1
|
Li X, Wang S, Wang Y, Chen R, Mao X, Mei Y, Xu M, Hu L, Qin C, Xing S, Yu X, Qiao L. Clinical and Molecular Landscape of GLRA2 in X-Linked Early-Onset High Myopia. Invest Ophthalmol Vis Sci 2025; 66:30. [PMID: 40227176 PMCID: PMC12007679 DOI: 10.1167/iovs.66.4.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
Purpose Variants in the GLRA2 gene have been linked to early-onset and nonsyndromic high myopia with a X-linked inheritance. This study aimed to elucidate clinical and genetic characteristics of GLRA2-associated early-onset high myopia (eoHM). Methods Variants in 17 genes reported to contribute to eoHM, including GLRA2, were evaluated for pathogenic level based on in silico prediction, associated phenotypes, and cosegregation analysis. The available clinical data of individuals were summarized. Minigene constructs were generated to assess the effects of the variant c.494+1G>A in GLRA2 on splicing. We integrated previous evidence to curate the clinical validity of GLRA2 and eoHM using the ClinGen framework. Results Pathogenic and likely pathogenic variants in 7 of 17 genes were identified in 47 of 389 probands with eoHM, including 21 in OPN1LW, 12 in ARR3, and 9 in GLRA2. For GLRA2, 15 pathogenic variants (10 missense and 5 truncation) were identified in 16 families, in whom probands had eoHM by X-linked inheritance. The average refraction was -9.76 diopters (D) (standard deviation: ±5.45 D). Central corneal thickness averaged 539.41 and 544.06 µm in the right and left eyes, respectively, with no or mild myopic retinal changes observed in 64.3% (27/42) of eyes. Posterior staphyloma was detected in 17 of 33 eyes (51.5%), with 6 eyes progressing to macular splitting. Most cases showed normal retinal sensitivity and stable fixation. Based on genetic and experimental evidence, the GLRA2-eoHM relationship was classified as "strong." Conclusions This research expanded the mutational spectrum of GLRA2 and reveals GLRA2 as the third most frequently implicated gene for Mendelian eoHM. Truncations and highly scored missense variants in GLRA2 are pathogenic. Myopia due to GLRA2 mutations is transmitted in X-linked inheritance, manifests with mild cone impairment, and progresses to pathologic myopia.
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Ophthalmology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Siyu Wang
- Institute of PSI Genomics Co., Ltd., Shanghai, China
| | - Yuhan Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Ruru Chen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinjie Mao
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Mei
- Shanghai Meishi Meijing Ophthalmology Outpatient Department, Shanghai, China
| | - Meiping Xu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lan Hu
- He Eye Shenyang Specialist Hospital, Shenyang, Liaoning, China
| | - Chuan Qin
- Institute of PSI Genomics Co., Ltd., Shanghai, China
| | - Shilai Xing
- Institute of PSI Genomics Co., Ltd., Shanghai, China
| | - Xiaoguang Yu
- Institute of PSI Genomics Co., Ltd., Shanghai, China
| | - Liya Qiao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| |
Collapse
|
2
|
Wang YY, Chen LJ, Tham CC, Yam JC, Pang CP. Genes for childhood myopia. Asia Pac J Ophthalmol (Phila) 2025; 14:100139. [PMID: 39814143 DOI: 10.1016/j.apjo.2025.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025] Open
Abstract
Myopia is associated with interactive effects of genetic and environmental factors. The development of myopia in childhood is likely to be more dependent on genetic background. Candidate gene analysis, whole exome sequencing, genome-wide association studies (GWAS) and subsequent metaanalyses have identified more than 400 loci that are associated with myopia. However, most genome studies have been conducted in adults and only a few of genetic single nucleotide polymorphisms identified in adult GWAS have been successfully replicated in children. In this review, we summarized these variants and compared the effect size between children and adults.
Collapse
Affiliation(s)
- Yu Yao Wang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong; Department of Ophthalmology and Visual Sciences, Princes of Wales Hospital, Hong Kong; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong; Department of Ophthalmology and Visual Sciences, Princes of Wales Hospital, Hong Kong; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong; Hong Kong Eye Hospital, Hong Kong
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong; Hong Kong Eye Hospital, Hong Kong
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
3
|
Yuan J, Qiu R, Wang Y, Chen ZJ, Sun H, Dai W, Yao Y, Zhuo R, Li K, Xing S, Yu X, Qiao L, Qu J, Su J. Exome-wide genetic risk score (ExGRS) to predict high myopia across multi-ancestry populations. COMMUNICATIONS MEDICINE 2024; 4:280. [PMID: 39738800 DOI: 10.1038/s43856-024-00718-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND High myopia (HM), characterized by a severe myopic refractive error, stands as a leading cause of visual impairment and blindness globally. HM is a multifactorial ocular disease that presents high genetic heterogeneity. Employing a genetic risk score (GRS) is useful for capturing genetic susceptibility to HM. METHODS This study assesses the effectiveness of these strategies via incorporating rare variations into the GRS assessment. This study enrolled two independent cohorts: 12,600 unrelated individuals of Han Chinese ancestry from Myopia Associated Genetics and Intervention Consortium (MAGIC) and 8682 individuals of European ancestry from UK Biobank (UKB). RESULTS Here, we first estimate the heritability of HM resulting in 0.53 (standard error, 0.06) in the MAGIC cohort and 0.21 (standard error, 0.10) in the UKB cohort by using whole-exome sequencing (WES) data. We generate, optimize, and validate an exome-wide genetic risk score (ExGRS) for HM prediction by combining rare risk genotypes with common variant GRS (cvGRS). ExGRS improved the AUC from 0.819 (cvGRS) to 0.856 for 1219 Han Chinese individuals of an independent testing dataset. Individuals with a top 5% ExGRS confer a 15.57-times (95% CI, 5.70-59.48) higher risk for developing HM compared to the remaining 95% of individuals in MAGIC cohort. CONCLUSIONS Our study suggests that rare variants are a major source of the missing heritability of HM and that ExGRS provides enhanced accuracy for HM prediction in Han Chinese ancestry, shedding new light on research and clinical practice.
Collapse
Affiliation(s)
- Jian Yuan
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325101, Zhejiang, China
| | - Ruowen Qiu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325101, Zhejiang, China
| | - Yuhan Wang
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Zhen Ji Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325101, Zhejiang, China
| | - Haojun Sun
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325101, Zhejiang, China
| | - Wei Dai
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325101, Zhejiang, China
| | - Yinghao Yao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325101, Zhejiang, China
| | - Ran Zhuo
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Kai Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, China
| | - Shilai Xing
- Institute of PSI Genomics, Wenzhou, 325024, China
| | - Xiaoguang Yu
- Institute of PSI Genomics, Wenzhou, 325024, China
| | - Liya Qiao
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China.
| | - Jia Qu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325101, Zhejiang, China.
| | - Jianzhong Su
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325101, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, China.
| |
Collapse
|
4
|
Zheng L, Liao Z, Zou J. Animal modeling for myopia. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2024; 4:173-181. [PMID: 39263386 PMCID: PMC11385420 DOI: 10.1016/j.aopr.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 09/13/2024]
Abstract
Background Myopia is one of the most common eye diseases globally, and has become an increasingly serious health concern among adolescents. Understanding the factors contributing to the onset of myopia and the strategies to slow its progression is critical to reducing its prevalence. Main text Animal models are key to understanding of the etiology of human diseases. Various experimental animal models have been developed to mimic human myopia, including chickens, rhesus monkeys, marmosets, mice, tree shrews, guinea pigs and zebrafish. Studies using these animal models have provided evidences and perspectives on the regulation of eye growth and refractive development. This review summarizes the characteristics of these models, the induction methods, common indicators of myopia in animal models, and recent findings on the pathogenic mechanism of myopia. Conclusions Investigations using experimental animal models have provided valuable information and insights into the pathogenic mechanisms of human myopia and its treatment strategies.
Collapse
Affiliation(s)
- Lingman Zheng
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital, Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Chamarty S, Kamalon S, Madishetti N, Verkicharla PK. Link between parental myopia and early-onset high myopia: Insights from a clinical retrospective analysis. Ophthalmic Physiol Opt 2024; 44:1270-1278. [PMID: 38803137 DOI: 10.1111/opo.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Genetic aetiology is suspected in the development of early-onset high myopia (spherical equivalent refractive error [SER] ≤-6.00 D at ≤6 years of age), considering that the role of environmental factors in inducing high myopia is improbable at an early age. Therefore, we aimed to understand if early-onset high myopia is associated with parental myopia in a clinical setting. METHODS A retrospective study was conducted in which information about demographics, age of apparent onset of myopia, refractive error, axial length, number of myopic parents, time spent outdoors and time spent on near-work was obtained from electronic medical records (EMR). It included 195 myopic individuals categorised into (1) Early-onset high myopes (EOHM): SER ≤ -6.00 D with age of presentation ≤6 years, (2) Early-onset low myopes (EOLM): SER > -6.00 D with age of apparent onset ≤6 years, (3) Late-onset high myopes (LOHM): SER ≤ -6.00 D with age of presentation and age of apparent onset >6 years and (4) Late-onset low myopes (LOLM): SER > -6.00 D with age of apparent onset >6 years. RESULTS Overall, 63% of individuals were found to have parental myopia. The proportion of individuals with EOHM, EOLM, LOHM and LOLM with parental myopia was 57%, 74%, 53% and 64%, respectively. After adjustment for age, gender and environmental factors, the odds of development of EOHM (Odds ratio: 0.78, 95% confidence interval: 0.25-2.48), EOLM (1.54, 0.65-3.67) or LOHM (0.70, 0.30-1.65) were similar in the presence of myopic parents, when compared with LOLM. The SER and axial length did not differ based on the number of myopic parents in any of these categories. CONCLUSION This retrospective analysis reveals that the presence of parental myopia, which was self-reported, did not induce additional risk for early-onset high myopia.
Collapse
Affiliation(s)
- Sruthi Chamarty
- Myopia Research Lab, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Sreena Kamalon
- Brien Holden Institute of Optometry and Vision Sciences, L V Prasad Eye Institute, Hyderabad, India
| | - Naveen Madishetti
- Brien Holden Institute of Optometry and Vision Sciences, L V Prasad Eye Institute, Hyderabad, India
| | - Pavan K Verkicharla
- Myopia Research Lab, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
- Infor Myopia Centre, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
6
|
Ye L, Guo YM, Cai YX, Wei J, Huang J, Bi J, Chen D, Li FF, Huang XF. Trio-based whole-exome sequencing reveals mutations in early-onset high myopia. BMJ Open Ophthalmol 2024; 9:e001720. [PMID: 38789272 PMCID: PMC11129018 DOI: 10.1136/bmjophth-2024-001720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
PURPOSE Myopia, especially high myopia (HM), represents a widespread visual impairment with a globally escalating prevalence. This study aimed to elucidate the genetic foundations associated with early-onset HM (eoHM) while delineating the genetic landscape specific to Shaanxi province, China. METHODS A comprehensive analysis of whole-exome sequencing was conducted involving 26 familial trios displaying eoHM. An exacting filtration protocol identified potential candidate mutations within acknowledged myopia-related genes and susceptibility loci. Subsequently, computational methodologies were employed for functional annotations and pathogenicity assessments. RESULTS Our investigation identified 7 genes and 10 variants associated with HM across 7 families, including a novel mutation in the ARR3 gene (c.139C>T, p.Arg47*) and two mutations in the P3H2 gene (c.1865T>C, p.Phe622Ser and c.212T>C, p.Leu71Pro). Pathogenic mutations were found in syndromic myopia genes, notably encompassing VPS13B, TRPM1, RPGR, NYX and RP2. Additionally, a thorough comparison of previously reported causative genes of syndromic myopia and myopia risk genes with the negative sequencing results pinpointed various types of mutations within risk genes. CONCLUSIONS This investigation into eoHM within Shaanxi province adds to the current understanding of myopic genetic factors. Our results warrant further functional validation and ocular examinations, yet they provide foundational insights for future genetic research and therapeutic innovations in HM.
Collapse
Affiliation(s)
- Lu Ye
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Yi-Ming Guo
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Yi-Xin Cai
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junhan Wei
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Juan Huang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Jiejing Bi
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Ding Chen
- National Clinical Research Center for Ocular Diseases, Wenzhou Medical University Eye Hospital, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology Optometry and Visual Science, Wenzhou Medical University Eye Hospital, Wenzhou, Zhejiang, China
| | - Fen-Fen Li
- National Clinical Research Center for Ocular Diseases, Wenzhou Medical University Eye Hospital, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology Optometry and Visual Science, Wenzhou Medical University Eye Hospital, Wenzhou, Zhejiang, China
| | - Xiu-Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Yu X, Yuan J, Chen ZJ, Li K, Yao Y, Xing S, Xue Z, Zhang Y, Peng H, An G, Yu X, Qu J, Su J. Whole-Exome Sequencing Among School-Aged Children With High Myopia. JAMA Netw Open 2023; 6:e2345821. [PMID: 38039006 PMCID: PMC10692858 DOI: 10.1001/jamanetworkopen.2023.45821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
Importance High myopia (HM) is one of the leading causes of visual impairment worldwide. Genetic factors are known to play an important role in the development of HM. Objective To identify risk variants in a large HM cohort and to examine the implications of genetic testing of schoolchildren with HM. Design, Setting, and Participants This cohort study retrospectively reviewed whole-exome sequencing (WES) results in 6215 schoolchildren with HM who underwent genetic testing between September 2019 and July 2020 in Wenzhou City, China. HM is defined as a spherical equivalent refraction (SER) of -6.00 diopters (D) or less. The study setting was a genetic testing laboratory and a multicenter school census. Data were analyzed from July 2021 to June 2022. Main Outcomes and Measures The frequency and distribution of positive germline variants, the percentage of individuals with HM in both eyes, and subsequent variant yield for common high myopia (CHM; -8.00 D ≤ SER ≤ -6.00 D), ultra myopia (UM; -10.00 D ≤ SER < -8.00 D), and extreme myopia (EM; SER < -10.00 D). Results Of the 6215 schoolchildren with HM, 3278 (52.74%) were male. Their mean (SD) age was 14.87 (2.02) years, including 355 students in primary school, 1970 in junior high school, and 3890 in senior high school. The mean (SD) SER was -7.51 (-1.36) D for the right eye and -7.46 (-1.34) D for the left eye. Among schoolchildren with HM, genetic testing yielded 271 potential pathogenic variants in 75 HM candidate genes in 964 diagnoses (15.52%). A total of 36 known variants were found in 490 HM participants (7.88%) and 235 protein-truncating variants (PTVs) in 506 participants (8.14%). Involved variant yield was significantly positively associated with SER (Cochran-Armitage test for trend Z = 2.5492; P = .01), which ranged from 7.66% in the CHM group, 8.70% in the UM group, to 11.90% in the EM group. We also found that primary school students with EM had the highest variant yield of PTVs (8 of 35 students [22.86%]), which was 1.77 and 4.78 times that of the UM and CHM, respectively. Conclusions and Relevance In this cohort study of WES for HM, several potential pathogenic variants were identified in a substantial number of schoolchildren with HM. The high variation frequency in younger students with EM can provide clues for genetic screening and clinical examinations of HM to promote long-term follow-up assessment.
Collapse
Affiliation(s)
- Xiangyi Yu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jian Yuan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhen Ji Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Kai Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yinghao Yao
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Shilai Xing
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Institute of PSI Genomics, Wenzhou, China
| | - Zhengbo Xue
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yue Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hui Peng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Gang An
- Institute of PSI Genomics, Wenzhou, China
| | | | - Jia Qu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Jianzhong Su
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
8
|
Zhou W, Jiang Z, Yi Z, Ouyang J, Li X, Zhang Q, Wang P. Defect of TIMP4 Is Associated with High Myopia and Participates in Rat Ocular Development in a Dose-Dependent Manner. Int J Mol Sci 2023; 24:16928. [PMID: 38069250 PMCID: PMC10707432 DOI: 10.3390/ijms242316928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Thinning of the sclera happens in myopia eyes owing to extracellular matrix (ECM) remodeling, but the initiators of the ECM remodeling in myopia are mainly unknown. The matrix metalloproteinase (MMPs) and tissue inhibitors of matrix metalloproteinase (TIMPs) regulate the homeostasis of the ECM. However, genetic studies of the MMPs and TIMPs in the occurrence of myopia are poor and limited. This study systematically investigated the association between twenty-nine genes of the TIMPs and MMPs families and early-onset high myopia (eoHM) based on whole exome sequencing data. Two TIMP4 heterozygous loss-of-function (LoF) variants, c.528C>A in six patients and c.234_235insAA in one patient, were statistically enriched in 928 eoHM probands compared to that in 5469 non-high myopia control (p = 3.7 × 10-5) and that in the general population (p = 2.78 × 10-9). Consequently, the Timp4 gene editing rat was further evaluated to explore the possible role of Timp4 on ocular and myopia development. A series of ocular morphology abnormalities in a dose-dependent manner (Timp4-/- < Timp4+/- < Timp4+/+) were observed in a rat model, including the decline in the retinal thickness, the elongation in the axial length, more vulnerable to the form deprivation model, morphology changes in sclera collagen bundles, and the decrease in collagen contents of the sclera and retina. Electroretinogram revealed that the b-wave amplitudes of Timp4 defect rats were significantly reduced, consistent with the shorter length of the bipolar axons detected by HE and IF staining. Heterozygous LoF variants in the TIMP4 are associated with early onset high myopia, and the Timp4 defect disturbs ocular development by influencing the morphology and function of the ocular tissue.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510000, China; (W.Z.); (Z.J.); (Z.Y.); (J.O.); (X.L.)
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510000, China; (W.Z.); (Z.J.); (Z.Y.); (J.O.); (X.L.)
| |
Collapse
|
9
|
Liu X, Meng J, Liao X, Liu Y, Zhou Q, Xu Z, Yin S, Cao Q, Su G, He S, Li W, Wang X, Wang G, Li D, Yang P, Hou S. A de novo missense mutation in MPP2 confers an increased risk of Vogt-Koyanagi-Harada disease as shown by trio-based whole-exome sequencing. Cell Mol Immunol 2023; 20:1379-1392. [PMID: 37828081 PMCID: PMC10616125 DOI: 10.1038/s41423-023-01088-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
Vogt-Koyanagi-Harada (VKH) disease is a leading cause of blindness in young and middle-aged people. However, the etiology of VKH disease remains unclear. Here, we performed the first trio-based whole-exome sequencing study, which enrolled 25 VKH patients and 50 controls, followed by a study of 2081 VKH patients from a Han Chinese population to uncover detrimental mutations. A total of 15 de novo mutations in VKH patients were identified, with one of the most important being the membrane palmitoylated protein 2 (MPP2) p.K315N (MPP2-N315) mutation. The MPP2-N315 mutation was highly deleterious according to bioinformatic predictions. Additionally, this mutation appears rare, being absent from the 1000 Genome Project and Genome Aggregation Database, and it is highly conserved in 10 species, including humans and mice. Subsequent studies showed that pathological phenotypes and retinal vascular leakage were aggravated in MPP2-N315 mutation knock-in or MPP2-N315 adeno-associated virus-treated mice with experimental autoimmune uveitis (EAU). In vitro, we used clustered regularly interspaced short palindromic repeats (CRISPR‒Cas9) gene editing technology to delete intrinsic MPP2 before overexpressing wild-type MPP2 or MPP2-N315. Levels of cytokines, such as IL-1β, IL-17E, and vascular endothelial growth factor A, were increased, and barrier function was destroyed in the MPP2-N315 mutant ARPE19 cells. Mechanistically, the MPP2-N315 mutation had a stronger ability to directly bind to ANXA2 than MPP2-K315, as shown by LC‒MS/MS and Co-IP, and resulted in activation of the ERK3/IL-17E pathway. Overall, our results demonstrated that the MPP2-K315N mutation may increase susceptibility to VKH disease.
Collapse
Affiliation(s)
- Xianyang Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Jiayu Meng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xingyun Liao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yusen Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Qian Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Zongren Xu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Shuming Yin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Siyuan He
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Wanqian Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Xiaotang Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Guoqing Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China.
- Chongqing Eye Institute, Chongqing, China.
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China.
- Chongqing Eye Institute, Chongqing, China.
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
10
|
Chen J, Lian P, Zhao X, Li J, Yu X, Huang X, Chen S, Lu L. PSMD3 gene mutations cause pathological myopia. J Med Genet 2023; 60:918-924. [PMID: 36948574 DOI: 10.1136/jmg-2022-108978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/08/2023] [Indexed: 03/24/2023]
Abstract
PURPOSE Genetic factors play a prominent role in the pathogenesis of pathological myopia (PM). However, the exact genetic mechanism of PM remains unclear. This study aimed to determine the candidate mutation of PM in a Chinese family and explore the potential mechanism. METHODS We performed exome sequencing and Sanger sequencing in a Chinese family and 179 sporadic PM cases. The gene expression in human tissue was investigated by RT-quantitative real-time PCR (RT-qPCR) and immunofluorescence. Cell apoptotic rates were tested by annexin V-APC/7AAD and flow cytometry. Psmd3 knock-in mice with point mutation were generated for measuring myopia-related parameters. RESULTS We screened a novel PSMD3 variant (c.689T>C; p.F230S) in a Chinese family with PM, and another rare mutation (c.1015C>A; p.L339M) was identified in 179 unrelated cases with PM. RT-qPCR and immunofluorescence confirmed the expression of PSMD3 in human eye tissue. Mutation of PSMD3 decreased the mRNA and protein expression, causing apoptosis of human retinal pigment epithelial cells. In in vivo experiments, the axial length (AL) of mutant mice increased significantly compared with that of wild-type mice (p<0.001). CONCLUSIONS A new potential pathogenic gene, PSMD3, in a PM family was identified, and it may be involved in the elongation of AL and the development of PM.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Ping Lian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Xiujuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Jun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Xiling Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Xia Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Shida Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Jackson D, Moosajee M. The Genetic Determinants of Axial Length: From Microphthalmia to High Myopia in Childhood. Annu Rev Genomics Hum Genet 2023; 24:177-202. [PMID: 37624667 DOI: 10.1146/annurev-genom-102722-090617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
The axial length of the eye is critical for normal visual function by enabling light to precisely focus on the retina. The mean axial length of the adult human eye is 23.5 mm, but the molecular mechanisms regulating ocular axial length remain poorly understood. Underdevelopment can lead to microphthalmia (defined as a small eye with an axial length of less than 19 mm at 1 year of age or less than 21 mm in adulthood) within the first trimester of pregnancy. However, continued overgrowth can lead to axial high myopia (an enlarged eye with an axial length of 26.5 mm or more) at any age. Both conditions show high genetic and phenotypic heterogeneity associated with significant visual morbidity worldwide. More than 90 genes can contribute to microphthalmia, and several hundred genes are associated with myopia, yet diagnostic yields are low. Crucially, the genetic pathways underpinning the specification of eye size are only now being discovered, with evidence suggesting that shared molecular pathways regulate under- or overgrowth of the eye. Improving our mechanistic understanding of axial length determination will help better inform us of genotype-phenotype correlations in both microphthalmia and myopia, dissect gene-environment interactions in myopia, and develop postnatal therapies that may influence overall eye growth.
Collapse
Affiliation(s)
- Daniel Jackson
- Institute of Ophthalmology, University College London, London, United Kingdom;
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, United Kingdom;
- The Francis Crick Institute, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
12
|
Lu Q, Du Y, Zhang Y, Chen Y, Li H, He W, Tang Y, Zhao Z, Zhang Y, Wu J, Zhu X, Lu Y. A Genome-Wide Association Study for Susceptibility to Axial Length in Highly Myopic Eyes. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:255-267. [PMID: 37325711 PMCID: PMC10260730 DOI: 10.1007/s43657-022-00082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
High myopia has long been highly prevalent worldwide with a largely yet unexplained genetic contribution. To identify novel susceptibility genes for axial length (AL) in highly myopic eyes, a genome-wide association study (GWAS) was performed using the genomic dataset of 350 deep whole-genome sequencing data from highly myopic patients. Top single nucleotide polymorphisms (SNPs) were functionally annotated. Immunofluorescence staining, quantitative polymerase chain reaction, and western blot were performed using neural retina of form-deprived myopic mice. Enrichment analyses were further performed. We identified the four top SNPs and found that ADAM Metallopeptidase With Thrombospondin Type 1 Motif 16 (ADAMTS16) and Phosphatidylinositol Glycan Anchor Biosynthesis Class Z (PIGZ) had the potential of clinical significance. Animal experiments confirmed that PIGZ expression could be observed and showed higher expression level in form-deprived mice, especially in the ganglion cell layer. The messenger RNA (mRNA) levels of both ADAMTS16 and PIGZ were significantly higher in the neural retina of form-deprived eyes (p = 0.005 and 0.007 respectively), and both proteins showed significantly upregulated expression in the neural retina of deprived eyes (p = 0.004 and 0.042, respectively). Enrichment analysis revealed a significant role of cellular adhesion and signal transduction in AL, and also several AL-related pathways including circadian entrainment and inflammatory mediator regulation of transient receptor potential channels were proposed. In conclusion, the current study identified four novel SNPs associated with AL in highly myopic eyes and confirmed that the expression of ADAMTS16 and PIGZ was significantly upregulated in neural retina of deprived eyes. Enrichment analyses provided novel insight into the etiology of high myopia and opened avenues for future research interest. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00082-x.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yu Du
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Ye Zhang
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yuxi Chen
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Hao Li
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Wenwen He
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yating Tang
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Zhennan Zhao
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Yinglei Zhang
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Jihong Wu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| | - Xiangjia Zhu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
| | - Yi Lu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031 China
- Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200031 China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, 200031 China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031 China
| |
Collapse
|
13
|
Gupta S, Mathur P, Mishra AK, Medicherla KM, Bandapalli OR, Suravajhala P. Whole Exome-Trio Analysis Reveals Rare Variants Associated with Congenital Pouch Colon. CHILDREN (BASEL, SWITZERLAND) 2023; 10:902. [PMID: 37238450 PMCID: PMC10217150 DOI: 10.3390/children10050902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Anorectal malformations (ARM) are individually common, but Congenital Pouch Colon (CPC) is a rare anorectal anomaly that causes a dilated pouch and communication with the genitourinary tract. In this work, we attempted to identify de novo heterozygous missense variants, and further discovered variants of unknown significance (VUS) which could provide insights into CPC manifestation. From whole exome sequencing (WES) performed earlier, the trio exomes were analyzed from those who were admitted to J.K. Lon Hospital, SMS Medical College, Jaipur, India, between 2011 and 2017. The proband exomes were compared with the unaffected sibling/family members, and we sought to ask whether any variants of significant interest were associated with the CPC manifestation. The WES data from a total of 64 samples including 16 affected neonates (11 male and 5 female) with their parents and unaffected siblings were used for the study. We examined the role of rare allelic variation associated with CPC in a 16 proband/parent trio family, comparing the mutations to those of their unaffected parents/siblings. We also performed RNA-Seq as a pilot to find whether or not the genes harboring these mutations were differentially expressed. Our study revealed extremely rare variants, viz., TAF1B, MUC5B and FRG1, which were further validated for disease-causing mutations associated with CPC, further closing the gaps of surgery by bringing intervention in therapies.
Collapse
Affiliation(s)
- Sonal Gupta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research (BISR), Statue Circle, Jaipur 302021, India
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, Jaipur 303002, India
| | - Praveen Mathur
- Department of Pediatric Surgery, SMS Medical College and Hospital, JLN Marg, Jaipur 302004, India
| | | | - Krishna Mohan Medicherla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research (BISR), Statue Circle, Jaipur 302021, India
- Department of Bioengineering, Birla Institute of Technology, Mesra, Jaipur Campus, 27-Malaviya Industrial, Area, Jaipur 302017, India
| | | | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research (BISR), Statue Circle, Jaipur 302021, India
- Bioclues.org, Hyderabad 500072, India;
- Amrita School of Biotechnology, Amrita University, Vallikavu, Clappana P.O. Box 690525, Kerala, India
| |
Collapse
|
14
|
Shemesh R, Dichter S, Mezer E, Wygnanski-Jaffe T. The 100 Most Frequently Cited Articles on Myopia. J Ophthalmol 2023; 2023:7131105. [PMID: 37215949 PMCID: PMC10195181 DOI: 10.1155/2023/7131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Purpose To provide a bibliographical-historical perspective and main interest in the field of myopia. Methods In this bibliographic study, the Web of Science Database was searched from 1999 to 2018. Recorded parameters included journal name, impact factor, year and language, number of authors, type and origin, methodology, number of subjects, funding, and topics. Results Epidemiological assessments were the leading type of article (28%), and half of the papers were prospective studies. The number of citations for multicenter studies was significantly higher (P = 0.034). The articles were published in 27 journals, with the majority in Investigative Ophthalmology, Vision Sciences (28%), and Ophthalmology (26%). Etiology, signs and symptoms, and treatment equally encompassed the topics. Papers addressing etiology, specifically genetic and environmental factors (P = 0.029), signs and symptoms (P = 0.001), and prevention, specifically public awareness (47%, P = 0.005), received significantly more citations. Treatment to decrease myopia progression was a much more common topic (68%) than refractive surgery (32%). Optical treatment was the most popular modality (39%). Half of the publications came from 3 countries: the United States (US), Australia, and Singapore. The highest ranked and cited papers came from the US (P = 0.028) and Singapore (P = 0.028). Conclusions To our knowledge, this is the first report of the top-cited articles on myopia. There is a predominance of epidemiological assessments and multicenter studies originating from the US, Australia, and Singapore, assessing etiology, signs and symptoms, and prevention. These are more frequently cited, emphasizing the great interest in mapping the increase in the incidence of myopia in different countries, public health awareness, and myopia control.
Collapse
Affiliation(s)
- Rachel Shemesh
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel
| | - Sarah Dichter
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eedy Mezer
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel
| | - Tamara Wygnanski-Jaffe
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
15
|
Su J, Yuan J, Xu L, Xing S, Sun M, Yao Y, Ma Y, Chen F, Jiang L, Li K, Yu X, Xue Z, Zhang Y, Fan D, Zhang J, Liu H, Liu X, Zhang G, Wang H, Zhou M, Lyu F, An G, Yu X, Xue Y, Yang J, Qu J. Sequencing of 19,219 exomes identifies a low-frequency variant in FKBP5 promoter predisposing to high myopia in a Han Chinese population. Cell Rep 2023; 42:112510. [PMID: 37171956 DOI: 10.1016/j.celrep.2023.112510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/13/2022] [Accepted: 04/28/2023] [Indexed: 05/14/2023] Open
Abstract
High myopia (HM) is one of the leading causes of visual impairment and blindness worldwide. Here, we report a whole-exome sequencing (WES) study in 9,613 HM cases and 9,606 controls of Han Chinese ancestry to pinpoint HM-associated risk variants. Single-variant association analysis identified three newly identified -genetic loci associated with HM, including an East Asian ancestry-specific low-frequency variant (rs533280354) in FKBP5. Multi-ancestry meta-analysis with WES data of 2,696 HM cases and 7,186 controls of European ancestry from the UK Biobank discerned a newly identified European ancestry-specific rare variant in FOLH1. Functional experiments revealed a mechanism whereby a single G-to-A transition at rs533280354 disrupted the binding of transcription activator KLF15 to the promoter of FKBP5, resulting in decreased transcription of FKBP5. Furthermore, burden tests showed a significant excess of rare protein-truncating variants among HM cases involved in retinal blood vessel morphogenesis and neurotransmitter transport.
Collapse
Affiliation(s)
- Jianzhong Su
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China.
| | - Jian Yuan
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Liangde Xu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Shilai Xing
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Institute of PSI Genomics, Wenzhou 325024, China
| | - Mengru Sun
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yinghao Yao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| | - Yunlong Ma
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Fukun Chen
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Longda Jiang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Kai Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| | - Xiangyi Yu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhengbo Xue
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yaru Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Dandan Fan
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ji Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hui Liu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xinting Liu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Guosi Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hong Wang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Meng Zhou
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Fan Lyu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China
| | - Gang An
- Institute of PSI Genomics, Wenzhou 325024, China
| | - Xiaoguang Yu
- Institute of PSI Genomics, Wenzhou 325024, China
| | - Yuanchao Xue
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| | - Jia Qu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China.
| |
Collapse
|
16
|
Yang E, Yu J, Liu X, Chu H, Li L. Familial Whole Exome Sequencing Study of 30 Families With Early-Onset High Myopia. Invest Ophthalmol Vis Sci 2023; 64:10. [PMID: 37191617 PMCID: PMC10198284 DOI: 10.1167/iovs.64.5.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Purpose This study was conducted to investigate potential candidate pathogenic genes in early-onset high myopia (eoHM) in families with eoHM. Methods Whole-exome sequencing was performed on probands with eoHM to identify potential pathogenic genes. Sanger sequencing was used to verify the identified gene mutations causing eoHM in first-degree relatives of the proband. The identified mutations were screened out by bioinformatics analysis combined with segregation analysis. Results A total of 131 variant loci, involving 97 genes, were detected in the 30 families. A total of 28 genes (37 variants), which were carried by 24 families, were verified and analyzed by Sanger sequencing. We identified five genes and 10 loci associated with eoHM, which have not been reported in previous research. Hemizygous mutations in COL4A5, NYX, and CACNA1F were detected in this study. Inherited retinal disease-associated genes were found in 76.67% (23/30) of families. Genes that can be expressed in the retina in the Online Mendelian Inheritance in Man database were found in 33.33% (10/30) of families. Mutations in the genes associated with eoHM, including CCDC111, SLC39A5, P4HA2, CPSF1, P4HA2, and GRM6, were detected. The mutual correlation between candidate genes and phenotype of fundus photography was revealed in our study. The eoHM candidate gene mutation types contain five categories: missense mutations (78.38%), nonsense (8.11%), frameshift mutation (5.41%), classical splice site mutation (5.41%), and initiation codon mutation (2.70%). Conclusions Candidate genes carried by patients with eoHM are closely related to inherited retinal diseases. Genetic screening in children with eoHM facilitates the early identification and intervention of syndromic hereditary ocular disorders and certain hereditary ophthalmopathies.
Collapse
Affiliation(s)
- Entuan Yang
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Jifeng Yu
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Xue Liu
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Huihui Chu
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Li Li
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| |
Collapse
|
17
|
Li Q, Zhao L, Zeng Y, Kuang Y, Guan Y, Chen B, Xu S, Tang B, Wu L, Mao X, Sun X, Shi J, Xu P, Diao F, Xue S, Bao S, Meng Q, Yuan P, Wang W, Ma N, Song D, Xu B, Dong J, Mu J, Zhang Z, Fan H, Gu H, Li Q, He L, Jin L, Wang L, Sang Q. Large-scale analysis of de novo mutations identifies risk genes for female infertility characterized by oocyte and early embryo defects. Genome Biol 2023; 24:68. [PMID: 37024973 PMCID: PMC10080761 DOI: 10.1186/s13059-023-02894-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/01/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Oocyte maturation arrest and early embryonic arrest are important reproductive phenotypes resulting in female infertility and cause the recurrent failure of assisted reproductive technology (ART). However, the genetic etiologies of these female infertility-related phenotypes are poorly understood. Previous studies have mainly focused on inherited mutations based on large pedigrees or consanguineous patients. However, the role of de novo mutations (DNMs) in these phenotypes remains to be elucidated. RESULTS To decipher the role of DNMs in ART failure and female infertility with oocyte and embryo defects, we explore the landscape of DNMs in 473 infertile parent-child trios and identify a set of 481 confident DNMs distributed in 474 genes. Gene ontology analysis reveals that the identified genes with DNMs are enriched in signaling pathways associated with female reproductive processes such as meiosis, embryonic development, and reproductive structure development. We perform functional assays on the effects of DNMs in a representative gene Tubulin Alpha 4a (TUBA4A), which shows the most significant enrichment of DNMs in the infertile parent-child trios. DNMs in TUBA4A disrupt the normal assembly of the microtubule network in HeLa cells, and microinjection of DNM TUBA4A cRNAs causes abnormalities in mouse oocyte maturation or embryo development, suggesting the pathogenic role of these DNMs in TUBA4A. CONCLUSIONS Our findings suggest novel genetic insights that DNMs contribute to female infertility with oocyte and embryo defects. This study also provides potential genetic markers and facilitates the genetic diagnosis of recurrent ART failure and female infertility.
Collapse
Affiliation(s)
- Qun Li
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
- Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Lin Zhao
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Yang Zeng
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Yanping Kuang
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Yichun Guan
- Department of Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, 200032, China
| | - Shiru Xu
- Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, 518001, Guangdong, China
| | - Bin Tang
- Reproductive Medicine Center, The First People's Hospital of Changde City, Changde, 415000, China
| | - Ling Wu
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xiaoyan Mao
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Juanzi Shi
- Reproductive Medicine Center, Northwest Women's and Children's Hospital, Xi'an, 710000, China
| | - Peng Xu
- Hainan Jinghua Hejing Hospital for Reproductive Medicine, Haikou, 570125, China
| | - Feiyang Diao
- Reproductive Medicine Center, Jiangsu Province Hospital, Nanjing, 210036, China
| | - Songguo Xue
- Reproductive Medicine Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Shihua Bao
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Qingxia Meng
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215000, China
| | - Ping Yuan
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wenjun Wang
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ning Ma
- Reproductive Medical Center, Maternal and Child Health Care Hospital of Hainan Province, Haikou, 570206, Hainan Province, China
| | - Di Song
- Naval Medical University, Changhai Hospital, Shanghai, China
| | - Bei Xu
- Reproductive Medicine Centre, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Dong
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Zhihua Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Huizhen Fan
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Hao Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Qiaoli Li
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Ye M, Ma Y, Qin YX, Cai B, Ma LM, Ma Z, Liu Y, Jin ZB, Zhuang WJ. Mutational investigation of 17 causative genes in a cohort of 113 families with nonsyndromic early-onset high myopia in northwestern China. Mol Genet Genomics 2023; 298:669-682. [PMID: 36964802 DOI: 10.1007/s00438-023-02003-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/24/2023] [Indexed: 03/26/2023]
Abstract
High myopia (HM) is a leading cause of visual impairment in the world. To expand the genotypic and phenotypic spectra of HM in the Chinese population, we investigated genetic variations in a cohort of 113 families with nonsyndromic early-onset high myopia from northwestern China by whole-exome sequencing, with focus on 17 known genes. Sixteen potentially pathogenic variants predicted to affect protein function in eight of seventeen causative genes for HM in fifteen (13.3%) families were revealed, including seven novel variants, c.767 + 1G > A in ARR3, c.3214C > A/p.H1072N, and c.2195C > T/p.A732V in ZNF644, c.1270G > T/p.V424L in CPSF1, c.1918G > C/p.G640R and c.2786T > G/p.V929G in XYLT1, c.601G > C/p.E201Q in P4HA2; six rare variants, c.799G > A/p.E267K in NDUFAF7, c.1144C > T/p.R382W in TNFRSF21, c.1100C > T/p.P367L in ZNF644, c.3980C > T/p.S1327L in CPSF1, c.145G > A/p.E49K and c.325G > T/p.G109W in SLC39A5; and three known variants, c.2014A > G/p.S672G and c.3261A > C/p.E1087D in ZNF644, c.605C > T/p.P202L in TNFRSF21. Ten of them were co-segregated with HM. The mean (± SD) examination age of these 15 probands was 14.7 (± 11.61) years. The median spherical equivalent was - 9.50 D (IQ - 8.75 ~ - 12.00) for the right eye and - 11.25 D (IQ - 9.25 ~ - 14.13) for the left eye. The median axial length was 26.67 mm (IQ 25.83 ~ 27.13) for the right eye and 26.25 mm (IQ 25.97 ~ 27.32) for the left eye. These newly identified genetic variations not only broaden the genetic and clinical spectra, but also offer convincing evidence that the genes ARR3, NDUFAF7, TNFRSF21, and ZNF644 contribute to hereditable HM. This work improves further understanding of molecular mechanism of HM.
Collapse
Affiliation(s)
- Min Ye
- Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Ya Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Yi-Xuan Qin
- Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Bo Cai
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Li-Mei Ma
- North Minzu University, Yinchuan, China
| | - Zhen Ma
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Yang Liu
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China.
| | - Wen-Juan Zhuang
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
19
|
Zeitz C, Roger JE, Audo I, Michiels C, Sánchez-Farías N, Varin J, Frederiksen H, Wilmet B, Callebert J, Gimenez ML, Bouzidi N, Blond F, Guilllonneau X, Fouquet S, Léveillard T, Smirnov V, Vincent A, Héon E, Sahel JA, Kloeckener-Gruissem B, Sennlaub F, Morgans CW, Duvoisin RM, Tkatchenko AV, Picaud S. Shedding light on myopia by studying complete congenital stationary night blindness. Prog Retin Eye Res 2023; 93:101155. [PMID: 36669906 DOI: 10.1016/j.preteyeres.2022.101155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
Myopia is the most common eye disorder, caused by heterogeneous genetic and environmental factors. Rare progressive and stationary inherited retinal disorders are often associated with high myopia. Genes implicated in myopia encode proteins involved in a variety of biological processes including eye morphogenesis, extracellular matrix organization, visual perception, circadian rhythms, and retinal signaling. Differentially expressed genes (DEGs) identified in animal models mimicking myopia are helpful in suggesting candidate genes implicated in human myopia. Complete congenital stationary night blindness (cCSNB) in humans and animal models represents an ON-bipolar cell signal transmission defect and is also associated with high myopia. Thus, it represents also an interesting model to identify myopia-related genes, as well as disease mechanisms. While the origin of night blindness is molecularly well established, further research is needed to elucidate the mechanisms of myopia development in subjects with cCSNB. Using whole transcriptome analysis on three different mouse models of cCSNB (in Gpr179-/-, Lrit3-/- and Grm6-/-), we identified novel actors of the retinal signaling cascade, which are also novel candidate genes for myopia. Meta-analysis of our transcriptomic data with published transcriptomic databases and genome-wide association studies from myopia cases led us to propose new biological/cellular processes/mechanisms potentially at the origin of myopia in cCSNB subjects. The results provide a foundation to guide the development of pharmacological myopia therapies.
Collapse
Affiliation(s)
- Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| | - Jérome E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Saclay, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | | | | | - Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, APHP, Paris, France
| | | | - Nassima Bouzidi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Frederic Blond
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Stéphane Fouquet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Vasily Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Robert M Duvoisin
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Andrei V Tkatchenko
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, China; Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
20
|
Li W, He XD, Yang ZT, Han DM, Sun Y, Chen YX, Han XT, Guo SC, Ma YT, Jin X, Yang HM, Gao Y, Wang ZS, Li JK, He W. De Novo Mutations Contributes Approximately 7% of Pathogenicity in Inherited Eye Diseases. Invest Ophthalmol Vis Sci 2023; 64:5. [PMID: 36729443 PMCID: PMC9907368 DOI: 10.1167/iovs.64.2.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Purpose The purpose of this study was to describe genotype-phenotype associations and novel insights into genetic characteristics in a trio-based cohort of inherited eye diseases (IEDs). Methods To determine the etiological role of de novo mutations (DNMs) and genetic profile in IEDs, we retrospectively reviewed a large cohort of proband-parent trios of Chinese origin. The patients underwent a detailed examination and was clinically diagnosed by an ophthalmologist. Panel-based targeted exome sequencing was performed on DNA extracted from blood samples, containing coding regions of 792 IED-causative genes and their flanking exons. All participants underwent genetic testing. Results All proband-parent trios were divided into 22 subgroups, the overall diagnostic yield was 48.67% (605/1243), ranging from 4% to 94.44% for each of the subgroups. A total of 108 IED-causative genes were identified, with the top 24 genes explaining 67% of the 605 genetically solved trios. The genetic etiology of 6.76% (84/1243) of the trio was attributed to disease-causative DNMs, and the top 3 subgroups with the highest incidence of DNM were aniridia (n = 40%), Marfan syndrome/ectopia lentis (n = 38.78%), and retinoblastoma (n = 37.04%). The top 10 genes have a diagnostic yield of DNM greater than 3.5% in their subgroups, including PAX6 (40.00%), FBN1 (38.78%), RB1 (37.04%), CRX (10.34%), CHM (9.09%), WFS1 (8.00%), RP1L1 (5.88%), RS1 (5.26%), PCDH15 (4.00%), and ABCA4 (3.51%). Additionally, the incidence of DNM in offspring showed a trend of correlation with paternal age at reproduction, but not statistically significant with paternal (P = 0.154) and maternal (P = 0.959) age at reproduction. Conclusions Trios-based genetic analysis has high accuracy and validity. Our study helps to quantify the burden of the full spectrum IED caused by each gene, offers novel potential for elucidating etiology, and plays a crucial role in genetic counseling and patient management.
Collapse
Affiliation(s)
- Wei Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,BGI-Shenzhen, Shenzhen, China
| | | | - Zheng-Tao Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,BGI-Shenzhen, Shenzhen, China
| | - Dong-Ming Han
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,BGI-Shenzhen, Shenzhen, China
| | - Yan Sun
- He University, Shenyang, China
| | - Yan-Xian Chen
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiao-Tong Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Si-Cheng Guo
- BGI-Shenzhen, Shenzhen, China,College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Yu-Ting Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,BGI-Shenzhen, Shenzhen, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, China
| | - Huan-Ming Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,BGI-Shenzhen, Shenzhen, China
| | - Ya Gao
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Wei He
- He University, Shenyang, China
| |
Collapse
|
21
|
Xiao X, Yang J, Li Y, Yang H, Zhu Y, Li L, Zhou Q, Lu D, Chen T, Tian Y. Identification of a Novel Frameshift Variant of ARR3 Related to X-Linked Female-Limited Early-Onset High Myopia and Study on the Effect of X Chromosome Inactivation on the Myopia Severity. J Clin Med 2023; 12:jcm12030835. [PMID: 36769483 PMCID: PMC9917903 DOI: 10.3390/jcm12030835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
X-linked myopia 26 (Myopia 26, MIM #301010), which is caused by the variants of ARR3 (MIM *301770), is characterized by female-limited early-onset high myopia (eo-HM). Clinical characteristics include a tigroid appearance in the fundus and a temporal crescent of the optic nerve head. At present, the limited literature on eo-HM caused by ARR3 mutations shows that its inheritance mode is complex, which brings certain difficulties to pre-pregnancy genetic counseling, pre-implantation genetic diagnosis, and prenatal diagnosis. Here, we investigated the genetic underpinning of a Chinese family with eo-HM. Whole exome sequencing of the proband revealed a novel frameshift mutation in ARR3 (NM_004312, exon10, c.666delC, p. Asn222LysfsTer22). Although the mode of inheritance of the eo-HM family fits the X-linked pattern of ARR3, the phenotypes of three patients deviate from the typical early-onset high myopia. Through X-chromosome inactivation experiments, the patient's different phenotypes can be precisely explained. In addition, this study not only enhanced the correlation between ARR3 and early-onset high myopia but also provided explanations for different phenotypes, which may inspire follow-up studies. Our results enrich the knowledge of the variant spectrum in ARR3 and provide critical information for preimplantation and prenatal genetic testing, diagnosis, and counseling.
Collapse
Affiliation(s)
- Xuan Xiao
- Department of Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingmin Yang
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai WeHealth BioMedical Technology Co., Ltd., Shanghai 201210, China
| | - Ying Li
- Department of Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongxia Yang
- Department of Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yijian Zhu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, China
| | - Lianbing Li
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, China
| | - Qinlinglan Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Daru Lu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ting Chen
- Department of Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Correspondence: (T.C.); (Y.T.)
| | - Yafei Tian
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Correspondence: (T.C.); (Y.T.)
| |
Collapse
|
22
|
Ouyang J, Li S, Sun W, Xiao X, Wang Y, Jiang Y, Zhang Q. Variants in HNRNPH1 are associated with high myopia in humans and ocular coloboma in zebrafish. Clin Genet 2022; 102:424-433. [PMID: 35989590 DOI: 10.1111/cge.14213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/22/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022]
Abstract
High myopia is one of the most common causes for blindness due to its associated complications. Genetic factor has been considered as the major cause for early-onset high myopia (eoHM), but exact genetic defects for most eoHM are yet to be identified. Through multi-step bioinformatics analysis of our in-house whole exome sequencing dataset from 5310 individuals, variants from 653 probands with eoHM were further compared with those from in-house controls as well as gnomAD database. The results showed that loss-of-function (LoF) variants in a novel gene HNRNPH1 were identified in two of 653 probands with eoHM but in none of 4657 probands with other eye conditions (P = 0.015). LoF variants in HNRNPH1 were extremely rare and intolerant, while two LoF variants in 653 eoHM were statistically higher than their frequency in gnomAD (P = 1.09×10-3 ). These two LoF variants, c.2dupT/p.? and c.121dup/p.(Q41Pfs*20), were absent from existing database. Variants in HNRNPH1 have not been associated with any inherited eye disease before. Expression of HNRNPH1 was enriched in ganglion cell layer and inner nuclear layer in humans. Knockdown of hnrnph1 in zebrafish resulted in ocular coloboma. All these suggests that HNRNPH1 supports its potential contribution to eoHM when mutated.
Collapse
Affiliation(s)
- Jiamin Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
23
|
Guggenheim JA, Clark R, Cui J, Terry L, Patasova K, Haarman AEG, Musolf AM, Verhoeven VJM, Klaver CCW, Bailey-Wilson JE, Hysi PG, Williams C. Whole exome sequence analysis in 51 624 participants identifies novel genes and variants associated with refractive error and myopia. Hum Mol Genet 2022; 31:1909-1919. [PMID: 35022715 PMCID: PMC9169456 DOI: 10.1093/hmg/ddac004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022] Open
Abstract
Refractive errors are associated with a range of pathological conditions, such as myopic maculopathy and glaucoma, and are highly heritable. Studies of missense and putative loss of function (pLOF) variants identified via whole exome sequencing (WES) offer the prospect of directly implicating potentially causative disease genes. We performed a genome-wide association study for refractive error in 51 624 unrelated adults, of European ancestry, aged 40-69 years from the UK and genotyped using WES. After testing 29 179 pLOF and 495 263 missense variants, 1 pLOF and 18 missense variants in 14 distinct genomic regions were taken forward for fine-mapping analysis. This yielded 19 putative causal variants of which 18 had a posterior inclusion probability >0.5. Of the 19 putative causal variants, 12 were novel discoveries. Specific variants were associated with a more myopic refractive error, while others were associated with a more hyperopic refractive error. Association with age of onset of spectacle wear (AOSW) was examined in an independent validation sample (38 100 early AOSW cases and 74 243 controls). Of 11 novel variants that could be tested, 8 (73%) showed evidence of association with AOSW status. This work identified COL4A4 and ATM as novel candidate genes associated with refractive error. In addition, novel putative causal variants were identified in the genes RASGEF1, ARMS2, BMP4, SIX6, GSDMA, GNGT2, ZNF652 and CRX. Despite these successes, the study also highlighted the limitations of community-based WES studies compared with high myopia case-control WES studies.
Collapse
Affiliation(s)
- Jeremy A Guggenheim
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Rosie Clark
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Jiangtian Cui
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Louise Terry
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Karina Patasova
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, WC2R 2LS, UK
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, WC2R 2LS, UK
| | - Annechien E G Haarman
- Department of Ophthalmology, Erasmus Medical Center GD, 3015GD Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center GD, 3015GD Rotterdam, The Netherlands
| | - Anthony M Musolf
- Statistical Genetics Section, Computational and Statistical Genomics Branch, Nation Human Genome Research Institute, National Institutes of Health, Baltimore, MD 21224, USA
| | - Virginie J M Verhoeven
- Department of Ophthalmology, Erasmus Medical Center GD, 3015GD Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center GD, 3015GD Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center GD, 3015GD Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center GD, 3015GD Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology Basel, CH-4031 Basel, Switzerland
| | - Joan E Bailey-Wilson
- Statistical Genetics Section, Computational and Statistical Genomics Branch, Nation Human Genome Research Institute, National Institutes of Health, Baltimore, MD 21224, USA
| | - Pirro G Hysi
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, WC2R 2LS, UK
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, WC2R 2LS, UK
| | - Cathy Williams
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 1NU, UK
| | | | | |
Collapse
|
24
|
Germline predisposition to pediatric Ewing sarcoma is characterized by inherited pathogenic variants in DNA damage repair genes. Am J Hum Genet 2022; 109:1026-1037. [PMID: 35512711 PMCID: PMC9247831 DOI: 10.1016/j.ajhg.2022.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
More knowledge is needed regarding germline predisposition to Ewing sarcoma to inform biological investigation and clinical practice. Here, we evaluated the enrichment of pathogenic germline variants in Ewing sarcoma relative to other pediatric sarcoma subtypes, as well as patterns of inheritance of these variants. We carried out European-focused and pan-ancestry case-control analyses to screen for enrichment of pathogenic germline variants in 141 established cancer predisposition genes in 1,147 individuals with pediatric sarcoma diagnoses (226 Ewing sarcoma, 438 osteosarcoma, 180 rhabdomyosarcoma, and 303 other sarcoma) relative to identically processed cancer-free control individuals. Findings in Ewing sarcoma were validated with an additional cohort of 430 individuals, and a subset of 301 Ewing sarcoma parent-proband trios was analyzed for inheritance patterns of identified pathogenic variants. A distinct pattern of pathogenic germline variants was seen in Ewing sarcoma relative to other sarcoma subtypes. FANCC was the only gene with an enrichment signal for heterozygous pathogenic variants in the European Ewing sarcoma discovery cohort (three individuals, OR 12.6, 95% CI 3.0–43.2, p = 0.003, FDR = 0.40). This enrichment in FANCC heterozygous pathogenic variants was again observed in the European Ewing sarcoma validation cohort (three individuals, OR 7.0, 95% CI 1.7–23.6, p = 0.014), representing a broader importance of genes involved in DNA damage repair, which were also nominally enriched in individuals with Ewing sarcoma. Pathogenic variants in DNA damage repair genes were acquired through autosomal inheritance. Our study provides new insight into germline risk factors contributing to Ewing sarcoma pathogenesis.
Collapse
|
25
|
Zhang XF, Li XX, Xin C, Kline B, Kang MT, Li M, Qiao LY, Wang NL. Refractive Lens Exchange Surgery in Early-Onset High Myopia Patients With Partial Cataract. Front Med (Lausanne) 2022; 9:739197. [PMID: 35492336 PMCID: PMC9051036 DOI: 10.3389/fmed.2022.739197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose By reporting clinical characteristics and retinal image quality before and after refractive lens replacement surgery in early-onset high myopia (eoHM) patients presenting with partial cataract, we emphasized the need for an objective way to grade the severity of partial cataracts. Methods This retrospective, consecutive case series included six Chinese patients (nine eyes). Analysis of previous medical records, visual acuity, optometry, retinal image quality, and axial length (AXL) before surgery and after surgery was performed. Results Five females and one male (nine eyes) with a mean (± SD) age of 11.6 ± 7.9 years (range: 4–25 years) were included in this study. The preoperative spherical power ranged from −7.5 to −42 D. The mean follow-up time was 36 months (range: 24–48 months). Phacoemulsification was followed by in-the-bag implantation of intraocular lens. For patients who were under 6 years old, posterior capsulotomy + anterior vitrectomy were performed simultaneously. All surgeries were uneventful and no postoperative complications occurred during the entire follow-up period. All patients’ uncorrected visual acuity improved by ≥2 lines postoperatively(Snellen acuity). LogMAR best-corrected visual acuity was improved at 24-month (P = 0.042) and endpoint (P = 0.046) follow-ups. Modulation transfer function cutoff frequency (MTFcutoff) and objective scatter index (OSI) was significantly improved at 12-month (P = 0.025, P = 0.038), 24-month (P = 0.005, P = 0.007) and endpoint (P = 0.005, P = 0.008) follow-ups. Postoperative AXL remained stable during 2–4 year follow-ups (P > 0.05). Conclusion Refractive lens replacement surgery is safe and effective for improving functional vision in eoHM patients presenting with partial cataract. Retinal image quality could provide a useful and objective way to facilitate partial cataract severity evaluation and surgery decision making.
Collapse
Affiliation(s)
- Xi-Fang Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Xiao-Xia Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Chen Xin
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Brad Kline
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
| | - Meng-Tian Kang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Meng Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Li-Ya Qiao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
- *Correspondence: Li-Ya Qiao,
| | - Ning-Li Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| |
Collapse
|
26
|
Myopia Genetics and Heredity. CHILDREN 2022; 9:children9030382. [PMID: 35327754 PMCID: PMC8947159 DOI: 10.3390/children9030382] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/19/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022]
Abstract
Myopia is the most common eye condition leading to visual impairment and is greatly influenced by genetics. Over the last two decades, more than 400 associated gene loci have been mapped for myopia and refractive errors via family linkage analyses, candidate gene studies, genome-wide association studies (GWAS), and next-generation sequencing (NGS). Lifestyle factors, such as excessive near work and short outdoor time, are the primary external factors affecting myopia onset and progression. Notably, besides becoming a global health issue, myopia is more prevalent and severe among East Asians than among Caucasians, especially individuals of Chinese, Japanese, and Korean ancestry. Myopia, especially high myopia, can be serious in consequences. The etiology of high myopia is complex. Prediction for progression of myopia to high myopia can help with prevention and early interventions. Prediction models are thus warranted for risk stratification. There have been vigorous investigations on molecular genetics and lifestyle factors to establish polygenic risk estimations for myopia. However, genes causing myopia have to be identified in order to shed light on pathogenesis and pathway mechanisms. This report aims to examine current evidence regarding (1) the genetic architecture of myopia; (2) currently associated myopia loci identified from the OMIM database, genetic association studies, and NGS studies; (3) gene-environment interactions; and (4) the prediction of myopia via polygenic risk scores (PRSs). The report also discusses various perspectives on myopia genetics and heredity.
Collapse
|
27
|
Zhu Y, Bian JF, Lu DQ, To CH, Lam CSY, Li KK, Yu FJ, Gong BT, Wang Q, Ji XW, Zhang HM, Nian H, Lam TC, Wei RH. Alteration of EIF2 Signaling, Glycolysis, and Dopamine Secretion in Form-Deprived Myopia in Response to 1% Atropine Treatment: Evidence From Interactive iTRAQ-MS and SWATH-MS Proteomics Using a Guinea Pig Model. Front Pharmacol 2022; 13:814814. [PMID: 35153787 PMCID: PMC8832150 DOI: 10.3389/fphar.2022.814814] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose: Atropine, a non-selective muscarinic antagonist, effectively slows down myopia progression in human adolescents and several animal models. However, the underlying molecular mechanism is unclear. The current study investigated retinal protein changes of form-deprived myopic (FDM) guinea pigs in response to topical administration of 1% atropine gel (10 g/L). Methods: At the first stage, the differentially expressed proteins were screened using fractionated isobaric tags for a relative and absolute quantification (iTRAQ) approach, coupled with nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) (n = 24, 48 eyes) using a sample pooling technique. At the second stage, retinal tissues from another cohort with the same treatment (n = 12, 24 eyes) with significant ocular changes were subjected to label-free sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics for orthogonal protein target confirmation. The localization of Alpha-synuclein was verified using immunohistochemistry and confocal imaging. Results: A total of 1,695 proteins (8,875 peptides) were identified with 479 regulated proteins (FC ≥ 1.5 or ≤0.67) found from FDM eyes and atropine-treated eyes receiving 4-weeks drug treatment using iTRAQ-MS proteomics. Combining the iTRAQ-MS and SWATH-MS datasets, a total of 29 confident proteins at 1% FDR were consistently quantified and matched, comprising 12 up-regulated and 17 down-regulated proteins which differed between FDM eyes and atropine treated eyes (iTRAQ: FC ≥ 1.5 or ≤0.67, SWATH: FC ≥ 1.4 or ≤0.71, p-value of ≤0.05). Bioinformatics analysis using IPA and STRING databases of these commonly regulated proteins revealed the involvement of the three commonly significant pathways: EIF2 signaling; glycolysis; and dopamine secretion. Additionally, the most significantly regulated proteins were closely connected to Alpha-synuclein (SNCA). Using immunostaining (n = 3), SNCA was further confirmed in the inner margin of the inner nuclear layer (INL) and spread throughout the inner plexiform layer (IPL) of the retina of guinea pigs. Conclusion: The molecular evidence using next-generation proteomics (NGP) revealed that retinal EIF2 signaling, glycolysis, and dopamine secretion through SNCA are implicated in atropine treatment of myopia in the FDM-induced guinea pig model.
Collapse
Affiliation(s)
- Ying Zhu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jing Fang Bian
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Da Qian Lu
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chi Ho To
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Carly Siu-Yin Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - King Kit Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Feng Juan Yu
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bo Teng Gong
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiong Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiao Wen Ji
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Mei Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Thomas Chuen Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
- *Correspondence: Rui Hua Wei, ; Thomas Chuen Lam,
| | - Rui Hua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- *Correspondence: Rui Hua Wei, ; Thomas Chuen Lam,
| |
Collapse
|
28
|
Cao K, Zhang J, Wang J, Yusufu M, Jin S, Chen S, Wang N, Jin ZB, Wan XH. Implantable collamer lens versus small incision lenticule extraction for high myopia correction: A systematic review and meta-analysis. BMC Ophthalmol 2021; 21:450. [PMID: 34961514 PMCID: PMC8711178 DOI: 10.1186/s12886-021-02206-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose To compare the efficacy, safety, predictability and visual quality between implantable collamer lens (ICL) implantation and small incision lenticule extraction (SMILE) for high myopia correction in adults. Methods A systematic review and meta-analysis was conducted. A comprehensive literature search was done based on databases including PubMed, Science Direct, Embase, and the Cochrane Central Register of Controlled Trials. The efficacy index, safety index, changes in Snellen lines of corrected distance visual acuity (CDVA), predictability (difference between post-operative and attempted spherical equivalent error, SER), incidence of halos, and change in higher-order aberrations (HOAs) were compared. Mean difference (MD) and 95% confidence interval (CI) was used to estimate continuous outcomes, risk ratio (RR) and 95%CI was used to estimate categorical outcomes. Results Five observational studies involving 555 eyes were included in this review. Studies’ sample sizes (eyes) ranged from 76 to 197. Subjects’ refraction ranged from -6 diopter (D) to -12D. Study duration of most researches were 6 months or 12 months. Compared to SMILE, ICL implantation showed better efficacy index (MD=0.09, 95%CI:0.01 to 0.16) and better safety index (MD=0.08, 95%CI: 0.00 to 0.16). Compared with SMILE, more ICL-treated eyes gained one or more Snellen lines of CDVA (RR=1.54, 95%CI:1.28 to 1.86), more gained two or more lines (RR=2.09, 95%CI:1.40 to 3.13), less lost one or more lines (RR=0.17, 95%CI:0.05 to 0.63). There was no difference in predictability between two treatments, RRs of predictability of within ±0.5D and ±1D were 1.13 (95%CI: 0.94 to 1.36) and 1.00 (95%CI: 0.98 to 1.02). Compared with SMILE, ICL implantation came with a higher risk of halos [RR=1.79, 95%CI: 1.48 to 2.16] and less increase in total HOAs (MD=-0.23, 95%CI: -0.42 to -0.03). Conclusion Compared with SMILE, ICL implantation showed a higher risk of halos, but equal performance on SER control, and better performance on efficacy index, safety index, CDVA improvement and HOAs control. Overall, ICL implantation might be a better choice for high myopia correction in adults.
Collapse
Affiliation(s)
- Kai Cao
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Capital Medical University, No17, Hougou ally, Dongcheng district, Beijing, 100005, China
| | - Jingshang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Capital Medical University, No17, Hougou ally, Dongcheng district, Beijing, 100005, China
| | - Jinda Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Capital Medical University, No17, Hougou ally, Dongcheng district, Beijing, 100005, China
| | - Mayinuer Yusufu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Capital Medical University, No17, Hougou ally, Dongcheng district, Beijing, 100005, China
| | - Shanshan Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Capital Medical University, No17, Hougou ally, Dongcheng district, Beijing, 100005, China
| | - Shuying Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Capital Medical University, No17, Hougou ally, Dongcheng district, Beijing, 100005, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Capital Medical University, No17, Hougou ally, Dongcheng district, Beijing, 100005, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Capital Medical University, No17, Hougou ally, Dongcheng district, Beijing, 100005, China
| | - Xiu Hua Wan
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Capital Medical University, No17, Hougou ally, Dongcheng district, Beijing, 100005, China.
| |
Collapse
|
29
|
Mutational screening of AGRN, SLC39A5, SCO2, P4HA2, BSG, ZNF644, and CPSF1 in a Chinese cohort of 103 patients with nonsyndromic high myopia. Mol Vis 2021; 27:706-717. [PMID: 35002215 PMCID: PMC8684808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/05/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose High myopia (HM) is one of the leading causes of irreversible vision loss in the world. Many myopia loci have been uncovered with linkage analysis, genome-wide association studies, and sequencing analysis. Numerous pathogenic genes within these loci have been detected in a portion of HM cases. In the present study, we aimed to investigate the genetic basis of 103 patients with nonsyndromic HM, focusing on the reported causal genes. Methods A total of 103 affected individuals with nonsyndromic HM were recruited, including 101 patients with unrelated sporadic HM and a mother and son pair. All participants underwent comprehensive ophthalmic examinations, and genomic DNA samples were extracted from the peripheral blood. Whole exome sequencing was performed on the mother and son pair as well as on the unaffected father. Sanger sequencing was used to identify mutations in the remaining 101 patients. Bioinformatics analysis was subsequently applied to verify the mutations. Results An extremely rare mutation in AGRN (c.2627A>T, p.K876M) was identified in the mother and son pair but not in the unaffected father. Another two mutations in AGRN (c.4787C>T, p.P1596L/c.5056G>A, p.G1686S) were identified in two unrelated patients. A total of eight heterozygous variants potentially affecting the protein function were detected in eight of the remaining 99 patients, including c.1350delC, p.V451Cfs*76 and c.1023_1024insA, p.P342Tfs*41 in SLC39A5; c.244_246delAAG, p.K82del in SCO2; c.545A>G, p.Y182C in P4HA2; c.415C>T, p.P139S in BSG; c.3266A>G, p.Y1089C in ZNF644; and c.2252C>T, p.S751L and c.1708C>T, p.R570C in CPSF1. Multiple bioinformatics analyses were conducted, and a comparison to a group with geographically matched controls was performed, which supported the potential pathogenicity of these variants. Conclusions We provide further evidence for the potential role of AGRN in HM inheritance and enlarged the current genetic spectrum of nonsyndromic HM by comprehensively screening the reported causal genes.
Collapse
|
30
|
Zhang JS, Li J, Wang JD, Xiong Y, Cao K, Hou SM, Yusufu M, Wang KJ, Li M, Mao YY, Sun XL, Chen SY, Liu ZY, Jin ZB, Wang NL, Wan XH. The association of myopia progression with the morphological changes of optic disc and β-peripapillary atrophy in primary school students. Graefes Arch Clin Exp Ophthalmol 2021; 260:677-687. [PMID: 34357418 DOI: 10.1007/s00417-021-05331-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To study the association of myopia progression with the morphological changes of optic disc and β-peripapillary atrophy (β-PPA) in 8-11 years old primary school students. METHODS This study was a prospective, school-based investigation. This study included 610 children (1008 eyes) who were continuously observed and had data available from 2016 to 2017 in the Sanhe Cohort Study of the Risk Factors for Myopia (SCSRFM). The children underwent a comprehensive eye examination including measurement of visual acuity, autorefractometry, and posterior segment of the eye. β-PPA regions and optic disc ovality index were identified and measured on the fundus photographs. RESULTS The prevalence of myopia was 72.62% (732/1008) in 2016. In myopic children, the prevalence of the vertical β-PPA, the horizontal β-PPA, and the oval optic disc were 75.68% (554/732), 75.96% (556/732) and, 11.61% (85/732) respectively. From 2016 to 2017, with the progression of vertical β-PPA, horizontal β-PPA, area of β-PPA, and optic disc ovality index, the myopic diopter and the axial length (AL) were increased. The progression of horizontal β-PPA was significantly correlated with the progression of myopic diopter and AL (all p < 0.05). The analysis on the distribution of progression rate of parameters in different groups found that the progression rate of horizontal β-PPA, area of β-PPA, and optic disc ovality index increased with the increase of the progression of diopter and AL. The progression of horizontal β-PPA, area of β-PPA, optic disc ovality index, and diopter in girls were greater than that in boys, and the progression of optic disc ovality index and diopter had a statistical significance (all p < 0.05). CONCLUSIONS The 1-year follow-up study of the third-grade primary school students showed that with the progression of myopia and the growth of AL, β-PPA and optic disc ovality index also changed. There was a positive correlation between the change of β-PPA and optic disc ovality index and the progression of myopia diopter and AL.
Collapse
Affiliation(s)
- Jing-Shang Zhang
- Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing, 100005, China
| | - Jing Li
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing, 100005, China
| | - Jin-Da Wang
- Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing, 100005, China
| | - Ying Xiong
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing, 100005, China
| | - Kai Cao
- Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing, 100005, China
| | - Si-Meng Hou
- Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing, 100005, China
| | - Mayinuer Yusufu
- Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing, 100005, China
| | - Kai-Jie Wang
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing, 100005, China
| | - Meng Li
- Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing, 100005, China
| | - Ying-Yan Mao
- Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing, 100005, China
| | - Xiu-Li Sun
- Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing, 100005, China
| | - Shu-Ying Chen
- Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing, 100005, China
| | - Zhen-Yu Liu
- Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing, 100005, China
| | - Zi-Bing Jin
- Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing, 100005, China
| | - Ning-Li Wang
- Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing, 100005, China
| | - Xiu-Hua Wan
- Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University, Beijing, 100005, China.
| |
Collapse
|
31
|
Xie X, Kendzior MC, Ge X, Mainzer LS, Sinha S. VarSAn: associating pathways with a set of genomic variants using network analysis. Nucleic Acids Res 2021; 49:8471-8487. [PMID: 34313777 PMCID: PMC8421213 DOI: 10.1093/nar/gkab624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/18/2021] [Accepted: 07/20/2021] [Indexed: 02/01/2023] Open
Abstract
There is a pressing need today to mechanistically interpret sets of genomic variants associated with diseases. Here we present a tool called ‘VarSAn’ that uses a network analysis algorithm to identify pathways relevant to a given set of variants. VarSAn analyzes a configurable network whose nodes represent variants, genes and pathways, using a Random Walk with Restarts algorithm to rank pathways for relevance to the given variants, and reports P-values for pathway relevance. It treats non-coding and coding variants differently, properly accounts for the number of pathways impacted by each variant and identifies relevant pathways even if many variants do not directly impact genes of the pathway. We use VarSAn to identify pathways relevant to variants related to cancer and several other diseases, as well as drug response variation. We find VarSAn's pathway ranking to be complementary to the standard approach of enrichment tests on genes related to the query set. We adopt a novel benchmarking strategy to quantify its advantage over this baseline approach. Finally, we use VarSAn to discover key pathways, including the VEGFA-VEGFR2 pathway, related to de novo variants in patients of Hypoplastic Left Heart Syndrome, a rare and severe congenital heart defect.
Collapse
Affiliation(s)
- Xiaoman Xie
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew C Kendzior
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiyu Ge
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Liudmila S Mainzer
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Saurabh Sinha
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.,Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.,Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
32
|
Dong S, Tian Q, Zhu T, Wang K, Lei G, Liu Y, Xiong H, Shen L, Wang M, Zhao R, Wu H, Li B, Zhang Q, Yao Y, Guo H, Xia K, Xia L, Hu Z. SLC39A5 dysfunction impairs extracellular matrix synthesis in high myopia pathogenesis. J Cell Mol Med 2021; 25:8432-8441. [PMID: 34302427 PMCID: PMC8419198 DOI: 10.1111/jcmm.16803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Accepted: 07/06/2021] [Indexed: 12/23/2022] Open
Abstract
High myopia is one of the leading causes of visual impairment worldwide with high heritability. We have previously identified the genetic contribution of SLC39A5 to nonsyndromic high myopia and demonstrated that disease‐related mutations of SLC39A5 dysregulate the TGF‐β pathway. In this study, the mechanisms underlying SLC39A5 involvement in the pathogenesis of high myopia are determined. We observed the morphogenesis and migration abnormalities of the SLC39A5 knockout (KO) human embryonic kidney cells (HEK293) and found a significant injury of ECM constituents. RNA‐seq and qRT‐PCR revealed the transcription decrease in COL1A1, COL2A1, COL4A1, FN1 and LAMA1 in the KO cells. Further, we demonstrated that TGF‐β signalling, the regulator of ECM, was inhibited in SLC39A5 depletion situation, wherein the activation of receptor Smads (R‐Smads) via phosphorylation was greatly blocked. SLC39A5 re‐expression reversed the phenotype of TGF‐β signalling and ECM synthesis in the KO cells. The fact that TGF‐β signalling was zinc‐regulated and that SLC39A5 was identified as a zinc transporter urged us to check the involvement of intracellular zinc in TGF‐β signalling impairment. Finally, we determined that insufficient zinc chelation destabilized Smad proteins, which naturally inhibited TGF‐β signalling. Overall, the SLC39A5 depletion–induced zinc deficiency destabilized Smad proteins, which inhibited the TGF‐β signalling and downstream ECM synthesis, thus contributing to the pathogenesis of high myopia. This discovery provides a deep insight into myopic development.
Collapse
Affiliation(s)
- Shanshan Dong
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qi Tian
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Tengfei Zhu
- Department of Critical Care Medicine, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| | - Kangli Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ganting Lei
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yanling Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Haofeng Xiong
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Meng Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Rongjuan Zhao
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Huidan Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiumeng Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yujun Yao
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hui Guo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Molecular Precisional Medicine, Central South University, Changsha, Hunan, China
| | - Lu Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhengmao Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
33
|
Liu Y, Zhang JJ, Piao SY, Shen RJ, Ma Y, Xue ZQ, Zhang W, Liu J, Jin ZB, Zhuang WJ. Whole-Exome Sequencing in a Cohort of High Myopia Patients in Northwest China. Front Cell Dev Biol 2021; 9:645501. [PMID: 34222226 PMCID: PMC8250434 DOI: 10.3389/fcell.2021.645501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/27/2021] [Indexed: 11/22/2022] Open
Abstract
High myopia (HM) is one of the leading causes of visual impairment worldwide. In order to expand the myopia gene spectrum in the Chinese population, we investigated genetic mutations in a cohort of 27 families with HM from Northwest China by using whole-exome sequencing (WES). Genetic variations were filtered using bioinformatics tools and cosegregation analysis. A total of 201 candidate mutations were detected, and 139 were cosegregated with the disease in the families. Multistep analysis revealed four missense variants in four unrelated families, including c.904C>T (p.R302C) in CSMD1, c.860G>A (p.R287H) in PARP8, c.G848A (p.G283D) in ADAMTSL1, and c.686A>G (p.H229R) in FNDC3B. These mutations were rare or absent in the Exome Aggregation Consortium (ExAC), 1000 Genomes Project, and Genome Aggregation Database (gnomAD), indicating that they are new candidate disease-causing genes. Our findings not only expand the myopia gene spectrum but also provide reference information for further genetic study of heritable HM.
Collapse
Affiliation(s)
- Yang Liu
- School of Basic Medical Sciences, Third Clinical Medical College of Ningxia Medical University (People’s Hospital of Ningxia Hui Autonomous Region), Yinchuan, China
| | - Jin-Jin Zhang
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Shun-Yu Piao
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Ya Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Zhong-Qi Xue
- Department of Ophthalmology, Affiliated Hospital of Qingdao Binhai University, Qingdao, China
| | - Wen Zhang
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Juan Liu
- School of Basic Medical Sciences, Third Clinical Medical College of Ningxia Medical University (People’s Hospital of Ningxia Hui Autonomous Region), Yinchuan, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Wen-Juan Zhuang
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
34
|
Tideman JWL, Pärssinen O, Haarman AEG, Khawaja AP, Wedenoja J, Williams KM, Biino G, Ding X, Kähönen M, Lehtimäki T, Raitakari OT, Cheng CY, Jonas JB, Young TL, Bailey-Wilson JE, Rahi J, Williams C, He M, Mackey DA, Guggenheim JA. Evaluation of Shared Genetic Susceptibility to High and Low Myopia and Hyperopia. JAMA Ophthalmol 2021; 139:601-609. [PMID: 33830181 DOI: 10.1001/jamaophthalmol.2021.0497] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Importance Uncertainty currently exists about whether the same genetic variants are associated with susceptibility to low myopia (LM) and high myopia (HM) and to myopia and hyperopia. Addressing this question is fundamental to understanding the genetics of refractive error and has clinical relevance for genotype-based prediction of children at risk for HM and for identification of new therapeutic targets. Objective To assess whether a common set of genetic variants are associated with susceptibility to HM, LM, and hyperopia. Design, Setting, and Participants This genetic association study assessed unrelated UK Biobank participants 40 to 69 years of age of European and Asian ancestry. Participants 40 to 69 years of age living in the United Kingdom were recruited from January 1, 2006, to October 31, 2010. Of the total sample of 502 682 participants, 117 279 (23.3%) underwent an ophthalmic assessment. Data analysis was performed from December 12, 2019, to June 23, 2020. Exposures Four refractive error groups were defined: HM, -6.00 diopters (D) or less; LM, -3.00 to -1.00 D; hyperopia, +2.00 D or greater; and emmetropia, 0.00 to +1.00 D. Four genome-wide association study (GWAS) analyses were performed in participants of European ancestry: (1) HM vs emmetropia, (2) LM vs emmetropia, (3) hyperopia vs emmetropia, and (4) LM vs hyperopia. Polygenic risk scores were generated from GWAS summary statistics, yielding 4 sets of polygenic risk scores. Performance was assessed in independent replication samples of European and Asian ancestry. Main Outcomes and Measures Odds ratios (ORs) of polygenic risk scores in replication samples. Results A total of 51 841 unrelated individuals of European ancestry and 2165 unrelated individuals of Asian ancestry were assigned to a specific refractive error group and included in our analyses. Polygenic risk scores derived from all 4 GWAS analyses were predictive of all categories of refractive error in both European and Asian replication samples. For example, the polygenic risk score derived from the HM vs emmetropia GWAS was predictive in the European sample of HM vs emmetropia (OR, 1.58; 95% CI, 1.41-1.77; P = 1.54 × 10-15) as well as LM vs emmetropia (OR, 1.15; 95% CI, 1.07-1.23; P = 8.14 × 10-5), hyperopia vs emmetropia (OR, 0.83; 95% CI, 0.77-0.89; P = 4.18 × 10-7), and LM vs hyperopia (OR, 1.45; 95% CI, 1.33-1.59; P = 1.43 × 10-16). Conclusions and Relevance Genetic risk variants were shared across HM, LM, and hyperopia and across European and Asian samples. Individuals with HM inherited a higher number of variants from among the same set of myopia-predisposing alleles and not different risk alleles compared with individuals with LM. These findings suggest that treatment interventions targeting common genetic risk variants associated with refractive error could be effective against both LM and HM.
Collapse
Affiliation(s)
- J Willem L Tideman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Olavi Pärssinen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Ophthalmology, Central Hospital of Central Finland, Jyväskylä, Finland
| | - Annechien E G Haarman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital National Health Service (NHS) Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Juho Wedenoja
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Katie M Williams
- Section of Academic Ophthalmology, Faculty of Life Sciences and Medicine, King's College London School of Life Course Sciences, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of Italy, Pavia, Italy
| | - Xiaohu Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Mika Kähönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Terho Lehtimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland.,Department of Clinical Chemistry, Finnish Cardiovascular Research Center, Tampere, Finland
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Finland.,Research Centre of Applied and Preventive Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Ching-Yu Cheng
- Duke-NUS Medical School, Singapore, Singapore.,Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Terri L Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison
| | - Joan E Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland
| | - Jugnoo Rahi
- UCL Great Ormond Street Institute of Child Health and Institute of Ophthalmology, University College London, London, United Kingdom
| | - Cathy Williams
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Centre for Eye Research Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Jeremy A Guggenheim
- Cardiff University School of Optometry and Vision Sciences, Cardiff, United Kingdom
| | | |
Collapse
|
35
|
Chen S, Li XY, Jin JJ, Shen RJ, Mao JY, Cheng FF, Chen ZJ, Linardaki E, Voulgaraki S, Aslanides IM, Jin ZB. Genetic Screening Revealed Latent Keratoconus in Asymptomatic Individuals. Front Cell Dev Biol 2021; 9:650344. [PMID: 34136477 PMCID: PMC8202288 DOI: 10.3389/fcell.2021.650344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose To adopt molecular screening in asymptomatic individuals at high risk of developing keratoconus as a combinative approach to prevent subclinical patients from post-refractive surgery progressive corneal ectasia. Methods In this study, 79 Chinese and nine Greek families with keratoconus were recruited, including 91 patients with clinically diagnosed keratoconus as well as their asymptomatic but assumptive high-risk first-degree relatives based on underlying genetic factor. Mutational screening of VSX1, TGFBI, and ZEB1 genes and full clinical assessment including Pentacam Scheimpflug tomography were carried out in these individuals. Results Five variants in VSX1 and TGFBI genes were identified in three Chinese families and one Greek family, and four of them were novel ones. Surprisingly, ultra-early corneal changes in Belin/Ambrosio Enhanced Ectasia Display of Pentacam corneal topography together with co-segregated variants were revealed in the relatives who had no self-reported symptoms. Conclusions Variants of VSX1 and TGFBI genes identified in both the clinically diagnosed and subclinical patients may cause the keratoconus through an autosomal dominant inheritance pattern, with different variable expressivity. Combining genetic with Belin/AmbrosioEnhanced Ectasia Display can be used to identify patients with latent keratoconus. This study indicates that genetic testing may play an important supplementary role in re-classifying the disease manifestation and evaluating the preoperative examination of refractive surgery.
Collapse
Affiliation(s)
- Shihao Chen
- Center for Refractive Surgery, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xing-Yong Li
- Center for Refractive Surgery, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Jia-Jia Jin
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Ren-Juan Shen
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, China.,Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Jian-Yang Mao
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Fei-Fei Cheng
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Zhen-Ji Chen
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, China
| | | | | | - Ioannis M Aslanides
- Center for Refractive Surgery, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Emmetropia Mediterranean Eye Institute, Heraklion, Greece
| | - Zi-Bing Jin
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, China.,Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University and Capital Medical University, Beijing Tongren Hospital, Beijing, China
| |
Collapse
|
36
|
Variants in FLRT3 and SLC35E2B identified using exome sequencing in seven high myopia families from Central Europe. Adv Med Sci 2021; 66:192-198. [PMID: 33711669 DOI: 10.1016/j.advms.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/09/2021] [Accepted: 02/26/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE High myopia (HM) is an eye disorder with both environmental and genetic factors involved. Many genetic factors responsible for HM were recognized worldwide, but little is known about genetic variants underlying HM in Central Europe. Thus, the aim of this study was to identify rare sequence variants involved in HM in families from Central Europe to better understand the genetic basis of HM. MATERIALS AND METHODS We assessed 17 individuals from 7 unrelated Central European families with hereditary HM using exome sequencing (ES). Segregation of selected variants in other available family members was performed using Sanger sequencing. RESULTS Detected 73 rare variants were selected for verification. We observed 2 missense variants, c.938C>T in SLC35E2B - encoding solute carrier family 35 member E2B, and c.1642G>C in FLRT3 - encoding fibronectin leucine rich transmembrane protein, segregating with HM in one family. CONCLUSIONS FLRT3 and/or SLC35E2B could represent disease candidate genes and identified sequence variants might be responsible for HM in the studied family.
Collapse
|
37
|
Welch CL, Austin ED, Chung WK. Genes that drive the pathobiology of pediatric pulmonary arterial hypertension. Pediatr Pulmonol 2021; 56:614-620. [PMID: 31917901 PMCID: PMC7343584 DOI: 10.1002/ppul.24637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022]
Abstract
Emerging data from studies of pediatric-onset pulmonary arterial hypertension (PAH) indicate that the genomics of pediatric PAH is different than that of adults. There is a greater genetic burden in children, with rare genetic factors contributing to at least 35% of pediatric-onset idiopathic PAH (IPAH) compared with ~11% of adult-onset IPAH. De novo variants are the most frequent genetic cause of PAH in children, likely contributing to ~15% of all cases. Rare deleterious variants in bone morphogenetic protein receptor 2 (BMPR2) contribute to pediatric-onset familial PAH and IPAH with similar frequency as adult-onset. While likely gene-disrupting (LGD) variants in BMPR2 contribute across the lifespan, damaging missense variants are more frequent in early-onset PAH. Rare deleterious variants in T-box 4-containing protein (TBX4) are more common in pediatric-compared with adult-onset PAH, explaining ~8% of pediatric IPAH. PAH associated with congenital heart disease (APAH-CHD) and other developmental disorders account for a large proportion of pediatric PAH. SRY-related HMG box transcription factor (SOX17) was recently identified as an APAH-CHD risk gene, contributing less frequently to IPAH, with a greater prevalence of rare deleterious variants in children compared with adults. The differences in genetic burden and genes underlying pediatric- vs adult-onset PAH indicate that genetic information relevant to pediatric PAH cannot be extrapolated from adult studies. Large cohorts of pediatric-onset PAH are necessary to identify the unique etiological differences of PAH in children, as well as the natural history and response to therapy.
Collapse
Affiliation(s)
- Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Eric D Austin
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.,Department of Medicine, Columbia University Medical Center, New York, New York
| |
Collapse
|
38
|
Snijders Blok L, Vino A, den Hoed J, Underhill HR, Monteil D, Li H, Reynoso Santos FJ, Chung WK, Amaral MD, Schnur RE, Santiago-Sim T, Si Y, Brunner HG, Kleefstra T, Fisher SE. Heterozygous variants that disturb the transcriptional repressor activity of FOXP4 cause a developmental disorder with speech/language delays and multiple congenital abnormalities. Genet Med 2021; 23:534-542. [PMID: 33110267 PMCID: PMC7935712 DOI: 10.1038/s41436-020-01016-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Heterozygous pathogenic variants in various FOXP genes cause specific developmental disorders. The phenotype associated with heterozygous variants in FOXP4 has not been previously described. METHODS We assembled a cohort of eight individuals with heterozygous and mostly de novo variants in FOXP4: seven individuals with six different missense variants and one individual with a frameshift variant. We collected clinical data to delineate the phenotypic spectrum, and used in silico analyses and functional cell-based assays to assess pathogenicity of the variants. RESULTS We collected clinical data for six individuals: five individuals with a missense variant in the forkhead box DNA-binding domain of FOXP4, and one individual with a truncating variant. Overlapping features included speech and language delays, growth abnormalities, congenital diaphragmatic hernia, cervical spine abnormalities, and ptosis. Luciferase assays showed loss-of-function effects for all these variants, and aberrant subcellular localization patterns were seen in a subset. The remaining two missense variants were located outside the functional domains of FOXP4, and showed transcriptional repressor capacities and localization patterns similar to the wild-type protein. CONCLUSION Collectively, our findings show that heterozygous loss-of-function variants in FOXP4 are associated with an autosomal dominant neurodevelopmental disorder with speech/language delays, growth defects, and variable congenital abnormalities.
Collapse
Affiliation(s)
- Lot Snijders Blok
- Human Genetics Department, Radboud University Medical Center, Nijmegen, The Netherlands.
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Arianna Vino
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Joery den Hoed
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Hunter R Underhill
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, UT, USA
| | - Danielle Monteil
- Department of Pediatrics, Naval Medical Center, Portsmouth, VA, USA
| | - Hong Li
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Francis Jeshira Reynoso Santos
- Department of Genetics, Joe DiMaggio Children's Hospital, Hollywood, FL, USA
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | - Yue Si
- GeneDx, Gaithersburg, MD, USA
| | - Han G Brunner
- Human Genetics Department, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Genetics, MHeNS School of Neuroscience, and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tjitske Kleefstra
- Human Genetics Department, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simon E Fisher
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
39
|
Abstract
Recently, coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has spread around the world and is receiving worldwide attention. Approximately 20% of infected patients are suffering from severe disease of multiple systems and in danger of death, while the ocular complications of SARS-CoV-2-infected patients have not been reported generally. Herein, we focus on two major receptors of SARS-CoV-2, ACE2 and CD147 (BSG), in human ocular cells, and interpret the potential roles of coronaviruses in human ocular tissues and diseases.
Collapse
Affiliation(s)
- Yan-Ping Li
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ya Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing 100730 China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing 100730 China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing 100730 China.
| |
Collapse
|
40
|
Pre- and Post-Zygotic TP53 De Novo Mutations in SHH-Medulloblastoma. Cancers (Basel) 2020; 12:cancers12092503. [PMID: 32899294 PMCID: PMC7564492 DOI: 10.3390/cancers12092503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Medulloblastoma is the most common malignant brain tumor in children. In a subset of cases, a causal factor is a constitutive mutation of the TP53 gene, which may be inherited or arise for the first time in a patient (de novo). Using an immunohistochemistry assay as a screening tool, we selected patients suspected of harboring a TP53 mutation and offered genetic counseling and germline testing. Our study, which was the first to investigate the parental origin of TP53 mutations in medulloblastoma, allowed the identification of two additional cases with de novo mutations. Moreover, we demonstrated that in one patient the mutation originated at a post-zygotic stage, resulting in somatic mosaicism. These findings have important implications for genetic counseling since they highlight the occurrence of both pre- and post-zygotic TP53 de novo mutations in medulloblastoma, pointing out that in a specific subgroup of patients genetic testing should be offered regardless of family history. Abstract Li-Fraumeni syndrome (LFS) is an autosomal dominant disorder caused by mutations in the TP53 gene, predisposing to a wide spectrum of early-onset cancers, including brain tumors. In medulloblastoma patients, the role of TP53 has been extensively investigated, though the prevalence of de novo mutations has not been addressed. We characterized TP53 mutations in a monocentric cohort of consecutive Sonic Hedgehog (SHH)-activated medulloblastoma patients. Germline testing was offered based on tumor p53 immunostaining positivity. Among 24 patients, three (12.5%) showed tumor p53 overexpression, of whom two consented to undergo germline testing and resulted as carriers of TP53 mutations. In the first case, family history was uneventful and the mutation was not found in either of the parents. The second patient, with a family history suggestive of LFS, unexpectedly resulted as a carrier of the mosaic mutation c.742=/C>T p.(Arg248=/Trp). The allele frequency was 26% in normal tissues and 42–77% in tumor specimens. Loss of heterozygosity (LOH) in the tumor was also confirmed. Notably, the mosaic case has been in complete remission for more than one year, while the first patient, as most TP53-mutated medulloblastoma cases from other cohorts, showed a severe and rapidly progressive disease. Our study reported the first TP53 mosaic mutation in medulloblastoma patients and confirmed the importance of germline testing in p53 overexpressed SHH-medulloblastoma, regardless of family history.
Collapse
|
41
|
Liu F, Wang J, Xing Y, Li T. Mutation screening of 17 candidate genes in a cohort of 67 probands with early-onset high myopia. Ophthalmic Physiol Opt 2020; 40:271-280. [PMID: 32215939 DOI: 10.1111/opo.12683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE To detect variants in 17 known potentially causative genes for non-syndromic myopia in 67 Tujia Chinese patients with early-onset high myopia (eo-HM). METHODS DNA from 67 unrelated patients with early onset (<7 years old) high myopia (refraction error ≤ -6.00D or axial length > 26 mm) were subjected to whole-exome sequencing (WES). Variants in 17 candidate genes were analysed by multistep bioinformatics analysis. Subsequently, Sanger sequencing was used to verify identified candidate mutations and to assess available family members for co-segregation with myopia. RESULTS A multistep systematic analysis of variants in 17 potentially causative genes for eo-HM revealed four novel pathogenic mutations and three potential pathogenic mutations in 4 of 17 genes in 7 of 67 (10.4%) probands. The pathogenic group included one missense mutation (c.100G > C, p.Asp34His) and one splice donor mutation (c.989 + 1G >A) in ARR3, one missense mutation (c.995C > A, p.Thr332Lys) in NDUFAF7 and one novel frameshift mutation (c.726dupA, p.Arg243fs*140) in SLC39A5. The potential pathogenic group included two missense mutations (c.3266A > G, p.Tyr1089Cys; c.913G > A, p.Glu305Lys) in ZNF644 and one missense mutation (c.960T > A, p.His320Gln) in NDUFAF7. Sequence changes were confirmed by Sanger sequencing; all had an allele frequency <0.01 in the 1000G, EVS, ExAC and gnomAD databases. Additionally, both the pathogenic and potentially pathogenic mutations were predicted to be damaging by SIFT, Polyphen-2, PROVEAN, MutationTaster2, CADD and REVEL except the p.Tyr1089Cys and p.Glu305Lys changes were predicted to be neutral by PROVEAN. CONCLUSION Our research provides more evidence to support the hypothesis that mutations in ARR3, SLC39A5 and NDUFAF7 are disease-causing genes for eo-HM and broadens the eo-HM mutation spectrum among different ethnic groups. It also deepens understanding of the contributions of ARR3, SLC39A5, and NDUFAF7 to eo-HM.
Collapse
Affiliation(s)
- Fang Liu
- Department of Ophthalmology, The Central Hospital of Enshi Tujia And Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, China.,Department of Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junwen Wang
- Department of Ophthalmology, The Central Hospital of Enshi Tujia And Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, China
| | - Yiqiao Xing
- Department of Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tuo Li
- Department of Ophthalmology, The Central Hospital of Enshi Tujia And Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, China
| |
Collapse
|
42
|
Sun W, Xiao X, Li S, Jia X, Zhang Q. A novel deep intronic COL2A1 mutation in a family with early-onset high myopia/ocular-only Stickler syndrome. Ophthalmic Physiol Opt 2020; 40:281-288. [PMID: 32196734 DOI: 10.1111/opo.12682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To identify the genetic defect causing early-onset high myopia (eoHM)/ocular-only Stickler syndrome (ocular-STL) in a large Chinese family. METHODS Genomic DNA and clinical data from a four-generation family with eoHM/ocular-STL were collected. Whole-exome sequencing was performed on one affected member in initial screening. Linkage scan based on microsatellite markers was carried out initially from candidate loci associated with autosomal dominant eoHM and Stickler syndrome. Sanger sequencing was used to detect potential variants. The pathogenicity of candidate variants was evaluated using mini genes ex vivo. RESULTS Eight patients and five unaffected members in the family participated in the study, in which the patients had high myopia with other variable ocular phenotypes but without extraocular abnormalities. Whole exome sequencing did not detect any potential pathogenic variant in all genes known to associate with the disease. The eoHM/ocular-STL in the family was mapped to markers around COL2A1 by candidate loci linkage scan, with a maximum lod score of 3.31 for D12S1590 at θ = 0. A novel deep intronic variant, c.86-50C > G in intron 1 of COL2A1, was detected by Sanger sequencing and co-segregated with eoHM/ocular-STL in the family. Ex vivo splicing test using mini genes confirmed that the variant created a new splicing acceptor 49 bp before the canonical splicing site of exon 2, resulted in addition of 49 bp fragment in the transcript (from c.86-49 to c.86-1) and premature termination. CONCLUSIONS Linkage study, bioinformatics prediction, and ex vivo transcript analysis suggest a novel deep intronic variant adjacent to 5-prime of exon 2 of COL2A1, affecting exon 2 splicing, as a potential cause of ocular-STL in a large family. To our knowledge, this is the first report of an intronic variant around exon 2 as a cause of ocular-STL while a series of variants in the coding region of exon 2, a dispensable alternative-splicing exon for extraocular tissues, in COL2A1 have been reported to cause Stickler syndrome-related ocular phenotype alone.
Collapse
Affiliation(s)
- Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Ouyang J, Sun W, Xiao X, Li S, Jia X, Zhou L, Wang P, Zhang Q. CPSF1 mutations are associated with early-onset high myopia and involved in retinal ganglion cell axon projection. Hum Mol Genet 2020; 28:1959-1970. [PMID: 30689892 PMCID: PMC6548346 DOI: 10.1093/hmg/ddz029] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/27/2022] Open
Abstract
High myopia is a severe form of nearsightedness, which can result in blindness due to its associated complications. While both genetic and environmental factors can cause high myopia, early-onset high myopia (eoHM), which is defined as high myopia that occurs before school age, is considered to be caused mainly by genetic variations, with minimal environmental involvement. Here we report six rare heterozygous loss-of-function (LoF) variants in CPSF1 that were identified in six of 623 probands with eoHM but none of 2657 probands with other forms of genetic eye diseases; this difference was statistically significant (P = 4.60 × 10−5, Fisher’s exact test). The six variants, which were confirmed by Sanger sequencing, were c.3862_3871dup (p.F1291*), c.2823_2824del (p.V943Lfs*65), c.1858C>T (p.Q620*), c.15C>G (p.Y5*), c.3823G>T (p.D1275Y) and c.4146-2A>G. Five of these six variants were absent in existing databases, including gnomAD, 1000G and EVS. The remaining variant, c.4146-2A>G, was present in gnomAD with a frequency of 1/229918. Clinical data demonstrated eoHM in the six probands with these mutations. Knockdown of cpsf1 by morpholino oligonucleotide (MO) injection in zebrafish eggs resulted in small eye size in 84.38% of the injected larvae, and this phenotype was rescued in 61.39% of the zebrafish eggs when the cpsf1 MO and the cpsf1 mRNA were co-injected. The projection of retinal ganglion cell (RGC) towards the tectum was abnormal in cpsf1 morphants. Thus, we demonstrated that heterozygous LoF mutations in CPSF1 are associated with eoHM and that CPSF1 may play an important role in the development of RGC axon projection.
Collapse
Affiliation(s)
- Jiamin Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou 510060, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou 510060, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou 510060, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou 510060, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou 510060, China
| | - Lin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou 510060, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou 510060, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou 510060, China
| |
Collapse
|
44
|
Whole-Exome Sequencing Reveals a Rare Missense Variant in SLC16A9 in a Pedigree with Early-Onset Gout. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4321419. [PMID: 32090094 PMCID: PMC7013288 DOI: 10.1155/2020/4321419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/28/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
Gout is a common inflammatory arthritis triggered by monosodium urate deposition after longstanding hyperuricemia. In the general community, the disease is largely polygenic in genetic architecture, with many polymorphisms having been identified in gout or urate-associated traits. In a small proportion of cases, rare high penetrant mutations associated with monogenic segregation of the disease in families have been demonstrated to be disease causative. In this study, we recruited a two-generation pedigree with early-onset gout. To elucidate the genetic predisposition, whole-exome sequencing (WES) was performed. After comprehensive variant analyses and cosegregation testing, we identified a missense variant (c.277C>A, p.L93M) in SLC16A9, an extremely rare variant in genetic databases. Moreover, in silico assessments showed strong pathogenicity. This variant cosegregated with the disease phenotype perfectly in the family and is located in a highly conserved functional domain. A few studies supported our results of the association between SLC16A9 and gout and serum urate levels. In conclusion, we provide the first evidence for the association of rare missense in SLC16A9 with early-onset gout. These findings not only expand our current understanding of gout but also may have further implications for the treatment and prevention of gout.
Collapse
|
45
|
Genetics and Other Omics in Pediatric Pulmonary Arterial Hypertension. Chest 2020; 157:1287-1295. [PMID: 32006592 DOI: 10.1016/j.chest.2020.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease with high mortality despite therapeutic advances. Clinical management of children with PAH is particularly challenging because of increased complexity of disease etiology and clinical presentation, and the lack of data from pediatric-specific clinical trials. In children, PAH often develops in association with congenital heart disease and other developmental disorders. Emerging data from genetic studies of pediatric-onset PAH indicate that the genetic basis is different than that of adults. There is a greater genetic burden in children, with rare genetic factors contributing to at least 35% of pediatric-onset idiopathic PAH (IPAH) compared with approximately 11% of adult-onset IPAH. De novo variants are the most frequent monogenetic cause of PAH in children, likely contributing to approximately 15% of all cases. Rare deleterious variants in BMPR2 contribute to pediatric-onset IPAH and familial PAH with similar frequency as adult-onset disease but rarely explain cases of PAH associated with other diseases. Rare deleterious variants in developmental genes-including TBX4, SOX17, and other genes requiring confirmation in larger cohorts-are emerging as important contributors to pediatric-onset disease. Because each causal gene contributes to only a small number of cases, large cohorts of pediatric-onset PAH are needed to further identify the unique etiologic differences of PAH in children. We propose a genetics-first approach followed by focused phenotyping of pediatric patients grouped by genetic diagnosis to define endophenotypes that can be used to improve risk stratification and treatment.
Collapse
|
46
|
Zhao G, Li K, Li B, Wang Z, Fang Z, Wang X, Zhang Y, Luo T, Zhou Q, Wang L, Xie Y, Wang Y, Chen Q, Xia L, Tang Y, Tang B, Xia K, Li J. Gene4Denovo: an integrated database and analytic platform for de novo mutations in humans. Nucleic Acids Res 2020; 48:D913-D926. [PMID: 31642496 PMCID: PMC7145562 DOI: 10.1093/nar/gkz923] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/19/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022] Open
Abstract
De novo mutations (DNMs) significantly contribute to sporadic diseases, particularly in neuropsychiatric disorders. Whole-exome sequencing (WES) and whole-genome sequencing (WGS) provide effective methods for detecting DNMs and prioritizing candidate genes. However, it remains a challenge for scientists, clinicians, and biologists to conveniently access and analyse data regarding DNMs and candidate genes from scattered publications. To fill the unmet need, we integrated 580 799 DNMs, including 30 060 coding DNMs detected by WES/WGS from 23 951 individuals across 24 phenotypes and prioritized a list of candidate genes with different degrees of statistical evidence, including 346 genes with false discovery rates <0.05. We then developed a database called Gene4Denovo (http://www.genemed.tech/gene4denovo/), which allowed these genetic data to be conveniently catalogued, searched, browsed, and analysed. In addition, Gene4Denovo integrated data from >60 genomic sources to provide comprehensive variant-level and gene-level annotation and information regarding the DNMs and candidate genes. Furthermore, Gene4Denovo provides end-users with limited bioinformatics skills to analyse their own genetic data, perform comprehensive annotation, and prioritize candidate genes using custom parameters. In conclusion, Gene4Denovo conveniently allows for the accelerated interpretation of DNM pathogenicity and the clinical implication of DNMs in humans.
Collapse
Affiliation(s)
- Guihu Zhao
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kuokuo Li
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Bin Li
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zheng Wang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenghuan Fang
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaomeng Wang
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yi Zhang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tengfei Luo
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qiao Zhou
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Wang
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yali Xie
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yijing Wang
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qian Chen
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Xia
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yu Tang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kun Xia
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
47
|
Deng L, Lou H, Zhang X, Thiruvahindrapuram B, Lu D, Marshall CR, Liu C, Xie B, Xu W, Wong LP, Yew CW, Farhang A, Ong RTH, Hoque MZ, Thuhairah AR, Jong B, Phipps ME, Scherer SW, Teo YY, Kumar SV, Hoh BP, Xu S. Analysis of five deep-sequenced trio-genomes of the Peninsular Malaysia Orang Asli and North Borneo populations. BMC Genomics 2019; 20:842. [PMID: 31718558 PMCID: PMC6852992 DOI: 10.1186/s12864-019-6226-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Background Recent advances in genomic technologies have facilitated genome-wide investigation of human genetic variations. However, most efforts have focused on the major populations, yet trio genomes of indigenous populations from Southeast Asia have been under-investigated. Results We analyzed the whole-genome deep sequencing data (~ 30×) of five native trios from Peninsular Malaysia and North Borneo, and characterized the genomic variants, including single nucleotide variants (SNVs), small insertions and deletions (indels) and copy number variants (CNVs). We discovered approximately 6.9 million SNVs, 1.2 million indels, and 9000 CNVs in the 15 samples, of which 2.7% SNVs, 2.3% indels and 22% CNVs were novel, implying the insufficient coverage of population diversity in existing databases. We identified a higher proportion of novel variants in the Orang Asli (OA) samples, i.e., the indigenous people from Peninsular Malaysia, than that of the North Bornean (NB) samples, likely due to more complex demographic history and long-time isolation of the OA groups. We used the pedigree information to identify de novo variants and estimated the autosomal mutation rates to be 0.81 × 10− 8 – 1.33 × 10− 8, 1.0 × 10− 9 – 2.9 × 10− 9, and ~ 0.001 per site per generation for SNVs, indels, and CNVs, respectively. The trio-genomes also allowed for haplotype phasing with high accuracy, which serves as references to the future genomic studies of OA and NB populations. In addition, high-frequency inherited CNVs specific to OA or NB were identified. One example is a 50-kb duplication in DEFA1B detected only in the Negrito trios, implying plausible effects on host defense against the exposure of diverse microbial in tropical rainforest environment of these hunter-gatherers. The CNVs shared between OA and NB groups were much fewer than those specific to each group. Nevertheless, we identified a 142-kb duplication in AMY1A in all the 15 samples, and this gene is associated with the high-starch diet. Moreover, novel insertions shared with archaic hominids were identified in our samples. Conclusion Our study presents a full catalogue of the genome variants of the native Malaysian populations, which is a complement of the genome diversity in Southeast Asians. It implies specific population history of the native inhabitants, and demonstrated the necessity of more genome sequencing efforts on the multi-ethnic native groups of Malaysia and Southeast Asia.
Collapse
Affiliation(s)
- Lian Deng
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haiyi Lou
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxi Zhang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | | | - Dongsheng Lu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Christian R Marshall
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Chang Liu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bo Xie
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wanxing Xu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lai-Ping Wong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117597, Singapore
| | - Chee-Wei Yew
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Aghakhanian Farhang
- Jefrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Sunway, 46150, Subang Jaya, Selangor, Malaysia.,Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Sunway, Subang Jaya, Selangor, Malaysia
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117597, Singapore
| | - Mohammad Zahirul Hoque
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Abdul Rahman Thuhairah
- Clinical Pathology Diagnostic Centre Research Laboratory, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000 Sg Buloh, Subang Jaya, Selangor, Malaysia
| | - Bhak Jong
- Personal Genomics Institute, Genome Research Foundation, Suwon, Republic of Korea.,Geromics, Ulsan, 44919, Republic of Korea.,Biomedical Engineering Department, The Genomics Institute, UNIST, Ulsan, Republic of Korea
| | - Maude E Phipps
- Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Sunway, Subang Jaya, Selangor, Malaysia
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117597, Singapore.,NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, 117456, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore
| | - Subbiah Vijay Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Boon-Peng Hoh
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,Faculty of Medicine and Health Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, Cheras, 56000, Kuala Lumpur, Malaysia.
| | - Shuhua Xu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China. .,Collaborative Innovation Center of Genetics and Development, Shanghai, 200438, China. .,Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
48
|
Cai XB, Shen SR, Chen DF, Zhang Q, Jin ZB. An overview of myopia genetics. Exp Eye Res 2019; 188:107778. [DOI: 10.1016/j.exer.2019.107778] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/27/2019] [Accepted: 08/23/2019] [Indexed: 11/15/2022]
|
49
|
Liu Z, Zhu L, Roberts R, Tong W. Toward Clinical Implementation of Next-Generation Sequencing-Based Genetic Testing in Rare Diseases: Where Are We? Trends Genet 2019; 35:852-867. [PMID: 31623871 DOI: 10.1016/j.tig.2019.08.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/08/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) technologies have changed the landscape of genetic testing in rare diseases. However, the rapid evolution of NGS technologies has outpaced its clinical adoption. Here, we re-evaluate the critical steps in the clinical application of NGS-based genetic testing from an informatics perspective. We suggest a 'fit-for-purpose' triage of current NGS technologies. We also point out potential shortcomings in the clinical management of genetic variants and offer ideas for potential improvement. We specifically emphasize the importance of ensuring the accuracy and reproducibility of NGS-based genetic testing in the context of rare disease diagnosis. We highlight the role of artificial intelligence (AI) in enhancing understanding and prioritization of variance in the clinical setting and propose deep learning frameworks for further investigation.
Collapse
Affiliation(s)
- Zhichao Liu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Liyuan Zhu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Ruth Roberts
- ApconiX, Alderley Park, Alderley Edge, SK10 4TG, UK; University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Weida Tong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
50
|
Cai XB, Zheng YH, Chen DF, Zhou FY, Xia LQ, Wen XR, Yuan YM, Han F, Piao SY, Zhuang W, Lu F, Qu J, Yu AY, Jin ZB. Expanding the Phenotypic and Genotypic Landscape of Nonsyndromic High Myopia: A Cross-Sectional Study in 731 Chinese Patients. ACTA ACUST UNITED AC 2019; 60:4052-4062. [PMID: 31560770 DOI: 10.1167/iovs.19-27921] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Xue-Bi Cai
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Yi-Han Zheng
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - De-Fu Chen
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Fang-Yue Zhou
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Lu-Qi Xia
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Xin-Ran Wen
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Yi-Min Yuan
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Fang Han
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Shun-Yu Piao
- Ningxia Medical University, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Wenjuan Zhuang
- Ningxia Medical University, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Fan Lu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Jia Qu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - A-Yong Yu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| | - Zi-Bing Jin
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, National Center for International Research in Regenerative Medicine and Neurogenetics, National Clinical Research Center for Ophthalmology, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| |
Collapse
|