1
|
Pálmadóttir T, Getachew J, Thacker D, Wallerstein J, Olsson U, Emanuelsson C, Linse S. The Role of α-Synuclein-DNAJB6b Coaggregation in Amyloid Suppression. ACS Chem Neurosci 2025; 16:1883-1897. [PMID: 40304428 PMCID: PMC12100659 DOI: 10.1021/acschemneuro.4c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Chaperones may retard the aggregation of other proteins and increase their solubility. An important goal is a thermodynamic understanding of such an action. Here, the chaperone DNAJB6b (JB6) is found to suppress amyloid formation of the protein α-synuclein (α-syn) leading to a reduced rate of fibril formation and an increase in apparent solubility of α-syn. These findings were reached at mildly acidic pH and with light seeding under conditions where the effect on secondary nucleation is visible. Cryo-transmission electron microscopy (cryo-TEM) imaging reveals that coaggregates of α-syn and JB6 are formed with significantly altered ultrastructure compared to both pure protein fibrils and pure chaperone aggregates. This is further supported by the formation of ThT-negative aggregates and by the depletion of JB6 from solution in the presence of α-syn. The identification of such coaggregates provides a plausible thermodynamic explanation for an increase in α-syn solubility in the presence of JB6; the reduced chemical potential of the chaperone upon formation of coaggregates can compensate for an increased chemical potential of α-syn, and the system as a whole can lower its free energy to sustain an increased free α-syn concentration.
Collapse
Affiliation(s)
- Tinna Pálmadóttir
- Biochemistry
and Structural Biology, Lund University, 22100Lund, Sweden
| | - Josef Getachew
- Biochemistry
and Structural Biology, Lund University, 22100Lund, Sweden
| | - Dev Thacker
- Biochemistry
and Structural Biology, Lund University, 22100Lund, Sweden
| | | | - Ulf Olsson
- Physical
Chemistry, Lund University, 22100Lund, Sweden
| | | | - Sara Linse
- Biochemistry
and Structural Biology, Lund University, 22100Lund, Sweden
| |
Collapse
|
2
|
Delivoria DC, Konia E, Matis I, Skretas G. Optimization of a High-Throughput Screen for Monitoring Disease-Associated Protein Misfolding and Aggregation in Bacteria. ACS Synth Biol 2025. [PMID: 40354780 DOI: 10.1021/acssynbio.5c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Protein misfolding and aggregation are central features of a wide range of diseases, including neurodegenerative disorders, systemic amyloidoses, and cancer. The identification of compounds that can modulate protein folding and aggregation is a key step toward developing effective therapies. High-throughput screening methods are essential for efficiently identifying such compounds. In this study, we optimized a previously developed high-throughput genetic screen for monitoring protein misfolding and aggregation in bacteria. This system is based on monitoring the fluorescence of Escherichia coli cells expressing fusions of human misfolding-prone and disease-related proteins (MisPs) with the green fluorescent protein. We systematically tested a variety of experimental conditions, such as overexpression conditions and MisP-GFP fusion formats, to identify key parameters that affect the sensitivity and dynamic range of the assay. Using misfolding-prone, cancer-associated variants of human p53 as a model system, we found that strong overexpression conditions, such as high copy number vectors, strong promoters, high inducer concentrations, and high overexpression temperatures, can yield optimal assay performance. These optimized assay conditions were also validated with additional MisPs, such as the Alzheimer's disease-associated amyloid-β peptide and variants of superoxide dismutase 1 associated with amyotrophic lateral sclerosis. At the same time, we observed that certain conditions, such as inducer concentrations and overexpression temperature, may need to be precisely fine-tuned for each new MisP target to yield optimal assay performance. Our findings provide a framework for standardizing MisP-GFP screening assays, facilitating their broad application in the discovery of therapeutic agents targeting protein misfolding and aggregation.
Collapse
Affiliation(s)
- Dafni C Delivoria
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
| | - Eleni Konia
- Institute for Bio-innovation, Biomedical Sciences Research Center "Alexander Fleming", Vari 16672, Greece
- Department of Chemistry, University of Crete, Iraklio, Crete 70013, Greece
| | - Ilias Matis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Center "Alexander Fleming", Vari 16672, Greece
| |
Collapse
|
3
|
Catto F, Kirschenbaum D, Economides AE, Reuss AM, Trevisan C, Caredio D, Dadgar-Kiani E, Mirzet D, Frick L, Weber-Stadlbauer U, Litvinov S, Koumoutsakos P, Lee JH, Aguzzi A. Quantitative 3D histochemistry reveals region-specific amyloid-β reduction by the antidiabetic drug netoglitazone. PLoS One 2025; 20:e0309489. [PMID: 40327707 PMCID: PMC12054868 DOI: 10.1371/journal.pone.0309489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/29/2025] [Indexed: 05/08/2025] Open
Abstract
A hallmark of Alzheimer's disease (AD) is the extracellular aggregation of toxic amyloid-beta (Aβ) peptides in form of plaques. Here, we identify netoglitazone, an antidiabetic compound previously tested in humans, as an Aβ aggregation antagonist. Netoglitazone improved cognition and reduced microglia activity in a mouse model of AD. Using quantitative whole-brain three-dimensional histology (Q3D), we precisely identified brain regions where netoglitazone reduced the number and size of Aβ plaques. We demonstrate the utility of Q3D in preclinical drug evaluation for AD by providing a high-resolution brain-wide view of drug efficacy. Applying Q3D has the potential to improve pre-clinical drug evaluation by providing information that can help identify mechanisms leading to brain region-specific drug efficacy.
Collapse
Affiliation(s)
- Francesca Catto
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- IMAI MedTech GmbH, Zurich, Switzerland
| | - Daniel Kirschenbaum
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Athena E. Economides
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anna Maria Reuss
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Chiara Trevisan
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Davide Caredio
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ehsan Dadgar-Kiani
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Delic Mirzet
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lukas Frick
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sergey Litvinov
- Computational Science and Engineering Laboratory, School of Engineering and Applied Sciences, Harvard University, Cambridge, United States of America
| | - Petros Koumoutsakos
- Computational Science and Engineering Laboratory, School of Engineering and Applied Sciences, Harvard University, Cambridge, United States of America
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Vendruscolo M. The thermodynamic hypothesis of protein aggregation. Mol Aspects Med 2025; 103:101364. [PMID: 40319523 DOI: 10.1016/j.mam.2025.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/30/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
Protein misfolding and aggregation drive some of the most prevalent and lethal disorders of our time, including Alzheimer's and Parkinson's diseases, now affecting tens of millions of people worldwide. The complexity of these diseases, which are often multifactorial and related to age and lifestyle, has made it challenging to identify the causes of the accumulation of aberrant protein deposits. An insight into the origins of these deposits comes from reports of a widespread presence of protein aggregates even under normal cellular conditions. This observation is best accounted for by the thermodynamic hypothesis of protein aggregation. According to this hypothesis, many proteins are expressed at levels close to their supersaturation limits, so that their native states are metastable against aggregation. Here we integrate the evidence behind this hypothesis and outline actionable therapeutic strategies that could halt protein aggregation at its source.
Collapse
Affiliation(s)
- Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
5
|
Jain G, Trombetta-Lima M, Matlahov I, Ribas HT, Chen T, Parlato R, Portale G, Dolga AM, van der Wel PCA. Inhibitor-based modulation of huntingtin aggregation mechanisms mitigates fibril-induced cellular stress. Nat Commun 2025; 16:3588. [PMID: 40234398 PMCID: PMC12000517 DOI: 10.1038/s41467-025-58691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder in which mutated fragments of the huntingtin protein (Htt) undergo misfolding and aggregation. Since aggregated proteins can cause cellular stress and cytotoxicity, there is an interest in the development of small molecule aggregation inhibitors as potential modulators of HD pathogenesis. Here, we study how a polyphenol modulates the aggregation mechanism of huntingtin exon 1 (HttEx1) even at sub-stoichiometric ratios. Sub-stoichiometric amounts of curcumin impacted the primary and/or secondary nucleation events, extending the pre-aggregation lag phase. Remarkably, the disrupted aggregation process changed both the aggregate structure and its cell metabolic properties. When administered to neuronal cells, the 'break-through' protein aggregates induced significantly reduced cellular stress compared to aggregates formed in absence of inhibitors. Structural analysis by electron microscopy, small angle X-ray scattering (SAXS), and solid-state NMR spectroscopy identified changes in the fibril structures, probing the flanking domains in the fuzzy coat and the fibril core. We propose that changes in the latter relate to the presence or absence of polyglutamine (polyQ) β-hairpin structures. Our findings highlight multifaceted consequences of small molecule inhibitors that modulate the protein misfolding landscape, with potential implications for treatment strategies in HD and other amyloid disorders.
Collapse
Affiliation(s)
- Greeshma Jain
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Marina Trombetta-Lima
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Irina Matlahov
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Hennrique Taborda Ribas
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
- Graduate Program in Biochemistry Sciences, Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Tingting Chen
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Raffaella Parlato
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Giuseppe Portale
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands.
| | - Patrick C A van der Wel
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
6
|
Chen MW, Ren X, Song X, Qian N, Ma Y, Yu W, Yang L, Min W, Zare RN, Dai Y. Transition-State-Dependent Spontaneous Generation of Reactive Oxygen Species by Aβ Assemblies Encodes a Self-Regulated Positive Feedback Loop for Aggregate Formation. J Am Chem Soc 2025; 147:8267-8279. [PMID: 39999421 DOI: 10.1021/jacs.4c15532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Amyloid-β (Aβ) peptides exhibit distinct biological activities across multiple physical length scales, including monomers, oligomers, and fibrils. The transition from Aβ monomers to pathological aggregates correlates with the emergence of chemical toxicity, which plays a critical role in the progression of neurodegenerative disorders. However, the relationship between the physical state of Aβ assemblies and their chemical toxicity remains poorly understood. Here, we show that Aβ assemblies can spontaneously generate reactive oxygen species (ROS) through transition-state-specific inherent nonenzymatic redox activity. During the transition from initial monomers to intermediate oligomers or condensates to final fibrils, interfacial electrochemical environments emerge and vary at the liquid-liquid and liquid-solid interfaces. Determined by the vibrational Stark effect using electronic pre-resonance stimulated Raman scattering microscopy, the interfacial field of such assemblies is on the order of 10 MV/cm. Interfacial activity, which depends on the Aβ transition state, can modulate the spontaneous oxidation of hydroxide anions, which leads to the formation of hydroxyl radicals. Interestingly, this redox activity modifies the chemical composition of Aβ and establishes a self-regulated positive feedback loop that accelerates aggregation and promotes fibril formation, which represents a new functioning mechanism of Aβ aggregation beyond physical cross-linking. Leveraging this mechanistic insight, we identified small molecules capable of disrupting the feedback loop by scavenging hydroxyl radicals or perturbing the interface, thereby inhibiting fibril formation. Our findings provide a nonenzymatic model of neurotoxicity and reveal the critical role of physical interfaces in modulating the chemical dynamics of biomolecular assemblies. These results offer a novel framework for therapeutic intervention in Alzheimer's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Michael W Chen
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Xiaokang Ren
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Xiaowei Song
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Yuefeng Ma
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Wen Yu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Leshan Yang
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Wei Min
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yifan Dai
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| |
Collapse
|
7
|
Larsen JA, Barclay A, Vettore N, Klausen LK, Mangels LN, Coden A, Schmit JD, Lindorff-Larsen K, Buell AK. The mechanism of amyloid fibril growth from Φ-value analysis. Nat Chem 2025; 17:403-411. [PMID: 39820805 DOI: 10.1038/s41557-024-01712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/29/2024] [Indexed: 01/19/2025]
Abstract
Amyloid fibrils are highly stable misfolded protein assemblies that play an important role in several neurodegenerative and systemic diseases. Although structural information of the amyloid state is now abundant, mechanistic details about the misfolding process remain elusive. Inspired by the Φ-value analysis of protein folding, we combined experiments and molecular simulations to resolve amino-acid contacts and determine the structure of the transition-state ensemble-the rate-limiting step-for fibril elongation of PI3K-SH3 amyloid fibrils. The ensemble was validated experimentally by Tanford β analysis and computationally by free energy calculations. Although protein folding proceeds on funnel-shaped landscapes, here we find that the energy landscape for the misfolding reaction consists of a large 'golf course' region, defined by a single energy barrier and transition state, accessing a sharply funnelled region. Thus, misfolding occurs by rare, successful monomer-fibril end collisions interspersed by numerous unsuccessful binding attempts. Taken together, these insights provide a quantitative and highly resolved description of a protein misfolding reaction.
Collapse
Affiliation(s)
- Jacob Aunstrup Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Abigail Barclay
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nicola Vettore
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Louise K Klausen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lena N Mangels
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Alberto Coden
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jeremy D Schmit
- Department of Physics, Kansas State University, Manhattan, KS, USA
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
8
|
Zhao D, Zhou Y, Xing F, Wang H, Zhou J. Porous organic cages as inhibitors of Aβ 42 peptide aggregation: a simulation study. Phys Chem Chem Phys 2024; 26:29696-29707. [PMID: 39501978 DOI: 10.1039/d4cp03549f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The aggregation of Aβ monomers into oligomers with β-sheet structures is an important cause of Alzheimer's disease (AD), while the Aβ42 peptide is more toxic and prone to aggregate. It is of great significance to study the inhibition mechanism of Aβ42 monomer aggregation and find excellent inhibitors for the treatment of AD. Research in recent years has focused on small molecule compounds and nanoparticles, but they all have certain limitations. As a new type of porous material, a porous organic cage (POC) has potential application feasibility in the biomedical field due to its unique physicochemical properties. In this work, molecular dynamics simulations were used for the first time to explore the interaction and conformational transformation of the Aβ42 peptide in CC3 crystals with different morphologies (planar and spherical). The results show that the adsorption of the Aβ42 peptide on different CC3 crystals is mainly achieved through strong van der Waals forces. During the simulations, the Aβ42 peptide undergoes various degrees of structural changes. Compared to that in water, this binding induces more irregular structures, such as turns and 3-helices, and inhibits the production of β-sheets, while enhancing the overall backbone rigidity of the Aβ42 peptide. The transformation analysis of peptide conformation is further complemented by free energy landscape and cluster analysis. These findings provide a strong basis for CC3 crystals as novel inhibitors to inhibit the toxicity and aggregation of the Aβ42 peptide.
Collapse
Affiliation(s)
- Daohui Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Yu Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Fen Xing
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Hangxing Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|
9
|
Seychell RM, El Saghir A, Vassallo N. Modulation of Biological Membranes Using Small-Molecule Compounds to Counter Toxicity Caused by Amyloidogenic Proteins. MEMBRANES 2024; 14:231. [PMID: 39590617 PMCID: PMC11596372 DOI: 10.3390/membranes14110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
The transition of peptides or proteins along a misfolding continuum from soluble functional states to pathological aggregates, to ultimately deposit as amyloid fibrils, is a process that underlies an expanding group of human diseases-collectively known as protein-misfolding disorders (PMDs). These include common and debilitating conditions, such as Alzheimer's disease, Parkinson's disease, and type-2 diabetes. Compelling evidence has emerged that the complex interplay between the misfolded proteins and biological membranes is a key determinant of the pathogenic mechanisms by which harmful amyloid entities are formed and exert their cytotoxicity. Most efforts thus far to develop disease-modifying treatments for PMDs have largely focused on anti-aggregation strategies: to neutralise, or prevent the formation of, toxic amyloid species. Herein, we review the critical role of the phospholipid membrane in mediating and enabling amyloid pathogenicity. We consequently propose that the development of small molecules, which have the potential to uniquely modify the physicochemical properties of the membrane and make it more resilient against damage by misfolded proteins, could provide a novel therapeutic approach in PMDs. By way of an example, natural compounds shown to intercalate into lipid bilayers and inhibit amyloid-lipid interactions, such as the aminosterols, squalamine and trodusquamine, cholesterol, ubiquinone, and select polyphenols, are discussed. Such a strategy would provide a novel approach to counter a wide range of toxic biomolecules implicit in numerous human amyloid pathologies.
Collapse
Affiliation(s)
- Raina Marie Seychell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| | - Adam El Saghir
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| | - Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta
| |
Collapse
|
10
|
Pariary R, Shome G, Kalita S, Kalita S, Roy A, Harikishore A, Jana K, Senapati D, Mandal B, Mandal AK, Bhunia A. Peptide-Based Strategies: Combating Alzheimer's Amyloid β Aggregation through Ergonomic Design and Fibril Disruption. Biochemistry 2024; 63:2397-2413. [PMID: 39255071 DOI: 10.1021/acs.biochem.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Amyloidosis of amyloid-β (Aβ) triggers a cascade of events, leading to oxidative damage and neuronal death. Therefore, inhibiting Aβ amyloidosis or disrupting the matured fibrils is the primary target to combat progressive Alzheimer's disease (AD) pathogenesis. Here, we undertake optimization strategies to improve the antiamyloid efficiency of our previously reported NF11 (NAVRWSLMRPF) peptide. Among the series of peptides tested, nontoxic and serum-stable peptide 1 or P1 containing an anthranilic acid residue shows immense potential in not only inhibiting the Aβ42 amyloid formation but also disrupting the mature Aβ42 fibrils into nontoxic small molecular weight soluble species. Our studies provide high-resolution characterization of the peptide's mechanism of action. With a binding affinity within the micromolar range for both the monomer and aggregated Aβ42, this α/β hybrid peptide can efficiently modulate Aβ amyloidosis while facilitating the clearance of toxic aggregates and enforcing protection from apoptosis. Thus, our studies highlight that incorporating a β-amino acid not only imparts protection from proteolytic degradation and improved stability but also functions effectively as a β breaker, redirecting the aggregation kinetics toward off-pathway fibrillation.
Collapse
Affiliation(s)
- Ranit Pariary
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| | - Gourav Shome
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| | - Sujan Kalita
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
- Department of Chemistry, Kamrup College Chamata, Nalbari 781306, India
| | - Sourav Kalita
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
- Department of Chemistry, North Gauhati College, North Guwahati 781031, India
| | - Anuradha Roy
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India
| | - Amaravadhi Harikishore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 63755, Singapore
| | - Kuladip Jana
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| | - Dulal Senapati
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India
| | - Bhubaneswar Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Atin Kumar Mandal
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata 700 091, India
| |
Collapse
|
11
|
Kamal M, Knox J, Horne RI, Tiwari OS, Burns AR, Han D, Levy D, Laor Bar-Yosef D, Gazit E, Vendruscolo M, Roy PJ. A rapid in vivo pipeline to identify small molecule inhibitors of amyloid aggregation. Nat Commun 2024; 15:8311. [PMID: 39333123 PMCID: PMC11436953 DOI: 10.1038/s41467-024-52480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
Amyloids are associated with over 50 human diseases and have inspired significant effort to identify small molecule remedies. Here, we present an in vivo platform that efficiently yields small molecule inhibitors of amyloid formation. We previously identified small molecules that kill the nematode C. elegans by forming membrane-piercing crystals in the pharynx cuticle, which is rich in amyloid-like material. We show here that many of these molecules are known amyloid-binders whose crystal-formation in the pharynx can be blocked by amyloid-binding dyes. We asked whether this phenomenon could be exploited to identify molecules that interfere with the ability of amyloids to seed higher-order structures. We therefore screened 2560 compounds and found 85 crystal suppressors, 47% of which inhibit amyloid formation. This hit rate far exceeds other screening methodologies. Hence, in vivo screens for suppressors of crystal formation in C. elegans can efficiently reveal small molecules with amyloid-inhibiting potential.
Collapse
Affiliation(s)
- Muntasir Kamal
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Jessica Knox
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Robert I Horne
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Om Shanker Tiwari
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Andrew R Burns
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Duhyun Han
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Davide Levy
- Jan Koum Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Dana Laor Bar-Yosef
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Peter J Roy
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
12
|
Bai SC, Wang YC, Li XZ, Li G. Inhibiting the Aggregation of Aβ by Natural Product Molecules. ChemMedChem 2024; 19:e202400223. [PMID: 38807345 DOI: 10.1002/cmdc.202400223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
The abnormal aggregation of Aβ has been considered one of the primary causative factors for Alzheimer's disease. Diverse molecular entities have been developed to mitigate the formation of toxic Aβ aggregates within the brain by inhibiting Aβ aggregation. Recognizing that many FDA-approved drugs are derived from natural products, we present a summary of recent discoveries involving natural product molecules with inhibitory effects on Aβ aggregation. By consolidating these findings, our review offers researchers a concise overview of the latest advancements in natural product-based interventions for Alzheimer's disease.
Collapse
Affiliation(s)
- Si-Cong Bai
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ye-Cheng Wang
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xin-Zhong Li
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Gao Li
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology Co-operation Base of Intelligent Pharmaceutics, Minjiang University, Fuzhou, Fujian 350108, China
| |
Collapse
|
13
|
Palmioli A, Airoldi C. An NMR Toolkit to Probe Amyloid Oligomer Inhibition in Neurodegenerative Diseases: From Ligand Screening to Dissecting Binding Topology and Mechanisms of Action. Chempluschem 2024; 89:e202400243. [PMID: 38712695 DOI: 10.1002/cplu.202400243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
The aggregation of amyloid peptides and proteins into toxic oligomers is a hallmark of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Machado-Joseph's disease, and transmissible spongiform encephalopathies. Inhibition of amyloid oligomers formation and interactions with biological counterparts, as well as the triggering of non-toxic amorphous aggregates, are strategies towards preventive interventions against these pathologies. NMR spectroscopy addresses the need for structural characterization of amyloid proteins and their aggregates, their binding to inhibitors, and rapid screening of compound libraries for ligand identification. Here we briefly discuss the solution experiments constituting the NMR spectroscopist's toolkit and provide examples of their application.
Collapse
Affiliation(s)
- Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126, Milan, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
14
|
Alaziqi B, Beckitt L, Townsend DJ, Morgan J, Price R, Maerivoet A, Madine J, Rochester D, Akien G, Middleton DA. Characterization of Olive Oil Phenolic Extracts and Their Effects on the Aggregation of the Alzheimer's Amyloid-β Peptide and Tau. ACS OMEGA 2024; 9:32557-32578. [PMID: 39100310 PMCID: PMC11292642 DOI: 10.1021/acsomega.4c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024]
Abstract
The dietary consumption of extra virgin olive oil (EVOO) is believed to slow the progression of Alzheimer's disease (AD) symptoms. Its protective mechanisms are unclear, but specific EVOO phenolic compounds can individually impede the aggregation of amyloid-β (Aβ) peptides and the microtubule-associated protein tau, two important pathological manifestations of AD. It is unknown, however, whether the numerous and variable phenolic compounds that are consumed in dietary EVOO can collectively alter tau and Aβ aggregation as effectively as the individual compounds. The activity of these complex mixtures against Aβ and tau may be moderated by competition between active and nonactive phenolic components and by extensive derivatizations and isomerization. Here, phenolic mixtures extracted from two different EVOO sources are characterized and tested for how they modulate the aggregation of Aβ40 peptide and tau peptides in vitro. The chromatographic and NMR analysis of Greek and Saudi Arabian EVOO phenolic extracts reveals that they have different concentration profiles, and over 30 compounds are identified. Thioflavin T fluorescence and circular dichroism measurements show that relatively low concentrations (<20 μg/mL) of the Greek and Saudi extracts reduce the rate of Aβ40 aggregation and fibril mass, despite the extracts having different phenolic profiles. By contrast, the Greek extract reduces the rate of tau aggregation only at very high phenolic concentrations (>100 μg/mL). Most compounds in the extracts bind to preformed Aβ40 fibrils and release soluble Aβ oligomers that are mildly toxic to SH-SY5Y cells. Much higher (500 μg/mL) extract concentrations are required to remodel tau filaments into oligomers, and a minimal binding of phenolic compounds to the preformed filaments is observed. It is concluded that EVOO extracts having different phenol profiles are similarly capable of modulating Aβ40 aggregation and fibril morphology in vitro at relatively low concentrations but are less efficient at modulating tau aggregation. Over 2 M tonnes of EVOO are consumed globally each year as part of the Mediterranean diet, and the results here provide motivation for further clinical interrogation of the antiaggregation properties of EVOO as a potential protective mechanism against AD.
Collapse
Affiliation(s)
- Bakri Alaziqi
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
- Department
of Chemistry, University College in Al-Qunfudah,
Umm Al-Qura University, Makkah
Al-Mukarramah 1109, Saudi
Arabia
| | - Liam Beckitt
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - David J. Townsend
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Jasmine Morgan
- Department
of Biology, Edge Hill University, Ormskirk L39 4QP, United Kingdom
| | - Rebecca Price
- Department
of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular
and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Alana Maerivoet
- Department
of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular
and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Jillian Madine
- Department
of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular
and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - David Rochester
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Geoffrey Akien
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - David A. Middleton
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
15
|
Sharma S, Deep S. Inhibition of fibril formation by polyphenols: molecular mechanisms, challenges, and prospective solutions. Chem Commun (Camb) 2024; 60:6717-6727. [PMID: 38835221 DOI: 10.1039/d4cc00822g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Fibril formation is a key feature in neurodegenerative diseases like Alzheimer's, Parkinson's, and systemic amyloidosis. Polyphenols, found in plant-based foods, show promise in inhibiting fibril formation and disrupting disease progression. The ability of polyphenols to break the amyloid fibrils of many disease-linked proteins has been tested in numerous studies. Polyphenols have their distinctive mechanism of action. They behave differently on various events in the aggregation pathway. Their action also differs for different proteins. Some polyphenols only inhibit the formation of fibrils whereas others break the preformed fibrils. Some break the fibrils into smaller species, and some change them to other morphologies. This article delves into the intricate molecular mechanisms underlying the inhibitory effects of polyphenols on fibrillogenesis, shedding light on their interactions with amyloidogenic proteins and the disruption of fibril assembly pathways. However, addressing the challenges associated with solubility, stability, and bioavailability of polyphenols is crucial. The current strategies involve nanotechnology to improve the solubility and bioavailability, thus showing the potential to enhance the efficacy of polyphenols as therapeutics. Advancements in structural biology, computational modeling, and biophysics have provided insights into polyphenol-fibril interactions, offering hope for novel therapies for neurodegenerative diseases and amyloidosis.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
16
|
Chia S, Cataldi RL, Ruggeri FS, Limbocker R, Condado-Morales I, Pisani K, Possenti A, Linse S, Knowles TPJ, Habchi J, Mannini B, Vendruscolo M. A Relationship between the Structures and Neurotoxic Effects of Aβ Oligomers Stabilized by Different Metal Ions. ACS Chem Neurosci 2024; 15:1125-1134. [PMID: 38416693 PMCID: PMC10958495 DOI: 10.1021/acschemneuro.3c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/01/2024] Open
Abstract
Oligomeric assemblies of the amyloid β peptide (Aβ) have been investigated for over two decades as possible neurotoxic agents in Alzheimer's disease. However, due to their heterogeneous and transient nature, it is not yet fully established which of the structural features of these oligomers may generate cellular damage. Here, we study distinct oligomer species formed by Aβ40 (the 40-residue form of Aβ) in the presence of four different metal ions (Al3+, Cu2+, Fe2+, and Zn2+) and show that they differ in their structure and toxicity in human neuroblastoma cells. We then describe a correlation between the size of the oligomers and their neurotoxic activity, which provides a type of structure-toxicity relationship for these Aβ40 oligomer species. These results provide insight into the possible role of metal ions in Alzheimer's disease by the stabilization of Aβ oligomers.
Collapse
Affiliation(s)
- Sean Chia
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Rodrigo Lessa Cataldi
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Francesco Simone Ruggeri
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Ryan Limbocker
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Itzel Condado-Morales
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Katarina Pisani
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Andrea Possenti
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Sara Linse
- Department
of Biochemistry & Structural Biology, Center for Molecular Protein
Science, Lund University, PO box 124, 221 00 Lund, Sweden
| | - Tuomas P. J. Knowles
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Department
of Physics, Cavendish Laboratory, Cambridge CB3 0HE, U.K.
| | - Johnny Habchi
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Benedetta Mannini
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
17
|
Meisl G. The thermodynamics of neurodegenerative disease. BIOPHYSICS REVIEWS 2024; 5:011303. [PMID: 38525484 PMCID: PMC10957229 DOI: 10.1063/5.0180899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
The formation of protein aggregates in the brain is a central aspect of the pathology of many neurodegenerative diseases. This self-assembly of specific proteins into filamentous aggregates, or fibrils, is a fundamental biophysical process that can easily be reproduced in the test tube. However, it has been difficult to obtain a clear picture of how the biophysical insights thus obtained can be applied to the complex, multi-factorial diseases and what this means for therapeutic strategies. While new, disease-modifying therapies are now emerging, for the most devastating disorders, such as Alzheimer's and Parkinson's disease, they still fall well short of offering a cure, and few drug design approaches fully exploit the wealth of mechanistic insights that has been obtained in biophysical studies. Here, I attempt to provide a new perspective on the role of protein aggregation in disease, by phrasing the problem in terms of a system that, under constant energy consumption, attempts to maintain a healthy, aggregate-free state against the thermodynamic driving forces that inexorably push it toward pathological aggregation.
Collapse
Affiliation(s)
- Georg Meisl
- WaveBreak Therapeutics Ltd., Chemistry of Health, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
18
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
19
|
Curk S, Krausser J, Meisl G, Frenkel D, Linse S, Michaels TCT, Knowles TPJ, Šarić A. Self-replication of A β42 aggregates occurs on small and isolated fibril sites. Proc Natl Acad Sci U S A 2024; 121:e2220075121. [PMID: 38335256 PMCID: PMC10873593 DOI: 10.1073/pnas.2220075121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/17/2023] [Indexed: 02/12/2024] Open
Abstract
Self-replication of amyloid fibrils via secondary nucleation is an intriguing physicochemical phenomenon in which existing fibrils catalyze the formation of their own copies. The molecular events behind this fibril surface-mediated process remain largely inaccessible to current structural and imaging techniques. Using statistical mechanics, computer modeling, and chemical kinetics, we show that the catalytic structure of the fibril surface can be inferred from the aggregation behavior in the presence and absence of a fibril-binding inhibitor. We apply our approach to the case of Alzheimer's A[Formula: see text] amyloid fibrils formed in the presence of proSP-C Brichos inhibitors. We find that self-replication of A[Formula: see text] fibrils occurs on small catalytic sites on the fibril surface, which are far apart from each other, and each of which can be covered by a single Brichos inhibitor.
Collapse
Affiliation(s)
- Samo Curk
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
- Department of Physics and Astronomy, Laboratory for Molecular Cell Biology, University College London, LondonWC1E 6BT, United Kingdom
| | - Johannes Krausser
- Department of Physics and Astronomy, Laboratory for Molecular Cell Biology, University College London, LondonWC1E 6BT, United Kingdom
| | - Georg Meisl
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Daan Frenkel
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Lund22100, Sweden
| | - Thomas C. T. Michaels
- Department of Physics and Astronomy, Laboratory for Molecular Cell Biology, University College London, LondonWC1E 6BT, United Kingdom
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich8093, Switzerland
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Anđela Šarić
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
- Department of Physics and Astronomy, Laboratory for Molecular Cell Biology, University College London, LondonWC1E 6BT, United Kingdom
| |
Collapse
|
20
|
Wang Q, Wang L, Huang Z, Xiao Y, Liu M, Liu H, Yu Y, Liang M, Luo N, Li K, Mishra A, Huang Z. Abalone peptide increases stress resilience and cost-free longevity via SKN-1-governed transcriptional metabolic reprogramming in C. elegans. Aging Cell 2024; 23:e14046. [PMID: 37990605 PMCID: PMC10861207 DOI: 10.1111/acel.14046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
A major goal of healthy aging is to prevent declining resilience and increasing frailty, which are associated with many chronic diseases and deterioration of stress response. Here, we propose a loss-or-gain survival model, represented by the ratio of cumulative stress span to life span, to quantify stress resilience at organismal level. As a proof of concept, this is demonstrated by reduced survival resilience in Caenorhabditis elegans exposed to exogenous oxidative stress induced by paraquat or with endogenous proteotoxic stress caused by polyglutamine or amyloid-β aggregation. Based on this, we reveal that a hidden peptide ("cryptide")-AbaPep#07 (SETYELRK)-derived from abalone hemocyanin not only enhances survival resilience against paraquat-induced oxidative stress but also rescues proteotoxicity-mediated behavioral deficits in C. elegans, indicating its capacity against stress and neurodegeneration. Interestingly, AbaPep#07 is also found to increase cost-free longevity and age-related physical fitness in nematodes. We then demonstrate that AbaPep#07 can promote nuclear localization of SKN-1/Nrf, but not DAF-16/FOXO, transcription factor. In contrast to its effects in wild-type nematodes, AbaPep#07 cannot increase oxidative stress survival and physical motility in loss-of-function skn-1 mutant, suggesting an SKN-1/Nrf-dependent fashion of these effects. Further investigation reveals that AbaPep#07 can induce transcriptional activation of immune defense, lipid metabolism, and metabolic detoxification pathways, including many SKN-1/Nrf target genes. Together, our findings demonstrate that AbaPep#07 is able to boost stress resilience and reduce behavioral frailty via SKN-1/Nrf-governed transcriptional reprogramming, and provide an insight into the health-promoting potential of antioxidant cryptides as geroprotectors in aging and associated conditions.
Collapse
Affiliation(s)
- Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
| | - Liangyi Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Ziliang Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Yue Xiao
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
| | - Mao Liu
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
| | - Huihui Liu
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Yi Yu
- Research and Development Center, Infinitus (China) Company LtdGuangzhouChina
| | - Ming Liang
- Research and Development Center, Infinitus (China) Company LtdGuangzhouChina
| | - Ning Luo
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Kunping Li
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Ajay Mishra
- European Bioinformatics InstituteCambridgeUK
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
21
|
Zhao Y, Rao PPN. Small Molecules N-Phenylbenzofuran-2-carboxamide and N-Phenylbenzo[ b]thiophene-2-carboxamide Promote Beta-Amyloid (Aβ42) Aggregation and Mitigate Neurotoxicity. ACS Chem Neurosci 2023; 14:4185-4198. [PMID: 37972377 DOI: 10.1021/acschemneuro.3c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
This study reports the unusual ability of small molecules N-phenylbenzofuran-2-carboxamide (7a) and N-phenylbenzo[b]thiophene-2-carboxamide (7b) to promote and accelerate Aβ42 aggregation. In the in vitro aggregation kinetic assays, 7a was able to demonstrate rapid increases in Aβ42 fibrillogenesis ranging from 1.5- to 4.7-fold when tested at 1, 5, 10, and 25 μM compared to Aβ42-alone control. Similarly, compound 7b also exhibited 2.9- to 4.3-fold increases in Aβ42 fibrillogenesis at the concentration range tested. Electron microscopy studies at 1, 5, 10, and 25 μM also demonstrate the ability of compounds 7a and 7b to promote and accelerate Aβ42 aggregation with the formation of long, elongated fibril structures. Both 7a and 7b were not toxic to HT22 hippocampal neuronal cells and strikingly were able to prevent Aβ42-induced cytotoxicity in HT22 hippocampal neuronal cells (cell viability ∼74%) compared to the Aβ42-treated group (cell viability ∼20%). Fluorescence imaging studies using BioTracker 490 green, Hoeschst 33342, and the amyloid binding dye ProteoStat further demonstrate the ability of 7a and 7b to promote Aβ42 fibrillogenesis and prevent Aβ42-induced cytotoxicity to HT22 hippocampal neuronal cells. Computational modeling studies suggest that both 7a and 7b can interact with the Aβ42 oligomer and pentamers and have the potential to modulate the self-assembly pathways. The 8-anilino-1-naphthalenesulfonic acid (ANS) dye binding assay also demonstrates the ability of 7a and 7b to expose the hydrophobic surface of Aβ42 to the solvent surface that promotes self-assembly and rapid fibrillogenesis. These studies demonstrate the unique ability of small molecules 7a and 7b to alter the self-assembly and misfolding pathways of Aβ42 by promoting the formation of nontoxic aggregates. These findings have direct implications in the discovery and development of novel small-molecule-based chemical and pharmacological tools to study the Aβ42 aggregation mechanisms, and in the design of novel antiamyloid therapies to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Yusheng Zhao
- School of Pharmacy, Health Sciences Campus, University of Waterloo, Ontario, Waterloo N2L 3G1, Canada
| | - Praveen P N Rao
- School of Pharmacy, Health Sciences Campus, University of Waterloo, Ontario, Waterloo N2L 3G1, Canada
| |
Collapse
|
22
|
Smeralda W, Since M, Corvaisier S, Fayolle D, Cardin J, Duprey S, Jourdan JP, Cullin C, Malzert-Freon A. A Biomimetic Multiparametric Assay to Characterise Anti-Amyloid Drugs. Int J Mol Sci 2023; 24:16982. [PMID: 38069305 PMCID: PMC10707238 DOI: 10.3390/ijms242316982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most widespread form of senile dementia worldwide and represents a leading socioeconomic problem in healthcare. Although it is widely debated, the aggregation of the amyloid β peptide (Aβ) is linked to the onset and progression of this neurodegenerative disease. Molecules capable of interfering with specific steps in the fibrillation process remain of pharmacological interest. To identify such compounds, we have set up a small molecule screening process combining multiple experimental methods (UV and florescence spectrometry, ITC, and ATR-FTIR) to identify and characterise potential modulators of Aβ1-42 fibrillation through the description of the biochemical interactions (molecule-membrane Aβ peptide). Three known modulators, namely bexarotene, Chicago sky blue and indomethacin, have been evaluated through this process, and their modulation mechanism in the presence of a biomembrane has been described. Such a well-adapted physico-chemical approach to drug discovery proves to be an undeniable asset for the rapid characterisation of compounds of therapeutic interest for Alzheimer's disease. This strategy could be adapted and transposed to search for modulators of other amyloids such as tau protein.
Collapse
Affiliation(s)
- Willy Smeralda
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| | - Marc Since
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| | - Sophie Corvaisier
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| | - Dimitri Fayolle
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| | - Julien Cardin
- CIMAP, ENSICAEN, UNICAEN, UMR6252 CNRS, CEA, Normandie Université, 6 Bd du Maréchal Juin, 14050 Caen, France; (J.C.); (S.D.)
| | - Sylvain Duprey
- CIMAP, ENSICAEN, UNICAEN, UMR6252 CNRS, CEA, Normandie Université, 6 Bd du Maréchal Juin, 14050 Caen, France; (J.C.); (S.D.)
| | - Jean-Pierre Jourdan
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
- Pharmacie à Usage Intérieur, Centre Hospitalier de Vire, Normandie, 14504 Vire, France
| | | | - Aurélie Malzert-Freon
- Normandie Université, UNICAEN, CERMN, Boulevard Becquerel, 14000 Caen, France; (W.S.); (S.C.); (D.F.); (J.-P.J.)
| |
Collapse
|
23
|
Wirth F, Heitz FD, Seeger C, Combaluzier I, Breu K, Denroche HC, Thevenet J, Osto M, Arosio P, Kerr-Conte J, Verchere CB, Pattou F, Lutz TA, Donath MY, Hock C, Nitsch RM, Grimm J. A human antibody against pathologic IAPP aggregates protects beta cells in type 2 diabetes models. Nat Commun 2023; 14:6294. [PMID: 37813862 PMCID: PMC10562398 DOI: 10.1038/s41467-023-41986-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
In patients with type 2 diabetes, pancreatic beta cells progressively degenerate and gradually lose their ability to produce insulin and regulate blood glucose. Beta cell dysfunction and loss is associated with an accumulation of aggregated forms of islet amyloid polypeptide (IAPP) consisting of soluble prefibrillar IAPP oligomers as well as insoluble IAPP fibrils in pancreatic islets. Here, we describe a human monoclonal antibody selectively targeting IAPP oligomers and neutralizing IAPP aggregate toxicity by preventing membrane disruption and apoptosis in vitro. Antibody treatment in male rats and mice transgenic for human IAPP, and human islet-engrafted mouse models of type 2 diabetes triggers clearance of IAPP oligomers resulting in beta cell protection and improved glucose control. These results provide new evidence for the pathological role of IAPP oligomers and suggest that antibody-mediated removal of IAPP oligomers could be a pharmaceutical strategy to support beta cell function in type 2 diabetes.
Collapse
Affiliation(s)
- Fabian Wirth
- Neurimmune AG, Wagistrasse 18, 8952, Schlieren, Switzerland
| | | | | | | | - Karin Breu
- Neurimmune AG, Wagistrasse 18, 8952, Schlieren, Switzerland
| | - Heather C Denroche
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Departments of Surgery and Pathology & Laboratory Medicine, University of British Columbia, A4-151 950 W 28 Ave, Vancouver, BC, Canada
| | - Julien Thevenet
- Univ-Lille, Inserm, CHU Lille, U1190 - EGID, F-59000, Lille, France
| | - Melania Osto
- Institute of Veterinary Physiology, Vetsuisse Faculty of the University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| | - Paolo Arosio
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Julie Kerr-Conte
- Univ-Lille, Inserm, CHU Lille, U1190 - EGID, F-59000, Lille, France
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Departments of Surgery and Pathology & Laboratory Medicine, University of British Columbia, A4-151 950 W 28 Ave, Vancouver, BC, Canada
| | - François Pattou
- Univ-Lille, Inserm, CHU Lille, U1190 - EGID, F-59000, Lille, France
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty of the University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| | - Marc Y Donath
- Clinic for Endocrinology, Diabetes & Metabolism, and Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Christoph Hock
- Neurimmune AG, Wagistrasse 18, 8952, Schlieren, Switzerland
- Institute for Regenerative Medicine-IREM, University of Zürich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Roger M Nitsch
- Neurimmune AG, Wagistrasse 18, 8952, Schlieren, Switzerland
- Institute for Regenerative Medicine-IREM, University of Zürich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Jan Grimm
- Neurimmune AG, Wagistrasse 18, 8952, Schlieren, Switzerland.
| |
Collapse
|
24
|
Dong L, Xie HZ, Jia L, Hong L, Li G. Inhibition of Amyloid β Aggregation and Cytotoxicity by Berbamine Hydrochloride. Chemistry 2023; 29:e202301865. [PMID: 37470691 DOI: 10.1002/chem.202301865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Alzheimer's disease (AD) continues to be a major global health challenge, and the recent approval of Aduhelm and Leqembi has opened new avenues for its treatment. Small-molecule inhibitors targeting Aβ aggregation hold promise as an alternative to monoclonal antibodies. In this study, we evaluated the ability of berbamine hydrochloride (BBMH), a member of the bisbenzylisoquinoline alkaloids, to reduce Aβ aggregation and cytotoxicity. Thioflavin T kinetics, circular dichroism spectroscopy, and atomic force microscopy results indicated that BBMH effectively inhibited Aβ aggregation. Surface plasmon resonance and molecular docking results further revealed that BBMH could bind to Aβ fibrils, thereby hindering the aggregation process. This physical picture has been confirmed in a quantitative way by chemical kinetics analysis, which showed BBMH tends to bind with the fibril ends and thus prevents the transition from protofibrils to mature fibrils as well as the elongation process. Additionally, our MTT results showed that BBMH was able to reduce the cytotoxicity of Aβ40 on N2a cells. Our results demonstrate, for the first time, the potential of BBMH to inhibit Aβ aggregation and cytotoxicity, offering a promising direction for further research and drug development efforts in the fight against Alzheimer's disease.
Collapse
Affiliation(s)
- Li Dong
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology, Cooperation Base of Intelligent Pharmaceutics, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Huan-Zhang Xie
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology, Cooperation Base of Intelligent Pharmaceutics, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Lee Jia
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology, Cooperation Base of Intelligent Pharmaceutics, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Liu Hong
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Gao Li
- Fuzhou Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology, Cooperation Base of Intelligent Pharmaceutics, Minjiang University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
25
|
Song X, Ding Q, Wei W, Zhang J, Sun R, Yin L, Liu S, Pu Y. Peptide-Functionalized Prussian Blue Nanomaterial for Antioxidant Stress and NIR Photothermal Therapy against Alzheimer's Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206959. [PMID: 37322406 DOI: 10.1002/smll.202206959] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/18/2023] [Indexed: 06/17/2023]
Abstract
Excessive accumulations of reactive oxygen species (ROS) and amyloid-β (Aβ) protein are closely associated with the complex pathogenesis of Alzheimer's disease (AD). Therefore, approaches that synergistically exert elimination of ROS and dissociation of Aβ fibrils are effective therapeutic strategies for correcting the AD microenvironment. Herein, a novel near infrared (NIR) responsive Prussian blue-based nanomaterial (PBK NPs) is established with excellent antioxidant activity and photothermal effect. PBK NPs possess similar activities to multiple antioxidant enzymes, including superoxide dismutase, peroxidase, and catalase, which can eliminate massive ROS and relieve oxidative stress. Under the NIR irradiation, PBK NPs can generate local heat to disaggregate Aβ fibrils efficiently. By modifying CKLVFFAED peptide, PBK NPs display obvious targeting ability for blood-brain barrier penetration and Aβ binding. Furthermore, in vivo studies demonstrate that PBK NPs have outstanding ability to decompose Aβ plaques and alleviate neuroinflammation in AD mouse model. Overall, PBK NPs provide evident neuroprotection by reducing ROS levels and regulating Aβ deposition, and may accelerate the development of multifunctional nanomaterials for delaying the progression of AD.
Collapse
Affiliation(s)
- Xiaolei Song
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Qin Ding
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Wei Wei
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| |
Collapse
|
26
|
Chandhok S, Pereira L, Momchilova EA, Marijan D, Zapf R, Lacroix E, Kaur A, Keymanesh S, Krieger C, Audas TE. Stress-mediated aggregation of disease-associated proteins in amyloid bodies. Sci Rep 2023; 13:14471. [PMID: 37660155 PMCID: PMC10475078 DOI: 10.1038/s41598-023-41712-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023] Open
Abstract
The formation of protein aggregates is a hallmark of many neurodegenerative diseases and systemic amyloidoses. These disorders are associated with the fibrillation of a variety of proteins/peptides, which ultimately leads to cell toxicity and tissue damage. Understanding how amyloid aggregation occurs and developing compounds that impair this process is a major challenge in the health science community. Here, we demonstrate that pathogenic proteins associated with Alzheimer's disease, diabetes, AL/AA amyloidosis, and amyotrophic lateral sclerosis can aggregate within stress-inducible physiological amyloid-based structures, termed amyloid bodies (A-bodies). Using a limited collection of small molecule inhibitors, we found that diclofenac could repress amyloid aggregation of the β-amyloid (1-42) in a cellular setting, despite having no effect in the classic Thioflavin T (ThT) in vitro fibrillation assay. Mapping the mechanism of the diclofenac-mediated repression indicated that dysregulation of cyclooxygenases and the prostaglandin synthesis pathway was potentially responsible for this effect. Together, this work suggests that the A-body machinery may be linked to a subset of pathological amyloidosis, and highlights the utility of this model system in the identification of new small molecules that could treat these debilitating diseases.
Collapse
Affiliation(s)
- Sahil Chandhok
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Lionel Pereira
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Evgenia A Momchilova
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Dane Marijan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Richard Zapf
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Emma Lacroix
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Avneet Kaur
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Shayan Keymanesh
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Charles Krieger
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Timothy E Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
27
|
Zhang Z, Huang G, Song Z, Gatch AJ, Ding F. Amyloid Aggregation and Liquid-Liquid Phase Separation from the Perspective of Phase Transitions. J Phys Chem B 2023; 127:6241-6250. [PMID: 37414583 PMCID: PMC10404378 DOI: 10.1021/acs.jpcb.3c01426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Amyloid aggregation describes the aberrant self-assembly of peptides into ordered fibrils characterized by cross-β spine cores and is associated with many neurodegenerative diseases and Type 2 diabetes. Oligomers, populated during the early stage of aggregation, are found to be more cytotoxic than mature fibrils. Recently, many amyloidogenic peptides have been reported to undergo liquid-liquid phase separation (LLPS)─a biological process important for the compartmentalization of biomolecules in living cells─prior to fibril formation. Understanding the relationship between LLPS and amyloid aggregation, especially the formation of oligomers, is essential for uncovering disease mechanisms and mitigating amyloid toxicity. In this Perspective, available theories and models of amyloid aggregation and LLPS are first briefly reviewed. By drawing analogies to gas, liquid, and solid phases in thermodynamics, a phase diagram of protein monomer, droplet, and fibril states separated by coexistence lines can be inferred. Due to the high free energy barrier of fibrillization kinetically delaying the formation of fibril seeds out of the droplets, a "hidden" monomer-droplet coexistence line extends into the fibril phase. Amyloid aggregation can then be described as the equilibration process from the initial "out-of-equilibrium" state of a homogeneous solution of monomers to the final equilibrium state of stable amyloid fibrils coexisting with monomers and/or droplets via the formation of metastable or stable droplets as the intermediates. The relationship between droplets and oligomers is also discussed. We suggest that the droplet formation of LLPS should be considered in future studies of amyloid aggregation, which may help to better understand the aggregation process and develop therapeutic strategies to mitigate amyloid toxicity.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Gangtong Huang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Zhiyuan Song
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Adam J. Gatch
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
28
|
Vendruscolo M. Thermodynamic and kinetic approaches for drug discovery to target protein misfolding and aggregation. Expert Opin Drug Discov 2023:1-11. [PMID: 37276120 DOI: 10.1080/17460441.2023.2221024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Protein misfolding diseases, including Alzheimer's and Parkinson's diseases, are characterized by the aberrant aggregation of proteins. These conditions are still largely untreatable, despite having a major impact on our healthcare systems and societies. AREAS COVERED We describe drug discovery strategies to target protein misfolding and aggregation. We compare thermodynamic approaches, which are based on the stabilization of the native states of proteins, with kinetic approaches, which are based on the slowing down of the aggregation process. This comparison is carried out in terms of the current knowledge of the process of protein misfolding and aggregation, the mechanisms of disease and the therapeutic targets. EXPERT OPINION There is an unmet need for disease-modifying treatments that target protein misfolding and aggregation for the over 50 human disorders known to be associated with this phenomenon. With the approval of the first drugs that can prevent misfolding or inhibit aggregation, future efforts will be focused on the discovery of effective compounds with these mechanisms of action for a wide range of conditions.
Collapse
Affiliation(s)
- Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
29
|
Limbocker R, Cremades N, Cascella R, Tessier PM, Vendruscolo M, Chiti F. Characterization of Pairs of Toxic and Nontoxic Misfolded Protein Oligomers Elucidates the Structural Determinants of Oligomer Toxicity in Protein Misfolding Diseases. Acc Chem Res 2023. [PMID: 37071750 DOI: 10.1021/acs.accounts.3c00045] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
ConspectusThe aberrant misfolding and aggregation of peptides and proteins into amyloid aggregates occurs in over 50 largely incurable protein misfolding diseases. These pathologies include Alzheimer's and Parkinson's diseases, which are global medical emergencies owing to their prevalence in increasingly aging populations worldwide. Although the presence of mature amyloid aggregates is a hallmark of such neurodegenerative diseases, misfolded protein oligomers are increasingly recognized as of central importance in the pathogenesis of many of these maladies. These oligomers are small, diffusible species that can form as intermediates in the amyloid fibril formation process or be released by mature fibrils after they are formed. They have been closely associated with the induction of neuronal dysfunction and cell death. It has proven rather challenging to study these oligomeric species because of their short lifetimes, low concentrations, extensive structural heterogeneity, and challenges associated with producing stable, homogeneous, and reproducible populations. Despite these difficulties, investigators have developed protocols to produce kinetically, chemically, or structurally stabilized homogeneous populations of protein misfolded oligomers from several amyloidogenic peptides and proteins at experimentally ameneable concentrations. Furthermore, procedures have been established to produce morphologically similar but structurally distinct oligomers from the same protein sequence that are either toxic or nontoxic to cells. These tools offer unique opportunities to identify and investigate the structural determinants of oligomer toxicity by a close comparative inspection of their structures and the mechanisms of action through which they cause cell dysfunction.This Account reviews multidisciplinary results, including from our own groups, obtained by combining chemistry, physics, biochemistry, cell biology, and animal models for pairs of toxic and nontoxic oligomers. We describe oligomers comprised of the amyloid-β peptide, which underlie Alzheimer's disease, and α-synuclein, which are associated with Parkinson's disease and other related neurodegenerative pathologies, collectively known as synucleinopathies. Furthermore, we also discuss oligomers formed by the 91-residue N-terminal domain of [NiFe]-hydrogenase maturation factor from E. coli, which we use as a model non-disease-related protein, and by an amyloid stretch of Sup35 prion protein from yeast. These oligomeric pairs have become highly useful experimental tools for studying the molecular determinants of toxicity characteristic of protein misfolding diseases. Key properties have been identified that differentiate toxic from nontoxic oligomers in their ability to induce cellular dysfunction. These characteristics include solvent-exposed hydrophobic regions, interactions with membranes, insertion into lipid bilayers, and disruption of plasma membrane integrity. By using these properties, it has been possible to rationalize in model systems the responses to pairs of toxic and nontoxic oligomers. Collectively, these studies provide guidance for the development of efficacious therapeutic strategies to target rationally the cytotoxicity of misfolded protein oligomers in neurodegenerative conditions.
Collapse
Affiliation(s)
- Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Nunilo Cremades
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza 50009, Spain
| | - Roberta Cascella
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Peter M Tessier
- Departments of Chemical Engineering, Pharmaceutical Sciences, and Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| |
Collapse
|
30
|
Ali SM, Nabi F, Hisamuddin M, Rizvi I, Ahmad A, Hassan MN, Paul P, Chaari A, Khan RH. Evaluating the inhibitory potential of natural compound luteolin on human lysozyme fibrillation. Int J Biol Macromol 2023; 233:123623. [PMID: 36773857 DOI: 10.1016/j.ijbiomac.2023.123623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Numerous pathophysiological conditions known as amyloidosis, have been connected to protein misfolding leading to aggregation of proteins. Inhibition of cytotoxic aggregates or disaggregation of the preformed fibrils is thus one of the important strategies in the prevention of such diseases. Growing interest and exploration of identification of small molecules mainly natural compounds can prevent or delay amyloid fibril formation. We examined the mechanism of interaction and inhibition of human lysozyme (HL) aggregates with luteolin (LT). Biophysical and computational approaches have been employed to study the effect of LT on HL amyloid aggregation. Transmission Electronic Microscopy, Thioflavin T fluorescence, UV-vis spectroscopy, and RLS demonstrates that LT inhibit HL fibril formation. ANS fluorescence and hemolytic assay was also employed to examine the effect of the LT on toxicity of HL aggregation. Docking and molecular dynamics results showed that LT interacted with HL via hydrophobic and hydrogen interactions, thus reducing fibrillation levels. These findings highlight the benefit of polyphenols as safe therapy for preventing amyloid related diseases.
Collapse
Affiliation(s)
- Syed Moasfar Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Malik Hisamuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Irum Rizvi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Azeem Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Pradipta Paul
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Ali Chaari
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India.
| |
Collapse
|
31
|
Puneeth Kumar DRGKR, Reja RM, Senapati DK, Singh M, Nalawade SA, George G, Kaul G, Akhir A, Chopra S, Raghothama S, Gopi HN. A cationic amphiphilic peptide chaperone rescues Aβ 42 aggregation and cytotoxicity. RSC Med Chem 2023; 14:332-340. [PMID: 36846376 PMCID: PMC9945854 DOI: 10.1039/d2md00414c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Directing Aβ42 to adopt a conformation that is free from aggregation and cell toxicity is an attractive and viable strategy to design therapeutics for Alzheimer's disease. Over the years, extensive efforts have been made to disrupt the aggregation of Aβ42 using various types of inhibitors but with limited success. Herein, we report the inhibition of aggregation of Aβ42 and disintegration of matured fibrils of Aβ42 into smaller assemblies by a 15-mer cationic amphiphilic peptide. The biophysical analysis comprising thioflavin T (ThT) mediated amyloid aggregation kinetic analysis, dynamic light scattering, ELISA, AFM, and TEM suggested that the peptide effectively disrupts Aβ42 aggregation. The circular dichroism (CD) and 2D-NMR HSQC analysis reveal that upon interaction, the peptide induces a conformational change in Aβ42 that is free from aggregation. Further, the cell assay experiments revealed that this peptide is non-toxic to cells and also rescues the cells from the toxicity of Aβ42. Peptides with a shorter length displayed either weak or no inhibitory effect on Aβ42 aggregation and cytotoxicity. These results suggest that the 15-residue cationic amphiphilic peptide reported here may serve as a potential therapeutic candidate for Alzheimer's disease.
Collapse
Affiliation(s)
- DRGKoppalu R. Puneeth Kumar
- Department of Chemistry, Indian Institute of Science Education and ResearchDr. Homi Bhabha Road, PashanPune-411008India
| | - Rahi M. Reja
- Department of Chemistry, Indian Institute of Science Education and ResearchDr. Homi Bhabha Road, PashanPune-411008India
| | | | - Manjeet Singh
- Department of Chemistry, Indian Institute of Science Education and Research Dr. Homi Bhabha Road, Pashan Pune-411008 India
| | - Sachin A. Nalawade
- Department of Chemistry, Indian Institute of Science Education and ResearchDr. Homi Bhabha Road, PashanPune-411008India
| | - Gijo George
- NMR Research Centre, Indian Institute of ScienceBangalore-560012India
| | - Grace Kaul
- Division of Microbiology and Division of Medicinal and Process Chemistry, CSIR-Central Drug Research InstituteSitapur Road, Sector 10, Janakipuram ExtensionLucknow-226031Uttar PradeshIndia,AcSIR: Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India
| | - Abdul Akhir
- Division of Microbiology and Division of Medicinal and Process Chemistry, CSIR-Central Drug Research InstituteSitapur Road, Sector 10, Janakipuram ExtensionLucknow-226031Uttar PradeshIndia
| | - Sidharth Chopra
- Division of Microbiology and Division of Medicinal and Process Chemistry, CSIR-Central Drug Research InstituteSitapur Road, Sector 10, Janakipuram ExtensionLucknow-226031Uttar PradeshIndia,AcSIR: Academy of Scientific and Innovative Research (AcSIR)Ghaziabad 201002India
| | | | - Hosahudya N. Gopi
- Department of Chemistry, Indian Institute of Science Education and ResearchDr. Homi Bhabha Road, PashanPune-411008India
| |
Collapse
|
32
|
Ball S, Adamson JSP, Sullivan MA, Zimmermann MR, Lo V, Sanz-Hernandez M, Jiang X, Kwan AH, McKenzie ADJ, Werry EL, Knowles TPJ, Kassiou M, Meisl G, Todd MH, Rutledge PJ, Sunde M. Perphenazine-Macrocycle Conjugates Rapidly Sequester the Aβ42 Monomer and Prevent Formation of Toxic Oligomers and Amyloid. ACS Chem Neurosci 2023; 14:87-98. [PMID: 36542544 PMCID: PMC9818246 DOI: 10.1021/acschemneuro.2c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease is imposing a growing social and economic burden worldwide, and effective therapies are urgently required. One possible approach to modulation of the disease outcome is to use small molecules to limit the conversion of monomeric amyloid (Aβ42) to cytotoxic amyloid oligomers and fibrils. We have synthesized modulators of amyloid assembly that are unlike others studied to date: these compounds act primarily by sequestering the Aβ42 monomer. We provide kinetic and nuclear magnetic resonance data showing that these perphenazine conjugates divert the Aβ42 monomer into amorphous aggregates that are not cytotoxic. Rapid monomer sequestration by the compounds reduces fibril assembly, even in the presence of pre-formed fibrillar seeds. The compounds are therefore also able to disrupt monomer-dependent secondary nucleation, the autocatalytic process that generates the majority of toxic oligomers. The inhibitors have a modular design that is easily varied, aiding future exploration and use of these tools to probe the impact of distinct Aβ42 species populated during amyloid assembly.
Collapse
Affiliation(s)
- Sarah
R. Ball
- School
of Medical Sciences, The University of Sydney, Sydney, New South Wales2006, Australia
| | - Julius S. P. Adamson
- School
of Chemistry, The University of Sydney, Sydney, New South Wales2006, Australia
| | - Michael A. Sullivan
- School
of Medical Sciences, The University of Sydney, Sydney, New South Wales2006, Australia
| | - Manuela R. Zimmermann
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Victor Lo
- School
of Medical Sciences, The University of Sydney, Sydney, New South Wales2006, Australia
| | | | - Xiaofan Jiang
- School
of Chemistry, The University of Sydney, Sydney, New South Wales2006, Australia
| | - Ann H. Kwan
- School
of Life and Environmental Sciences, The
University of Sydney, Sydney, New South Wales2006, Australia
| | - André D. J. McKenzie
- School
of Chemistry, The University of Sydney, Sydney, New South Wales2006, Australia
| | - Eryn L. Werry
- School
of Chemistry, The University of Sydney, Sydney, New South Wales2006, Australia
- Brain and
Mind Centre, The University of Sydney, Sydney, New South Wales2006, Australia
| | - Tuomas P. J. Knowles
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, CambridgeCB3 0HE, U.K.
| | - Michael Kassiou
- School
of Chemistry, The University of Sydney, Sydney, New South Wales2006, Australia
| | - Georg Meisl
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Matthew H. Todd
- School
of Pharmacy, University College London, LondonWC1N 1AX, U.K.
| | - Peter J. Rutledge
- School
of Chemistry, The University of Sydney, Sydney, New South Wales2006, Australia
| | - Margaret Sunde
- School
of Medical Sciences, The University of Sydney, Sydney, New South Wales2006, Australia
| |
Collapse
|
33
|
Sedov I, Khaibrakhmanova D. Molecular Mechanisms of Inhibition of Protein Amyloid Fibril Formation: Evidence and Perspectives Based on Kinetic Models. Int J Mol Sci 2022; 23:13428. [PMID: 36362217 PMCID: PMC9657184 DOI: 10.3390/ijms232113428] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Inhibition of fibril formation is considered a possible treatment strategy for amyloid-related diseases. Understanding the molecular nature of inhibitor action is crucial for the design of drug candidates. In the present review, we describe the common kinetic models of fibril formation and classify known inhibitors by the mechanism of their interactions with the aggregating protein and its oligomers. This mechanism determines the step or steps of the aggregation process that become inhibited and the observed changes in kinetics and equilibrium of fibril formation. The results of numerous studies indicate that possible approaches to antiamyloid inhibitor discovery include the search for the strong binders of protein monomers, cappers blocking the ends of the growing fibril, or the species absorbing on the surface of oligomers preventing nucleation. Strongly binding inhibitors stabilizing the native state can be promising for the structured proteins while designing the drug candidates targeting disordered proteins is challenging.
Collapse
Affiliation(s)
- Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
- Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | | |
Collapse
|
34
|
Mafimoghaddam S, Xu Y, Sherman MB, Orlova EV, Karki P, Orman MA, Vekilov PG. Suppression of amyloid-β fibril growth by drug-engineered polymorph transformation. J Biol Chem 2022; 298:102662. [PMID: 36334629 PMCID: PMC9720346 DOI: 10.1016/j.jbc.2022.102662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Fibrillization of the protein amyloid β is assumed to trigger Alzheimer's pathology. Approaches that target amyloid plaques, however, have garnered limited clinical success, and their failures may relate to the scarce understanding of the impact of potential drugs on the intertwined stages of fibrillization. Here, we demonstrate that bexarotene, a T-cell lymphoma medication with known antiamyloid activity both in vitro and in vivo, suppresses amyloid fibrillization by promoting an alternative fibril structure. We employ time-resolved in situ atomic force microscopy to quantify the kinetics of growth of individual fibrils and supplement it with structure characterization by cryo-EM. We show that fibrils with structure engineered by the drug nucleate and grow substantially slower than "normal" fibrils; remarkably, growth remains stunted even in drug-free solutions. We find that the suppression of fibril growth by bexarotene is not because of the drug binding to the fibril tips or to the peptides in the solution. Kinetic analyses attribute the slow growth of drug-enforced fibril polymorph to the distinctive dynamics of peptide chain association to their tips. As an additional benefit, the bexarotene fibrils kill primary rat hippocampal neurons less efficiently than normal fibrils. In conclusion, the suggested drug-driven polymorph transformation presents a mode of action to irreversibly suppress toxic aggregates not only in Alzheimer's but also potentially in myriad diverse pathologies that originate with protein condensation.
Collapse
Affiliation(s)
- Sima Mafimoghaddam
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Yuechuan Xu
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Michael B. Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Elena V. Orlova
- Department of Biological Sciences, Institute for Structural and Molecular Biology, Birkbeck University of London, London, UK
| | - Prashant Karki
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Mehmet A. Orman
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Peter G. Vekilov
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas, USA,Department of Chemistry, University of Houston, Houston, Texas, USA,For correspondence: Peter G. Vekilov
| |
Collapse
|
35
|
Uddin A, Malla JA, Kumar H, Kumari M, Sinha S, Sharma VK, Kumar Y, Talukdar P, Lahiri M, Maiti TK, Hazra P. Development of a Systematic Strategy toward Promotion of α-Synuclein Aggregation Using 2-Hydroxyisophthalamide-Based Systems. Biochemistry 2022; 61:2267-2279. [PMID: 36219819 DOI: 10.1021/acs.biochem.2c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Establishing a potent scheme against α-synuclein aggregation involved in Parkinson's disease has been evaluated as a promising route to identify compounds that either inhibit or promote the aggregation process of α-synuclein. In the last two decades, this perspective has guided a dramatic increase in the efforts, focused on developing potent drugs either for retardation or promotion of the self-assembly process of α-synuclein. To address this issue, using a chemical kinetics platform, we developed a strategy that enabled a progressively detailed analysis of the molecular events leading to protein aggregation at the microscopic level in the presence of a recently synthesized 2-hydroxyisophthalamide class of small organic molecules based on their binding affinity. Furthermore, qualitatively, we have developed a strategy of disintegration of α-synuclein fibrils in the presence of these organic molecules. Finally, we have shown that these organic molecules effectively suppress the toxicity of α-synuclein oligomers in neuron cells.
Collapse
Affiliation(s)
- Aslam Uddin
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India
| | - Javid Ahmad Malla
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India
| | - Harish Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| | - Manisha Kumari
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad121001, India
| | - Suman Sinha
- Institute of Pharmaceutical Research, GLA University, Mathura281406, India
| | - Virender Kumar Sharma
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India
| | - Yashwant Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India.,National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad121001, India
| | - Partha Hazra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India
| |
Collapse
|
36
|
Abstract
Condensed states of proteins, including liquid-like membraneless organelles and solid-like aggregates, contribute in fundamental ways to the organisation and function of the cell. Perturbations of these states can lead to a variety of diseases through mechanisms that we are now beginning to understand. We define protein condensation diseases as conditions caused by the disruption of the normal behaviour of the condensed states of proteins. We analyze the problem of the identification of targets for pharmacological interventions for these diseases and explore opportunities for the regulation of the formation and organisation of aberrant condensed states of proteins. In this review, the authors define protein condensation diseases as conditions caused by aberrant liquid-like or solid-like states of proteins, and describe opportunities for therapeutic interventions to restore the normal phase behaviour of proteins. The review accompanies the related collection of articles published in Nature Communications focusing on possible therapeutic approaches involving liquid-liquid phase separation.
Collapse
|
37
|
Löhr T, Kohlhoff K, Heller GT, Camilloni C, Vendruscolo M. A Small Molecule Stabilizes the Disordered Native State of the Alzheimer's Aβ Peptide. ACS Chem Neurosci 2022; 13:1738-1745. [PMID: 35649268 PMCID: PMC9204762 DOI: 10.1021/acschemneuro.2c00116] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
The stabilization of native states of proteins is a powerful drug discovery strategy. It is still unclear, however, whether this approach can be applied to intrinsically disordered proteins. Here, we report a small molecule that stabilizes the native state of the Aβ42 peptide, an intrinsically disordered protein fragment associated with Alzheimer's disease. We show that this stabilization takes place by a disordered binding mechanism, in which both the small molecule and the Aβ42 peptide remain disordered. This disordered binding mechanism involves enthalpically favorable local π-stacking interactions coupled with entropically advantageous global effects. These results indicate that small molecules can stabilize disordered proteins in their native states through transient non-specific interactions that provide enthalpic gain while simultaneously increasing the conformational entropy of the proteins.
Collapse
Affiliation(s)
- Thomas Löhr
- Department
of Chemistry, University of Cambridge, CB2 1EW Cambridge, UK
| | - Kai Kohlhoff
- Google
Research, Mountain
View, California 94043, United States
| | - Gabriella T. Heller
- Department
of Chemistry, University of Cambridge, CB2 1EW Cambridge, UK
- Department
of Structural and Molecular Biology, University
College London, WC1E 6BT London, UK
| | - Carlo Camilloni
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, 20133 Milano, Italy
| | | |
Collapse
|
38
|
Tian Y, Liu J, Yang F, Lian C, Zhang H, Viles JH, Li Z. Therapeutic potential for amyloid surface inhibitor: only amyloid-β oligomers formed by secondary nucleation disrupt lipid membrane integrity. FEBS J 2022; 289:6767-6781. [PMID: 35670622 DOI: 10.1111/febs.16550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023]
Abstract
Inhibition of amyloid-β peptide (Aβ) aggregation is a promising therapeutic strategy for Alzheimer's disease (AD), as Aβ aggregation is generally believed to trigger AD pathology. Pre-fibril Aβ-oligomers induce membrane disruption and are crucial to neurotoxicity. We have previously designed a short peptide called cyclic helical amyloid surface inhibitor (cHASI) that can selectively bind to the Aβ fibril surface. Here, we use cHASI to efficiently inhibit the surface-catalysed secondary nucleation process of Aβ in a lipid membrane environment. By incubating Aβ monomers with lipid vesicles, we show that during the assembly of Aβ into amyloid fibrils, oligomers are formed that markedly disrupt the lipid bilayer. Remarkably, when Aβ monomers are incubated with cHASI, although Aβ forms amyloid fibrils via primary nucleation and elongation, this pathway to fibrils does not damage the lipid bilayer. This indicates that only oligomers produced during secondary surface nucleation disrupt membrane integrity. The protective effect of cHASI is confirmed by cytotoxicity assays. Our study highlights the therapeutic potential for inhibiting the secondary nucleation process in Aβ aggregation, rather than inhibiting all pathways to fibril formation.
Collapse
Affiliation(s)
- Yao Tian
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Jianbo Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, China
| | - Fadeng Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, China
| | - Chenshan Lian
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, China
| | - Huawei Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - John H Viles
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Zigang Li
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, China
| |
Collapse
|
39
|
Linse S, Sormanni P, O’Connell DJ. An aggregation inhibitor specific to oligomeric intermediates of Aβ42 derived from phage display libraries of stable, small proteins. Proc Natl Acad Sci U S A 2022; 119:e2121966119. [PMID: 35580187 PMCID: PMC9173773 DOI: 10.1073/pnas.2121966119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/07/2022] [Indexed: 01/04/2023] Open
Abstract
The self-assembly of amyloid β peptide (Aβ) to fibrillar and oligomeric aggregates is linked to Alzheimer’s disease. Aβ binders may serve as inhibitors of aggregation to prevent the generation of neurotoxic species and for the detection of Aβ species. A particular challenge involves finding binders to on-pathway oligomers given their transient nature. Here we construct two phage–display libraries built on the highly inert and stable protein scaffold S100G, one containing a six-residue variable surface patch and one harboring a seven-residue variable loop insertion. Monomers and fibrils of Aβ40 and Aβ42 were separately coupled to silica nanoparticles, using a coupling strategy leading to the presence of oligomers on the monomer beads, and they were used in three rounds of affinity selection. Next-generation sequencing revealed sequence clusters and candidate binding proteins (SXkmers). Two SXkmers were expressed as soluble proteins and tested in terms of aggregation inhibition via thioflavin T fluorescence. We identified an SXkmer with loop–insertion YLTIRLM as an inhibitor of the secondary nucleation of Aβ42 and binding analyses using surface plasmon resonance technology, Förster resonance energy transfer, and microfluidics diffusional sizing imply an interaction with intermediate oligomeric species. A linear peptide with the YLTIRLM sequence was found inhibitory but at a lower potency than the more constrained SXkmer loop. We identified an SXkmer with side-patch VI-WI-DD as an inhibitor of Aβ40 aggregation. Remarkably, our data imply that SXkmer-YLTIRLM blocks secondary nucleation through an interaction with oligomeric intermediates in solution or at the fibril surface, which is a unique inhibitory mechanism for a library-derived inhibitor.
Collapse
Affiliation(s)
- Sara Linse
- Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden
| | - Pietro Sormanni
- Chemistry of Health, Yusuf Hamied Department of Chemistry, Cambridge University, Cambridge CB2 1EW, UK
| | - David J. O’Connell
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin D04 V1W8, Ireland
- BiOrbic, Bioeconomy SFI Research Centre, University College Dublin, Dublin 04 V1W8, Ireland
| |
Collapse
|
40
|
Sahu JK, Lone SA, Sadhu KK. Methionine-Controlled Impediment of Secondary Nucleation Leading to Nonclassical Growth within Self-Assembled De Novo Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5865-5873. [PMID: 35442695 DOI: 10.1021/acs.langmuir.2c00489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The conventional key steps for seed-mediated growth of noble metal nanostructures involve classical and nonclassical nucleation. Furthermore, the surface of the seed catalytically enhances the secondary nucleation involving Au+ to Au0 reduction, thus providing in-plane growth of the seed. In contrast to this well-established growth mechanism, herein, we report the unique case of a methionine (Met)-controlled seed-mediated growth reaction, which rather proceeds via impeding secondary nucleation in the presence of citrate-stabilized gold nanoparticles (AuNPs). The interaction between the freshly generated Au+ and the thioether group of Met in the medium restricts the secondary nucleation process of further seed-catalyzed Au+ reduction to Au0. This incomplete conversion of Au+, as confirmed by X-ray photoelectron spectroscopy, results in a significant enhancement of the zeta (ζ) potential even at low Met concentrations. Nucleation of in situ generated small-sized particles (nAuNPs) takes place on the parent seed surface followed by their segregation from the seed. The self-assembly process of these nAuNPs arises from the aurophilic interaction among the Au+. Furthermore, the time-dependent growth of smaller particles to larger-sized particles through assembly and merging within the same self-assembly validates the nonclassical growth. This strategy has been successfully extended toward the seed-mediated growth reaction of AuNPs in the presence of three bio-inspired decameric peptides having varying numbers of Met residues. The study confirms the nucleation strategy even in the presence of a single Met residue in the peptide and also the self-assembly of nucleated particles with increasing Met residues within the peptide.
Collapse
Affiliation(s)
- Jitendra K Sahu
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Shahbaz Ahmad Lone
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kalyan K Sadhu
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
41
|
Arad E, Jelinek R, Rapaport H. Amyloid fishing: β-Amyloid adsorption using tailor-made coated titania nanoparticles. Colloids Surf B Biointerfaces 2022; 212:112374. [PMID: 35121429 DOI: 10.1016/j.colsurfb.2022.112374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/19/2022]
Abstract
Amyloidoses are a family of diseases characterized by abnormal protein folding that leads to fibril aggregates, amyloids. Extensive research efforts are devoted to developing inhibitors to amyloid aggregates. Here we set to explore functionalized titania (TiO2) nanoparticles (NPs) as potential amyloid inhibiting agents. TiO2 NPs were coated by a catechol derivative, dihydroxy-phenylalanine propanoic acid (DPA), and further conjugated to the amyloids' specific dye Congo-Red (CR). TiO2-DPA-CR NPs were found to target mature fibrils of β-amyloid (Aβ). Moreover, coated NPs incubated with Aβ proteins suppressed amyloid fibrillation. TiO2-DPA-CR were found to target amyloids in solution and induce their sedimentation upon centrifugation. This work demonstrates the potential utilization of TiO2-DPA NPs for labeling and facilely separating from solution mature amyloid fibrils.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Raz Jelinek
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Hanna Rapaport
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
42
|
Gharibyan AL, Wasana Jayaweera S, Lehmann M, Anan I, Olofsson A. Endogenous Human Proteins Interfering with Amyloid Formation. Biomolecules 2022; 12:biom12030446. [PMID: 35327638 PMCID: PMC8946693 DOI: 10.3390/biom12030446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
Amyloid formation is a pathological process associated with a wide range of degenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and diabetes mellitus type 2. During disease progression, abnormal accumulation and deposition of proteinaceous material are accompanied by tissue degradation, inflammation, and dysfunction. Agents that can interfere with the process of amyloid formation or target already formed amyloid assemblies are consequently of therapeutic interest. In this context, a few endogenous proteins have been associated with an anti-amyloidogenic activity. Here, we review the properties of transthyretin, apolipoprotein E, clusterin, and BRICHOS protein domain which all effectively interfere with amyloid in vitro, as well as displaying a clinical impact in humans or animal models. Their involvement in the amyloid formation process is discussed, which may aid and inspire new strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Anna L. Gharibyan
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden;
- Correspondence: (A.L.G.); (A.O.)
| | | | - Manuela Lehmann
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (M.L.); (I.A.)
| | - Intissar Anan
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (M.L.); (I.A.)
| | - Anders Olofsson
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden;
- Correspondence: (A.L.G.); (A.O.)
| |
Collapse
|
43
|
Chen B, Mou C, Guo F, Sun Q, Qu L, Li L, Cui W, Lu F, Jin C, Liu F. Tolcapone Derivative (Tol-D) Inhibits Aβ42 Fibrillogenesis and Ameliorates Aβ42-Induced Cytotoxicity and Cognitive Impairment. ACS Chem Neurosci 2022; 13:638-647. [PMID: 35148068 DOI: 10.1021/acschemneuro.1c00771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abnormal aggregation and subsequent fibrillogenesis of amyloid-β protein (Aβ) can cause Alzheimer's disease (AD). Thus, the discovery of effective drugs that inhibit Aβ fibrillogenesis in the brain is important for the treatment of AD. Our previous study has proven that tolcapone inhibits Aβ fibrillogenesis and alleviates its cytotoxicity based on systematic in vitro and in vivo experiments. However, the severe hepatotoxicity of tolcapone seriously limits its further potential application in the treatment of AD. Herein, an inhibitory effect of a low-toxicity tolcapone derivative (Tol-D) on Aβ fibrillogenesis was explored. Based on the thioflavin T fluorescence data, Tol-D inhibited Aβ fibrillogenesis, and the inhibitory capacity increased with the increase of its concentrations with an IC50 of ∼8.99 μM. The results of cytotoxicity showed that Tol-D greatly reduced the cytotoxicity induced by Aβ42 fibrillogenesis. Moreover, Tol-D significantly alleviated Aβ deposits and extended the lifespan of nematodes in transgenic Caenorhabditis elegans models. Finally, Tol-D significantly relieved Aβ-induced cognitive dysfunction in mice experiments. Overall, the above experimental results indicated that Tol-D is a novel candidate therapeutic compound for the treatment of AD.
Collapse
Affiliation(s)
- Beibei Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chenye Mou
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Zhejiang 315211, China
| | - Fangyan Guo
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Quancheng Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lili Qu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Li Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Zhejiang 315211, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chenghua Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
44
|
Modeling Alzheimer's Disease in Caenorhabditis elegans. Biomedicines 2022; 10:biomedicines10020288. [PMID: 35203497 PMCID: PMC8869312 DOI: 10.3390/biomedicines10020288] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is the most frequent cause of dementia. After decades of research, we know the importance of the accumulation of protein aggregates such as β-amyloid peptide and phosphorylated tau. We also know that mutations in certain proteins generate early-onset Alzheimer’s disease (EOAD), and many other genes modulate the disease in its sporadic form. However, the precise molecular mechanisms underlying AD pathology are still unclear. Because of ethical limitations, we need to use animal models to investigate these processes. The nematode Caenorhabditis elegans has received considerable attention in the last 25 years, since the first AD models overexpressing Aβ peptide were described. We review here the main results obtained using this model to study AD. We include works studying the basic molecular mechanisms of the disease, as well as those searching for new therapeutic targets. Although this model also has important limitations, the ability of this nematode to generate knock-out or overexpression models of any gene, single or combined, and to carry out toxicity, recovery or survival studies in short timeframes with many individuals and at low cost is difficult to overcome. We can predict that its use as a model for various diseases will certainly continue to increase.
Collapse
|
45
|
Zhang Q, Liu Y, Wu J, Zeng L, Wei J, Fu S, Ye H, Li H, Gao Z. Structure and mechanism behind the inhibitory effect of water soluble metalloporphyrins on Aβ1-42 aggregation. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01434j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although the exact molecular mechanism of the pathogenesis of Alzheimer’s disease (AD) is still unclear, compounds that can inhibit the aggregation of amyloid-β peptide (Aβ1-42) or scavenge the highly toxic...
Collapse
|
46
|
Runfola M, Perni M, Yang X, Marchese M, Bacci A, Mero S, Santorelli FM, Polini B, Chiellini G, Giuliani D, Vilella A, Bodria M, Daini E, Vandini E, Rudge S, Gul S, Wakelam MOJ, Vendruscolo M, Rapposelli S. Identification of a Thyroid Hormone Derivative as a Pleiotropic Agent for the Treatment of Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:1330. [PMID: 34959730 PMCID: PMC8704018 DOI: 10.3390/ph14121330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/24/2023] Open
Abstract
The identification of effective pharmacological tools for Alzheimer's disease (AD) represents one of the main challenges for therapeutic discovery. Due to the variety of pathological processes associated with AD, a promising route for pharmacological intervention involves the development of new chemical entities that can restore cellular homeostasis. To investigate this strategy, we designed and synthetized SG2, a compound related to the thyroid hormone thyroxine, that shares a pleiotropic activity with its endogenous parent compound, including autophagic flux promotion, neuroprotection, and metabolic reprogramming. We demonstrate herein that SG2 acts in a pleiotropic manner to induce recovery in a C. elegans model of AD based on the overexpression of Aβ42 and improves learning abilities in the 5XFAD mouse model of AD. Further, in vitro ADME-Tox profiling and toxicological studies in zebrafish confirmed the low toxicity of this compound, which represents a chemical starting point for AD drug development.
Collapse
Affiliation(s)
- Massimiliano Runfola
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (M.R.); (A.B.)
| | - Michele Perni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; (M.P.); (X.Y.)
| | - Xiaoting Yang
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; (M.P.); (X.Y.)
| | - Maria Marchese
- Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Stella Maris, Via dei Giacinti 2, 56128 Calambrone, Italy; (M.M.); (S.M.); (F.M.S.)
| | - Andrea Bacci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (M.R.); (A.B.)
| | - Serena Mero
- Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Stella Maris, Via dei Giacinti 2, 56128 Calambrone, Italy; (M.M.); (S.M.); (F.M.S.)
| | - Filippo M. Santorelli
- Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Stella Maris, Via dei Giacinti 2, 56128 Calambrone, Italy; (M.M.); (S.M.); (F.M.S.)
| | - Beatrice Polini
- Department of Pathology, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (B.P.); (G.C.)
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, Via Savi 10, 56126 Pisa, Italy; (B.P.); (G.C.)
| | - Daniela Giuliani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (D.G.); (A.V.); (M.B.); (E.D.); (E.V.)
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (D.G.); (A.V.); (M.B.); (E.D.); (E.V.)
| | - Martina Bodria
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (D.G.); (A.V.); (M.B.); (E.D.); (E.V.)
| | - Eleonora Daini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (D.G.); (A.V.); (M.B.); (E.D.); (E.V.)
| | - Eleonora Vandini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (D.G.); (A.V.); (M.B.); (E.D.); (E.V.)
| | - Simon Rudge
- Ibabraham Research Campus, The Babraham Institute, Cambridge CB22 3AT, UK; (S.R.); (M.O.J.W.)
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany;
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Michale O. J. Wakelam
- Ibabraham Research Campus, The Babraham Institute, Cambridge CB22 3AT, UK; (S.R.); (M.O.J.W.)
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; (M.P.); (X.Y.)
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (M.R.); (A.B.)
- CISUP, Center for Instrument Sharing, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
47
|
Gadhe L, Sakunthala A, Mukherjee S, Gahlot N, Bera R, Sawner AS, Kadu P, Maji SK. Intermediates of α-synuclein aggregation: Implications in Parkinson's disease pathogenesis. Biophys Chem 2021; 281:106736. [PMID: 34923391 DOI: 10.1016/j.bpc.2021.106736] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022]
Abstract
Cytoplasmic deposition of aberrantly misfolded α-synuclein (α-Syn) is a common feature of synucleinopathies, including Parkinson's disease (PD). However, the precise pathogenic mechanism of α-Syn in synucleinopathies remains elusive. Emerging evidence has suggested that α-Syn may contribute to PD pathogenesis in several ways; wherein the contribution of fibrillar species, for exerting toxicity and disease transmission, cannot be neglected. Further, the oligomeric species could be the most plausible neurotoxic species causing neuronal cell death. However, understanding the structural and molecular insights of these oligomers are very challenging due to the heterogeneity and transient nature of the species. In this review, we discuss the recent advancements in understanding the formation and role of α-Syn oligomers in PD pathogenesis. We also summarize the different types of α-Syn oligomeric species and potential mechanisms to exert neurotoxicity. Finally, we address the possible ways to target α-Syn as a promising approach against PD and the possible future directions.
Collapse
Affiliation(s)
- Laxmikant Gadhe
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Arunima Sakunthala
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Semanti Mukherjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Nitisha Gahlot
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Riya Bera
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Ajay Singh Sawner
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
48
|
Jeremic D, Jiménez-Díaz L, Navarro-López JD. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer's disease: a systematic review. Ageing Res Rev 2021; 72:101496. [PMID: 34687956 DOI: 10.1016/j.arr.2021.101496] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in ageing, affecting around 46 million people worldwide but few treatments are currently available. The etiology of AD is still puzzling, and new drugs development and clinical trials have high failure rates. Urgent outline of an integral (multi-target) and effective treatment of AD is needed. Accumulation of amyloid-β (Aβ) peptides is considered one of the fundamental neuropathological pillars of the disease, and its dyshomeostasis has shown a crucial role in AD onset. Therefore, many amyloid-targeted therapies have been investigated. Here, we will systematically review recent (from 2014) investigational, follow-up and review studies focused on anti-amyloid strategies to summarize and analyze their current clinical potential. Combination of anti-Aβ therapies with new developing early detection biomarkers and other therapeutic agents acting on early functional AD changes will be highlighted in this review. Near-term approval seems likely for several drugs acting against Aβ, with recent FDA approval of a monoclonal anti-Aβ oligomers antibody -aducanumab- raising hopes and controversies. We conclude that, development of oligomer-epitope specific Aβ treatment and implementation of multiple improved biomarkers and risk prediction methods allowing early detection, together with therapies acting on other factors such as hyperexcitability in early AD, could be the key to slowing this global pandemic.
Collapse
|
49
|
Nath S, Roy P, Mandal R, Roy R, Buell AK, Sengupta N, Tarafdar PK. Hydroxy-Porphyrin as an Effective, Endogenous Molecular Clamp during Early Stages of Amyloid Fibrillization. Chem Asian J 2021; 16:3931-3936. [PMID: 34570963 DOI: 10.1002/asia.202100965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/08/2022]
Abstract
Amyloid fibril formation of proteins is of great concern in neurodegenerative disease and can be detrimental to the storage and stability of biologics. Recent evidence suggests that insulin fibril formation reduces the efficacy of type II diabetes management and may lead to several complications. To develop anti-amyloidogenic compounds of endogenous origin, we have utilized the hydrogen bond anchoring, π stacking ability of porphyrin, and investigated its role on the inhibition of insulin amyloid formation. We report that hydroxylation and metal removal from the heme moiety yields an excellent inhibitor of insulin fibril formation. Thioflavin T, tyrosine fluorescence, Circular Dichorism (CD) spectroscopy, Field emission scanning electron microscopy (FESEM) and molecular dynamics (MD) simulation studies suggest that hematoporphyrin (HP) having hydrogen bonding ability on both sides is a superior inhibitor compared to hemin and protoporphyrin (PP). Experiments with hen egg white lysozyme (HEWL) amyloid fibril formation also validated the efficacy of endogenous porphyrin based small molecules. Our results will help to decipher a general therapeutic strategy to counter amyloidogenesis.
Collapse
Affiliation(s)
- Soumav Nath
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Priti Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Raki Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Rajat Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark DTU, Søltofts Plads, 2800 Kgs., Lyngby, Denmark
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| |
Collapse
|
50
|
Lin J, Figazzolo C, Metrick MA, Sormanni P, Vendruscolo M. Computational maturation of a single-domain antibody against Aβ42 aggregation. Chem Sci 2021; 12:13940-13948. [PMID: 35475123 PMCID: PMC8901120 DOI: 10.1039/d1sc03898b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 02/02/2023] Open
Abstract
The expansion of structural databases and the increase in computing power are enabling approaches for antibody discovery based on computational design. It has already been shown that it is possible to use this approach to generate antibodies for specific epitopes on challenging targets. Here we describe an application of this procedure for antibody maturation through the computational design of mutational variants of increased potency. We illustrate this procedure in the case of a single-domain antibody targeting an epitope in the N-terminal region of Aβ42, a peptide whose aggregation is closely associated with Alzheimer's disease. We show that this approach enables the generation of an antibody variant with over 200-fold increased potency against the primary nucleation process in Aβ42 aggregation. Our results thus demonstrate that potentiated antibody variants can be obtained by computational maturation.
Collapse
Affiliation(s)
- Jiacheng Lin
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Chiara Figazzolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Michael A Metrick
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|