1
|
Arnold W, Jain S, Sinha V, Das A. The Hunt for the Putative Epoxyeicosatrienoic Acid Receptor. ACS Chem Biol 2025; 20:762-777. [PMID: 40127470 PMCID: PMC12012780 DOI: 10.1021/acschembio.5c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025]
Abstract
Epoxyeicosatrienoic acids, or EETs, are signaling molecules formed by the metabolism of arachidonic acid by cytochrome P450 enzymes. They are well-known for their anti-inflammatory effects, their ability to lower blood pressure, and benefits to cardiovascular outcomes. Despite the wealth of data demonstrating their physiological benefits, the putative high-affinity receptor that mediates these effects is yet to be identified. The recent report that the sphingosine-1-phosphate receptor 1 (S1PR1) is a high-affinity receptor for a related epoxy lipid prompted us to ask, "Why has the putative EET receptor not been discovered yet? What information about the discoveries of lipid epoxide receptors can help us identify the putative EET receptor?" In this review, we summarize the evidence supporting that the putative EET receptor exists. We then review the data showing EETs binding to other, low-affinity receptors and the discovery of receptors for similar lipid metabolites that can serve as a model for identifying the putative EET receptor. We hope this review will revitalize the search for this important receptor, which can facilitate the development of anti-inflammatory and cardiovascular therapeutics.
Collapse
Affiliation(s)
- William
R. Arnold
- Stanford
Cryo-EM Center, Stanford University School
of Medicine, Palo Alto, California 94305, United States
| | - Sona Jain
- Departamento
de Morfologia, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Vidya Sinha
- The
Center for Advanced Studies in Science, Math and Technology at Wheeler
High School, Marietta, Georgia 30068, United States
| | - Aditi Das
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology (GaTech), Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Marowsky A, Wyss MT, Kindler D, Khalid NUA, Rudin M, Weber B, Arand M. Deletion of microsomal epoxide hydrolase gene leads to increased density in cerebral vasculature and enhances cerebral blood flow in mice. J Cereb Blood Flow Metab 2025:271678X251333234. [PMID: 40219924 PMCID: PMC11994649 DOI: 10.1177/0271678x251333234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 03/03/2025] [Accepted: 03/22/2025] [Indexed: 04/14/2025]
Abstract
Microsomal epoxide hydrolase (mEH), first identified as detoxifying enzyme, can hydrolyze epoxyeicosatrienoic acids (EETs) to less active diols (DHETs). EETs are potent vasodilatory and pro-angiogenic lipids, also implicated in neurovascular coupling. In mouse brain, mEH is strongly expressed in vascular and perivascular cells in contrast to the related soluble epoxide hydrolase (sEH), predominantly found in astrocytes. While sEH inhibition in stroke has demonstrated neuroprotective effects and increases cerebral blood flow (CBF), data regarding the role of mEH in brain are scarce. Here, we explored the function of mEH in cerebral vasculature by comparing mEH-KO, sEH-KO and WT mice. Basal cerebral volume (CBV0) was significantly higher in various mEH-KO brain areas compared to WT and sEH-KO. In line, quantification of cerebral vasculature in cortex and thalamus revealed a higher capillary density in mEH-KO, but not in sEH-KO brain. Whisker-stimulated CBF changes were by factor two higher in both mEH-KO and sEH-KO. In acutely isolated cerebral endothelial cells the loss of mEH, but not of sEH, augmented total EET levels and decreased the DHET:EET ratio. Collectively, these data suggest an important function of mEH in the regulation of cerebral vasculature and activity-modulated CBF, presumably by controlling local levels of endothelial-derived EETs.
Collapse
Affiliation(s)
- Anne Marowsky
- Institute of Pharmacology and Toxicology, University Zürich, Zürich, Switzerland
| | - Matthias T Wyss
- Institute of Pharmacology and Toxicology, University Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Diana Kindler
- Institute of Biomedical Engineering, University Zürich/Eidgenössisch-Technische Hochschule (ETH), Zürich, Switzerland
| | - Noor-Ul-Ain Khalid
- Institute of Pharmacology and Toxicology, University Zürich, Zürich, Switzerland
| | - Markus Rudin
- Loop Zurich, Medical Research Center, Zürich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
de Bourg M, Mishra A, Mohammad RS, Morisseau C, Hammock BD, Imig JD, Vik A. Synthetic Epoxyeicosatrienoic Acid Mimics Protect Mesangial Cells from Sorafenib-Induced Cell Death. Molecules 2025; 30:1445. [PMID: 40286028 PMCID: PMC11990158 DOI: 10.3390/molecules30071445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/21/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Nineteen potential mimics of 8,9-epoxyeicosatrienoic acid (8,9-EET), a natural bioactive oxylipin, were synthesized and evaluated for their ability to protect renal mesangial cells against sorafenib-induced cell death in a water-soluble tetrazolium (WST-8) assay. All compounds were also evaluated as inhibitors of soluble epoxide hydrolase. As expected of a potent pan-kinase inhibitor the drug sorafenib caused a significant decrease in cell viability in HRMCs. Several analogs containing amide and oxamide groups in place of the epoxide showed efficacy in reducing sorafenib induced human renal mesangial cell (HRMC) death. Oxamide containing analogs proved particularly effective, with the most promising analog increasing cell viability five-fold over control at 1 µM. These analogs, containing an oxamide group as a bioisostere for the epoxide in 8,9-EET, did not display significant inhibitory activity towards soluble epoxide hydrolase. This preliminary structure-activity relationship analysis reveals the oxamide group as a promising bioisostere for the epoxide in the 8,9-position of the fatty acid chain, producing protective effects against sorafenib-induced cell death in HRMCs. Collectively, these findings demonstrate the potential for using epoxide mimics and particularly oxamides as 8,9-EET analogs as bioisosteres of the corresponding epoxide in a therapeutic strategy against sorafenib-induced glomerular nephrotoxicity.
Collapse
Affiliation(s)
- Marcus de Bourg
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, N-0316 Oslo, Norway
| | - Abhishek Mishra
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.M.); (J.D.I.)
| | - Rawand S. Mohammad
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, N-0316 Oslo, Norway
| | - Christophe Morisseau
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA; (C.M.)
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA; (C.M.)
| | - John D. Imig
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.M.); (J.D.I.)
| | - Anders Vik
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, N-0316 Oslo, Norway
| |
Collapse
|
4
|
Mese-Tayfur S, Demirel-Yalcıner T, Migni A, Bartolini D, Galli F, Ozer NK, Sozen E. Modulation of inflammatory signaling by vitamin E metabolites and its therapeutic implications. Free Radic Res 2025; 59:86-101. [PMID: 39764767 DOI: 10.1080/10715762.2024.2449457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/06/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025]
Abstract
Naturally occurring vitamin E is a lipophilic plant-derived molecule corresponding to the 2 R forms of alpha-tocopherol. A series of natural analogs or tocochromanols are present in nature, including β-, γ- and δ-tocopherol (βT, γT, δT), the corresponding tocotrienols (αTE, βTE, γTE, δTE) and tocomonoenols. Differences between these analogs as lipophilic antioxidants and modulators of molecular processes suggest specific therapeutic properties against various disorders associated with acute and chronic inflammation. However, hepatic metabolism of these compounds via cytochrome P450-initiated side chain ω-oxidation involves the production of long-chain metabolites (LCMs) followed by intermediate (ICMs) and short-chain metabolites (SCMs), respectively. Despite the initial studies indicating these metabolites as catabolic-end products, recent findings identify their importance in providing biological functions. In this scope, LCMs, especially 13'-carboxychromanols (13'-COOHs), have been reported to hold stronger anti-inflammatory capacity than their unmetabolized precursors due to their ability to inhibit 5-lipoxygenase and cyclooxygenase-catalyzed eicosanoid formation, as well as their modulation of the pro-inflammatory transcriptional protein nuclear factor κB (NF-κB). Also, these LCMs have been reported to enhance detoxification and lipid metabolism pathways associated with cellular inflammation by modulating the nuclear receptors peroxisome proliferator-activated receptor-γ (PPARγ) and pregnane x receptor (PXR). These properties of LCMs will be described in this narrative review article focusing on recent information regarding their bioavailability, anti-inflammatory effects, and mechanisms of action in acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Seher Mese-Tayfur
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Tugce Demirel-Yalcıner
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul, Turkey
- Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul, Turkey
| | - Anna Migni
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul, Turkey
- Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul, Turkey
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul, Turkey
| |
Collapse
|
5
|
Ran X, Yan X, Ma G, Liang Z, Zhuang H, Tang X, Chen X, Cao X, Liu X, Huang Y, Wang Y, Zhang X, Luo P, Shen L. Integration of proteomics and metabolomics analysis investigate mechanism of As-induced immune injury in rat spleen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116913. [PMID: 39208582 DOI: 10.1016/j.ecoenv.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Arsenic (As) is a widespread metalloid and human carcinogen found in the natural environment, and multiple toxic effects have been shown to be associated with As exposure. As can be accumulated in the spleen, the largest peripheral lymphatic organ, and long-term exposure to As can lead to splenic injury. In this study, a Sprague-Dawley (SD) rat model of As-poisoned was established, aiming to explore the molecular mechanism of As-induced immune injury through the combined analysis of proteomics and metabolomics of rats' spleen. After feeding the rats with As diet (50 mg/kg) for 90 days, the spleen tissue of the rats in the As-poisoned group was damaged, the level of As was significantly higher than that of the control group (P < 0.001), and the level of inflammatory cytokine interleukin-6 (IL-6) was decreased (P < 0.01). Proteomics and metabolomics results showed that a total of 134 differentially expressed proteins (DEPs) (P < 0.05 and fold change > 1.2) and 182 differentially expressed metabolites (DEMs) (VIP >1 and P < 0.05) were identified in the spleens of the As poisoned group compared to the control group (As/Ctrl). The proteomic results highlight the role of hypoxia-inducible factors (HIF), natural killer cell mediated cytotoxicity, and ribosomes. The major pathways of metabolic disruption included arachidonic acid (AA) metabolism, glycerophospholipid metabolism and folate single-carbon pool. The integrated analysis of these two omics suggested that Hmox1, Stat3, arachidonic acid, phosphatidylcholine and leukotriene B4 may play key roles in the mechanism of immune injury to the spleen by As exposure. The results indicate that As exposure can cause spleen damage in rats. Through proteomic and metabolomic analysis, the key proteins and metabolites and their associated mechanisms were obtained, which provided a basis for further understanding of the molecular mechanism of spleen immune damage caused by As exposure.
Collapse
Affiliation(s)
- Xiaoqian Ran
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xi Yan
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Guanwei Ma
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaolu Chen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yuhan Huang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yi Wang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xinglai Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Peng Luo
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China; Guizhou Ecological Food Innovation Engineering Research Center, Guiyang 561113, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
| | - Liming Shen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
6
|
Ma K, Sun L, Jia C, Kui H, Xie J, Zang S, Huang S, Que J, Liu C, Huang J. Potential mechanisms underlying podophyllotoxin-induced cardiotoxicity in male rats: toxicological evidence chain (TEC) concept. Front Pharmacol 2024; 15:1378758. [PMID: 39386032 PMCID: PMC11463157 DOI: 10.3389/fphar.2024.1378758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/31/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Podophyllotoxin (PPT) is a high-content and high-activity compound extracted from the traditional Chinese medicinal plant Dysosma versipellis (DV) which exhibits various biological activities. However, its severe toxicity limits its use. In clinical settings, patients with DV poisoning often experience adverse reactions when taking large doses in a short period. The heart is an important toxic target organ, so it is necessary to conduct 24-h acute cardiac toxicity studies on PPT to understand its underlying toxicity mechanism. Methods Based on the concept of the toxicological evidence chain (TEC), we utilized targeted metabolomic and transcriptomic analyses to reveal the mechanism of the acute cardiotoxicity of PPT. The manifestation of toxicity in Sprague-Dawley rats, including changes in weight and behavior, served as Injury Phenotype Evidence (IPE). To determine Adverse Outcomes Evidence (AOE), the hearts of the rats were evaluated through histopathological examination and by measuring myocardial enzyme and cardiac injury markers levels. Additionally, transcriptome analysis, metabolome analysis, myocardial enzymes, and cardiac injury markers were integrated to obtain Toxic Event Evidence (TEE) using correlation analysis. Results The experiment showed significant epistaxis, hypokinesia, and hunched posture in PPT group rats within 24 h after exposure to 120 mg/kg PPT. It is found that PPT induced cardiac injury in rats within 24 h, as evidenced by increased serum myocardial enzyme levels, elevated concentrations of cardiac injury biomarkers, and altered cardiac cell morphology, all indicating some degree of cardiac toxicity. Transcriptome analysis revealed that primary altered metabolic pathway was arachidonic acid metabolism after PPT exposure. Cyp2e1, Aldob were positively correlated with differential metabolites, while DHA showed positive correlation with differential genes Fmo2 and Timd2, as well as with heart injury markers BNP and Mb. Conclusion This study comprehensively evaluated cardiac toxicity of PPT and initially revealed the mechanism of PPT-induced acute cardiotoxicity, which involved oxidative stress, apoptosis, inflammatory response, and energy metabolism disorder.
Collapse
Affiliation(s)
- Kaiyue Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Sun
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Chunxue Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hongqian Kui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shidan Zang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shixin Huang
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jinfeng Que
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanxin Liu
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianmei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Turnbull J, Jha RR, Gowler PRW, Ferrands-Bentley R, Kim DH, Barrett DA, Sarmanova A, Fernandes GS, Doherty M, Zhang W, Walsh DA, Valdes AM, Chapman V. Serum levels of hydroxylated metabolites of arachidonic acid cross-sectionally and longitudinally predict knee pain progression: an observational cohort study. Osteoarthritis Cartilage 2024; 32:990-1000. [PMID: 38648876 DOI: 10.1016/j.joca.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE To examine associations between serum oxylipins, which regulate tissue repair and pain signalling, and knee pain/radiographic osteoarthritis (OA) at baseline and knee pain at 3 year follow-up. METHOD Baseline, and 3 year follow-up, knee pain phenotypes were assessed from 154 participants in the Knee Pain in the Community (KPIC) cohort study. Serum and radiographic Kellgren and Lawrence (KL) and Nottingham line drawing atlas OA scores were collected at baseline. Oxylipin levels were quantified using liquid chromatography coupled with mass spectrometry. Associations were measured by linear regression and receiver operating characteristics (ROC). RESULTS Serum levels of 8,9-epoxyeicosatrienoic acid (EET) (β(95% confidence intervals (CI)) = 1.809 (-0.71 to 2.91)), 14,15-dihydroxyeicosatrienoic acid (DHET) (β(95%CI) = 0.827 (0.34-1.31)), and 12-hydroxyeicosatetraenoic acid (HETE) (β(95%CI) = 4.090 (1.92-6.26)) and anandamide (β(95%CI) = 3.060 (1.35-4.77)) were cross-sectionally associated with current self-reported knee pain scores (numerical rating scale (NRS) item 3, average pain). Serum levels of 9- (β(95%CI) = 0.467 (0.18-0.75)) and 15-HETE (β(95%CI) = 0.759 (0.29-1.22)), 14-hydroxydocosahexaenoic acid (β(95%CI) = 0.483(0.24-0.73)), and the ratio of 8,9-EET:DHET (β(95%CI) = 0.510(0.19-0.82)) were cross-sectionally associated with KL scores. Baseline serum concentrations of 8,9-EET (β(95%CI) = 2.166 (0.89-3.44)), 5,6-DHET (β(95%CI) = 152.179 (69.39-234.97)), and 5-HETE (β(95%CI) = 1.724 (0.677-2.77) showed positive longitudinal associations with follow-up knee pain scores (NRS item 3, average pain). Combined serum 8,9-EET and 5-HETE concentration showed the strongest longitudinal association (β(95%CI) = 1.156 (0.54-1.77) with pain scores at 3 years, and ROC curves distinguished between participants with no pain and high pain scores at follow-up (area under curve (95%CI) = 0.71 (0.61-0.82)). CONCLUSIONS Serum levels of a combination of hydroxylated metabolites of arachidonic acid may have prognostic utility for knee pain, providing a potential novel approach to identify people who are more likely to have debilitating pain in the future.
Collapse
Affiliation(s)
- James Turnbull
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom; School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom.
| | - Rakesh R Jha
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
| | - Peter R W Gowler
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom.
| | - Rose Ferrands-Bentley
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Dong-Hyun Kim
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
| | - David A Barrett
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
| | - Aliya Sarmanova
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Gwen S Fernandes
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Michael Doherty
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Weiya Zhang
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - David A Walsh
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Ana M Valdes
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Victoria Chapman
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom.
| |
Collapse
|
8
|
Li YN, Su JL, Tan SH, Chen XL, Cheng TL, Jiang Z, Luo YZ, Zhang LM. Machine learning based on metabolomics unveils neutrophil extracellular trap-related metabolic signatures in non-small cell lung cancer patients undergoing chemoimmunotherapy. World J Clin Cases 2024; 12:4091-4107. [PMID: 39015934 PMCID: PMC11235537 DOI: 10.12998/wjcc.v12.i20.4091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the primary form of lung cancer, and the combination of chemotherapy with immunotherapy offers promising treatment options for patients suffering from this disease. However, the emergence of drug resistance significantly limits the effectiveness of these therapeutic strategies. Consequently, it is imperative to devise methods for accurately detecting and evaluating the efficacy of these treatments. AIM To identify the metabolic signatures associated with neutrophil extracellular traps (NETs) and chemoimmunotherapy efficacy in NSCLC patients. METHODS In total, 159 NSCLC patients undergoing first-line chemoimmunotherapy were enrolled. We first investigated the characteristics influencing clinical efficacy. Circulating levels of NETs and cytokines were measured by commercial kits. Liquid chromatography tandem mass spectrometry quantified plasma metabolites, and differential metabolites were identified. Least absolute shrinkage and selection operator, support vector machine-recursive feature elimination, and random forest algorithms were employed. By using plasma metabolic profiles and machine learning algorithms, predictive metabolic signatures were established. RESULTS First, the levels of circulating interleukin-8, neutrophil-to-lymphocyte ratio, and NETs were closely related to poor efficacy of first-line chemoimmunotherapy. Patients were classed into a low NET group or a high NET group. A total of 54 differential plasma metabolites were identified. These metabolites were primarily involved in arachidonic acid and purine metabolism. Three key metabolites were identified as crucial variables, including 8,9-epoxyeicosatrienoic acid, L-malate, and bis(monoacylglycerol)phosphate (18:1/16:0). Using metabolomic sequencing data and machine learning methods, key metabolic signatures were screened to predict NET level as well as chemoimmunotherapy efficacy. CONCLUSION The identified metabolic signatures may effectively distinguish NET levels and predict clinical benefit from chemoimmunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Yu-Ning Li
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Jia-Lin Su
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Shu-Hua Tan
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
| | - Xing-Long Chen
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Tian-Li Cheng
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Zhou Jiang
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Yong-Zhong Luo
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Le-Meng Zhang
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| |
Collapse
|
9
|
Besch D, Seeger DR, Schofield B, Golovko SA, Parmer M, Golovko MY. A simplified method for preventing postmortem alterations of brain prostanoids for true in situ level quantification. J Lipid Res 2024; 65:100583. [PMID: 38909689 PMCID: PMC11301166 DOI: 10.1016/j.jlr.2024.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024] Open
Abstract
Dramatic postmortem prostanoid (PG) enzymatic synthesis in the brain causes a significant artifact during PG analysis. Thus, enzyme deactivation is required for an accurate in situ endogenous PG quantification. To date, the only method for preventing postmortem brain PG increase with tissue structure preservation is fixation by head-focused microwave irradiation (MW), which is considered the gold standard method, allowing for rapid in situ heat-denaturation of enzymes. However, MW requires costly equipment that suffers in reproducibility, causing tissue loss and metabolite degradation if overheated. Our recent study indicates that PGs are not synthesized in the ischemic brain unless metabolically active tissue is exposed to atmospheric O2. Based on this finding, we proposed a simple and reproducible alternative method to prevent postmortem PG increase by slow enzyme denaturation before craniotomy. To test this approach, mice were decapitated directly into boiling saline. Brain temperature reached 100°C after ∼140 s during boiling, though 3 min boiling was required to completely prevent postmortem PG synthesis, but not free arachidonic acid release. To validate this fixation method, brain basal and lipopolysaccharide (LPS)-induced PG were analyzed in unfixed, MW, and boiled tissues. Basal and LPS-induced PG levels were not different between MW and boiled brains. However, unfixed tissue showed a significant postmortem increase in PG at basal conditions, with lesser differences upon LPS treatment compared to fixed tissue. These data indicate for the first time that boiling effectively prevents postmortem PG alterations, allowing for a reproducible, inexpensive, and conventionally accessible tissue fixation method for PG analysis.
Collapse
Affiliation(s)
- Derek Besch
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Drew R Seeger
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Brennon Schofield
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Svetlana A Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Meredith Parmer
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
10
|
Xia Q, Gao W, Yang J, Xing Z, Ji Z. The deregulation of arachidonic acid metabolism in ovarian cancer. Front Oncol 2024; 14:1381894. [PMID: 38764576 PMCID: PMC11100328 DOI: 10.3389/fonc.2024.1381894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024] Open
Abstract
Arachidonic acid (AA) is a crucial polyunsaturated fatty acid in the human body, metabolized through the pathways of COX, LOX, and cytochrome P450 oxidase to generate various metabolites. Recent studies have indicated that AA and its metabolites play significant regulatory roles in the onset and progression of ovarian cancer. This article examines the recent research advancements on the correlation between AA metabolites and ovarian cancer, both domestically and internationally, suggesting their potential use as biological markers for early diagnosis, targeted therapy, and prognosis monitoring.
Collapse
Affiliation(s)
- Qiuyi Xia
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen Gao
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jintao Yang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhifang Xing
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaodong Ji
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Ren H, Wu W, Chen J, Li Q, Wang H, Qian D, Guo S, Duan JA. Integrated serum metabolomics and network pharmacology analysis on the bioactive metabolites and mechanism exploration of Bufei huoxue capsule on chronic obstructive pulmonary disease rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117816. [PMID: 38286154 DOI: 10.1016/j.jep.2024.117816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/09/2024] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bufei Huoxue capsule (BHC) as a classic Chinese patent medicine formula, has the efficacy of tonifying the lungs and activating the blood. It has been extensively used in China for the treatment of chronic obstructive pulmonary disease (COPD) clinically. However, its mechanism is still unclear, which hampers the applications of BHC in treating COPD. AIM OF THE STUDY The purpose of the present study was to demonstrate the protective efficacy and mechanism of BHC on COPD model rats by integrating serum metabolomics analysis and network pharmacology study. MATERIALS AND METHODS A COPD rat model was established by cigarette fumigation combined with lipopolysaccharide (LPS) airway drip for 90 consecutive days. After oral administration for 30 days, the rats were placed in the body tracing box of the EMKA Small Animal Noninvasive Lung Function Test System to determine lung function related indexes. Histopathological alteration was observed by H&E staining and Masson staining. The serum levels of inflammatory cytokine, matrix metalloprotein 9, and laminin were determined by ELISA kits. Oxidative stress levels were tested by biochemical methods. UHPLC-Q-TOF/MS analysis of serum metabolomics and network pharmacology were performed to reveal the bioactive metabolites, key components and pathways for BHC treating COPD. WB and ELISA kits were used to verify the effects of BHC on key pathway. RESULTS BHC could improve lung function, immunity, lung histopathological changes and collagen deposition in COPD model rats. It also could significantly reduce inflammatory response in vivo, regulate oxidative stress level, reduce laminin content, and regulate protease-antiprotease balance. Metabolomics analysis found 46 biomarkers of COPD, of which BHC significantly improved the levels of 23 differential metabolites including arachidonic acid, leukotriene B4 and prostaglandin E2. Combined with the results of network pharmacology, the components of BHC, such as calycosin, oxypaeoniflora, (S)-bavachin and neobavaisoflavone could play therapeutic roles through the arachidonic acid pathway. In addition, the results of WB and ELISA indicated that BHC could suppress the expressions of COX2 and 5-LOX in lung tissues and inhibit the generation of AA and its metabolites in serum samples. Regulation of arachidonic acid metabolic pathway may be the crucial mechanism for BHC treating COPD. CONCLUSIONS In summary, the studies indicated that BHC exhibited the protective effect on COPD model rats by anti-inflammatory and anti-oxidative properties through arachidonic acid metabolism pathway. This study provided beneficial support for the applications of BHC in treating COPD.
Collapse
Affiliation(s)
- Hui Ren
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenxing Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiangyan Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Quan Li
- Leiyunshang Pharmaceutical Co. Limited, Suzhou, 215003, China
| | - Hengbin Wang
- Leiyunshang Pharmaceutical Co. Limited, Suzhou, 215003, China
| | - Dawei Qian
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sheng Guo
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
12
|
Turnbull J, Jha RR, Barrett DA, Valdes AM, Alderson J, Williams A, Vincent TL, Watt FE, Chapman V. The Effect of Acute Knee Injuries and Related Knee Surgery on Serum Levels of Pro- and Anti-inflammatory Lipid Mediators and Their Associations With Knee Symptoms. Am J Sports Med 2024; 52:987-997. [PMID: 38406872 PMCID: PMC10943603 DOI: 10.1177/03635465241228209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/29/2023] [Indexed: 02/27/2024]
Abstract
BACKGROUND Despite an acute knee injury being a major risk factor for osteoarthritis, the factors that initiate and maintain this risk of longer-term knee symptoms are poorly understood. Bioactive lipids derived from omega-3 and -6 polyunsaturated fatty acids have key roles in the regulation of the inflammatory response and have been linked to joint damage and osteoarthritis pain in translational models. HYPOTHESIS There would be associations between systemic levels of bioactive lipids and knee symptoms longitudinally after an acute knee injury and related knee surgery. STUDY DESIGN Controlled laboratory study. METHODS This study analyzed a subset of young, active adults who had sustained an acute knee injury (recruited via a surgical care pathway) and healthy age- and sex-matched controls. Surgery, if performed, was conducted after the baseline serum sample was taken and before the 3-month and 2-year visits. Liquid chromatography-tandem mass spectrometry of 41 bioactive lipids was carried out in sera of (1) 47 injured participants (median age, 28 years) collected at baseline (median, 24 days after injury), 3 months, and 2 years, along with the Knee injury and Osteoarthritis Outcome Score, and (2) age- and sex-matched controls. RESULTS Levels of the omega-3 polyunsaturated fatty acids eicosapentaenoic acid (P≤ .0001) and docosahexaenoic acid (P≤ .0001) and the pro-resolving lipid mediators 17- and 14-hydroxydocosahexaenoic acid, and 18-hydroxyeicosapentaenoic acid were all significantly greater at baseline in injured participants compared with the later time points and also higher than in healthy controls (P = .0019 and P≤ .0001, respectively). Levels of pro-inflammatory prostaglandins E2 and D2, leukotriene B4, and thromboxane B2 were significantly lower at baseline compared with the later time points. Higher levels of 8,9-, 11,12-, and 14,15-dihydroxyeicosatrienoic acid (DHET) were cross-sectionally associated with more severe knee pain/symptoms according to the Knee injury and Osteoarthritis Outcome Score at 2 years (P = .0004, R2 = 0.251; P = .0002, R2 = 0.278; and P = .0012, R2 = 0.214, respectively). CONCLUSION The profile of pro-resolving versus pro-inflammatory lipids at baseline suggests an initial activation of pro-resolution pathways, followed by the later activation of pro-inflammatory pathways. CLINICAL RELEVANCE In this largely surgically managed cohort, the association of soluble epoxide hydrolase metabolites, the DHETs, with more severe knee symptoms at 2 years provides a rationale for further investigation into the role of this pathway in persisting knee symptoms in this population, including potential therapeutic strategies.
Collapse
Affiliation(s)
- James Turnbull
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Rakesh R. Jha
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - David A. Barrett
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Ana M. Valdes
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
- Injury, Recovery, and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jennifer Alderson
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew Williams
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Fortius Clinic, London, UK
| | - Tonia L. Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Fiona E. Watt
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Victoria Chapman
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
13
|
Gao P, Cao Y, Ma L. Regulation of soluble epoxide hydrolase in renal-associated diseases: insights from potential mechanisms to clinical researches. Front Endocrinol (Lausanne) 2024; 15:1304547. [PMID: 38425758 PMCID: PMC10902052 DOI: 10.3389/fendo.2024.1304547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
In recent years, numerous experimental studies have underscored the pivotal role of soluble epoxide hydrolase (sEH) in renal diseases, demonstrating the reno-protective effects of sEH inhibitors. The nexus between sEH and renal-associated diseases has garnered escalating attention. This review endeavors to elucidate the potential molecular mechanisms of sEH in renal diseases and emphasize the critical role of sEH inhibitors as a prospective treatment modality. Initially, we expound upon the correlation between sEH and Epoxyeicosatrienoic acids (EETs) and also addressing the impact of sEH on other epoxy fatty acids, delineate prevalent EPHX2 single nucleotide polymorphisms (SNPs) associated with renal diseases, and delve into sEH-mediated potential mechanisms, encompassing oxidative stress, inflammation, ER stress, and autophagy. Subsequently, we delineate clinical research pertaining to sEH inhibition or co-inhibition of sEH with other inhibitors for the regulation of renal-associated diseases, covering conditions such as acute kidney injury, chronic kidney diseases, diabetic nephropathy, and hypertension-induced renal injury. Our objective is to validate the potential role of sEH inhibitors in the treatment of renal injuries. We contend that a comprehensive comprehension of the salient attributes of sEH, coupled with insights from clinical experiments, provides invaluable guidance for clinicians and presents promising therapeutic avenues for patients suffering from renal diseases.
Collapse
Affiliation(s)
| | - Yongtong Cao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Liang Ma
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
14
|
Surapaneni AL, Schlosser P, Rhee EP, Cheng S, Jain M, Alotaiabi M, Coresh J, Grams ME. Eicosanoids and Related Metabolites Associated with ESKD in a Community-Based Cohort. KIDNEY360 2024; 5:57-64. [PMID: 38047655 PMCID: PMC10833602 DOI: 10.34067/kid.0000000000000334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Key Points High-throughput eicosanoid profiling can identify metabolites that may play a protective role in the development of kidney disease. In contrast to many other nonlipid metabolites, eicosanoid levels are minimally related with kidney filtration cross-sectionally. Background Eicosanoids are derivatives of polyunsaturated fatty acids and participate in the inflammatory response and the maintenance of endothelial function. Specific eicosanoids have been linked to various diseases, including hypertension and asthma, and may also reduce renal blood flow. A systematic investigation of eicosanoid-related metabolites and adverse kidney outcomes could identify key mediators of kidney disease and inform ongoing work in drug development. Methods Profiling of eicosanoid-related metabolites was performed in 9650 participants in the Atherosclerosis Risk in Communities Study (visit 2; mean age, 57 years). The associations between metabolite levels and the development of ESKD was investigated using Cox proportional hazards regression (n =256 events; median follow-up, 25.5 years). Metabolites with statistically significant associations with ESKD were evaluated for a potential causal role using bidirectional Mendelian randomization techniques, linking genetic instruments for eicosanoid levels to genomewide association study summary statistics of eGFR. Results The 223 eicosanoid-related metabolites that were profiled and passed quality control (QC) were generally uncorrelated with eGFR in cross-sectional analyses (median Spearman correlation, −0.03; IQR, −0.05 to 0.002). In models adjusted for multiple covariates, including baseline eGFR, three metabolites had statistically significant associations with ESKD (P value < 0.05/223). These included a hydroxyoctadecenoic acid, a dihydroxydocosapentaenoic acid, and arachidonic acid, with higher levels of the former two protective against ESKD and higher levels of arachidonic acid having a positive association with risk of ESKD. Mendelian randomization analyses suggested a causal role for the hydroxyoctadecenoic and arachidonic acid in determining eGFR. Spectral analysis identified the former metabolite as either 11-hydroxy-9-octadecenoic acid or 10-hydroxy-11-octadecenoic acid. Conclusions High-throughput eicosanoid profiling can identify metabolites that may play a protective role in the development of kidney disease.
Collapse
Affiliation(s)
- Aditya L. Surapaneni
- Division of Precision Medicine, New York University School of Medicine, New York, New York
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Pascal Schlosser
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Eugene P. Rhee
- Endocrine Unit, Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Susan Cheng
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, Massachusetts
- Division of Cardiology, Brigham and Women's Hospital, Boston, Massachusetts
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, California
| | - Mohit Jain
- Departments of Medicine and Pharmacology, University of California, San Diego, California
| | - Mona Alotaiabi
- Departments of Medicine and Pharmacology, University of California, San Diego, California
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Morgan E. Grams
- Division of Precision Medicine, New York University School of Medicine, New York, New York
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
15
|
Deng W, Hu T, Xiong W, Jiang X, Cao Y, Li Z, Jiang H, Wang X. Soluble epoxide hydrolase deficiency promotes liver regeneration and ameliorates liver injury in mice by regulating angiocrine factors and angiogenesis. Biochim Biophys Acta Gen Subj 2023:130394. [PMID: 37315719 DOI: 10.1016/j.bbagen.2023.130394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Soluble epoxide hydrolase (sEH) is a key enzyme for the hydrolysis of epoxyeicosatrienoic acids (EETs) and has been implicated in the pathogenesis of hepatic inflammation, fibrosis, cancer, and nonalcoholic fatty liver disease. However, the role of sEH in liver regeneration and injury remains unclear. METHODS This study used sEH-deficient (sEH-/-) mice and wild-type (WT) mice. Hepatocyte proliferation was assessed by immunohistochemical (IHC) staining for Ki67. Liver injury was evaluated by histological staining with hematoxylin and eosin (H&E), Masson's trichrome, and Sirius red, as well as IHC staining for α-SMA. Hepatic macrophage infiltration and angiogenesis were reflected by IHC staining for CD68 and CD31. Liver angiocrine levels were detected by ELISA. The mRNA levels of angiocrine or cell cycle-related genes were measured by quantitative real-time RT-PCR (qPCR). The protein levels of cell proliferation-related protein and phosphorylated signal transducer and activator of transcription 3 (STAT3) were detected by western blotting. RESULTS sEH mRNA and protein levels were significantly upregulated in mice after 2/3 partial hepatectomy (PHx). Compared with WT mice, sEH-/- mice exhibited a higher liver/body weight ratio and more Ki67-positive cells on days 2 and 3 after PHx. The accelerated liver regeneration in sEH-/- mice was attributed to angiogenesis and endothelial-derived angiocrine (HGF) production. Subsequently, hepatic protein expression of cyclinD1 (CYCD1) and the downstream direct targets of the STAT3 pathway, such as c-fos, c-jun, and c-myc, were also suppressed post-PHx in sEH-/- compared to WT mice. Furthermore, sEH deficiency attenuated CCl4-induced acute liver injury and reduced fibrosis in both CCl4 and bile duct ligation (BDL)-induced liver fibrosis rodent models. Compared with WT mice, sEH-/- mice had slightly decreased hepatic macrophage infiltration and angiogenesis. Meanwhile, sEH-/- BDL mice had more Ki67-positive cells in the liver than WT BDL mice. CONCLUSIONS sEH deficiency alters the angiocrine profile of liver endothelial to accelerate hepatocyte proliferation and liver regeneration, and blunts acute liver injury and fibrosis by inhibiting inflammation and angiogenesis. sEH inhibition is a promising target for liver diseases to improve liver regeneration and damage.
Collapse
Affiliation(s)
- Wensheng Deng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 33006, China; Laboratory of Digestive Surgery, Nanchang University, Nanchang 33006, China
| | - Tengcheng Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 33006, China; Laboratory of Digestive Surgery, Nanchang University, Nanchang 33006, China
| | - Weixin Xiong
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 33006, China
| | - Xiaohua Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 33006, China; Laboratory of Digestive Surgery, Nanchang University, Nanchang 33006, China
| | - Yi Cao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 33006, China; Laboratory of Digestive Surgery, Nanchang University, Nanchang 33006, China
| | - Zhengrong Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 33006, China; Laboratory of Digestive Surgery, Nanchang University, Nanchang 33006, China
| | - Hai Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 33006, China; Laboratory of Digestive Surgery, Nanchang University, Nanchang 33006, China.
| | - Xinxin Wang
- Department of Radiotherapy, The Third Hospital of Nanchang, Nanchang 330002, China.
| |
Collapse
|
16
|
Nakashima F, Giménez-Bastida JA, Luis PB, Presley SH, Boer RE, Chiusa M, Shibata T, Sulikowski GA, Pozzi A, Schneider C. The 5-lipoxygenase/cyclooxygenase-2 cross-over metabolite, hemiketal E 2, enhances VEGFR2 activation and promotes angiogenesis. J Biol Chem 2023; 299:103050. [PMID: 36813233 PMCID: PMC10040730 DOI: 10.1016/j.jbc.2023.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
Consecutive oxygenation of arachidonic acid by 5-lipoxygenase and cyclooxygenase-2 yields the hemiketal eicosanoids, HKE2 and HKD2. Hemiketals stimulate angiogenesis by inducing endothelial cell tubulogenesis in culture; however, how this process is regulated has not been determined. Here, we identify vascular endothelial growth factor receptor 2 (VEGFR2) as a mediator of HKE2-induced angiogenesis in vitro and in vivo. We found that HKE2 treatment of human umbilical vein endothelial cells dose-dependently increased the phosphorylation of VEGFR2 and the downstream kinases ERK and Akt that mediated endothelial cell tubulogenesis. In vivo, HKE2 induced the growth of blood vessels into polyacetal sponges implanted in mice. HKE2-mediated effects in vitro and in vivo were blocked by the VEGFR2 inhibitor vatalanib, indicating that the pro-angiogenic effect of HKE2 was mediated by VEGFR2. HKE2 covalently bound and inhibited PTP1B, a protein tyrosine phosphatase that dephosphorylates VEGFR2, thereby providing a possible molecular mechanism for how HKE2 induced pro-angiogenic signaling. In summary, our studies indicate that biosynthetic cross-over of the 5-lipoxygenase and cyclooxygenase-2 pathways gives rise to a potent lipid autacoid that regulates endothelial cell function in vitro and in vivo. These findings suggest that common drugs targeting the arachidonic acid pathway could prove useful in antiangiogenic therapy.
Collapse
Affiliation(s)
- Fumie Nakashima
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Juan A Giménez-Bastida
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Paula B Luis
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Sai H Presley
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Robert E Boer
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Manuel Chiusa
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Gary A Sulikowski
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Veterans Affairs Hospital, Nashville, Tennessee, USA.
| | - Claus Schneider
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
17
|
Korbecki J, Rębacz-Maron E, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. Synthesis and Significance of Arachidonic Acid, a Substrate for Cyclooxygenases, Lipoxygenases, and Cytochrome P450 Pathways in the Tumorigenesis of Glioblastoma Multiforme, Including a Pan-Cancer Comparative Analysis. Cancers (Basel) 2023; 15:cancers15030946. [PMID: 36765904 PMCID: PMC9913267 DOI: 10.3390/cancers15030946] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive gliomas. New and more effective therapeutic approaches are being sought based on studies of the various mechanisms of GBM tumorigenesis, including the synthesis and metabolism of arachidonic acid (ARA), an omega-6 polyunsaturated fatty acid (PUFA). PubMed, GEPIA, and the transcriptomics analysis carried out by Seifert et al. were used in writing this paper. In this paper, we discuss in detail the biosynthesis of this acid in GBM tumors, with a special focus on certain enzymes: fatty acid desaturase (FADS)1, FADS2, and elongation of long-chain fatty acids family member 5 (ELOVL5). We also discuss ARA metabolism, particularly its release from cell membrane phospholipids by phospholipase A2 (cPLA2, iPLA2, and sPLA2) and its processing by cyclooxygenases (COX-1 and COX-2), lipoxygenases (5-LOX, 12-LOX, 15-LOX-1, and 15-LOX-2), and cytochrome P450. Next, we discuss the significance of lipid mediators synthesized from ARA in GBM cancer processes, including prostaglandins (PGE2, PGD2, and 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2)), thromboxane A2 (TxA2), oxo-eicosatetraenoic acids, leukotrienes (LTB4, LTC4, LTD4, and LTE4), lipoxins, and many others. These lipid mediators can increase the proliferation of GBM cancer cells, cause angiogenesis, inhibit the anti-tumor response of the immune system, and be responsible for resistance to treatment.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ewa Rębacz-Maron
- Department of Ecology and Anthropology, Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48-914-661-515
| |
Collapse
|
18
|
Gao L, Chen W, Li L, Li J, Kongling W, Zhang Y, Yang X, Zhao Y, Bai J, Wang F. Targeting soluble epoxide hydrolase promotes osteogenic-angiogenic coupling via activating SLIT3/HIF-1α signalling pathway. Cell Prolif 2023:e13403. [PMID: 36636821 DOI: 10.1111/cpr.13403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
Type H vessels have recently been identified to modulate osteogenesis. Epoxyeicostrioleic acids (EETs) have an essential contribution to vascular homeostasis. However, whether increased EETs with soluble epoxide hydrolase (sEH) inhibitor TPPU enhance the coupling of angiogenesis and osteogenesis remains largely unknown. The effects of TPPU on cross-talk between co-cultured human umbilical vein endothelial cells (HUVECs) and human dental pulp stem cells (hDPSCs), and on long bone growth and calvarial defect repair in mice were investigated in vitro and in vivo. TPPU enhanced osteogenic differentiation of co-cultured HUVECs and hDPSCs in vitro and increased type H vessels, and long bone growth and bone repair of calvarial defect. Mechanistically, TPPU promoted cell proliferation and angiogenesis, reclined cell apoptosis, and significantly increased CD31hi EMCNhi endothelial cells (ECs) and SLIT3 and HIF-1α expression levels in co-cultured HUVECs and hDPSCs. Knockdown of Slit3 in hDPSCs or Hif-1α in HUVECs impaired the formation of CD31hi EMCNhi ECs and reversed TPPU-induced osteogenesis. We defined a previously unidentified effect of TPPU coupling angiogenesis and osteogenesis. TPPU induced type H vessels by upregulating the expression of hDPSCs-derived SLIT3, which resulted in the activation of ROBO1/YAP1/HIF-1α signalling pathway in ECs. Targeting metabolic pathways of EETs represents a new strategy to couple osteogenesis and angiogenesis, sEH is a promising therapeutic target for bone regeneration and repair.
Collapse
Affiliation(s)
- Lu Gao
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China.,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, China
| | - Weixian Chen
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Lijun Li
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Juanjuan Li
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Wenyao Kongling
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Yaoyang Zhang
- School of Stomatology, Dalian Medical University, Dalian, China.,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, China
| | - Xueping Yang
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Yanrong Zhao
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Jie Bai
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Fu Wang
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China.,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, China
| |
Collapse
|
19
|
Chen L, Zhao Q, Du X, Chen X, Jiao Q, Jiang H. Effects of oxidative stress caused by iron overload on arachidonic acid metabolites in MES23.5 cells. J Biosci 2022. [DOI: 10.1007/s12038-022-00321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Iyer MR, Kundu B, Wood CM. Soluble epoxide hydrolase inhibitors: an overview and patent review from the last decade. Expert Opin Ther Pat 2022; 32:629-647. [PMID: 35410559 DOI: 10.1080/13543776.2022.2054329] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Biological effects mediated by the CYP450 arm of arachidonate cascade implicate the enzyme-soluble epoxide hydrolase (sEH) in hydrolyzing anti-inflammatory epoxy fatty acids to pro-inflammatory diols. Hence, inhibiting the sEH offers a therapeutic approach to treating inflammatory diseases. Over three decades of work has shown the role of sEH inhibitors (sEHis) in treating various disorders in rodents and larger veterinary subjects. Novel chemical strategies to enhance the efficacy of sEHi have now appeared. AREAS COVERED A comprehensive review of patent literature related to soluble epoxide hydrolase inhibitors in the last decade (2010-2021) is provided. EXPERT OPINION Soluble epoxide hydrolase (sEH) is an important enzyme that metabolizes the bioactive epoxy fatty acids (EFAs) in the arachidonic acid signaling pathway and converts them to vicinal diols, which appear to be pro-inflammatory. Inhibition of sEH hence offers a mechanism to increase in vivo epoxyeicosanoid levels and resolve pro-inflammatory pathways in disease states. Significant efforts in the field have led to potent single target as well as multi-target inhibitors with promising in vitro and widely encompassing in vivo activities. Successful clinical translation of compounds targeting sEH inhibition will further validate the promised therapeutic potential of this pathway in treating human diseases.
Collapse
Affiliation(s)
- Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States
| | - Biswajit Kundu
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States
| | - Casey M Wood
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States
| |
Collapse
|
21
|
Sharma M, Singh V, Sharma R, Koul A, McCarthy ET, Savin VJ, Joshi T, Srivastava T. Glomerular Biomechanical Stress and Lipid Mediators during Cellular Changes Leading to Chronic Kidney Disease. Biomedicines 2022; 10:407. [PMID: 35203616 PMCID: PMC8962328 DOI: 10.3390/biomedicines10020407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperfiltration is an important underlying cause of glomerular dysfunction associated with several systemic and intrinsic glomerular conditions leading to chronic kidney disease (CKD). These include obesity, diabetes, hypertension, focal segmental glomerulosclerosis (FSGS), congenital abnormalities and reduced renal mass (low nephron number). Hyperfiltration-associated biomechanical forces directly impact the cell membrane, generating tensile and fluid flow shear stresses in multiple segments of the nephron. Ongoing research suggests these biomechanical forces as the initial mediators of hyperfiltration-induced deterioration of podocyte structure and function leading to their detachment and irreplaceable loss from the glomerular filtration barrier. Membrane lipid-derived polyunsaturated fatty acids (PUFA) and their metabolites are potent transducers of biomechanical stress from the cell surface to intracellular compartments. Omega-6 and ω-3 long-chain PUFA from membrane phospholipids generate many versatile and autacoid oxylipins that modulate pro-inflammatory as well as anti-inflammatory autocrine and paracrine signaling. We advance the idea that lipid signaling molecules, related enzymes, metabolites and receptors are not just mediators of cellular stress but also potential targets for developing novel interventions. With the growing emphasis on lifestyle changes for wellness, dietary fatty acids are potential adjunct-therapeutics to minimize/treat hyperfiltration-induced progressive glomerular damage and CKD.
Collapse
Affiliation(s)
- Mukut Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Vikas Singh
- Neurology, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Ram Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Arnav Koul
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Ellen T. McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Virginia J. Savin
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, MO 65201, USA;
| | - Tarak Srivastava
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri, Kansas City, MO 64108, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| |
Collapse
|
22
|
Tao P, Jiang Y, Wang H, Gao G. CYP2J2 -produced epoxyeicosatrienoic acids contribute to the ferroptosis resistance of pancreatic ductal adenocarcinoma in a PPAR γ-dependent manner. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:932-941. [PMID: 34707002 PMCID: PMC10930169 DOI: 10.11817/j.issn.1672-7347.2021.210413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant digestive tract tumors with a poor prognosis and high recurrence rate. Recently, ferroptosis resistance has been found in PDAC. However, the underlying mechanism of ferroptosis resistance has not been fully elucidated. Cytochrome P450 2J2 (CYP2J2) is the main enzyme which mediates arachidonic acid to produce epoxyeicosatrienoic acids (EETs) in human tissues. It has been reported that EETs involve in the development of cancer, while the roles of EETs in PDAC and ferroptosis remain unclear.This study aims to explore the effect of CYP2J2/EETs on ferroptosis of human pancreatic ductal adenocarcinoma cells PANC-1 cells and the underlying mechanisms. METHODS The tumor tissues and para-carcinoma tissues of 9 patients with PDAC were collected and the expression of CYP2J2 was detected with real-time PCR and Western blotting. Enzyme-linked immunosorbent assay (ELISA) was used to detect the level of 8,9-dihydroxyeicosatrienoic acid (8,9-DHET), and the degradation product of 8,9-epoxyeicosa-trienoic acid (8,9-EET). PANC-1 cells were used in this study. The ferroptosis inducer erastin was used to induce ferroptosis. The intracellular long-chain acyl-CoA synthetase 4 (ACSL4) protein level, lactate dehydrogenase (LDH) activity, malondialdehyde (MDA) content, Fe2+ concentration, and cell survival were detected. The 8,9-EET was pretreated to observe its effect on erastin-induced ferroptosis in PANC-1 cells. Lentivirus was used to construct a CYP2J2 knockdown cell line to observe its effect on the ferroptosis of PANC-1 cells induced by erastin. A peroxisome proliferation-activated receptor γ (PPARγ) blocker was used to observe the effect of 8,9-EET on erastin-induced glutathione peroxidase 4 (GPX4) and MDA content in PANC-1 cells. RESULTS High expression of CYP2J2 was found in PDAC, accompanied by an increased level of 8,9-DHET. The 8,9-EET pretreatment significantly attenuated the PANC-1 cell death induced by erastin. The 8,9-EET reduced the Fe2+ concentration, LDH activity and MDA content, and ACSL4 protein expression in erastin-treated PANC-1 cells. The 8,9-EET also restored the ferroportin (FPN) and ferroptosis suppressor protein 1 (FSP1) mRNA expressions in erastin-treated PANC-1 cells. But CYP2J2 knockdown exacerbated the erastin-induced ferroptosis in PANC-1 cells. Besides, CYP2J2 knockdown furtherly down-regulated the gene expression of FPN and FSP1. The 8,9-EET increased the expression of GPX4 in the erastin-treated PANC-1 cells, which was eliminated by a PPARγ blocker GW9662. And GW9662 abolished the anti-ferroptosis effects of 8,9-EET. CONCLUSIONS CYP2J2/EETs are highly expressed in PDAC tissues. EETs inhibit the ferroptosis via up-regulation of GPX4 in a PPARγ-dependent manner, which contributes to the ferroptosis resistance of PDAC.
Collapse
Affiliation(s)
- Pengzuo Tao
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha 410013.
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013.
- Department of Clinical Laboratory, Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China.
| | - Yu'e Jiang
- Department of Clinical Laboratory, Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Hai Wang
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha 410013
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013
| | - Ge Gao
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha 410013.
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013.
| |
Collapse
|
23
|
Choi WS, Xu X, Goruk S, Wang Y, Patel S, Chow M, Field CJ, Godbout R. FABP7 Facilitates Uptake of Docosahexaenoic Acid in Glioblastoma Neural Stem-like Cells. Nutrients 2021; 13:2664. [PMID: 34444824 PMCID: PMC8402214 DOI: 10.3390/nu13082664] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive tumor with a dismal prognosis. Neural stem-like cells contribute to GBM's poor prognosis by driving drug resistance and maintaining cellular heterogeneity. GBM neural stem-like cells express high levels of brain fatty acid-binding protein (FABP7), which binds to polyunsaturated fatty acids (PUFAs) ω-6 arachidonic acid (AA) and ω-3 docosahexaenoic acid (DHA). Similar to brain, GBM tissue is enriched in AA and DHA. However, DHA levels are considerably lower in GBM tissue compared to adult brain. Therefore, it is possible that increasing DHA content in GBM, particularly in neural stem-like cells, might have therapeutic value. Here, we examine the fatty acid composition of patient-derived GBM neural stem-like cells grown as neurosphere cultures. We also investigate the effect of AA and DHA treatment on the fatty acid profiles of GBM neural stem-like cells with or without FABP7 knockdown. We show that DHA treatment increases DHA levels and the DHA:AA ratio in GBM neural stem-like cells, with FABP7 facilitating the DHA uptake. We also found that an increased uptake of DHA inhibits the migration of GBM neural stem-like cells. Our results suggest that increasing DHA content in the GBM microenvironment may reduce the migration/infiltration of FABP7-expressing neural stem-like cancer cells.
Collapse
Affiliation(s)
- Won-Shik Choi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Xia Xu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.G.); (C.J.F.)
| | - Yixiong Wang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Samir Patel
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Michael Chow
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.G.); (C.J.F.)
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| |
Collapse
|
24
|
Song Y, Kurose A, Li R, Takeda T, Onomura Y, Koga T, Mutoh J, Ishida T, Tanaka Y, Ishii Y. Ablation of Selenbp1 Alters Lipid Metabolism via the Pparα Pathway in Mouse Kidney. Int J Mol Sci 2021; 22:ijms22105334. [PMID: 34069420 PMCID: PMC8159118 DOI: 10.3390/ijms22105334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Selenium-binding protein 1 (Selenbp1) is a 2,3,7,8-tetrechlorodibenzo-p-dioxin inducible protein whose function is yet to be comprehensively elucidated. As the highly homologous isoform, Selenbp2, is expressed at low levels in the kidney, it is worthwhile comparing wild-type C57BL mice and Selenbp1-deficient mice under dioxin-free conditions. Accordingly, we conducted a mouse metabolomics analysis under non-dioxin-treated conditions. DNA microarray analysis was performed based on observed changes in lipid metabolism-related factors. The results showed fluctuations in the expression of numerous genes. Real-time RT-PCR confirmed the decreased expression levels of the cytochrome P450 4a (Cyp4a) subfamily, known to be involved in fatty acid ω- and ω-1 hydroxylation. Furthermore, peroxisome proliferator-activated receptor-α (Pparα) and retinoid-X-receptor-α (Rxrα), which form a heterodimer with Pparα to promote gene expression, were simultaneously reduced. This indicated that reduced Cyp4a expression was mediated via decreased Pparα and Rxrα. In line with this finding, increased levels of leukotrienes and prostaglandins were detected. Conversely, decreased hydrogen peroxide levels and reduced superoxide dismutase (SOD) activity supported the suppression of the renal expression of Sod1 and Sod2 in Selenbp1-deficient mice. Therefore, we infer that ablation of Selenbp1 elicits oxidative stress caused by increased levels of superoxide anions, which alters lipid metabolism via the Pparα pathway.
Collapse
Affiliation(s)
- Yingxia Song
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Atsushi Kurose
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Renshi Li
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
| | - Tomoki Takeda
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
| | - Yuko Onomura
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Takayuki Koga
- Laboratory of Hygienic Chemistry, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan;
| | - Junpei Mutoh
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Daigakudori 1-1-1, Sanyo-Onoda 756-0884, Japan;
| | - Takumi Ishida
- School of Pharmacy, International University of Health and Welfare Fukuoka, Ohkawa, Fukuoka 831-8501, Japan;
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (A.K.); (R.L.); (T.T.); (Y.O.)
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
- Correspondence: ; Tel.: +81-92-642-6586
| |
Collapse
|
25
|
Morisseau C, Kodani SD, Kamita SG, Yang J, Lee KSS, Hammock BD. Relative Importance of Soluble and Microsomal Epoxide Hydrolases for the Hydrolysis of Epoxy-Fatty Acids in Human Tissues. Int J Mol Sci 2021; 22:ijms22094993. [PMID: 34066758 PMCID: PMC8125816 DOI: 10.3390/ijms22094993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/03/2023] Open
Abstract
Epoxy-fatty acids (EpFAs) are endogenous lipid mediators that have a large breadth of biological activities, including the regulation of blood pressure, inflammation, angiogenesis, and pain perception. For the past 20 years, soluble epoxide hydrolase (sEH) has been recognized as the primary enzyme for degrading EpFAs in vivo. The sEH converts EpFAs to the generally less biologically active 1,2-diols, which are quickly eliminated from the body. Thus, inhibitors of sEH are being developed as potential drug therapeutics for various diseases including neuropathic pain. Recent findings suggest that other epoxide hydrolases (EHs) such as microsomal epoxide hydrolase (mEH) and epoxide hydrolase-3 (EH3) can contribute significantly to the in vivo metabolism of EpFAs. In this study, we used two complementary approaches to probe the relative importance of sEH, mEH, and EH3 in 15 human tissue extracts: hydrolysis of 14,15-EET and 13,14-EDP using selective inhibitors and protein quantification. The sEH hydrolyzed the majority of EpFAs in all of the tissues investigated, mEH hydrolyzed a significant portion of EpFAs in several tissues, whereas no significant role in EpFAs metabolism was observed for EH3. Our findings indicate that residual mEH activity could limit the therapeutic efficacy of sEH inhibition in certain organs.
Collapse
|
26
|
Lai J, Chen C. The Role of Epoxyeicosatrienoic Acids in Cardiac Remodeling. Front Physiol 2021; 12:642470. [PMID: 33716791 PMCID: PMC7943617 DOI: 10.3389/fphys.2021.642470] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid by cytochrome P450 (CYP) epoxygenases, which include four regioisomers: 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET. Each of them possesses beneficial effects against inflammation, fibrosis, and apoptosis, which could combat cardiovascular diseases. Numerous studies have demonstrated that elevation of EETs by overexpression of CYP2J2, inhibition of sEH, or treatment with EET analogs showed protective effects in various cardiovascular diseases, including hypertension, myocardial infarction, and heart failure. As is known to all, cardiac remodeling is the major pathogenesis of cardiovascular diseases. This review will begin with the introduction of EETs and their protective effects in cardiovascular diseases. In the following, the roles of EETs in cardiac remodeling, with a particular emphasis on myocardial hypertrophy, apoptosis, fibrosis, inflammation, and angiogenesis, will be summarized. Finally, it is suggested that upregulation of EETs is a potential therapeutic strategy for cardiovascular diseases. The EET-related drug development against cardiac remodeling is also discussed, including the overexpression of CYP2J2, inhibition of sEH, and the analogs of EET.
Collapse
Affiliation(s)
- Jinsheng Lai
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Lillich FF, Imig JD, Proschak E. Multi-Target Approaches in Metabolic Syndrome. Front Pharmacol 2021; 11:554961. [PMID: 33776749 PMCID: PMC7994619 DOI: 10.3389/fphar.2020.554961] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome (MetS) is a highly prevalent disease cluster worldwide. It requires polypharmacological treatment of the single conditions including type II diabetes, hypertension, and dyslipidemia, as well as the associated comorbidities. The complex treatment regimens with various drugs lead to drug-drug interactions and inadequate patient adherence, resulting in poor management of the disease. Multi-target approaches aim at reducing the polypharmacology and improving the efficacy. This review summarizes the medicinal chemistry efforts to develop multi-target ligands for MetS. Different combinations of pharmacological targets in context of in vivo efficacy and future perspective for multi-target drugs in MetS are discussed.
Collapse
Affiliation(s)
- Felix F. Lillich
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Frankfurt, Germany
| | - John D. Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Frankfurt, Germany
| |
Collapse
|
28
|
Wang DY, Mou YN, Du X, Guan Y, Feng MG. Ubr1-mediated ubiquitylation orchestrates asexual development, polar growth, and virulence-related cellular events in Beauveria bassiana. Appl Microbiol Biotechnol 2021; 105:2747-2758. [PMID: 33686455 DOI: 10.1007/s00253-021-11222-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/16/2021] [Accepted: 03/04/2021] [Indexed: 01/14/2023]
Abstract
The E3 ubiquitin ligase Ubr1 is a core player in yeast ubiquitylation and protein quality control required for cellular events including proteasomal degradation and gene activity but has been rarely explored in filamentous fungi. We show here an essentiality of orthologous Ubr1-mediated ubiquitylation for the activation of central developmental pathway (CPD) and the CPD-controlled cellular events in Beauveria bassiana, a filamentous fungal insect pathogen that undergoes an asexual cycle in vitro or in vivo. As a result of ubr1 disruption, intracellular free ubiquitin accumulation increased by 1.4-fold, indicating an impaired ability for the disruptant to transfer ubiquitin to target proteins. Consequently, the disruptant was compromised in polar growth featured with curved or hook-like germ tubes and abnormally branched hyphae, leading to impeded propagation of aberrant hyphal bodies in infected insect hemocoel and attenuated virulence. In the mutant, sharply repressed expression of three CDP activator genes (brlA, abaA, and wetA) correlated well with severe defects in aerial conidiation and submerged blastospore (hyphal body) production in insect hemolymph or a mimicking medium. Moreover, the disruptant was sensitive to cell wall perturbation or lysing and showed increased catalase activity and resistance to hydrogen peroxide despite null response to high osmolarity or heat shock. Most of the examined genes involved in polar growth and cell wall integrity were down-regulated in the disruptant. These findings uncover that the Ubr1-mediated ubiquitylation orchestrates polar growth and the CDP-regulated asexual cycle in vitro and in vivo in B. bassiana. KEY POINTS: • Ubr1 is an E3 ubiquitin ligase essential for ubiquitylation in Beauveria bassiana. • Ubr1-mediated ubiquitylation is required for activation of central development pathway. • Ubr1 orchestrates polar growth and asexual cycle in vitro and in vivo.
Collapse
Affiliation(s)
- Ding-Yi Wang
- Key Laboratory of Subtropical Mountain Ecology, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Ya-Ni Mou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Xi Du
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Yi Guan
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Zhejiang, 310058, Hangzhou, China.
| |
Collapse
|
29
|
Das A, Weigle AT, Arnold WR, Kim JS, Carnevale LN, Huff HC. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacol Ther 2020; 215:107601. [PMID: 32534953 PMCID: PMC7773148 DOI: 10.1016/j.pharmthera.2020.107601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases are a special subset of heme-containing CYP enzymes capable of performing the epoxidation of polyunsaturated fatty acids (PUFA) and the metabolism of xenobiotics. This dual functionality positions epoxygenases along a metabolic crossroad. Therefore, structure-function studies are critical for understanding their role in bioactive oxy-lipid synthesis, drug-PUFA interactions, and for designing therapeutics that directly target the epoxygenases. To better exploit CYP epoxygenases as therapeutic targets, there is a need for improved understanding of epoxygenase structure-function. Of the characterized epoxygenases, human CYP2J2 stands out as a potential target because of its role in cardiovascular physiology. In this review, the early research on the discovery and activity of epoxygenases is contextualized to more recent advances in CYP epoxygenase enzymology with respect to PUFA and drug metabolism. Additionally, this review employs CYP2J2 epoxygenase as a model system to highlight both the seminal works and recent advances in epoxygenase enzymology. Herein we cover CYP2J2's interactions with PUFAs and xenobiotics, its tissue-specific physiological roles in diseased states, and its structural features that enable epoxygenase function. Additionally, the enumeration of research on CYP2J2 identifies the future needs for the molecular characterization of CYP2J2 to enable a new axis of therapeutic design.
Collapse
Affiliation(s)
- Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, Neuroscience Program, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauren N Carnevale
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah C Huff
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
30
|
Zhang Y, Bai Y, Bai J, Li L, Gao L, Wang F. Targeting Soluble Epoxide Hydrolase with TPPU Alleviates Irradiation‐Induced Hyposalivation in Mice via Preventing Apoptosis and Microcirculation Disturbance. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yaoyang Zhang
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Yuwen Bai
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Jie Bai
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Lijun Li
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Lu Gao
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Fu Wang
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| |
Collapse
|
31
|
Sisignano M, Steinhilber D, Parnham MJ, Geisslinger G. Exploring CYP2J2: lipid mediators, inhibitors and therapeutic implications. Drug Discov Today 2020; 25:1744-1753. [DOI: 10.1016/j.drudis.2020.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 12/30/2022]
|
32
|
Smith PG, Roque D, Ching MM, Fulton A, Rao G, Reader JC. The Role of Eicosanoids in Gynecological Malignancies. Front Pharmacol 2020; 11:1233. [PMID: 32982722 PMCID: PMC7479818 DOI: 10.3389/fphar.2020.01233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Eicosanoids, bio-active lipid molecules, evoke a multitude of biological effects that directly affect cancer cells and indirectly affect tumor microenvironment. An emerging role has been shown for eicosanoids in the pathogenesis of gynecological malignancies which include cancers of the vulva, vagina, cervix, uterine, and ovary. Eicosanoid biosynthesis pathways start at the metabolism of phospholipids by phospholipase A2 then proceeding to one of three pathways: the cyclooxygenase (COX), lipoxygenase (LOX), or P450 epoxygenase pathways. The most studied eicosanoid pathways include COX and LOX; however, more evidence is appearing to support further study of the P450 epoxygenase pathway in gynecologic cancers. In this review, we present the current knowledge of the role of COX, LOX and P450 pathways in the pathogenesis of gynecologic malignancies. Vulvar and vaginal cancer, the rarest subtypes, there is association of COX-2 expression with poor disease specific survival in vulvar cancer and, in vaginal cancer, COX-2 expression has been found to play a role in mucosal inflammation leading to disease susceptibility and transmission. Cervical cancer is associated with COX-2 levels 7.4 times higher than in healthy tissues. Additionally, HPV elevates COX-2 levels through the EGFR pathway and HIV promotes elevated COX-2 levels in cervical tissue as well as increases PGE2 levels eliciting inflammation and progression of cancer. Evidence supports significant roles for both the LOX and COX pathways in uterine cancer. In endometrial cancer, there is increased expression of 5-LOX which is associated with adverse outcomes. Prostanoids in the COX pathway PGE2 and PGF2α have been shown to play a significant role in uterine cancer including alteration of proliferation, adhesion, migration, invasion, angiogenesis, and the inflammatory microenvironment. The most studied gynecological malignancy in regard to the potential role of eicosanoids in tumorigenesis is ovarian cancer in which all three pathways have shown to be associated or play a role in ovarian tumorigenesis directly on the tumor cell or through modulation of the tumor microenvironment. By identifying the gaps in knowledge, additional pathways and targets could be identified in order to obtain a better understanding of eicosanoid signaling in gynecological malignancies and identify potential new therapeutic approaches.
Collapse
Affiliation(s)
- Paige G. Smith
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Dana Roque
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Mc Millan Ching
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amy Fulton
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore Veterans Administration Medical Center, Baltimore, MD, United States
| | - Gautam Rao
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jocelyn C. Reader
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
33
|
Wagner KM, Gomes A, McReynolds CB, Hammock BD. Soluble Epoxide Hydrolase Regulation of Lipid Mediators Limits Pain. Neurotherapeutics 2020; 17:900-916. [PMID: 32875445 PMCID: PMC7609775 DOI: 10.1007/s13311-020-00916-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of lipids in pain signaling is well established and built on decades of knowledge about the pain and inflammation produced by prostaglandin and leukotriene metabolites of cyclooxygenase and lipoxygenase metabolism, respectively. The analgesic properties of other lipid metabolites are more recently coming to light. Lipid metabolites have been observed to act directly at ion channels and G protein-coupled receptors on nociceptive neurons as well as act indirectly at cellular membranes. Cytochrome P450 metabolism of specifically long-chain fatty acids forms epoxide metabolites, the epoxy-fatty acids (EpFA). The biological role of these metabolites has been found to mediate analgesia in several types of pain pathology. EpFA act through a variety of direct and indirect mechanisms to limit pain and inflammation including nuclear receptor agonism, limiting endoplasmic reticulum stress and blocking mitochondrial dysfunction. Small molecule inhibitors of the soluble epoxide hydrolase can stabilize the EpFA in vivo, and this approach has demonstrated relief in preclinical modeled pain pathology. Moreover, the ability to block neuroinflammation extends the potential benefit of targeting soluble epoxide hydrolase to maintain EpFA for neuroprotection in neurodegenerative disease.
Collapse
Affiliation(s)
- Karen M Wagner
- Department of Entomology and Nematology and University of California Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Aldrin Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, USA
| | - Cindy B McReynolds
- Department of Entomology and Nematology and University of California Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and University of California Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, California, 95616, USA.
| |
Collapse
|
34
|
Zhan L, Liu X, Zhang J, Cao Y, Wei B. Immune disorder in endometrial cancer: Immunosuppressive microenvironment, mechanisms of immune evasion and immunotherapy. Oncol Lett 2020; 20:2075-2090. [PMID: 32782525 PMCID: PMC7400772 DOI: 10.3892/ol.2020.11774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy is an emerging clinical approach that has gained traction over the past decade as a novel treatment option for lung cancer and melanoma. Notably, researchers have made marked improvements in the treatment of endometrial cancer (EC), and potential immune responses have been identified in patients with EC, thereby offering the possibility of exploring immunotherapy for EC. Nevertheless, various needs remain unmet, and immunotherapy applications in EC have yielded limited success, as only a minority of patients exhibited a clinical response. Therefore, further understanding of immune dysfunction associated with EC is still required. The present review describes recent findings regarding the immunosuppressive microenvironment of EC, with emphasis on immune evasion mechanisms and immunotherapy in EC.
Collapse
Affiliation(s)
- Lei Zhan
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Xiaojing Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Jing Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Bing Wei
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
35
|
Biringer RG. The enzymology of the human prostanoid pathway. Mol Biol Rep 2020; 47:4569-4586. [PMID: 32430846 DOI: 10.1007/s11033-020-05526-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
Abstract
Prostanoids are short-lived autocrine and paracrine signaling molecules involved in a wide range of biological functions. They have been shown to be intimately involved in many different disease states when their regulation becomes dysfunctional. In order to fully understand the progression of any disease state or the biological functions of the well state, a complete evaluation of the genomics, proteomics, and metabolomics of the system is necessary. This review is focused on the enzymology for the enzymes involved in the synthesis of the prostanoids (prostaglandins, prostacyclins and thromboxanes). In particular, the isolation and purification of the enzymes, their enzymatic parameters and catalytic mechanisms are presented.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
36
|
Yamashita S, Kato A, Akatsuka T, Sawada T, Asai T, Koyama N, Okita K. Clinical relevance of increased serum preneoplastic antigen in hepatitis C-related hepatocellular carcinoma. World J Gastroenterol 2020; 26:1463-1473. [PMID: 32308347 PMCID: PMC7152515 DOI: 10.3748/wjg.v26.i13.1463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The prognosis of hepatocellular carcinoma (HCC) patients remains poor despite advances in treatment modalities and diagnosis. It is important to identify useful markers for the early detection of HCC in patients. Preneoplastic antigen (PNA), originally reported in a rat carcinogenesis model, is increased in the tissues and serum of HCC patients.
AIM To determine the diagnostic value of PNA for discriminating HCC and to characterize PNA-positive HCC.
METHODS Patients with hepatitis C virus (HCV)-related hepatic disorders were prospectively enrolled in this study, which included patients with hepatitis, with cirrhosis, and with HCC. A novel enzyme-linked immunosorbent assay was developed to measure serum PNA concentrations in patients.
RESULTS Serum PNA concentrations were measured in 89 controls and 141 patients with HCV infections (50 hepatitis, 44 cirrhosis, and 47 HCC). Compared with control and non-HCC patients, PNA was increased in HCC. On receiver operating characteristic curve analysis, the sensitivity of PNA was similar to the HCC markers des-γ-carboxy-prothrombin (DCP) and α-fetoprotein (AFP), but the specificity of PNA was lower. There was no correlation between PNA and AFP and a significant but weak correlation between PNA and DCP in HCC patients. Importantly, the correlations with biochemical markers were completely different for PNA, AFP, and DCP; glutamyl transpeptidase was highly correlated with PNA, but not with AFP or DCP, and was significantly higher in PNA-high patients than in PNA-low patients with HCV-related HCC.
CONCLUSION PNA may have the potential to diagnose a novel type of HCC in which glutamyl transpeptidase is positively expressed but AFP or DCP is weakly or negatively expressed.
Collapse
Affiliation(s)
- Satoyoshi Yamashita
- Department of Gastroenterology and Hepatology, Japan Community Health Care Organization Shimonoseki Medical Center, Shimonoseki, Yamaguchi 7500061, Japan
| | - Akira Kato
- Department of Gastroenterology and Hepatology, Japan Community Health Care Organization Shimonoseki Medical Center, Shimonoseki, Yamaguchi 7500061, Japan
| | - Toshitaka Akatsuka
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Iruma-gun, Saitama 3500495, Japan
| | - Takashi Sawada
- Research and Development Division, Sekisui Medical Company Limited, Ryugasaki, Ibaraki 3010852, Japan
| | - Tomohide Asai
- Research and Development Division, Sekisui Medical Company Limited, Ryugasaki, Ibaraki 3010852, Japan
| | - Noriyuki Koyama
- Clinical Research Department, Eidia Company Limited, Chiyoda-ku, Tokyo 1010032, Japan
- Eisai Company Limited, Shinjuku-ku, Tokyo 1620812, Japan
| | - Kiwamu Okita
- Department of Internal Medicine, Shunan Memorial Hospital, Kudamatsu, Yamaguchi 7440033, Japan
| |
Collapse
|
37
|
Otoki Y, Metherel AH, Pedersen T, Yang J, Hammock BD, Bazinet RP, Newman JW, Taha AY. Acute Hypercapnia/Ischemia Alters the Esterification of Arachidonic Acid and Docosahexaenoic Acid Epoxide Metabolites in Rat Brain Neutral Lipids. Lipids 2020; 55:7-22. [PMID: 31691988 PMCID: PMC7220815 DOI: 10.1002/lipd.12197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022]
Abstract
In the brain, approximately 90% of oxylipins are esterified to lipids. However, the significance of this esterification process is not known. In the present study, we (1) validated an aminopropyl solid phase extraction (SPE) method for separating esterified lipids using 100 and 500 mg columns and (2) applied the method to quantify the distribution of esterified oxylipins within phospholipids (PL) and neutral lipids (NL) (i.e. triacylglycerol and cholesteryl ester) in rats subjected to head-focused microwave fixation (controls) or CO2 -induced hypercapnia/ischemia. We hypothesized that oxylipin esterification into these lipid pools will be altered following CO2 -induced hypercapnia/ischemia. Lipids were extracted from control (n = 8) and CO2 -asphyxiated (n = 8) rat brains and separated on aminopropyl cartridges to yield PL and NL. The separated lipid fractions were hydrolyzed, purified with hydrophobic-lipophilic-balanced SPE columns, and analyzed with ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry. Method validation showed that the 500 mg (vs 100 mg) aminopropyl columns yielded acceptable separation and recovery of esterified fatty acid epoxides but not other oxylipins. Two epoxides of arachidonic acid (ARA) were significantly increased, and three epoxides of docosahexaenoic acid (DHA) were significantly decreased in brain NL of CO2 -asphyxiated rats compared to controls subjected to head-focused microwave fixation. PL-bound fatty acid epoxides were highly variable and did not differ significantly between the groups. This study demonstrates that hypercapnia/ischemia alters the concentration of ARA and DHA epoxides within NL, reflecting an active turnover process regulating brain fatty acid epoxide concentrations.
Collapse
Affiliation(s)
- Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
- Food and Biodynamic Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Adam H. Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, M5S 1A8, Canada
| | - Theresa Pedersen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
- Comprehensive Cancer Center, Medical Center, University of California, Davis, CA 95616, USA
| | - Bruce D. Hammock
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
- Comprehensive Cancer Center, Medical Center, University of California, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California–Davis, Davis, CA 95616, USA
| | - Richard P. Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, M5S 1A8, Canada
| | - John W. Newman
- West Coast Metabolomics Center, Genome Center, University of California–Davis, Davis, CA 95616, USA
- Department of Nutrition, University of California–Davis, Davis, CA 95616, USA
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - Ameer Y. Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California–Davis, Davis, CA 95616, USA
| |
Collapse
|
38
|
Kandhi S, Alruwaili N, Wolin MS, Sun D, Huang A. Reciprocal actions of constrictor prostanoids and superoxide in chronic hypoxia-induced pulmonary hypertension: roles of EETs. Pulm Circ 2019; 9:2045894019895947. [PMID: 31908769 DOI: 10.1177/2045894019895947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are synthesized from arachidonic acid by CYP/epoxygenase and metabolized by soluble epoxide hydrolase (sEH). Roles of EETs in hypoxia-induced pulmonary hypertension (HPH) remain elusive. The present study aimed to investigate the underlying mechanisms, by which EETs potentiate HPH. Experiments were conducted on sEH knockout (sEH-KO) and wild type (WT) mice after exposure to hypoxia (10% oxygen) for three weeks. In normal/normoxic conditions, WT and sEH-KO mice exhibited comparable pulmonary artery acceleration time (PAAT), ejection time (ET), PAAT/ET ratio, and velocity time integral (VTI), along with similar right ventricular systolic pressure (RVSP). Chronic hypoxia significantly reduced PAAT, ET, and VTI, coincided with an increase in RVSP; these impairments were more severe in sEH-KO than WT mice. Hypoxia elicited downregulation of sEH and upregulation of CYP2C9 accompanied with elevation of CYP-sourced superoxide, leading to enhanced pulmonary EETs in hypoxic mice with significantly higher levels in sEH-KO mice. Isometric tension of isolated pulmonary arteries was recorded. In addition to downregulation of eNOS-induced impairment of vasorelaxation to ACh, HPH mice displayed upregulation of thromboxane A2 (TXA2) receptor, paralleled with enhanced pulmonary vasocontraction to a TXA2 analog (U46619) in an sEH-KO predominant manner. Inhibition of COX-1 or COX-2 significantly prevented the enhancement by ∼50% in both groups of vessels, and the remaining incremental components were eliminated by scavenging of superoxide with Tiron. In conclusion, hypoxia-driven increases in EETs, intensified COXs/TXA2 signaling, great superoxide sourced from activated CYP2C9, and impaired NO bioavailability work in concert, to potentiate HPH development.
Collapse
Affiliation(s)
- Sharath Kandhi
- Departments of Physiology, New York Medical College, Valhalla, NY, USA
| | - Norah Alruwaili
- Departments of Physiology, New York Medical College, Valhalla, NY, USA
| | - Michael S Wolin
- Departments of Physiology, New York Medical College, Valhalla, NY, USA
| | - Dong Sun
- Departments of Physiology, New York Medical College, Valhalla, NY, USA
| | - An Huang
- Departments of Physiology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
39
|
Complex interrelationships between nitro-alkene-dependent inhibition of soluble epoxide hydrolase, inflammation and tumor growth. Redox Biol 2019; 29:101405. [PMID: 31926628 PMCID: PMC6928308 DOI: 10.1016/j.redox.2019.101405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/25/2019] [Accepted: 12/07/2019] [Indexed: 01/22/2023] Open
Abstract
Nitro-oleate (10-nitro-octadec-9-enoic acid), which inhibits soluble epoxide hydrolase (sEH) by covalently adducting to C521, increases the abundance of epoxyeicosatrienoic acids (EETs) that can be health promoting, for example by lowering blood pressure or their anti-inflammatory actions. However, perhaps consistent with their impact on angiogenesis, increases in EETs may exacerbate progression of some cancers. To assess this, Lewis lung carcinoma (LLc1) cells were exposed to oleate or nitro-oleate, with the latter inhibiting the hydrolase and increasing their proliferation and migration in vitro. The enhanced proliferation induced by nitro-oleate was EET-dependent, being attenuated by the ETT-receptor antagonist 14,15-EE-5(Z)-E. LLc1 cells were engineered to stably overexpress wild-type or C521S sEH, with the latter exhibiting resistance to nitro-oleate-dependent hydrolase inhibition and the associated stimulation of tumor growth in vitro or in vivo. Nitro-oleate also increased migration in endothelial cells isolated from wild-type (WT) mice, but not those from C521S sEH knock-in (KI) transgenic mice genetically modified to render the hydrolase electrophile-resistant. These observations were consistent with nitro-oleate promoting cancer progression, and so the impact of this electrophile was examined in vivo again, but this time comparing growth of LLc1 cells expressing constitutive levels of wild-type hydrolase when implanted into WT or KI mice. Nitro-oleate inhibited tumor sEH (P < 0.05), with a trend for elevated plasma 11(12)-EET/DHET and 8(9)EET/DHET (dihydroxyeicosatrienoic acid) ratios when administered to WT, but not KI, mice. Although in vitro studies with LLc1 cells supported a role for nitro-oleate in cancer cell proliferation, it failed to significantly stimulate tumor growth in WT mice implanted with the same LLc1 cells in vivo, perhaps due to its well-established anti-inflammatory actions. Indeed, pro-inflammatory cytokines were significantly down-regulated in nitro-oleate treated WT mice, potentially countering any impact of the concomitant inhibition of sEH.
Collapse
|
40
|
Rand AA, Rajamani A, Kodani SD, Harris TR, Schlatt L, Barnych B, Passerini AG, Hammock BD. Epoxyeicosatrienoic acid (EET)-stimulated angiogenesis is mediated by epoxy hydroxyeicosatrienoic acids (EHETs) formed from COX-2. J Lipid Res 2019; 60:1996-2005. [PMID: 31641036 DOI: 10.1194/jlr.m094219] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are formed from the metabolism of arachidonic acid by cytochrome P450s. EETs promote angiogenesis linked to tumor growth in various cancer models that is attenuated in vivo by cyclooxygenase 2 (COX-2) inhibitors. This study further defines a role for COX-2 in mediating endothelial EET metabolism promoting angiogenesis. Using human aortic endothelial cells (HAECs), we quantified 8,9-EET-induced tube formation and cell migration as indicators of angiogenic potential in the presence and absence of a COX-2 inducer [phorbol 12,13-dibutyrate (PDBu)]. The angiogenic response to 8,9-EET in the presence of PDBu was 3-fold that elicited by 8,9-EET stabilized with a soluble epoxide hydrolase inhibitor (t-TUCB). Contributing to this response was the COX-2 metabolite of 8,9-EET, the 11-hydroxy-8,9-EET (8,9,11-EHET), which exogenously enhanced angiogenic responses in HAECs at levels comparable to those elicited by vascular endothelial growth factor (VEGF). In contrast, the 15-hydroxy-8,9-EET isomer was also formed but inactive. The 8,9,11-EHET also promoted expression of the VEGF family of tyrosine kinase receptors. These results indicate that 8,9-EET-stimulated angiogenesis is enhanced by COX-2 metabolism in the endothelium through the formation of 8,9,11-EHET. This alternative pathway for the metabolism of 8,9-EET may be particularly important in regulating angiogenesis under circumstances in which COX-2 is induced, such as in cancer tumor growth and inflammation.
Collapse
Affiliation(s)
- Amy A Rand
- Department of Chemistry, Carleton University, Ottawa, ON, Canada.,Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Anita Rajamani
- Department of Biomedical Engineering, University of California, Davis, Davis, CA
| | - Sean D Kodani
- Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Todd R Harris
- Department of Chemistry, Carleton University, Ottawa, ON, Canada.,Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Lukas Schlatt
- Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Bodgan Barnych
- Department of Entomology and Nematology, University of California, Davis, Davis, CA.,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| | - Anthony G Passerini
- Department of Biomedical Engineering, University of California, Davis, Davis, CA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, Davis, CA .,UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA
| |
Collapse
|
41
|
Arachidonic Acid Metabolism and Kidney Inflammation. Int J Mol Sci 2019; 20:ijms20153683. [PMID: 31357612 PMCID: PMC6695795 DOI: 10.3390/ijms20153683] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/17/2022] Open
Abstract
As a major component of cell membrane lipids, Arachidonic acid (AA), being a major component of the cell membrane lipid content, is mainly metabolized by three kinds of enzymes: cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP450) enzymes. Based on these three metabolic pathways, AA could be converted into various metabolites that trigger different inflammatory responses. In the kidney, prostaglandins (PG), thromboxane (Tx), leukotrienes (LTs) and hydroxyeicosatetraenoic acids (HETEs) are the major metabolites generated from AA. An increased level of prostaglandins (PGs), TxA2 and leukotriene B4 (LTB4) results in inflammatory damage to the kidney. Moreover, the LTB4-leukotriene B4 receptor 1 (BLT1) axis participates in the acute kidney injury via mediating the recruitment of renal neutrophils. In addition, AA can regulate renal ion transport through 19-hydroxystilbenetetraenoic acid (19-HETE) and 20-HETE, both of which are produced by cytochrome P450 monooxygenase. Epoxyeicosatrienoic acids (EETs) generated by the CYP450 enzyme also plays a paramount role in the kidney damage during the inflammation process. For example, 14 and 15-EET mitigated ischemia/reperfusion-caused renal tubular epithelial cell damage. Many drug candidates that target the AA metabolism pathways are being developed to treat kidney inflammation. These observations support an extraordinary interest in a wide range of studies on drug interventions aiming to control AA metabolism and kidney inflammation.
Collapse
|
42
|
Jones RD, Liao J, Tong X, Xu D, Sun L, Li H, Yang GY. Epoxy-Oxylipins and Soluble Epoxide Hydrolase Metabolic Pathway as Targets for NSAID-Induced Gastroenteropathy and Inflammation-Associated Carcinogenesis. Front Pharmacol 2019; 10:731. [PMID: 31293429 PMCID: PMC6603234 DOI: 10.3389/fphar.2019.00731] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) including epoxide-modified ω-3 and ω-6 fatty acids are made via oxidation to create highly polarized carbon-oxygen bonds crucial to their function as signaling molecules. A critical PUFA, arachidonic acid (ARA), is metabolized to a diverse set of lipids signaling molecules through cyclooxygenase (COX), lipoxygenase (LOX), cytochrome P450 epoxygenase, or cytochrome P450 hydroxylase; however, the majority of ARA is metabolized into anti-inflammatory epoxides via cytochrome P450 enzymes. These short-lived epoxide lipids are rapidly metabolized or inactivated by the soluble epoxide hydrolase (sEH) into diol-containing products. sEH inhibition or knockout has been a practical approach to study the biology of the epoxide lipids, and has been shown to effectively treat inflammatory conditions in the preclinical models including gastrointestinal ulcers and colitis by shifting oxylipins to epoxide profiles, inhibiting inflammatory cell infiltration and activation, and enhancing epithelial cell defense via increased mucin production, thus providing further evidence for the role of sEH as a pro-inflammatory protein. Non-steroidal anti-inflammatory drugs (NSAIDs) with COX-inhibitor activity are among the most commonly used analgesics and have demonstrated applications in the management of cardiovascular disease and intriguingly cancer. Major side effects of NSAIDs however are gastrointestinal ulcers which frequently precludes their long-term application. In this review, we hope to bridge the gap between NSAID toxicity and sEH-mediated metabolic pathways to focus on the role of epoxy fatty acid metabolic pathway of PUFAs in NSAIDS-ulcer formation and healing as well as inflammation-related carcinogenesis. Specifically we address the potential application of sEH inhibition to enhance ulcer healing at the site of inflammation via their activity on altered lipid signaling, mitochondrial function, and diminished reactive oxygen species, and further discuss the significance of dual COX and sEH inhibitor in anti-inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Ryan D Jones
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jie Liao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Xin Tong
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Dandan Xu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Leyu Sun
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Haonan Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Guang-Yu Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
43
|
Sausville LN, Williams SM, Pozzi A. Cytochrome P450 epoxygenases and cancer: A genetic and a molecular perspective. Pharmacol Ther 2019; 196:183-194. [DOI: 10.1016/j.pharmthera.2018.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Abstract
Angiogenesis and inflammation are hallmarks of cancer. Arachidonic acid and other polyunsaturated fatty acids (PUFAs) are primarily metabolized by three distinct enzymatic systems initiated by cyclooxygenases, lipoxygenases, and cytochrome P450 enzymes (CYP) to generate bioactive eicosanoids, including prostanoids, leukotrienes, hydroxyeicosatetraenoic acids, and epoxyeicosatrienoic acids. As some of the PUFA metabolites playing essential roles in inflammatory processes, these pathways have been widely studied as therapeutic targets of inflammation. Because of their anti-inflammatory effects, these pathways were also proposed as anti-cancer targets. However, although the eicosanoids were linked to endothelial cell proliferation and angiogenesis almost two decades ago, it is only recently PUFA metabolites, especially those generated by CYP enzymes and the soluble epoxide hydrolase (sEH), have been recognized as important signaling mediators in physiological and pathological angiogenesis. Despite the fact that tumor growth and invasion are heavily dependent on inner-tumor angiogenesis and influenced by vascular stability, the role played by PUFA metabolites in tumor angiogenesis and vessel integrity has been largely overlooked. This review highlights current knowledge on the function of PUFA metabolites generated by the CYP/sEH pathway in angiogenesis and vascular stability as well as their potential involvement in cancer development.
Collapse
|
45
|
Park B, Corson TW. Soluble Epoxide Hydrolase Inhibition for Ocular Diseases: Vision for the Future. Front Pharmacol 2019; 10:95. [PMID: 30792659 PMCID: PMC6374558 DOI: 10.3389/fphar.2019.00095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
Ocular diseases cause visual impairment and blindness, imposing a devastating impact on quality of life and a substantial societal economic burden. Many such diseases lack universally effective pharmacotherapies. Therefore, understanding the mediators involved in their pathophysiology is necessary for the development of therapeutic strategies. To this end, the hydrolase activity of soluble epoxide hydrolase (sEH) has been explored in the context of several eye diseases, due to its implications in vascular diseases through metabolism of bioactive epoxygenated fatty acids. In this mini-review, we discuss the mounting evidence associating sEH with ocular diseases and its therapeutic value as a target. Substantial data link sEH with the retinal and choroidal neovascularization underlying diseases such as wet age-related macular degeneration, retinopathy of prematurity, and proliferative diabetic retinopathy, although some conflicting results pose challenges for the synthesis of a common mechanism. sEH also shows therapeutic relevance in non-proliferative diabetic retinopathy and diabetic keratopathy, and sEH inhibition has been tested in a uveitis model. Various approaches have been implemented to assess sEH function in the eye, including expression analyses, genetic manipulation, pharmacological targeting of sEH, and modulation of certain lipid metabolites that are upstream and downstream of sEH. On balance, sEH inhibition shows considerable promise for treating multiple eye diseases. The possibility of local delivery of inhibitors makes the eye an appealing target for future sEH drug development initiatives.
Collapse
Affiliation(s)
- Bomina Park
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Timothy W Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
46
|
Curbing Lipids: Impacts ON Cancer and Viral Infection. Int J Mol Sci 2019; 20:ijms20030644. [PMID: 30717356 PMCID: PMC6387424 DOI: 10.3390/ijms20030644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
Lipids play a fundamental role in maintaining normal function in healthy cells. Their functions include signaling, storing energy, and acting as the central structural component of cell membranes. Alteration of lipid metabolism is a prominent feature of cancer, as cancer cells must modify their metabolism to fulfill the demands of their accelerated proliferation rate. This aberrant lipid metabolism can affect cellular processes such as cell growth, survival, and migration. Besides the gene mutations, environmental factors, and inheritance, several infectious pathogens are also linked with human cancers worldwide. Tumor viruses are top on the list of infectious pathogens to cause human cancers. These viruses insert their own DNA (or RNA) into that of the host cell and affect host cellular processes such as cell growth, survival, and migration. Several of these cancer-causing viruses are reported to be reprogramming host cell lipid metabolism. The reliance of cancer cells and viruses on lipid metabolism suggests enzymes that can be used as therapeutic targets to exploit the addiction of infected diseased cells on lipids and abrogate tumor growth. This review focuses on normal lipid metabolism, lipid metabolic pathways and their reprogramming in human cancers and viral infection linked cancers and the potential anticancer drugs that target specific lipid metabolic enzymes. Here, we discuss statins and fibrates as drugs to intervene in disordered lipid pathways in cancer cells. Further insight into the dysregulated pathways in lipid metabolism can help create more effective anticancer therapies.
Collapse
|
47
|
Hiesinger K, Wagner KM, Hammock BD, Proschak E, Hwang SH. Development of multitarget agents possessing soluble epoxide hydrolase inhibitory activity. Prostaglandins Other Lipid Mediat 2019; 140:31-39. [PMID: 30593866 PMCID: PMC6345559 DOI: 10.1016/j.prostaglandins.2018.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/27/2018] [Accepted: 12/24/2018] [Indexed: 02/08/2023]
Abstract
Over the last two decades polypharmacology has emerged as a new paradigm in drug discovery, even though developing drugs with high potency and selectivity toward a single biological target is still a major strategy. Often, targeting only a single enzyme or receptor shows lack of efficacy. High levels of inhibitor of a single target also can lead to adverse side effects. A second target may offer additive or synergistic effects to affecting the first target thereby reducing on- and off-target side effects. Therefore, drugs that inhibit multiple targets may offer a great potential for increased efficacy and reduced the adverse effects. In this review we summarize recent findings of rationally designed multitarget compounds that are aimed to improve efficacy and safety profiles compared to those that target a single enzyme or receptor. We focus on dual inhibitors/modulators that target the soluble epoxide hydrolase (sEH) as a common part of their design to take advantage of the beneficial effects of sEH inhibition.
Collapse
Affiliation(s)
- Kerstin Hiesinger
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60439, Frankfurt am Main, Germany
| | - Karen M Wagner
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60439, Frankfurt am Main, Germany
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
48
|
Wu Q, Song J, Meng D, Chang Q. TPPU, a sEH Inhibitor, Attenuates Corticosterone-Induced PC12 Cell Injury by Modulation of BDNF-TrkB Pathway. J Mol Neurosci 2019; 67:364-372. [PMID: 30644034 DOI: 10.1007/s12031-018-1230-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022]
Abstract
High level of corticosterone (CORT) is toxic to neurons and plays an important role in depression-like behavior and chronic stress. Our previous study showed that TPPU, a soluble epoxide hydrolase (sEH) inhibitor (sEHI), induces an antidepressant effect in animal models. However, the underlying mechanism is not clear. In this study, we investigated the protective effect of TPPU on PC12 cells against CORT-induced cytotoxicity and its underlying mechanism. We found that TPPU and the sEH substrate epoxyeicosatrienoic acids (EETs) protected PC12 cells from the CORT-induced injury by increasing cell viability and inhibiting apoptosis. Furthermore, TPPU and EETs also blocked the CORT-mediated downregulation of BDNF. Blocking the BDNF-TrkB pathway by the TrkB inhibitor K252a abolished the protective effect of TPPU. Taken together, our results suggest that sEHI could protect PC12 cells against the CORT-induced cytotoxicity via the BDNF-TrkB signaling pathway.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Pathophysiology, Luohe Medical College, Luohe, China
| | - Jingfang Song
- Department of Medicine, Luohe Medical College, Luohe, China
| | - Danxin Meng
- Department of Medicine, Luohe Medical College, Luohe, China
| | - Quanzhong Chang
- Department of Physiology, Luohe Medical College, Luohe, 462000, China.
| |
Collapse
|
49
|
Neckář J, Hsu A, Hye Khan MA, Gross GJ, Nithipatikom K, Cyprová M, Benák D, Hlaváčková M, Sotáková-Kašparová D, Falck JR, Sedmera D, Kolář F, Imig JD. Infarct size-limiting effect of epoxyeicosatrienoic acid analog EET-B is mediated by hypoxia-inducible factor-1α via downregulation of prolyl hydroxylase 3. Am J Physiol Heart Circ Physiol 2018; 315:H1148-H1158. [PMID: 30074840 PMCID: PMC6734065 DOI: 10.1152/ajpheart.00726.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/06/2018] [Accepted: 07/18/2018] [Indexed: 12/27/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) decrease cardiac ischemia-reperfusion injury; however, the mechanism of their protective effect remains elusive. Here, we investigated the cardioprotective action of a novel EET analog, EET-B, in reperfusion and the role of hypoxia-inducible factor (HIF)-1α in such action of EET-B. Adult male rats were subjected to 30 min of left coronary artery occlusion followed by 2 h of reperfusion. Administration of 14,15-EET (2.5 mg/kg) or EET-B (2.5 mg/kg) 5 min before reperfusion reduced infarct size expressed as a percentage of the area at risk from 64.3 ± 1.3% in control to 42.6 ± 1.9% and 46.0 ± 1.6%, respectively, and their coadministration did not provide any stronger effect. The 14,15-EET antagonist 14,15-epoxyeicosa-5( Z)-enoic acid (2.5 mg/kg) inhibited the infarct size-limiting effect of EET-B (62.5 ± 1.1%). Similarly, the HIF-1α inhibitors 2-methoxyestradiol (2.5 mg/kg) and acriflavine (2 mg/kg) completely abolished the cardioprotective effect of EET-B. In a separate set of experiments, the immunoreactivity of HIF-1α and its degrading enzyme prolyl hydroxylase domain protein 3 (PHD3) were analyzed in the ischemic areas and nonischemic septa. At the end of ischemia, the HIF-1α immunogenic signal markedly increased in the ischemic area compared with the septum (10.31 ± 0.78% vs. 0.34 ± 0.08%). After 20 min and 2 h of reperfusion, HIF-1α immunoreactivity decreased to 2.40 ± 0.48% and 1.85 ± 0.43%, respectively, in the controls. EET-B blunted the decrease of HIF-1α immunoreactivity (7.80 ± 0.69% and 6.44 ± 1.37%, respectively) and significantly reduced PHD3 immunogenic signal in ischemic tissue after reperfusion. In conclusion, EET-B provides an infarct size-limiting effect at reperfusion that is mediated by HIF-1α and downregulation of its degrading enzyme PHD3. NEW & NOTEWORTHY The present study shows that EET-B is an effective agonistic 14,15-epoxyeicosatrienoic acid analog, and its administration before reperfusion markedly reduced myocardial infarction in rats. Most importantly, we demonstrate that increased hypoxia-inducible factor-1α levels play a role in cardioprotection mediated by EET-B in reperfusion likely by mechanisms including downregulation of the hypoxia-inducible factor -1α-degrading enzyme prolyl hydroxylase domain protein 3.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- 8,11,14-Eicosatrienoic Acid/therapeutic use
- Animals
- Disease Models, Animal
- Down-Regulation
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor-Proline Dioxygenases/genetics
- Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism
- Male
- Myocardial Infarction/enzymology
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Myocardial Infarction/prevention & control
- Myocardial Reperfusion Injury/enzymology
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/physiopathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardium/enzymology
- Myocardium/pathology
- Proteolysis
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Jan Neckář
- Department of Pharmacology and Toxicology, Medical College of Wisconsin , Milwaukee, Wisconsin
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine Physiology , Prague , Czech Republic
| | - Anna Hsu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Md Abdul Hye Khan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Garrett J Gross
- Department of Pharmacology and Toxicology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Kasem Nithipatikom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Michaela Cyprová
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Daniel Benák
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Markéta Hlaváčková
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Dita Sotáková-Kašparová
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas
| | - David Sedmera
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University , Prague , Czech Republic
| | - František Kolář
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
50
|
Neuroprotective effects of epoxyeicosatrienoic acids. Prostaglandins Other Lipid Mediat 2018; 138:9-14. [DOI: 10.1016/j.prostaglandins.2018.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 06/19/2018] [Accepted: 07/17/2018] [Indexed: 11/22/2022]
|