrid vigour, or heterosis, has been of tremendous importance in agriculture for the improvement of both crops and livestock. Notwithstanding large efforts to study the phenomenon of heterosis in the last decades, the identification of common molecular mechanisms underlying hybrid vigour remain rare. Here, we conducted a systematic survey of the degree of heterosis in Arabidopsis thaliana hybrids. For this purpose, two overlapping Arabidopsis hybrid populations were generated by crossing a large collection of naturally occurring accessions to two common reference lines. In these Arabidopsis hybrid populations the range of heterosis for several developmental and yield related traits was examined, and the relationship between them was studied. The traits under study were projected leaf area at 17 days after sowing, flowering time, height of the main inflorescence, number of side branches from the main stem or from the rosette base, total seed yield, seed weight, seed size and the estimated number of seeds per plant. Predominantly positive heterosis was observed for leaf area and height of the main inflorescence, whereas mainly negative heterosis was observed for rosette branching. For the other traits both positive and negative heterosis was observed in roughly equal amounts. For flowering time and seed size only low levels of heterosis were detected. In general the observed heterosis levels were highly trait specific. Furthermore, no correlation was observed between heterosis levels and the genetic distance between the parental lines. Since all selected lines were a part of the Arabidopsis genome wide association (GWA) mapping panel, a genetic mapping approach was applied to identify possible regions harbouring genetic factors causal for heterosis, with separate calculations for additive and dominance effects. Our study showed that the genetic mechanisms underlying heterosis were highly trait specific in our hybrid populations and greatly depended on the genetic background, confirming the elusive character of heterosis.
Collapse
Affiliation(s)
| | - Maria-Joāo Paulo
- Biometris, Wageningen University and Research, Wageningen, The Netherlands
| | - Willem Kruijer
- Biometris, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Brend Kemperman
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Frank F. M. Becker
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Jiaming Yang
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Kathrin Lauss
- Plant Development & (Epi)Genetics, Faculty of Science, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Amsterdam, The Netherlands
| | - Maike E. Stam
- Plant Development & (Epi)Genetics, Faculty of Science, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
33
|
Trevaskis B. Developmental Pathways Are Blueprints for Designing Successful Crops. FRONTIERS IN PLANT SCIENCE 2018; 9:745. [PMID: 29922318 PMCID: PMC5996307 DOI: 10.3389/fpls.2018.00745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/15/2018] [Indexed: 05/29/2023]
Abstract
Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene-gene or gene-environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted.
Collapse
Affiliation(s)
- Ben Trevaskis
- CSIRO Agriculture and Food, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
34
|
Fiévet JB, Nidelet T, Dillmann C, de Vienne D. Heterosis Is a Systemic Property Emerging From Non-linear Genotype-Phenotype Relationships: Evidence From in Vitro Genetics and Computer Simulations. Front Genet 2018; 9:159. [PMID: 29868111 PMCID: PMC5968397 DOI: 10.3389/fgene.2018.00159] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
Heterosis, the superiority of hybrids over their parents for quantitative traits, represents a crucial issue in plant and animal breeding as well as evolutionary biology. Heterosis has given rise to countless genetic, genomic and molecular studies, but has rarely been investigated from the point of view of systems biology. We hypothesized that heterosis is an emergent property of living systems resulting from frequent concave relationships between genotypic variables and phenotypes, or between different phenotypic levels. We chose the enzyme-flux relationship as a model of the concave genotype-phenotype (GP) relationship, and showed that heterosis can be easily created in the laboratory. First, we reconstituted in vitro the upper part of glycolysis. We simulated genetic variability of enzyme activity by varying enzyme concentrations in test tubes. Mixing the content of "parental" tubes resulted in "hybrids," whose fluxes were compared to the parental fluxes. Frequent heterotic fluxes were observed, under conditions that were determined analytically and confirmed by computer simulation. Second, to test this model in a more realistic situation, we modeled the glycolysis/fermentation network in yeast by considering one input flux, glucose, and two output fluxes, glycerol and acetaldehyde. We simulated genetic variability by randomly drawing parental enzyme concentrations under various conditions, and computed the parental and hybrid fluxes using a system of differential equations. Again we found that a majority of hybrids exhibited positive heterosis for metabolic fluxes. Cases of negative heterosis were due to local convexity between certain enzyme concentrations and fluxes. In both approaches, heterosis was maximized when the parents were phenotypically close and when the distributions of parental enzyme concentrations were contrasted and constrained. These conclusions are not restricted to metabolic systems: they only depend on the concavity of the GP relationship, which is commonly observed at various levels of the phenotypic hierarchy, and could account for the pervasiveness of heterosis.
Collapse
Affiliation(s)
- Julie B Fiévet
- GQE-Le Moulon, INRA, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Sud, Gif-sur-Yvette, France
| | - Thibault Nidelet
- Sciences Pour l'Œnologie, INRA, Université de Montpellier, Montpellier, France
| | - Christine Dillmann
- GQE-Le Moulon, INRA, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Sud, Gif-sur-Yvette, France
| | - Dominique de Vienne
- GQE-Le Moulon, INRA, Centre National de la Recherche Scientifique, AgroParisTech, Université Paris-Sud, Gif-sur-Yvette, France
| |
Collapse
|
35
|
de Abreu e Lima F, Willmitzer L, Nikoloski Z. Classification-driven framework to predict maize hybrid field performance from metabolic profiles of young parental roots. PLoS One 2018; 13:e0196038. [PMID: 29698533 PMCID: PMC5919381 DOI: 10.1371/journal.pone.0196038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/05/2018] [Indexed: 01/10/2023] Open
Abstract
Maize (Zea mays L.) is a staple food whose production relies on seed stocks that largely comprise hybrid varieties. Therefore, knowledge about the molecular determinants of hybrid performance (HP) in the field can be used to devise better performing hybrids to address the demands for sustainable increase in yield. Here, we propose and test a classification-driven framework that uses metabolic profiles from in vitro grown young roots of parental lines from the Dent × Flint maize heterotic pattern to predict field HP. We identify parental analytes that best predict the metabolic inheritance patterns in 328 hybrids. We then demonstrate that these analytes are also predictive of field HP (0.64 ≥ r ≥ 0.79) and discriminate hybrids of good performance (accuracy of 87.50%). Therefore, our approach provides a cost-effective solution for hybrid selection programs.
Collapse
Affiliation(s)
| | - Lothar Willmitzer
- Max-Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Zoran Nikoloski
- Max-Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- * E-mail:
| |
Collapse
|
36
|
Tian M, Nie Q, Li Z, Zhang J, Liu Y, Long Y, Wang Z, Wang G, Liu R. Transcriptomic analysis reveals overdominance playing a critical role in nicotine heterosis in Nicotiana tabacum L. BMC PLANT BIOLOGY 2018; 18:48. [PMID: 29566653 PMCID: PMC5863848 DOI: 10.1186/s12870-018-1257-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/01/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND As a unique biological phenomenon, heterosis has been concerned with the superior performance of the heterosis than either parents. Despite several F1 hybrids, containing supernal nicotine content, had been discovered and applied to heterosis utilization in Nicotiana tabacum L., nevertheless, the potential molecular mechanism revealing nicotine heterosis has not been illustrated clearly. RESULT Phenotypically, the F1 hybrids (Vall6 × Basma) show prominent heterosis in nicotine content by 3 years of field experiments. Transcriptome analysis revealed that genes participating in nicotine anabolism (ADC, PMT, MPO, QPT, AO, QS, QPT, A622, BBLs) and nicotine transport (JAT2, MATE1 and 2, NUP1 and 2) showed an upregulated expression in the hybrid, a majority of which demonstrated an overdominant performance. RT-PCR confirmed that nicotine anabolism was induced in the hybrid. CONCLUSIONS These findings strongly suggest that nicotine synthesis and transport efficiency improved in hybrid and overdominance at gene-expression level played a critical role in heterosis of nicotine metabolism.
Collapse
Affiliation(s)
- Maozhu Tian
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Qiong Nie
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Zhenhua Li
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
| | - Jie Zhang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yiling Liu
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Yao Long
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Zhiwei Wang
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Guoqing Wang
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Renxiang Liu
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China.
- College of Tobacco, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
37
|
Inheritance patterns in metabolism and growth in diallel crosses of Arabidopsis thaliana from a single growth habitat. Heredity (Edinb) 2017; 120:463-473. [PMID: 29234160 DOI: 10.1038/s41437-017-0030-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/09/2017] [Accepted: 10/30/2017] [Indexed: 12/25/2022] Open
Abstract
Metabolism is a key determinant of plant growth and modulates plant adaptive responses. Increased metabolic variation due to heterozygosity may be beneficial for highly homozygous plants if their progeny is to respond to sudden changes in the habitat. Here, we investigate the extent to which heterozygosity contributes to the variation in metabolism and size of hybrids of Arabidopsis thaliana whose parents are from a single growth habitat. We created full diallel crosses among seven parents, originating from Southern Germany, and analysed the inheritance patterns in primary and secondary metabolism as well as in rosette size in situ. In comparison to primary metabolites, compounds from secondary metabolism were more variable and showed more pronounced non-additive inheritance patterns which could be attributed to epistasis. In addition, we showed that glucosinolates, among other secondary metabolites, were positively correlated with a proxy for plant size. Therefore, our study demonstrates that heterozygosity in local A. thaliana population generates metabolic variation and may impact several tasks directly linked to metabolism.
Collapse
|
38
|
Bar-Zvi D, Lupo O, Levy AA, Barkai N. Hybrid vigor: The best of both parents, or a genomic clash? ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nat Genet 2017; 49:1741-1746. [PMID: 29038596 DOI: 10.1038/ng.3974] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/21/2017] [Indexed: 12/15/2022]
Abstract
Increasing wheat yield is a key global challenge to producing sufficient food for a growing human population. Wheat grain yield can be boosted by exploiting heterosis, the superior performance of hybrids compared with midparents. Here we present a tailored quantitative genetic framework to study the genetic basis of midparent heterosis in hybrid populations derived from crosses among diverse parents. We applied this framework to an extensive data set assembled for winter wheat. Grain yield was assessed for 1,604 hybrids and their 135 parental elite breeding lines in 11 environments. The hybrids outperformed the midparents by 10% on average, representing approximately 15 years of breeding progress in wheat, thus further substantiating the remarkable potential of hybrid-wheat breeding. Genome-wide prediction and association mapping implemented through the developed quantitative genetic framework showed that dominance effects played a less prominent role than epistatic effects in grain-yield heterosis in wheat.
Collapse
|
40
|
Abstract
Heterosis is most frequently manifested by the substantially increased vigorous growth of hybrids compared with their parents. Investigating genomic variations in natural populations is essential to understand the initial molecular mechanisms underlying heterosis in plants. Here, we characterized the genomic architecture associated with biomass heterosis in 200 Arabidopsis hybrids. The genome-wide heterozygosity of hybrids makes a limited contribution to biomass heterosis, and no locus shows an obvious overdominance effect in hybrids. However, the accumulation of significant genetic loci identified in genome-wide association studies (GWAS) in hybrids strongly correlates with better-parent heterosis (BPH). Candidate genes for biomass BPH fall into diverse biological functions, including cellular, metabolic, and developmental processes and stimulus-responsive pathways. Important heterosis candidates include WUSCHEL, ARGOS, and some genes that encode key factors involved in cell cycle regulation. Interestingly, transcriptomic analyses in representative Arabidopsis hybrid combinations reveal that heterosis candidate genes are functionally enriched in stimulus-responsive pathways, including responses to biotic and abiotic stimuli and immune responses. In addition, stimulus-responsive genes are repressed to low-parent levels in hybrids with high BPH, whereas middle-parent expression patterns are exhibited in hybrids with no BPH. Our study reveals a genomic architecture for understanding the molecular mechanisms of biomass heterosis in Arabidopsis, in which the accumulation of the superior alleles of genes involved in metabolic and cellular processes improve the development and growth of hybrids, whereas the overall repressed expression of stimulus-responsive genes prioritizes growth over responding to environmental stimuli in hybrids under normal conditions.
Collapse
|
41
|
Herbst RH, Bar-Zvi D, Reikhav S, Soifer I, Breker M, Jona G, Shimoni E, Schuldiner M, Levy AA, Barkai N. Heterosis as a consequence of regulatory incompatibility. BMC Biol 2017; 15:38. [PMID: 28494792 PMCID: PMC5426048 DOI: 10.1186/s12915-017-0373-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The merging of genomes in inter-specific hybrids can result in novel phenotypes, including increased growth rate and biomass yield, a phenomenon known as heterosis. Heterosis is typically viewed as the opposite of hybrid incompatibility. In this view, the superior performance of the hybrid is attributed to heterozygote combinations that compensate for deleterious mutations accumulating in each individual genome, or lead to new, over-dominating interactions with improved performance. Still, only fragmented knowledge is available on genes and processes contributing to heterosis. RESULTS We describe a budding yeast hybrid that grows faster than both its parents under different environments. Phenotypically, the hybrid progresses more rapidly through cell cycle checkpoints, relieves the repression of respiration in fast growing conditions, does not slow down its growth when presented with ethanol stress, and shows increased signs of DNA damage. A systematic genetic screen identified hundreds of S. cerevisiae alleles whose deletion reduced growth of the hybrid. These growth-affecting alleles were condition-dependent, and differed greatly from alleles that reduced the growth of the S. cerevisiae parent. CONCLUSIONS Our results define a budding yeast hybrid that is perturbed in multiple regulatory processes but still shows a clear growth heterosis. We propose that heterosis results from incompatibilities that perturb regulatory mechanisms, which evolved to protect cells against damage or prepare them for future challenges by limiting cell growth.
Collapse
Affiliation(s)
- Rebecca H Herbst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02114, USA
| | - Dana Bar-Zvi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sharon Reikhav
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ilya Soifer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Current affiliation: Calico Labs, South San Francisco, CA, 94080, USA
| | - Michal Breker
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ghil Jona
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Avraham A Levy
- Plant and Environmental Sciences Department, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
42
|
Grimm DG, Roqueiro D, Salomé PA, Kleeberger S, Greshake B, Zhu W, Liu C, Lippert C, Stegle O, Schölkopf B, Weigel D, Borgwardt KM. easyGWAS: A Cloud-Based Platform for Comparing the Results of Genome-Wide Association Studies. THE PLANT CELL 2017; 29:5-19. [PMID: 27986896 PMCID: PMC5304348 DOI: 10.1105/tpc.16.00551] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/28/2016] [Accepted: 12/13/2016] [Indexed: 05/22/2023]
Abstract
The ever-growing availability of high-quality genotypes for a multitude of species has enabled researchers to explore the underlying genetic architecture of complex phenotypes at an unprecedented level of detail using genome-wide association studies (GWAS). The systematic comparison of results obtained from GWAS of different traits opens up new possibilities, including the analysis of pleiotropic effects. Other advantages that result from the integration of multiple GWAS are the ability to replicate GWAS signals and to increase statistical power to detect such signals through meta-analyses. In order to facilitate the simple comparison of GWAS results, we present easyGWAS, a powerful, species-independent online resource for computing, storing, sharing, annotating, and comparing GWAS. The easyGWAS tool supports multiple species, the uploading of private genotype data and summary statistics of existing GWAS, as well as advanced methods for comparing GWAS results across different experiments and data sets in an interactive and user-friendly interface. easyGWAS is also a public data repository for GWAS data and summary statistics and already includes published data and results from several major GWAS. We demonstrate the potential of easyGWAS with a case study of the model organism Arabidopsis thaliana, using flowering and growth-related traits.
Collapse
Affiliation(s)
- Dominik G Grimm
- Machine Learning and Computational Biology Research Group, Max Planck Institute for Intelligent Systems and Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
- Zentrum für Bioinformatik, Eberhard Karls Universität, 72074 Tübingen, Germany
- Department for Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Damian Roqueiro
- Department for Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Patrice A Salomé
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Stefan Kleeberger
- Machine Learning and Computational Biology Research Group, Max Planck Institute for Intelligent Systems and Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Bastian Greshake
- Machine Learning and Computational Biology Research Group, Max Planck Institute for Intelligent Systems and Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Wangsheng Zhu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Chang Liu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Christoph Lippert
- Machine Learning and Computational Biology Research Group, Max Planck Institute for Intelligent Systems and Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Oliver Stegle
- Machine Learning and Computational Biology Research Group, Max Planck Institute for Intelligent Systems and Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Bernhard Schölkopf
- Department of Empirical Inference, Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Karsten M Borgwardt
- Machine Learning and Computational Biology Research Group, Max Planck Institute for Intelligent Systems and Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
- Zentrum für Bioinformatik, Eberhard Karls Universität, 72074 Tübingen, Germany
- Department for Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| |
Collapse
|