1
|
Bertinat R, Holyoak T, Gatica R, Jara N, González-Chavarría I, Westermeier F. The neglected PCK1/glucagon (inter)action in nutrient homeostasis beyond gluconeogenesis: Disease pathogenesis and treatment. Mol Metab 2025; 94:102112. [PMID: 39954782 PMCID: PMC11909762 DOI: 10.1016/j.molmet.2025.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Glucagon plays a central role in hepatic adaptation during fasting, with the upregulation of hepatic phosphoenolpyruvate carboxykinase 1 (PCK1) traditionally associated with increased gluconeogenesis. However, recent experimental models and clinical studies have challenged this view, suggesting a more complex interplay between PCK1 and glucagon, which extends beyond gluconeogenesis and has broader implications for metabolic regulation in health and disease. SCOPE OF REVIEW This review provides a comprehensive overview of the current evidence on the multifaceted roles of PCK1 in glucagon-dependent hepatic adaptation during fasting, which is crucial for maintaining systemic homeostasis not only of glucose, but also of lipids and amino acids. We explore the relationship between PCK1 deficiency and glucagon resistance in metabolic disorders, including inherited PCK1 deficiency and metabolic dysfunction-associated steatotic liver disease (MASLD), and compare findings from experimental animal models with whole-body or tissue-specific ablation of PCK1 or the glucagon receptor. We propose new research platforms to advance the therapeutic potential of targeting PCK1 in metabolic diseases. MAJOR CONCLUSIONS We propose that hepatic PCK1 deficiency might be an acquired metabolic disorder linking alterations in lipid metabolism with impaired glucagon signaling. Our findings highlight interesting links between glycerol, PCK1 deficiency, elevated plasma alanine levels and glucagon resistance. We conclude that the roles of PCK1 and glucagon in metabolic regulation are more complex than previously assumed. In this (un)expected scenario, hepatic PCK1 deficiency and glucagon resistance appear to exert limited control over glycemia, but have broader metabolic effects related to lipid and amino acid dysregulation. Given the shift in glucagon research from receptor inhibition to activation, we propose that a similar paradigm shift is needed in the study of hepatic PCK1. Understanding PCK1 expression and activity in the glucagon-dependent hepatic adaptation to fasting might provide new perspectives and therapeutic opportunities for metabolic diseases.
Collapse
Affiliation(s)
- Romina Bertinat
- Centro de Microscopía Avanzada, CMA-BIO BIO, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Laboratorio de Lipoproteínas y Cáncer, Departamento de Fisiopatología, Universidad de Concepción, Concepción, Chile.
| | - Todd Holyoak
- Department of Biology, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Rodrigo Gatica
- Escuela de Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Nery Jara
- Departamento de Farmacología, Universidad de Concepción, Concepción, Chile
| | - Iván González-Chavarría
- Laboratorio de Lipoproteínas y Cáncer, Departamento de Fisiopatología, Universidad de Concepción, Concepción, Chile
| | - Francisco Westermeier
- Institute of Biomedical Science, Department of Health Studies, FH JOANNEUM University of Applied Sciences, Graz, Austria; Centro de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
2
|
Berthier A, Gheeraert C, Vinod M, Johanns M, Guille L, Haas JT, Dubois-Chevalier J, Eeckhoute J, Staels B, Lefebvre P. Unveiling the molecular legacy of transient insulin resistance: Implications for hepatic metabolic adaptability. J Hepatol 2025:S0168-8278(25)00080-7. [PMID: 39947330 DOI: 10.1016/j.jhep.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND & AIMS Insulin plays a central role in coordinating metabolic flexibility (MetF). Insulin resistance (IR) can impair MetF, contributing to type 2 diabetes and obesity. Transient IR episodes, like gestational diabetes or stress-induced hyperglycemia, also heighten the risk of later diabetes development. While the health significance of transient IR is well established, we aimed to better understand the heretofore poorly understood molecular processes that occur after such episodes. METHODS To do this, we characterized the hepatic response to a high-fat diet challenge in mice previously exposed to a transient IR episode. We integrated transcriptomic, epigenomic, lipidomic, and molecular clock assessments to provide a molecular basis for the observed dysregulations. RESULTS Our study shows that temporarily blocking the insulin receptor in young mice leads to later-life liver issues by hindering PPARα-mediated adaptation to a high-fat diet. This is linked to decreased histone active marks at PPARα sites and reduced endogenous PPARα ligands. Transient insulin receptor blockade also altered the liver's molecular clock, particularly affecting PPARα transcriptional responsiveness. CONCLUSIONS Seemingly reversible metabolic challenges in early adulthood may predispose the liver to exacerbated metabolic dysfunctions when confronted with chronic challenges later in life. IMPACT AND IMPLICATIONS While the health significance of transient insulin resistance is well established, the molecular processes that occur after such episodes are poorly understood. This study thus provides a circadian molecular paradigm for a later-in-life alteration of liver metabolic flexibility following a previous episode of insulin resistance and calls for particular attention to be paid to detecting transient episodes of insulin resistance as they occur in patients with gestational diabetes or stress-induced hyperglycemia. By extension, any transient exposure to compounds altering circadian rhythmicity, such as anti-depressants, might predispose to a compromised metabolic response to an unbalanced diet later in life.
Collapse
Affiliation(s)
- Alexandre Berthier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France.
| | - Céline Gheeraert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Manjula Vinod
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Manuel Johanns
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Loïc Guille
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Joel T Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Julie Dubois-Chevalier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, F-59000 Lille, France
| |
Collapse
|
3
|
Mott J, Celly C, Glock R, Gilor C. The glucagon-receptor antagonist MK-3577 reduces glucagon-stimulated plasma glucose and insulin concentrations in metabolically healthy overweight cats. Domest Anim Endocrinol 2024; 89:106874. [PMID: 39018655 DOI: 10.1016/j.domaniend.2024.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
The role of glucagon disturbances in diabetes mellitus is increasingly recognized and, hence, glucagon antagonism might aid in treatment of hyperglycemia and other metabolic disturbances. The aim of this study was to assess the pharmacokinetics of the glucagon receptor antagonist MK-3577 and its effect on plasma glucose, insulin, and glucagon concentrations in healthy cats. In a cross-over placebo-controlled study, 5 purpose-bred cats were treated with either Placebo, MK-3577 (1 mg/kg), or MK-3577 (3 mg/kg). Glucose, insulin and glucagon concentrations were measured at 0, 15, 225, 240 min post-treatment administration. Glucagon (20 mcg/kg, IM) was administered at 240 min and glucose and insulin were measured at 255, 265, 275, 285 and 300 min. Plasma MK-3577 concentrations peaked at 4.2 and 3.2 hours after 1 and 3 mg/kg dosing with a half-life of 14.8h and 15.5h respectively. Baseline glucose, insulin and glucagon concentrations did not differ significantly between treatment groups. At a dose of 3 mg/kg, MK-3577 blunted the glucagon-stimulated rise of glucose (p=0.0089) and insulin (p=0.02). Similar trends were observed with MK-3577 at the 1 mg/kg dose but the effect was smaller, and not significant. In conclusion, the GRA MK-3577 has a pharmacokinetic profile suitable for diminishing the glucagon-induced rise of glucose and insulin in healthy cats.
Collapse
Affiliation(s)
- J Mott
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave. Gainesville, FL 32608, USA
| | - C Celly
- Merck Animal Health, 126 East Lincoln Avenue, PO Box 2000, Rahway, NJ 07065, USA
| | - R Glock
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp St., Columbus, OH 43210, USA
| | - C Gilor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp St., Columbus, OH 43210, USA; Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave. Gainesville, FL 32608, USA.
| |
Collapse
|
4
|
Gandasi NR, Gao R, Kothegala L, Pearce A, Santos C, Acreman S, Basco D, Benrick A, Chibalina MV, Clark A, Guida C, Harris M, Johnson PRV, Knudsen JG, Ma J, Miranda C, Shigeto M, Tarasov AI, Yeung HY, Thorens B, Asterholm IW, Zhang Q, Ramracheya R, Ladds G, Rorsman P. GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of mouse and human pancreatic islet glucagon secretion. Diabetologia 2024; 67:528-546. [PMID: 38127123 PMCID: PMC10844371 DOI: 10.1007/s00125-023-06060-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023]
Abstract
AIMS/HYPOTHESIS Diabetes mellitus is associated with impaired insulin secretion, often aggravated by oversecretion of glucagon. Therapeutic interventions should ideally correct both defects. Glucagon-like peptide 1 (GLP-1) has this capability but exactly how it exerts its glucagonostatic effect remains obscure. Following its release GLP-1 is rapidly degraded from GLP-1(7-36) to GLP-1(9-36). We hypothesised that the metabolite GLP-1(9-36) (previously believed to be biologically inactive) exerts a direct inhibitory effect on glucagon secretion and that this mechanism becomes impaired in diabetes. METHODS We used a combination of glucagon secretion measurements in mouse and human islets (including islets from donors with type 2 diabetes), total internal reflection fluorescence microscopy imaging of secretory granule dynamics, recordings of cytoplasmic Ca2+ and measurements of protein kinase A activity, immunocytochemistry, in vivo physiology and GTP-binding protein dissociation studies to explore how GLP-1 exerts its inhibitory effect on glucagon secretion and the role of the metabolite GLP-1(9-36). RESULTS GLP-1(7-36) inhibited glucagon secretion in isolated islets with an IC50 of 2.5 pmol/l. The effect was particularly strong at low glucose concentrations. The degradation product GLP-1(9-36) shared this capacity. GLP-1(9-36) retained its glucagonostatic effects after genetic/pharmacological inactivation of the GLP-1 receptor. GLP-1(9-36) also potently inhibited glucagon secretion evoked by β-adrenergic stimulation, amino acids and membrane depolarisation. In islet alpha cells, GLP-1(9-36) led to inhibition of Ca2+ entry via voltage-gated Ca2+ channels sensitive to ω-agatoxin, with consequential pertussis-toxin-sensitive depletion of the docked pool of secretory granules, effects that were prevented by the glucagon receptor antagonists REMD2.59 and L-168049. The capacity of GLP-1(9-36) to inhibit glucagon secretion and reduce the number of docked granules was lost in alpha cells from human donors with type 2 diabetes. In vivo, high exogenous concentrations of GLP-1(9-36) (>100 pmol/l) resulted in a small (30%) lowering of circulating glucagon during insulin-induced hypoglycaemia. This effect was abolished by REMD2.59, which promptly increased circulating glucagon by >225% (adjusted for the change in plasma glucose) without affecting pancreatic glucagon content. CONCLUSIONS/INTERPRETATION We conclude that the GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of glucagon secretion. We propose that the increase in circulating glucagon observed following genetic/pharmacological inactivation of glucagon signalling in mice and in people with type 2 diabetes reflects the removal of GLP-1(9-36)'s glucagonostatic action.
Collapse
Affiliation(s)
- Nikhil R Gandasi
- Metabolic Physiology Unit, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
- Cell Metabolism Lab (GA-08), Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Rui Gao
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Lakshmi Kothegala
- Metabolic Physiology Unit, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
| | - Abigail Pearce
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Cristiano Santos
- Metabolic Physiology Unit, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
| | - Samuel Acreman
- Metabolic Physiology Unit, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Davide Basco
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Anna Benrick
- Metabolic Physiology Unit, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
| | - Margarita V Chibalina
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Claudia Guida
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Paul R V Johnson
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Oxford, UK
- Biomedical Research Centre, Oxford National Institute for Health Research, Churchill Hospital, Oxford, UK
| | - Jakob G Knudsen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jinfang Ma
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Caroline Miranda
- Metabolic Physiology Unit, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Makoto Shigeto
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Andrei I Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Ho Yan Yeung
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Ingrid W Asterholm
- Metabolic Physiology Unit, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Reshma Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Patrik Rorsman
- Metabolic Physiology Unit, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden.
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK.
- Biomedical Research Centre, Oxford National Institute for Health Research, Churchill Hospital, Oxford, UK.
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK.
| |
Collapse
|
5
|
Peng J, Yu L, Huang L, Paschoal VA, Chu H, de Souza CO, Varre JV, Oh DY, Kohler JJ, Xiao X, Xu L, Holland WL, Shaul PW, Mineo C. Hepatic sialic acid synthesis modulates glucose homeostasis in both liver and skeletal muscle. Mol Metab 2023; 78:101812. [PMID: 37777009 PMCID: PMC10583174 DOI: 10.1016/j.molmet.2023.101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
OBJECTIVE Sialic acid is a terminal monosaccharide of glycans in glycoproteins and glycolipids, and its derivation from glucose is regulated by the rate-limiting enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). Although the glycans on key endogenous hepatic proteins governing glucose metabolism are sialylated, how sialic acid synthesis and sialylation in the liver influence glucose homeostasis is unknown. Studies were designed to fill this knowledge gap. METHODS To decrease the production of sialic acid and sialylation in hepatocytes, a hepatocyte-specific GNE knockdown mouse model was generated, and systemic glucose metabolism, hepatic insulin signaling and glucagon signaling were evaluated in vivo or in primary hepatocytes. Peripheral insulin sensitivity was also assessed. Furthermore, the mechanisms by which sialylation in the liver influences hepatic insulin signaling and glucagon signaling and peripheral insulin sensitivity were identified. RESULTS Liver GNE deletion in mice caused an impairment of insulin suppression of hepatic glucose production. This was due to a decrease in the sialylation of hepatic insulin receptors (IR) and a decline in IR abundance due to exaggerated degradation through the Eph receptor B4. Hepatic GNE deficiency also caused a blunting of hepatic glucagon receptor (GCGR) function which was related to a decline in its sialylation and affinity for glucagon. An accompanying upregulation of hepatic FGF21 production caused an enhancement of skeletal muscle glucose disposal that led to an overall increase in glucose tolerance and insulin sensitivity. CONCLUSION These collective observations reveal that hepatic sialic acid synthesis and sialylation modulate glucose homeostasis in both the liver and skeletal muscle. By interrogating how hepatic sialic acid synthesis influences glucose control mechanisms in the liver, a new metabolic cycle has been identified in which a key constituent of glycans generated from glucose modulates the systemic control of its precursor.
Collapse
Affiliation(s)
- Jun Peng
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| | - Liming Yu
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Linzhang Huang
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Vivian A Paschoal
- Dept. of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Haiyan Chu
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Camila O de Souza
- Dept. of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Joseph V Varre
- Dept. of Nutrition & Integrative Physiology, University of Utah College of Health, 250 1850 E, Salt Lake City, UT, 84112, USA
| | - Da Young Oh
- Dept. of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Jennifer J Kohler
- Dept. of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Xue Xiao
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Lin Xu
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - William L Holland
- Dept. of Nutrition & Integrative Physiology, University of Utah College of Health, 250 1850 E, Salt Lake City, UT, 84112, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA; Dept. of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| |
Collapse
|
6
|
Asuaje Pfeifer M, Langehein H, Grupe K, Müller S, Seyda J, Liebmann M, Rustenbeck I, Scherneck S. PyCreas: a tool for quantification of localization and distribution of endocrine cell types in the islets of Langerhans. Front Endocrinol (Lausanne) 2023; 14:1250023. [PMID: 37772078 PMCID: PMC10523144 DOI: 10.3389/fendo.2023.1250023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
Manifest diabetes, but also conditions of increased insulin resistance such as pregnancy or obesity can lead to islet architecture remodeling. The contributing mechanisms are as poorly understood as the consequences of altered cell arrangement. For the quantification of the different cell types but also the frequency of different cell-cell contacts within the islets, different approaches exist. However, few methods are available to characterize islet cell distribution in a statistically valid manner. Here we describe PyCreas, an open-source tool written in Python that allows semi-automated analysis of islet cell distribution based on images of pancreatic sections stained by immunohistochemistry or immunofluorescence. To ensure that the PyCreas tool is suitable for quantitative analysis of cell distribution in the islets at different metabolic states, we studied the localization and distribution of alpha, beta, and delta cells during gestation and prediabetes. We compared the islet cell distribution of pancreatic islets from metabolically healthy NMRI mice with that of New Zealand obese (NZO) mice, which exhibit impaired glucose tolerance (IGT) both preconceptionally and during gestation, and from C57BL/6 N (B6) mice, which acquire this IGT only during gestation. Since substrain(s) of the NZO mice are known to show a variant in the Abcc8 gene, we additionally examined preconceptional SUR1 knock-out (SUR1-KO) mice. PyCreas provided quantitative evidence that alterations in the Abcc8 gene are associated with an altered distribution pattern of islet cells. Moreover, our data indicate that this cannot be a consequence of prolonged hyperglycemia, as islet architecture is already altered in the prediabetic state. Furthermore, the quantitative analysis suggests that states of transient IGT, such as during common gestational diabetes mellitus (GDM), are not associated with changes in islet architecture as observed during long-term IGT. PyCreas provides the ability to systematically analyze the localization and distribution of islet cells at different stages of metabolic disease to better understand the underlying pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stephan Scherneck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
7
|
Zhang J, Zheng Y, Martens L, Pfeiffer AFH. The Regulation and Secretion of Glucagon in Response to Nutrient Composition: Unraveling Their Intricate Mechanisms. Nutrients 2023; 15:3913. [PMID: 37764697 PMCID: PMC10536047 DOI: 10.3390/nu15183913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Glucagon was initially regarded as a hyperglycemic substance; however, recent research has revealed its broader role in metabolism, encompassing effects on glucose, amino acids (AAs), and lipid metabolism. Notably, the interplay of glucagon with nutrient intake, particularly of AAs, and non-nutrient components is central to its secretion. Fasting and postprandial hyperglucagonemia have long been linked to the development and progression of type 2 diabetes (T2DM). However, recent studies have brought to light the positive impact of glucagon agonists on lipid metabolism and energy homeostasis. This review explores the multifaceted actions of glucagon, focusing on its regulation, signaling pathways, and effects on glucose, AAs, and lipid metabolism. The interplay between glucagon and other hormones, including insulin and incretins, is examined to provide a mechanistic understanding of its functions. Notably, the liver-α-cell axis, which involves glucagon and amino acids, emerges as a critical aspect of metabolic regulation. The dysregulation of glucagon secretion and its impact on conditions such as T2DM are discussed. The review highlights the potential therapeutic applications of targeting the glucagon pathway in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Jiudan Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China;
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
| | - Yang Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Lisa Martens
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
- Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
| |
Collapse
|
8
|
Talarico GGM, Grégoire M, Weber JM, Mennigen JA. The mammalian insulin antagonist S961 does not exhibit insulin receptor antagonism in rainbow trout in vivo. JOURNAL OF FISH BIOLOGY 2023; 102:913-923. [PMID: 36704867 DOI: 10.1111/jfb.15335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Due to their reported 'glucose-intolerant' phenotype, rainbow trout have been the focus of comparative studies probing underlying endocrine mechanisms at the organismal, tissue and molecular level. A particular focus has been placed on the investigation of the comparative role of insulin, an important glucoregulatory hormone, and its interaction with macronutrients. A limiting factor in the comparative investigation of insulin is the current lack of reliable assays to quantify circulating mature and thus bioactive insulin. To circumvent this limitation, tissue-specific responsiveness to postprandial or exogenous insulin has been quantified at the level of post-translational modifications of cell signalling proteins. These studies revealed that the insulin responsiveness of these proteins and their post-translational modifications are evolutionarily highly conserved and thus provide useful and quantifiable proxy indices to investigate insulin function in rainbow trout. While the involvement of specific branches of the intracellular insulin signalling pathway (e.g., mTor) in rainbow trout glucoregulation have been successfully probed through pharmacological approaches, it would be useful to have a functionally validated insulin receptor antagonist to characterize the glucoregulatory role of the insulin receptor pathway in its entirety for this species. Here, we report two separate in vivo experiments to test the ability of the mammalian insulin receptor antagonist, S961, to efficiently block insulin signalling in liver and muscle in response to endogenously released insulin and to exogenously infused bovine insulin. We found that, irrespective of the experimental treatment or dose, activation of the insulin pathway in liver and muscle was not inhibited by S961, showing that its antagonistic effect does not extend to rainbow trout.
Collapse
Affiliation(s)
| | | | | | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
9
|
Yang X, Fan X, Feng J, Fan T, Li J, Huang L, Wan L, Yang H, Li H, Gong J, Zhang Y, Gao Q, Zheng F, Xu L, Lin H, Zhang D, Song H, Wang Y, Ma X, Sun Z, Cao C, Yang X, Zhong H, Fang Y, Wei C. GP73 blockade alleviates abnormal glucose homeostasis in diabetic mice. J Mol Endocrinol 2023; 70:JME-22-0103. [PMID: 36394986 DOI: 10.1530/jme-22-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Golgi protein 73 (GP73), also called Golgi membrane protein 1 (GOLM1), is a resident Golgi type II transmembrane protein and is considered as a serum marker for the detection of a variety of cancers. A recent work revealed the role of the secreted GP73 in stimulating liver glucose production and systemic glucose homeostasis. Since exaggerated hepatic glucose production plays a key role in the pathogenesis of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), GP73 may thus represent a potential therapeutic target for treating diabetic patients with pathologically elevated levels. Here, in this study, we found that the circulating GP73 levels were significantly elevated in T2DM and positively correlated with hemoglobin A1c. Notably, the aberrantly upregulated GP73 levels were indispensable for the enhanced protein kinase A signaling pathway associated with diabetes. In diet-induced obese mouse model, GP73 siRNA primarily targeting liver tissue was potently effective in alleviating abnormal glucose metabolism. Ablation of GP73 from whole animals also exerted a profound glucose-lowering effect. Importantly, neutralizing circulating GP73 improved glucose metabolism in streptozotocin (STZ) and high-fat diet/STZ-induced diabetic mice. We thus concluded that GP73 was a feasible therapeutic target for the treatment of diabetes.
Collapse
Affiliation(s)
- Xiaopan Yang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Xiaojing Fan
- Department of Endocrinology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiangyue Feng
- Beijing Sungen Biomedical Technology Co. Ltd., Beijing, China
| | - Tinghui Fan
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Jingfei Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Linfei Huang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Luming Wan
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Huan Yang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Huilong Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Jing Gong
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Yanhong Zhang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Qi Gao
- Beijing Sungen Biomedical Technology Co. Ltd., Beijing, China
| | - Fei Zheng
- Beijing Sungen Biomedical Technology Co. Ltd., Beijing, China
| | - Lei Xu
- Beijing Sungen Biomedical Technology Co. Ltd., Beijing, China
| | - Haotian Lin
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Dandan Zhang
- Department of Laboratory, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Laboratory, General Hospital of Armed Police Forces, Anhui Medical University, Hefei, China
| | - Hongbin Song
- Department of Laboratory, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Laboratory, General Hospital of Armed Police Forces, Anhui Medical University, Hefei, China
| | - Yufei Wang
- Department of Laboratory, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Laboratory, General Hospital of Armed Police Forces, Anhui Medical University, Hefei, China
| | - Xueping Ma
- Department of Laboratory, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Laboratory, General Hospital of Armed Police Forces, Anhui Medical University, Hefei, China
| | - Zhiwei Sun
- Beijing Sungen Biomedical Technology Co. Ltd., Beijing, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Xiaoli Yang
- Department of Laboratory, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Laboratory, General Hospital of Armed Police Forces, Anhui Medical University, Hefei, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Yi Fang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
- Department of Endocrinology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Viloria K, Nasteska D, Ast J, Hasib A, Cuozzo F, Heising S, Briant LJB, Hewison M, Hodson DJ. GC-Globulin/Vitamin D-Binding Protein Is Required for Pancreatic α-Cell Adaptation to Metabolic Stress. Diabetes 2023; 72:275-289. [PMID: 36445949 DOI: 10.2337/db22-0326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022]
Abstract
GC-globulin (GC), or vitamin D-binding protein, is a multifunctional protein involved in the transport of circulating vitamin 25(OH)D and fatty acids, as well as actin scavenging. In the pancreatic islets, the gene encoding GC, GC/Gc, is highly localized to glucagon-secreting α-cells. Despite this, the role of GC in α-cell function is poorly understood. We previously showed that GC is essential for α-cell morphology, electrical activity, and glucagon secretion. We now show that loss of GC exacerbates α-cell failure during metabolic stress. High-fat diet-fed GC-/- mice have basal hyperglucagonemia, which is associated with decreased α-cell size, impaired glucagon secretion and Ca2+ fluxes, and changes in glucose-dependent F-actin remodelling. Impairments in glucagon secretion can be rescued using exogenous GC to replenish α-cell GC levels, increase glucagon granule area, and restore the F-actin cytoskeleton. Lastly, GC levels decrease in α-cells of donors with type 2 diabetes, which is associated with changes in α-cell mass, morphology, and glucagon expression. Together, these data demonstrate an important role for GC in α-cell adaptation to metabolic stress.
Collapse
Affiliation(s)
- Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Julia Ast
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Annie Hasib
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Federica Cuozzo
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Silke Heising
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Linford J B Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| | - Martin Hewison
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| |
Collapse
|
11
|
Abstract
The islets of Langerhans are highly organized structures that have species-specific, three-dimensional tissue architecture. Islet architecture is critical for proper hormone secretion in response to nutritional stimuli. Islet architecture is disrupted in all types of diabetes mellitus and in cadaveric islets for transplantation during isolation, culture, and perfusion, limiting patient outcomes. Moreover, recapitulating native islet architecture remains a key challenge for in vitro generation of islets from stem cells. In this review, we discuss work that has led to the current understanding of determinants of pancreatic islet architecture, and how this architecture is maintained or disrupted during tissue remodeling in response to normal and pathological metabolic changes. We further discuss both empirical and modeling data that highlight the importance of islet architecture for islet function.
Collapse
Affiliation(s)
- Melissa T. Adams
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Barak Blum
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
- CONTACT Barak Blum Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI53705, USA
| |
Collapse
|
12
|
Heaton ES, Jin S. Importance of multiple endocrine cell types in islet organoids for type 1 diabetes treatment. Transl Res 2022; 250:68-83. [PMID: 35772687 PMCID: PMC11554285 DOI: 10.1016/j.trsl.2022.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022]
Abstract
Almost 50 years ago, scientists developed the bi-hormonal abnormality hypothesis, stating that diabetes is not caused merely by the impaired insulin signaling. Instead, the presence of inappropriate level of glucagon is a prerequisite for the development of type 1 diabetes (T1D). It is widely understood that the hormones insulin and glucagon, secreted by healthy β and α cells respectively, operate in a negative feedback loop to maintain the body's blood sugar levels. Despite this fact, traditional T1D treatments rely solely on exogenous insulin injections. Furthermore, research on cell-based therapies and stem-cell derived tissues tends to focus on the replacement of β cells alone. In vivo, the pancreas is made up of 4 major endocrine cell types, that is, insulin-producing β cells, glucagon-producing α cells, somatostatin-producing δ cells, and pancreatic polypeptide-producing γ cells. These distinct cell types are involved synergistically in regulating islet functions. Therefore, it is necessary to produce a pancreatic islet organoid in vitro consisting of all these cell types that adequately replaces the function of the native islets. In this review, we describe the unique function of each pancreatic endocrine cell type and their interactions contributing to the maintenance of normoglycemia. Furthermore, we detail current sources of whole islets and techniques for their long-term expansion and culture. In addition, we highlight a vast potential of the pancreatic islet organoids for transplantation and diabetes research along with updated new approaches for successful transplantation using stem cell-derived islet organoids.
Collapse
Affiliation(s)
- Emma S Heaton
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, New York
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, New York; Center of Biomanufacturing for Regenerative Medicine, State University of New York at Binghamton, Binghamton, New York.
| |
Collapse
|
13
|
Affiliation(s)
- Maria F Rubin de Celis
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
14
|
Lafferty RA, McShane LM, Franklin ZJ, Flatt PR, O’Harte FPM, Irwin N. Sustained glucagon receptor antagonism in insulin-deficient high-fat-fed mice. J Endocrinol 2022; 255:91-101. [PMID: 36005280 PMCID: PMC9513641 DOI: 10.1530/joe-22-0106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Discerning modification to the amino acid sequence of native glucagon can generate specific glucagon receptor (GCGR) antagonists, that include desHis1Pro4Glu9-glucagon and the acylated form desHis1Pro4Glu9(Lys12PAL)-glucagon. In the current study, we have evaluated the metabolic benefits of once-daily injection of these peptide-based GCGR antagonists for 18 days in insulin-resistant high-fat-fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF-STZ mice. Administration of desHis1Pro4Glu9-glucagon moderately (P < 0.05) decreased STZ-induced elevations of food intake. Body weight was not different between groups of HFF-STZ mice and both treatment interventions delayed (P < 0.05) the onset of hyperglycaemia. The treatments reduced (P < 0.05-P < 0.001) circulating and pancreatic glucagon, whilst desHis1Pro4Glu9(Lys12PAL)-glucagon also substantially increased (P < 0.001) pancreatic insulin stores. Oral glucose tolerance was appreciably improved (P < 0.05) by both antagonists, despite the lack of augmentation of glucose-stimulated insulin release. Interestingly, positive effects on i.p. glucose tolerance were less obvious suggesting important beneficial effects on gut function. Metabolic benefits were accompanied by decreased (P < 0.05-P < 0.01) locomotor activity and increases (P < 0.001) in energy expenditure and respiratory exchange ratio in both treatment groups. In addition, desHis1Pro4Glu9-glucagon increased (P < 0.01-P < 0.001) O2 consumption and CO2 production. Together, these data provide further evidence that peptidic GCGR antagonists are effective treatment options for obesity-driven forms of diabetes, even when accompanied by insulin deficiency.
Collapse
Affiliation(s)
- Ryan A Lafferty
- Biomedical Sciences Research Institute, Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Laura M McShane
- Biomedical Sciences Research Institute, Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Zara J Franklin
- Biomedical Sciences Research Institute, Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Biomedical Sciences Research Institute, Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Finbarr P M O’Harte
- Biomedical Sciences Research Institute, Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- Biomedical Sciences Research Institute, Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
- Correspondence should be addressed to N Irwin:
| |
Collapse
|
15
|
Vasileva A, Marx T, Beaudry JL, Stern JH. Glucagon receptor signaling at white adipose tissue does not regulate lipolysis. Am J Physiol Endocrinol Metab 2022; 323:E389-E401. [PMID: 36002172 PMCID: PMC9576180 DOI: 10.1152/ajpendo.00078.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although the physiological role of glucagon receptor signaling in the liver is well defined, the impact of glucagon receptor (Gcgr) signaling on white adipose tissue (WAT) continues to be debated. Although numerous studies propose that glucagon stimulates WAT lipolysis, we lack evidence that physiological concentrations of glucagon regulate WAT lipolysis. In turn, we performed studies in both wild-type and WAT Gcgr knockout mice to determine if glucagon regulates lipolysis at WAT in the mouse. We assessed the effects of fasting and acute exogenous glucagon administration in wild-type C57BL/6J and GcgrAdipocyte+/+ versus GcgrAdipocyte-/- mice. Using an ex vivo lipolysis protocol, we further examined the direct effects of glucagon on physiologically (fasted) and pharmacologically stimulated lipolysis. We found that adipocyte Gcgr expression did not affect fasting-induced lipolysis or hepatic lipid accumulation in lean or diet-induced obese (DIO) mice. Acute glucagon administration did not affect serum nonesterified fatty acids (NEFA), leptin, or adiponectin concentration, but did increase serum glucose and FGF21, regardless of genotype. Glucagon did not affect ex vivo lipolysis in explants from either GcgrAdipocyte+/+ or GcgrAdipocyte-/- mice. Gcgr expression did not affect fasting-induced or isoproterenol-stimulated lipolysis from WAT explants. Moreover, glucagon receptor signaling at WAT did not affect body weight or glucose homeostasis in lean or DIO mice. Our studies have established that physiological levels of glucagon do not regulate WAT lipolysis, either directly or indirectly. Given that glucagon receptor agonism can improve dyslipidemia and decrease hepatic lipid accumulation, it is critical to understand the tissue-specific effects of glucagon receptor action. Unlike the crucial role of hepatic glucagon receptor signaling in maintaining glucose and lipid homeostasis, we observed no metabolic consequence of WAT glucagon receptor deletion.NEW & NOTEWORTHY It has been postulated that glucagon stimulates lipolysis and fatty acid release from white adipose tissue. We observed no metabolic effects of eliminating or activating glucagon receptor signaling at white adipose tissue.
Collapse
Affiliation(s)
- Anastasiia Vasileva
- Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona
| | - Tyler Marx
- Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona
| | - Jacqueline L Beaudry
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer H Stern
- Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
16
|
Habegger KM. Cross Talk Between Insulin and Glucagon Receptor Signaling in the Hepatocyte. Diabetes 2022; 71:1842-1851. [PMID: 35657690 PMCID: PMC9450567 DOI: 10.2337/dbi22-0002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022]
Abstract
While the consumption of external energy (i.e., feeding) is essential to life, this action induces a temporary disturbance of homeostasis in an animal. A primary example of this effect is found in the regulation of glycemia. In the fasted state, stored energy is released to maintain physiological glycemic levels. Liver glycogen is liberated to glucose, glycerol and (glucogenic) amino acids are used to build new glucose molecules (i.e., gluconeogenesis), and fatty acids are oxidized to fuel long-term energetic demands. This regulation is driven primarily by the counterregulatory hormones epinephrine, growth hormone, cortisol, and glucagon. Conversely, feeding induces a rapid influx of diverse nutrients, including glucose, that disrupt homeostasis. Consistently, a host of hormonal and neural systems under the coordination of insulin are engaged in the transition from fasting to prandial states to reduce this disruption. The ultimate action of these systems is to appropriately store the newly acquired energy and to return to the homeostatic norm. Thus, at first glance it is tempting to assume that glucagon is solely antagonistic regarding the anabolic effects of insulin. We have been intrigued by the role of glucagon in the prandial transition and have attempted to delineate its role as beneficial or inhibitory to glycemic control. The following review highlights this long-known yet poorly understood hormone.
Collapse
Affiliation(s)
- Kirk M. Habegger
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
17
|
Insights into the Role of Glucagon Receptor Signaling in Metabolic Regulation from Pharmacological Inhibition and Tissue-Specific Knockout Models. Biomedicines 2022; 10:biomedicines10081907. [PMID: 36009454 PMCID: PMC9405517 DOI: 10.3390/biomedicines10081907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
While glucagon has long been recognized as the primary counter hormone to insulin’s actions, it has recently gained recognition as a metabolic regulator with its effects extending beyond control of glycemia. Recently developed models of tissue-specific glucagon receptor knockouts have advanced our understanding of this hormone, providing novel insight into the role it plays within organs as well as its systemic effects. Studies where the pharmacological blockade of the glucagon receptor has been employed have proved similarly valuable in the study of organ-specific and systemic roles of glucagon signaling. Studies carried out employing these tools demonstrate that glucagon indeed plays a role in regulating glycemia, but also in amino acid and lipid metabolism, systemic endocrine, and paracrine function, and in the response to cardiovascular injury. Here, we briefly review recent progress in our understanding of glucagon’s role made through inhibition of glucagon receptor signaling utilizing glucagon receptor antagonists and tissue specific genetic knockout models.
Collapse
|
18
|
Cui X, Feng J, Wei T, Gu L, Wang D, Lang S, Yang K, Yang J, Yan H, Wei R, Hong T. Pro-α-cell-derived β-cells contribute to β-cell neogenesis induced by antagonistic glucagon receptor antibody in type 2 diabetic mice. iScience 2022; 25:104567. [PMID: 35789836 PMCID: PMC9249614 DOI: 10.1016/j.isci.2022.104567] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
The deficiency of pancreatic β-cells is the key pathogenesis of diabetes, while glucagon-secreting α-cells are another player in the development of diabetes. Here, we aimed to investigate the effects of glucagon receptor (GCGR) antagonism on β-cell neogenesis in type 2 diabetic (T2D) mice and explore the origins of the neogenic β-cells. We showed that GCGR monoclonal antibody (mAb) elevated plasma insulin level and increased β-cell mass in T2D mice. By using α-cell lineage-tracing (glucagon-cre-β-gal) mice and inducible Ngn3+ pancreatic endocrine progenitor lineage-tracing (Ngn3-CreERT2-tdTomato) mice, we found that GCGR mAb treatment promoted α-cell regression to progenitors, and induced Ngn3+ progenitor reactivation and differentiation toward β-cells. Besides, GCGR mAb upregulated the expression levels of β-cell regeneration-associated genes and promoted insulin secretion in primary mouse islets, indicative of a direct effect on β-cell identity. Our findings suggest that GCGR antagonism not only increases insulin secretion but also promotes pro-α-cell-derived β-cell neogenesis in T2D mice. Blockage of α-cell-derived glucagon promotes β-cell regeneration in situ in type 2 diabetic (T2D) mice Glucagon receptor (GCGR) mAb induces the trans-differentiation of α-cells to β-cells GCGR mAb promotes α-cell regression to pancreatic endocrine progenitors GCGR mAb induces Ngn3+ progenitor reactivation and differentiation toward β-cells
Collapse
Affiliation(s)
- Xiaona Cui
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Jin Feng
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Liangbiao Gu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Dandan Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Shan Lang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Hai Yan
- REMD Biotherapeutics, Camarillo, CA 93012, USA
- Beijing Cosci-REMD, Beijing 102206, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
- Corresponding author
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
- Corresponding author
| |
Collapse
|
19
|
Trinh B, Peletier M, Simonsen C, Plomgaard P, Karstoft K, Pedersen BK, van Hall G, Ellingsgaard H. Amino Acid Metabolism and Protein Turnover in Lean and Obese Humans During Exercise-Effect of IL-6 Receptor Blockade. J Clin Endocrinol Metab 2022; 107:1854-1864. [PMID: 35442403 DOI: 10.1210/clinem/dgac239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Interleukin-6 (IL-6) is implicated in skeletal muscle wasting and in regulating skeletal muscle hypertrophy in the healthy state. OBJECTIVE This work aimed to determine the role of IL-6 in regulating systemic protein and amino acid metabolism during rest, exercise, and recovery in lean and obese humans. METHODS In a nonrandomized, single-blind design, 12 lean and 9 obese individuals were infused first with 0.9% saline (Saline), secondly with the IL-6 receptor antibody tocilizumab (Acute IL-6R ab), and 21 days later with saline while still under tocilizumab influence (Chronic IL-6R ab). Outcome measures were determined before, during, and after 90 minutes of exercise at 40% Wattmax by isotope dilution technique, using primed continuous infusion of L-[ring-D5]phenylalanine and L-[D2]tyrosine. Main outcomes measures included systemic protein turnover and plasma amino acid concentrations. RESULTS We saw no effect of acute or chronic IL-6 receptor blockade on protein turnover. In lean individuals, chronic IL-6 receptor blockade increased plasma concentrations of total amino acids (rest Δ + 186 μmol/L; 95% CI, 40-332; recovery Δ + 201 μmol/L; 95% CI, 55-347) and essential amino acids (rest Δ + 43 μmol/L; 95% CI, 12-76; recovery Δ + 45 μmol/L; 95% CI, 13-77) independently of exercise but had no such effect in obese individuals (total amino acids rest Δ + 63 μmol/L; 95% CI, -170 to 295, recovery Δ - 23 μmol/L, 95% CI, -256 to 210; essential amino acids rest Δ + 26 μmol/L; 95% CI, -21 to 73, recovery Δ + 11 μmol/L; 95% CI, -36 to 58). CONCLUSION IL-6 receptor blockade has no effect on protein turnover in fasting lean and obese humans during rest, exercise, and recovery. Chronic IL-6 receptor blockade increases total and essential amino acid concentrations only in lean individuals.
Collapse
Affiliation(s)
- Beckey Trinh
- The Centre for Physical Activity Research, Rigshospitalet, Section 7641, Copenhagen 2100, Denmark
| | - Merel Peletier
- The Centre for Physical Activity Research, Rigshospitalet, Section 7641, Copenhagen 2100, Denmark
| | - Casper Simonsen
- The Centre for Physical Activity Research, Rigshospitalet, Section 7641, Copenhagen 2100, Denmark
| | - Peter Plomgaard
- The Centre for Physical Activity Research, Rigshospitalet, Section 7641, Copenhagen 2100, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kristian Karstoft
- The Centre for Physical Activity Research, Rigshospitalet, Section 7641, Copenhagen 2100, Denmark
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, Copenhagen 2400, Denmark
| | - Bente Klarlund Pedersen
- The Centre for Physical Activity Research, Rigshospitalet, Section 7641, Copenhagen 2100, Denmark
| | - Gerrit van Hall
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen 2100, Denmark
- Clinical Metabolomics Core Facility, Rigshospitalet, Copenhagen 2100, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Helga Ellingsgaard
- The Centre for Physical Activity Research, Rigshospitalet, Section 7641, Copenhagen 2100, Denmark
| |
Collapse
|
20
|
Glucagon-receptor-antagonism-mediated β-cell regeneration as an effective anti-diabetic therapy. Cell Rep 2022; 39:110872. [PMID: 35649369 DOI: 10.1016/j.celrep.2022.110872] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 02/12/2022] [Accepted: 05/04/2022] [Indexed: 01/10/2023] Open
Abstract
Type 1 diabetes mellitus (T1D) is a chronic disease with potentially severe complications, and β-cell deficiency underlies this disease. Despite active research, no therapy to date has been able to induce β-cell regeneration in humans. Here, we discover the β-cell regenerative effects of glucagon receptor antibody (anti-GcgR). Treatment with anti-GcgR in mouse models of β-cell deficiency leads to reversal of hyperglycemia, increase in plasma insulin levels, and restoration of β-cell mass. We demonstrate that both β-cell proliferation and α- to β-cell transdifferentiation contribute to anti-GcgR-induced β-cell regeneration. Interestingly, anti-GcgR-induced α-cell hyperplasia can be uncoupled from β-cell regeneration after antibody clearance from the body. Importantly, we are able to show that anti-GcgR-induced β-cell regeneration is also observed in non-human primates. Furthermore, anti-GcgR and anti-CD3 combination therapy reverses diabetes and increases β-cell mass in a mouse model of autoimmune diabetes.
Collapse
|
21
|
Franklin ZJ, Lafferty RA, Flatt PR, McShane LM, O'Harte FP, Irwin N. Metabolic effects of combined glucagon receptor antagonism and glucagon-like peptide-1 receptor agonism in high fat fed mice. Biochimie 2022; 199:60-67. [DOI: 10.1016/j.biochi.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 01/19/2023]
|
22
|
Acetyl-CoA-carboxylase 1 (ACC1) plays a critical role in glucagon secretion. Commun Biol 2022; 5:238. [PMID: 35304577 PMCID: PMC8933412 DOI: 10.1038/s42003-022-03170-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Abstract
Dysregulated glucagon secretion from pancreatic alpha-cells is a key feature of type-1 and type-2 diabetes (T1D and T2D), yet our mechanistic understanding of alpha-cell function is underdeveloped relative to insulin-secreting beta-cells. Here we show that the enzyme acetyl-CoA-carboxylase 1 (ACC1), which couples glucose metabolism to lipogenesis, plays a key role in the regulation of glucagon secretion. Pharmacological inhibition of ACC1 in mouse islets or αTC9 cells impaired glucagon secretion at low glucose (1 mmol/l). Likewise, deletion of ACC1 in alpha-cells in mice reduced glucagon secretion at low glucose in isolated islets, and in response to fasting or insulin-induced hypoglycaemia in vivo. Electrophysiological recordings identified impaired KATP channel activity and P/Q- and L-type calcium currents in alpha-cells lacking ACC1, explaining the loss of glucose-sensing. ACC-dependent alterations in S-acylation of the KATP channel subunit, Kir6.2, were identified by acyl-biotin exchange assays. Histological analysis identified that loss of ACC1 caused a reduction in alpha-cell area of the pancreas, glucagon content and individual alpha-cell size, further impairing secretory capacity. Loss of ACC1 also reduced the release of glucagon-like peptide 1 (GLP-1) in primary gastrointestinal crypts. Together, these data reveal a role for the ACC1-coupled pathway in proglucagon-expressing nutrient-responsive endocrine cell function and systemic glucose homeostasis.
Collapse
|
23
|
Pan A, Sun XM, Huang FQ, Liu JF, Cai YY, Wu X, Alolga RN, Li P, Liu BL, Liu Q, Qi LW. The mitochondrial β-oxidation enzyme HADHA restrains hepatic glucagon response by promoting β-hydroxybutyrate production. Nat Commun 2022; 13:386. [PMID: 35046401 PMCID: PMC8770464 DOI: 10.1038/s41467-022-28044-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 01/06/2022] [Indexed: 11/09/2022] Open
Abstract
Disordered hepatic glucagon response contributes to hyperglycemia in diabetes. The regulators involved in glucagon response are less understood. This work aims to investigate the roles of mitochondrial β-oxidation enzyme HADHA and its downstream ketone bodies in hepatic glucagon response. Here we show that glucagon challenge impairs expression of HADHA. Liver-specific HADHA overexpression reversed hepatic gluconeogenesis in mice, while HADHA knockdown augmented glucagon response. Stable isotope tracing shows that HADHA promotes ketone body production via β-oxidation. The ketone body β-hydroxybutyrate (BHB) but not acetoacetate suppresses gluconeogenesis by selectively inhibiting HDAC7 activity via interaction with Glu543 site to facilitate FOXO1 nuclear exclusion. In HFD-fed mice, HADHA overexpression improved metabolic disorders, and these effects are abrogated by knockdown of BHB-producing enzyme. In conclusion, BHB is responsible for the inhibitory effect of HADHA on hepatic glucagon response, suggesting that HADHA activation or BHB elevation by pharmacological intervention hold promise in treating diabetes.
Collapse
Affiliation(s)
- An Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Meng Sun
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng-Qing Huang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jin-Feng Liu
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuan-Yuan Cai
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Raphael N Alolga
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Bao-Lin Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qun Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China.
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
24
|
Bossart M, Wagner M, Elvert R, Evers A, Hübschle T, Kloeckener T, Lorenz K, Moessinger C, Eriksson O, Velikyan I, Pierrou S, Johansson L, Dietert G, Dietz-Baum Y, Kissner T, Nowotny I, Einig C, Jan C, Rharbaoui F, Gassenhuber J, Prochnow HP, Agueusop I, Porksen N, Smith WB, Nitsche A, Konkar A. Effects on weight loss and glycemic control with SAR441255, a potent unimolecular peptide GLP-1/GIP/GCG receptor triagonist. Cell Metab 2022; 34:59-74.e10. [PMID: 34932984 DOI: 10.1016/j.cmet.2021.12.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/13/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Unimolecular triple incretins, combining the activity of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG), have demonstrated reduction in body weight and improved glucose control in rodent models. We developed SAR441255, a synthetic peptide agonist of the GLP-1, GCG, and GIP receptors, structurally based on the exendin-4 sequence. SAR441255 displays high potency with balanced activation of all three target receptors. In animal models, metabolic outcomes were superior to results with a dual GLP-1/GCG receptor agonist. Preclinical in vivo positron emission tomography imaging demonstrated SAR441255 binding to GLP-1 and GCG receptors. In healthy subjects, SAR441255 improved glycemic control during a mixed-meal tolerance test and impacted biomarkers for GCG and GIP receptor activation. Single doses of SAR441255 were well tolerated. The results demonstrate that integrating GIP activity into dual GLP-1 and GCG receptor agonism provides improved effects on weight loss and glycemic control while buffering the diabetogenic risk of chronic GCG receptor agonism.
Collapse
Affiliation(s)
- Martin Bossart
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany.
| | - Michael Wagner
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany
| | | | - Andreas Evers
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany
| | | | | | - Katrin Lorenz
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany
| | | | - Olof Eriksson
- Antaros Medical AB, Mölndal, Sweden; Science For Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Irina Velikyan
- Science For Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; PET Centre, Centre for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | | | | | - Irene Nowotny
- Translational Medicine & Early Development, Sanofi, Frankfurt, Germany
| | | | - Christelle Jan
- Clinical Sciences & Operations, Sanofi, Chilly-Mazarin, France
| | - Faiza Rharbaoui
- Translational Medicine & Early Development, Sanofi, Frankfurt, Germany
| | | | | | | | | | - William B Smith
- NOCCR Alliance for Multispecialty Research (AMR), Knoxville, TN, USA
| | | | | |
Collapse
|
25
|
Liu T, Ji RL, Tao YX. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. Pharmacol Ther 2021; 234:108044. [PMID: 34822948 DOI: 10.1016/j.pharmthera.2021.108044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors involved in the regulation of almost all known physiological processes. Dysfunctions of GPCR-mediated signaling have been shown to cause various diseases. The prevalence of obesity and type 2 diabetes mellitus (T2DM), two strongly associated disorders, is increasing worldwide, with tremendous economical and health burden. New safer and more efficacious drugs are required for successful weight reduction and T2DM treatment. Multiple GPCRs are involved in the regulation of energy and glucose homeostasis. Mutations in these GPCRs contribute to the development and progression of obesity and T2DM. Therefore, these receptors can be therapeutic targets for obesity and T2DM. Indeed some of these receptors, such as melanocortin-4 receptor and glucagon-like peptide 1 receptor, have provided important new drugs for treating obesity and T2DM. This review will focus on the naturally occurring mutations of several GPCRs associated with obesity and T2DM, especially incorporating recent large genomic data and insights from structure-function studies, providing leads for future investigations.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States.
| |
Collapse
|
26
|
van der Velden WJC, Lindquist P, Madsen JS, Stassen RHMJ, Wewer Albrechtsen NJ, Holst JJ, Hauser AS, Rosenkilde MM. Molecular and in vivo phenotyping of missense variants of the human glucagon receptor. J Biol Chem 2021; 298:101413. [PMID: 34801547 PMCID: PMC8829087 DOI: 10.1016/j.jbc.2021.101413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023] Open
Abstract
Naturally occurring missense variants of G protein–coupled receptors with loss of function have been linked to metabolic disease in case studies and in animal experiments. The glucagon receptor, one such G protein–coupled receptor, is involved in maintaining blood glucose and amino acid homeostasis; however, loss-of-function mutations of this receptor have not been systematically characterized. Here, we observed fewer glucagon receptor missense variants than expected, as well as lower allele diversity and fewer variants with trait associations as compared with other class B1 receptors. We performed molecular pharmacological phenotyping of 38 missense variants located in the receptor extracellular domain, at the glucagon interface, or with previously suggested clinical implications. These variants were characterized in terms of cAMP accumulation to assess glucagon-induced Gαs coupling, and of recruitment of β-arrestin-1/2. Fifteen variants were impaired in at least one of these downstream functions, with six variants affected in both cAMP accumulation and β-arrestin-1/2 recruitment. For the eight variants with decreased Gαs signaling (D63ECDN, P86ECDS, V96ECDE, G125ECDC, R2253.30H, R3085.40W, V3686.59M, and R3787.35C) binding experiments revealed preserved glucagon affinity, although with significantly reduced binding capacity. Finally, using the UK Biobank, we found that variants with wildtype-like Gαs signaling did not associate with metabolic phenotypes, whereas carriers of cAMP accumulation-impairing variants displayed a tendency toward increased risk of obesity and increased body mass and blood pressure. These observations are in line with the essential role of the glucagon system in metabolism and support that Gαs is the main signaling pathway effecting the physiological roles of the glucagon receptor.
Collapse
Affiliation(s)
- Wijnand J C van der Velden
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Lindquist
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob S Madsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roderick H M J Stassen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark; Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Asadi F, Dhanvantari S. Pathways of Glucagon Secretion and Trafficking in the Pancreatic Alpha Cell: Novel Pathways, Proteins, and Targets for Hyperglucagonemia. Front Endocrinol (Lausanne) 2021; 12:726368. [PMID: 34659118 PMCID: PMC8511682 DOI: 10.3389/fendo.2021.726368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Patients with diabetes mellitus exhibit hyperglucagonemia, or excess glucagon secretion, which may be the underlying cause of the hyperglycemia of diabetes. Defective alpha cell secretory responses to glucose and paracrine effectors in both Type 1 and Type 2 diabetes may drive the development of hyperglucagonemia. Therefore, uncovering the mechanisms that regulate glucagon secretion from the pancreatic alpha cell is critical for developing improved treatments for diabetes. In this review, we focus on aspects of alpha cell biology for possible mechanisms for alpha cell dysfunction in diabetes: proglucagon processing, intrinsic and paracrine control of glucagon secretion, secretory granule dynamics, and alterations in intracellular trafficking. We explore possible clues gleaned from these studies in how inhibition of glucagon secretion can be targeted as a treatment for diabetes mellitus.
Collapse
Affiliation(s)
- Farzad Asadi
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Program in Metabolism and Diabetes, Lawson Health Research Institute, London, ON, Canada
| | - Savita Dhanvantari
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Program in Metabolism and Diabetes, Lawson Health Research Institute, London, ON, Canada
- Imaging Research Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
28
|
Glucagon blockade restores functional β-cell mass in type 1 diabetic mice and enhances function of human islets. Proc Natl Acad Sci U S A 2021; 118:2022142118. [PMID: 33619103 PMCID: PMC7936318 DOI: 10.1073/pnas.2022142118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Both type 1 and type 2 diabetes are associated with reduced β-cell mass or function, resulting from decreased proliferation and increased apoptosis. Understanding the signals governing β-cell survival and regeneration is critical for developing strategies to maintain healthy populations of these cells in individuals. Both forms of diabetes are associated with hyperglucagonemia and an increased plasma glucagon:insulin ratio. Glucagon excess contributes to metabolic dysregulation of the diabetic state and glucagon receptor antagonism is a potential target area for the treatment and prevention of diabetes. Our studies presented here suggest that blockade of glucagon signaling lowers glycemia in mouse models of type 1 diabetes while enhancing formation of functional β-cell mass and production of insulin-positive cells from α-cell precursors. We evaluated the potential for a monoclonal antibody antagonist of the glucagon receptor (Ab-4) to maintain glucose homeostasis in type 1 diabetic rodents. We noted durable and sustained improvements in glycemia which persist long after treatment withdrawal. Ab-4 promoted β-cell survival and enhanced the recovery of insulin+ islet mass with concomitant increases in circulating insulin and C peptide. In PANIC-ATTAC mice, an inducible model of β-cell apoptosis which allows for robust assessment of β-cell regeneration following caspase-8–induced diabetes, Ab-4 drove a 6.7-fold increase in β-cell mass. Lineage tracing suggests that this restoration of functional insulin-producing cells was at least partially driven by α-cell-to-β-cell conversion. Following hyperglycemic onset in nonobese diabetic (NOD) mice, Ab-4 treatment promoted improvements in C-peptide levels and insulin+ islet mass was dramatically increased. Lastly, diabetic mice receiving human islet xenografts showed stable improvements in glycemic control and increased human insulin secretion.
Collapse
|
29
|
Wong XK, Yeong KY. A Patent Review on the Current Developments of Benzoxazoles in Drug Discovery. ChemMedChem 2021; 16:3237-3262. [PMID: 34289258 DOI: 10.1002/cmdc.202100370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/11/2021] [Indexed: 12/11/2022]
Abstract
The benzoxazole moiety is widely found in various natural compounds, which are often found to be biologically active. Due to its versatile biological properties, benzoxazole has been incorporated as an essential pharmacophore and substructure in many medicinal compounds. In the past years, numerous benzoxazole derivatives have been synthesised and evaluated for their biological potential. The wide range in therapeutic potential of benzoxazole derivatives is related to the favourable interactions of the benzoxazole moiety with different protein targets. Herein we review the biological activities of benzoxazole derivatives patented within the past six years. Using the Lens database, granted patents issued from 2015 to 2020 were retrieved. The patented benzoxazole derivatives demonstrated excellent activity against various protein targets and diseases, with some reaching clinical trial stage. Pharmacological and medicinal aspects of patented benzoxazole derivatives are discussed. The recent development and drawbacks are also reviewed.
Collapse
Affiliation(s)
- Xi Khai Wong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| |
Collapse
|
30
|
Wang J, Osada T, Morse MA, Calzone F, Yan H, Thai D, Lyerly HK. Targeting the glucagon receptor signaling pathway as a novel strategy to counteract PI3K inhibitor induced hyperglycemia while sustaining tumor PI3K inhibition. Leuk Lymphoma 2021; 62:1761-1764. [PMID: 33576297 DOI: 10.1080/10428194.2021.1881504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jie Wang
- Department of Medicine, Duke Cancer Institute, Durham, NC, USA
| | - Takuya Osada
- Department of Surgery, Duke Cancer Institute, Durham, NC, USA
| | - Michael A Morse
- Department of Medicine, Duke Cancer Institute, Durham, NC, USA
| | | | - Hai Yan
- REMD Biotherapeutics, Camarillo, CA, USA
| | - Dung Thai
- REMD Biotherapeutics, Camarillo, CA, USA
| | - H Kim Lyerly
- Department of Surgery, Duke Cancer Institute, Durham, NC, USA
| |
Collapse
|
31
|
van de Venter M, Didloff J, Reddy S, Swanepoel B, Govender S, Dambuza NS, Williams S, Koekemoer TC, Venables L. Wild-Type Zebrafish ( Danio rerio) Larvae as a Vertebrate Model for Diabetes and Comorbidities: A Review. Animals (Basel) 2020; 11:E54. [PMID: 33396883 PMCID: PMC7824285 DOI: 10.3390/ani11010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Zebrafish have become a popular alternative to higher animals in biomedical and pharmaceutical research. The development of stable mutant lines to model target specific aspects of many diseases, including diabetes, is well reported. However, these mutant lines are much more costly and challenging to maintain than wild-type zebrafish and are simply not an option for many research facilities. As an alternative to address the disadvantages of advanced mutant lines, wild-type larvae may represent a suitable option. In this review, we evaluate organ development in zebrafish larvae and discuss established methods that use wild-type zebrafish larvae up to seven days post fertilization to test for potential drug candidates for diabetes and its commonly associated conditions of oxidative stress and inflammation. This provides an up to date overview of the relevance of wild-type zebrafish larvae as a vertebrate antidiabetic model and confidence as an alternative tool for preclinical studies. We highlight the advantages and disadvantages of established methods and suggest recommendations for future developments to promote the use of zebrafish, specifically larvae, rather than higher animals in the early phase of antidiabetic drug discovery.
Collapse
Affiliation(s)
- Maryna van de Venter
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Jenske Didloff
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Shanika Reddy
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Bresler Swanepoel
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Sharlene Govender
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Ntokozo Shirley Dambuza
- Department of Pharmacy, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa;
| | - Saralene Williams
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Trevor Craig Koekemoer
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Luanne Venables
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| |
Collapse
|
32
|
Roostalu U, Lercke Skytte J, Gravesen Salinas C, Klein T, Vrang N, Jelsing J, Hecksher-Sørensen J. 3D quantification of changes in pancreatic islets in mouse models of diabetes type I and II. Dis Model Mech 2020; 13:dmm045351. [PMID: 33158929 PMCID: PMC7758639 DOI: 10.1242/dmm.045351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/16/2020] [Indexed: 01/16/2023] Open
Abstract
Diabetes is characterized by rising levels of blood glucose and is often associated with a progressive loss of insulin-producing beta cells. Recent studies have demonstrated that it is possible to regenerate new beta cells through proliferation of existing beta cells or trans-differentiation of other cell types into beta cells, raising hope that diabetes can be cured through restoration of functional beta cell mass. Efficient quantification of beta cell mass and islet characteristics is needed to enhance drug discovery for diabetes. Here, we report a 3D quantitative imaging platform for unbiased evaluation of changes in islets in mouse models of type I and II diabetes. To determine whether the method can detect pharmacologically induced changes in beta cell volume, mice were treated for 14 days with either vehicle or the insulin receptor antagonist S961 (2.4 nmol/day) using osmotic minipumps. Mice treated with S961 displayed increased blood glucose and insulin levels. Light-sheet imaging of insulin and Ki67 (also known as Mki67)-immunostained pancreata revealed a 43% increase in beta cell volume and 21% increase in islet number. S961 treatment resulted in an increase in islets positive for the cell proliferation marker Ki67, suggesting that proliferation of existing beta cells underlies the expansion of total beta cell volume. Using light-sheet imaging of a non-obese diabetic mouse model of type I diabetes, we also characterized the infiltration of CD45 (also known as PTPRC)-labeled leukocytes in islets. At 14 weeks, 40% of the small islets, but more than 80% of large islets, showed leukocyte infiltration. These results demonstrate how quantitative light-sheet imaging can capture changes in individual islets to help pharmacological research in diabetes.
Collapse
Affiliation(s)
| | | | | | - Thomas Klein
- Department of CardioMetabolic, Diseases, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach, Germany
| | | | | | | |
Collapse
|
33
|
Li W, Kirchner T, Ho G, Bonilla F, D'Aquino K, Littrell J, Zhang R, Jian W, Qiu X, Zheng S, Gao B, Wong P, Leonard JN, Camacho RC. Amino acids are sensitive glucagon receptor-specific biomarkers for glucagon-like peptide-1 receptor/glucagon receptor dual agonists. Diabetes Obes Metab 2020; 22:2437-2450. [PMID: 33463043 DOI: 10.1111/dom.14173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022]
Abstract
AIM The aim of this study was to evaluate amino acids as glucagon receptor (GCGR)-specific biomarkers in rodents and cynomolgus monkeys in the presence of agonism of both glucagon-like peptide-1 receptor (GLP1R) and GCGR with a variety of dual agonist compounds. MATERIALS AND METHODS Primary hepatocytes, rodents (normal, diet-induced obese and GLP1R knockout) and cynomolgus monkeys were treated with insulin (hepatocytes only), glucagon (hepatocytes and cynomolgus monkeys), the GLP1R agonist, dulaglutide, or a variety of dual agonists with varying GCGR potencies. RESULTS A long-acting dual agonist, Compound 2, significantly decreased amino acids in both wild-type and GLP1R knockout mice in the absence of changes in food intake, body weight, glucose or insulin, and increased expression of hepatic amino acid transporters. Dulaglutide, or a variant of Compound 2 lacking GCGR agonism, had no effect on amino acids. A third variant with ~31-fold less GCGR potency than Compound 2 significantly decreased amino acids, albeit to a significantly lesser extent than Compound 2. Dulaglutide (with saline infusion) had no effect on amino acids, but an infusion of glucagon dose-dependently decreased amino acids on the background of GLP1R engagement (dulaglutide) in cynomolgus monkeys, as did Compound 2. CONCLUSIONS These results show that amino acids are sensitive and translatable GCGR-specific biomarkers.
Collapse
Affiliation(s)
- Wenyu Li
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Thomas Kirchner
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - George Ho
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Fany Bonilla
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Katharine D'Aquino
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - James Littrell
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Rui Zhang
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Wenying Jian
- Pharmacokinetics, Dynamics, and Metabolism, Janssen R&D, Spring House, Pennsylvania, USA
| | - Xi Qiu
- Pharmacokinetics, Dynamics, and Metabolism, Janssen R&D, Spring House, Pennsylvania, USA
| | - Songmao Zheng
- Janssen Biotherapeutics, Janssen R&D, Spring House, Pennsylvania, USA
| | - Bin Gao
- Translational Medicine and Early Development Statistics, Janssen R&D, Spring House, Pennsylvania, USA
| | - Peggy Wong
- Quantitative Sciences, Janssen R&D, Raritan, New Jersey, USA
| | - James N Leonard
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | - Raul C Camacho
- Cardiovascular Metabolism Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| |
Collapse
|
34
|
Zeng Z, Huang SY, Sun T. Pharmacogenomic Studies of Current Antidiabetic Agents and Potential New Drug Targets for Precision Medicine of Diabetes. Diabetes Ther 2020; 11:2521-2538. [PMID: 32930968 PMCID: PMC7548012 DOI: 10.1007/s13300-020-00922-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/29/2022] Open
Abstract
Diabetes is a major threat to people's health and has become a burden worldwide. Current drugs for diabetes have limitations, such as different drug responses among individuals, failure to achieve glycemic control, and adverse effects. Exploring more effective therapeutic strategies for patients with diabetes is crucial. Currently pharmacogenomics has provided potential for individualized drug therapy based on genetic and genomic information of patients, and has made precision medicine possible. Responses and adverse effects to antidiabetic drugs are significantly associated with gene polymorphisms in patients. Many new targets for diabetes also have been discovered and developed, and even entered clinical trial phases. This review summarizes pharmacogenomic evidence of some current antidiabetic agents applied in clinical settings, and highlights potential drugs with new targets for diabetes, which represent a more effective treatment in the future.
Collapse
Affiliation(s)
- Zhiwei Zeng
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, China
| | - Shi-Ying Huang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, China.
| |
Collapse
|
35
|
Zhang C, Peng SY, Hong S, Chen QW, Zeng X, Rong L, Zhong ZL, Zhang XZ. Biomimetic carbon monoxide nanogenerator ameliorates streptozotocin induced type 1 diabetes in mice. Biomaterials 2020; 245:119986. [DOI: 10.1016/j.biomaterials.2020.119986] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/29/2022]
|
36
|
Abstract
OBJECTIVES The present study aimed to investigate the dynamic change of α cells and β cells, and their ratios in prediabetes and type 2 diabetes in the Chinese population. METHODS Pancreata from 27 nondiabetic (ND), 8 prediabetic (PreD), and 19 type 2 diabetic (T2D) organ donors were subjected to immunofluorescence staining with insulin and glucagon. RESULTS The β to α ratio in islets (β/α) in PreD was significantly higher than that in ND, resulting from an increase of β cells and a decrease of α cells per islet, but that in T2D was significantly lower than that in ND, resulting from a decrease of β cells and an increase of α cells per islet. The β-cell percentage and β/α ratio positively correlated and α-cell percentage negatively correlated with HbA1c (glycated hemoglobin) in ND and PreD, but these correlations disappeared when T2D subjects were included. CONCLUSIONS The islet β to α ratio increased in PreD individuals because of a relative α-cell loss and β-cell compensation and decreased after T2D onset because of both β-cell loss and α-cell reexpansion.
Collapse
|
37
|
Finan B, Capozzi ME, Campbell JE. Repositioning Glucagon Action in the Physiology and Pharmacology of Diabetes. Diabetes 2020; 69:532-541. [PMID: 31178432 PMCID: PMC7085250 DOI: 10.2337/dbi19-0004] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/30/2019] [Indexed: 01/03/2023]
Abstract
Glucagon is historically described as the counterregulatory hormone to insulin, induced by fasting/hypoglycemia to raise blood glucose through action mediated in the liver. However, it is becoming clear that the biology of glucagon is much more complex and extends beyond hepatic actions to exert control on glucose metabolism. We discuss the inconsistencies with the canonical view that glucagon is primarily a hyperglycemic agent driven by fasting/hypoglycemia and highlight the recent advances that have reshaped the metabolic role of glucagon. These concepts are placed within the context of both normal physiology and the pathophysiology of disease and then extended to discuss emerging strategies that incorporate glucagon agonism in the pharmacology of treating diabetes.
Collapse
Affiliation(s)
- Brian Finan
- Novo Nordisk Research Center, Indianapolis, IN
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Division of Endocrinology, Department of Medicine, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| |
Collapse
|
38
|
Patil M, Deshmukh NJ, Patel M, Sangle GV. Glucagon-based therapy: Past, present and future. Peptides 2020; 127:170296. [PMID: 32147318 DOI: 10.1016/j.peptides.2020.170296] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/05/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Diabesity and its related cardio-hepato-renal complications are of absolute concern globally. Last decade has witnessed a growing interest in the scientific community in investigating novel pharmaco-therapies employing the pancreatic hormone, glucagon. Canonically, this polypeptide hormone is known for its use in rescue treatment for hypoglycaemic shocks owing to its involvement in the counter-regulatory feedback mechanism. However, substantial studies in the recent past elucidated the pleiotropic effects of glucagon in diabesity and related complications like non-alcoholic steatohepatitis (NASH) and non-alcoholic fatty liver disease (NAFLD). Thus, the dual nature of this peptide has sparked the search for drugs that can modify glucagon signalling to combat hypoglycaemia or diabesity. Thus far, researchers have explored various pharmacological approaches to utilise this peptide in imminent modern therapies. The research endeavours in this segment led to explorations of stable glucagon formulations/analogues, glucagon receptor antagonism, glucagon receptor agonism, and incretin poly-agonism as new strategies for the management of hypoglycaemia or diabesity. This 'three-dimensional' research on glucagon resulted in the discovery of various drug candidates that proficiently modify glucagon signalling. Currently, several emerging glucagon-based therapies are under pre-clinical and clinical development. We sought to summarise the recent progress to comprehend glucagon-mediated pleiotropic effects, provide an overview of drug candidates currently being developed and future perspectives in this research domain.
Collapse
Affiliation(s)
- Mohan Patil
- Diabetes Research Lab, New Drug Discovery, Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | - Nitin J Deshmukh
- Diabetes Research Lab, New Drug Discovery, Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | - Mahesh Patel
- Diabetes Research Lab, New Drug Discovery, Wockhardt Research Centre, Aurangabad, Maharashtra, India; New Drug Discovery, Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | - Ganesh V Sangle
- Diabetes Research Lab, New Drug Discovery, Wockhardt Research Centre, Aurangabad, Maharashtra, India.
| |
Collapse
|
39
|
Perry RJ, Zhang D, Guerra MT, Brill AL, Goedeke L, Nasiri AR, Rabin-Court A, Wang Y, Peng L, Dufour S, Zhang Y, Zhang XM, Butrico GM, Toussaint K, Nozaki Y, Cline GW, Petersen KF, Nathanson MH, Ehrlich BE, Shulman GI. Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis. Nature 2020; 579:279-283. [PMID: 32132708 PMCID: PMC7101062 DOI: 10.1038/s41586-020-2074-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 01/15/2020] [Indexed: 11/09/2022]
Abstract
While it is well-established that alterations in the portal vein insulin/glucagon ratio play a major role in causing dysregulated hepatic glucose metabolism in type 2 diabetes (T2D)1–3, the mechanisms by which glucagon alters hepatic glucose production and mitochondrial oxidation remain poorly understood. Here we show that glucagon stimulates hepatic gluconeogenesis by increasing hepatic adipose triglyceride lipase activity, intrahepatic lipolysis, hepatic acetyl-CoA content, and pyruvate carboxylase flux, while also increasing mitochondrial fat oxidation, mediated by stimulation of the inositol triphosphate receptor-1 (InsP3R-I). Chronic physiological increases in plasma glucagon concentrations increased mitochondrial hepatic fat oxidation and reversed diet-induced hepatic steatosis and insulin resistance in rats and mice; however, the effect of chronic glucagon treatment to reverse hepatic steatosis and glucose intolerance was abrogated in InsP3R-I knockout mice. These results provide new insights into glucagon biology and suggest that InsP3R-I may be a novel therapeutic target to reverse nonalcoholic fatty liver disease and T2D.
Collapse
Affiliation(s)
- Rachel J Perry
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mateus T Guerra
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Allison L Brill
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Leigh Goedeke
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ali R Nasiri
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Aviva Rabin-Court
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yongliang Wang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Liang Peng
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sylvie Dufour
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ye Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Xian-Man Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Gina M Butrico
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Keshia Toussaint
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yuichi Nozaki
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Gary W Cline
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Kitt Falk Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Michael H Nathanson
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Barbara E Ehrlich
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.,Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA. .,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
40
|
Hartig SM, Cox AR. Paracrine signaling in islet function and survival. J Mol Med (Berl) 2020; 98:451-467. [PMID: 32067063 DOI: 10.1007/s00109-020-01887-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
The pancreatic islet is a dense cellular network comprised of several cell types with endocrine function vital in the control of glucose homeostasis, metabolism, and feeding behavior. Within the islet, endocrine hormones also form an intricate paracrine network with supportive cells (endothelial, neuronal, immune) and secondary signaling molecules regulating cellular function and survival. Modulation of these signals has potential consequences for diabetes development, progression, and therapeutic intervention. Beta cell loss, reduced endogenous insulin secretion, and dysregulated glucagon secretion are hallmark features of both type 1 and 2 diabetes that not only impact systemic regulation of glucose, but also contribute to the function and survival of cells within the islet. Advancing research and technology have revealed new islet biology (cellular identity and transcriptomes) and identified previously unrecognized paracrine signals and mechanisms (somatostatin and ghrelin paracrine actions), while shifting prior views of intraislet communication. This review will summarize the paracrine signals regulating islet endocrine function and survival, the disruption and dysfunction that occur in diabetes, and potential therapeutic targets to preserve beta cell mass and function.
Collapse
Affiliation(s)
- Sean M Hartig
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Aaron R Cox
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
41
|
Gilon P. The Role of α-Cells in Islet Function and Glucose Homeostasis in Health and Type 2 Diabetes. J Mol Biol 2020; 432:1367-1394. [PMID: 31954131 DOI: 10.1016/j.jmb.2020.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023]
Abstract
Pancreatic α-cells are the major source of glucagon, a hormone that counteracts the hypoglycemic action of insulin and strongly contributes to the correction of acute hypoglycemia. The mechanisms by which glucose controls glucagon secretion are hotly debated, and it is still unclear to what extent this control results from a direct action of glucose on α-cells or is indirectly mediated by β- and/or δ-cells. Besides its hyperglycemic action, glucagon has many other effects, in particular on lipid and amino acid metabolism. Counterintuitively, glucagon seems also required for an optimal insulin secretion in response to glucose by acting on its cognate receptor and, even more importantly, on GLP-1 receptors. Patients with diabetes mellitus display two main alterations of glucagon secretion: a relative hyperglucagonemia that aggravates hyperglycemia, and an impaired glucagon response to hypoglycemia. Under metabolic stress states, such as diabetes, pancreatic α-cells also secrete GLP-1, a glucose-lowering hormone, whereas the gut can produce glucagon. The contribution of extrapancreatic glucagon to the abnormal glucose homeostasis is unclear. Here, I review the possible mechanisms of control of glucagon secretion and the role of α-cells on islet function in healthy state. I discuss the possible causes of the abnormal glucagonemia in diabetes, with particular emphasis on type 2 diabetes, and I briefly comment the current antidiabetic therapies affecting α-cells.
Collapse
Affiliation(s)
- Patrick Gilon
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Avenue Hippocrate 55 (B1.55.06), Brussels, B-1200, Belgium.
| |
Collapse
|
42
|
Huo K, Li X, Hu W, Song X, Zhang D, Zhang X, Chen X, Yuan J, Zuo J, Wang X. RFRP-3, the Mammalian Ortholog of GnIH, Is a Novel Modulator Involved in Food Intake and Glucose Homeostasis. Front Endocrinol (Lausanne) 2020; 11:194. [PMID: 32328034 PMCID: PMC7160250 DOI: 10.3389/fendo.2020.00194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/18/2020] [Indexed: 11/13/2022] Open
Abstract
RF amide-related peptide 3 (RFRP-3) is a reproductive inhibitor and an endogenous orexigenic neuropeptide that may be involved in energy homeostasis. In this study, we evaluated the effect of acute or chronic RFRP-3 treatment (administered via intraperitoneal injection) on the food intake, meal microstructure and weight of rats, as well as the mechanism through which RFRP-3 is involved in glucose metabolism in the pancreas and glucose disposal tissues of rat in vivo. Our results showed that the intraperitoneal administration of RFRP-3 to rats resulted in marked body mass increased, hyperphagia, hyperlipidemia, hyperglycemia, glucose intolerance, hypoinsulinism, hyperglucagon, and insulin resistance, as well as significant increases in the size of pancreatic islets and the inflammatory reaction. Thus, we strongly assert that RFRP-3 as a novel neuroendocrine regulator involved in blood glucose homeostasis.
Collapse
|
43
|
Jiang HC, Chen XR, Sun HF, Nie YW. Tumor promoting effects of glucagon receptor: a promising biomarker of papillary thyroid carcinoma via regulating EMT and P38/ERK pathways. Hum Cell 2019; 33:175-184. [PMID: 31782107 DOI: 10.1007/s13577-019-00284-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/14/2019] [Indexed: 02/07/2023]
Abstract
Glucagon is a crucial hormone involved in the maintenance of glucose homeostasis. Large efforts to define the role of glucagon receptor (GCGR) have been continuously made in recent years, but it is still incomplete about its function and mechanism. We performed this study to verify its potential impacts on papillary thyroid carcinoma (PTC) progression. Correlation between GCGR expression and PTC was elaborated using The Cancer Genome Atlas (TCGA) database. The Kaplan-Meier method was used to analyze the connection between GCGR expression and prognosis of PTC patients. GCGR expression was measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis; simultaneously, cell viability was elucidated using cell proliferation and colony formation assays following siRNAs strategy. Transwell analyses were conducted to measure the invasion and migration of PTC cells. Flow cytometry analysis was conducted to examine apoptotic ability. The cAMP ELISA kit was employed to measure the cAMP level in PTC cells. Our data determined that the expression level of GCGR was increased in PTC tissues and cells in contrast to normal tissues and Nthy-ori 3-1, respectively. Up-regulated GCGR expression was linked with the lower survival rate in patients with PTC. Functional analysis in vitro suggested that GCGR knockdown attenuated PTC cell proliferation, colony formation, invasion, and migration whilst intensified apoptosis. Down-regulated GCGR was able to increase cAMP level. Furthermore, reduction of GCGR could result in the inactivation of epithelial-mesenchymal transition (EMT) and P38/ERK pathways. In conclusion, the findings of this study disclosed that GCGR promoted PTC cell behaviors by mediating the EMT and P38/ERK pathways, serving as a potential diagnostic and prognostic biomarker as well as therapeutic target for PTC.
Collapse
Affiliation(s)
- Hong-Chun Jiang
- Eye 3 Division of Red Flag Hospital of Mudanjiang Medical University, Mudanjiang, 157000, Heilongjiang, People's Republic of China
| | - Xiang-Ru Chen
- Color Doppler Ultrasound Room, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, 157000, Heilongjiang, People's Republic of China
| | - Hai-Feng Sun
- Department of Endocrinology, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, 157000, Heilongjiang, People's Republic of China
| | - Yuan-Wen Nie
- Hepatobiliary Surgery, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, 157000, Heilongjiang, People's Republic of China.
| |
Collapse
|
44
|
Wei R, Gu L, Yang J, Yang K, Liu J, Le Y, Lang S, Wang H, Thai D, Yan H, Hong T. Antagonistic Glucagon Receptor Antibody Promotes α-Cell Proliferation and Increases β-Cell Mass in Diabetic Mice. iScience 2019; 16:326-339. [PMID: 31203188 PMCID: PMC6581654 DOI: 10.1016/j.isci.2019.05.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/28/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022] Open
Abstract
Under extreme conditions or by genetic modification, pancreatic α-cells can regenerate and be converted into β-cells. This regeneration holds substantial promise for cell replacement therapy in diabetic patients. The discovery of clinical therapeutic strategies to promote β-cell regeneration is crucial for translating these findings into clinical applications. In this study, we reported that treatment with REMD 2.59, a human glucagon receptor (GCGR) monoclonal antibody (mAb), lowered blood glucose without inducing hypoglycemia in normoglycemic, streptozotocin-induced type 1 diabetic (T1D) and non-obesity diabetic mice. Moreover, GCGR mAb treatment increased the plasma glucagon and active glucagon-like peptide-1 levels, induced pancreatic ductal ontogenic α-cell neogenesis, and promoted α-cell proliferation. Strikingly, the treatment also increased the β-cell mass in these two T1D models. Using α-cell lineage-tracing mice, we found that the neogenic β-cells were likely derived from α-cell conversion. Therefore, GCGR mAb-induced α- to β-cell conversion might represent a pre-clinical approach for improving diabetes therapy. GCGR mAb induced α-cell expansion by neogenesis and cell proliferation GCGR mAb increased the β-cell mass in type 1 diabetic mice GCGR mAb might promote α- to β-cell conversion in type 1 diabetic mice
Collapse
Affiliation(s)
- Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Liangbiao Gu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Junling Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yunyi Le
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Shan Lang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Haining Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Dung Thai
- REMD Biotherapeutics, Camarillo, CA 93012, USA; Beijing Cosci-REMD, Beijing 102206, China
| | - Hai Yan
- REMD Biotherapeutics, Camarillo, CA 93012, USA; Beijing Cosci-REMD, Beijing 102206, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
45
|
Schwartsburd P. Cancer-Induced Reprogramming of Host Glucose Metabolism: "Vicious Cycle" Supporting Cancer Progression. Front Oncol 2019; 9:218. [PMID: 31019893 PMCID: PMC6458235 DOI: 10.3389/fonc.2019.00218] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
Abstract
Unrestricted cancer growth requires permanent supply of glucose that can be obtained from cancer-mediated reprogramming of glucose metabolism in the cancer-bearing host. The pathological mechanisms by which cancer cells exert their negative influence on host glucose metabolism are largely unknown. This paper proposes a mechanism of metabolic and hormonal changes that may favor glucose delivery to tumor (not host) cells by creating a cancer-host "vicious cycle" whose prolonged action drives cancer progression and promotes host cachexia. To verify this hypothesis, a feedback model of host-cancer interactions that create the "vicious cycle" via cancer-induced reprogramming of host glucose metabolism is proposed. This model is capable of answering some crucial questions as to how anabolic cancer cells can reprogram the systemic glucose metabolism and why these pathways were not observed in pregnancy. The current paper helps to better understanding a pathogenesis of cancer progression and identify hormonal/metabolic targets for anti-cancer treatment.
Collapse
Affiliation(s)
- Polina Schwartsburd
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
46
|
Galsgaard KD, Winther-Sørensen M, Pedersen J, Kjeldsen SAS, Rosenkilde MM, Wewer Albrechtsen NJ, Holst JJ. Glucose and amino acid metabolism in mice depend mutually on glucagon and insulin receptor signaling. Am J Physiol Endocrinol Metab 2019; 316:E660-E673. [PMID: 30807215 DOI: 10.1152/ajpendo.00410.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucagon and insulin are important regulators of blood glucose. The importance of insulin receptor signaling for alpha-cell secretion and of glucagon receptor signaling for beta-cell secretion is widely discussed and of clinical interest. Amino acids are powerful secretagogues for both hormones, and glucagon controls amino acid metabolism through ureagenesis. The role of insulin in amino acid metabolism is less clear. Female C57BL/6JRj mice received an insulin receptor antagonist (IRA) (S961; 30 nmol/kg), a glucagon receptor antagonist (GRA) (25-2648; 100 mg/kg), or both GRA and IRA (GRA + IRA) 3 h before intravenous administration of similar volumes of saline, glucose (0.5 g/kg), or amino acids (1 µmol/g) while anesthetized with isoflurane. IRA caused basal hyperglycemia, hyperinsulinemia, and hyperglucagonemia. Unexpectedly, IRA lowered basal plasma concentrations of amino acids, whereas GRA increased amino acids, lowered glycemia, and increased glucagon but did not influence insulin concentrations. After administration of GRA + IRA, insulin secretion was significantly reduced compared with IRA administration alone. Blood glucose responses to a glucose and amino acid challenge were similar after vehicle and GRA + IRA administration but greater after IRA and lower after GRA. Anesthesia may have influenced the results, which otherwise strongly suggest that both hormones are essential for the maintenance of glucose homeostasis and that the secretion of both is regulated by powerful negative feedback mechanisms. In addition, insulin limits glucagon secretion, while endogenous glucagon stimulates insulin secretion, revealed during lack of insulin autocrine feedback. Finally, glucagon receptor signaling seems to be of greater importance for amino acid metabolism than insulin receptor signaling.
Collapse
Affiliation(s)
- Katrine D Galsgaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Marie Winther-Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Department of Cardiology, Nephrology and Endocrinology, Nordsjaellands Hospital Hilleroed, University of Copenhagen, Hilleroed, Denmark
| | - Sasha A S Kjeldsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Nicolai J Wewer Albrechtsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen , Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
47
|
Guo J, Li B, Zuo Z, Chen M, Wang C. Maternal Supplementation with β‐Carotene During Pregnancy Disturbs Lipid Metabolism and Glucose Homoeostasis in F1 Female Mice. Mol Nutr Food Res 2019; 63:e1900072. [DOI: 10.1002/mnfr.201900072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Jiaojiao Guo
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen University Xiamen 36110 P. R. China
| | - Bingshui Li
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen University Xiamen 36110 P. R. China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen University Xiamen 36110 P. R. China
| | - Meng Chen
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen University Xiamen 36110 P. R. China
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem ResearchXiamen University Xiamen 36110 P. R. China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen University Xiamen 36110 P. R. China
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem ResearchXiamen University Xiamen 36110 P. R. China
| |
Collapse
|
48
|
Rivero-Gutierrez B, Haller A, Holland J, Yates E, Khrisna R, Habegger K, Dimarchi R, D'Alessio D, Perez-Tilve D. Deletion of the glucagon receptor gene before and after experimental diabetes reveals differential protection from hyperglycemia. Mol Metab 2018; 17:28-38. [PMID: 30170980 PMCID: PMC6197675 DOI: 10.1016/j.molmet.2018.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Mice with congenital loss of the glucagon receptor gene (Gcgr-/- mice) remain normoglycemic in insulinopenic conditions, suggesting that unopposed glucagon action is the driving force for hyperglycemia in Type-1 Diabetes Mellitus (T1DM). However, chronic loss of GCGR results in a neomorphic phenotype that includes hormonal signals with hypoglycemic activity. We combined temporally-controlled GCGR deletion with pharmacological treatments to dissect the direct contribution of GCGR signaling to glucose control in a common mouse model of T1DM. METHODS We induced experimental T1DM by injecting the beta-cell cytotoxin streptozotocin (STZ) in mice with congenital or temporally-controlled Gcgr loss-of-function using tamoxifen (TMX). RESULTS Disruption of Gcgr expression, using either an inducible approach in adult mice or animals with congenital knockout, abolished the response to a long-acting Gcgr agonist. Mice with either developmental Gcgr disruption or inducible deletion several weeks before STZ treatment maintained normoglycemia. However, mice with inducible knockout of the Gcgr one week after the onset of STZ diabetes had only partial correction of hyperglycemia, an effect that was reversed by GLP-1 receptor blockade. Mice with Gcgr deletion for either 2 or 6 weeks had similar patterns of gene expression, although the changes were generally larger with longer GCGR knockout. CONCLUSIONS These findings demonstrate that the effects of glucagon to mitigate diabetic hyperglycemia are not through acute signaling but require compensations that take weeks to develop.
Collapse
Affiliation(s)
- Belen Rivero-Gutierrez
- Department of Internal Medicine, University of Cincinnati, 2180 E. Galbraith Rd, Cincinnati, OH, USA
| | - April Haller
- Department of Internal Medicine, University of Cincinnati, 2180 E. Galbraith Rd, Cincinnati, OH, USA
| | - Jenna Holland
- Department of Internal Medicine, University of Cincinnati, 2180 E. Galbraith Rd, Cincinnati, OH, USA
| | - Emily Yates
- Department of Internal Medicine, University of Cincinnati, 2180 E. Galbraith Rd, Cincinnati, OH, USA
| | - Radha Khrisna
- Department of Medicine, Duke University School of Medicine, NC, USA
| | - Kirk Habegger
- Comprehensive Diabetes Center and Department of Medicine - Endocrinology, Diabetes & and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard Dimarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - David D'Alessio
- Department of Medicine, Duke University School of Medicine, NC, USA
| | - Diego Perez-Tilve
- Department of Internal Medicine, University of Cincinnati, 2180 E. Galbraith Rd, Cincinnati, OH, USA.
| |
Collapse
|
49
|
Müller TD, Clemmensen C, Finan B, DiMarchi RD, Tschöp MH. Anti-Obesity Therapy: from Rainbow Pills to Polyagonists. Pharmacol Rev 2018; 70:712-746. [PMID: 30087160 DOI: 10.1124/pr.117.014803] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With their ever-growing prevalence, obesity and diabetes represent major health threats of our society. Based on estimations by the World Health Organization, approximately 300 million people will be obese in 2035. In 2015 alone there were more than 1.6 million fatalities attributable to hyperglycemia and diabetes. In addition, treatment of these diseases places an enormous burden on our health care system. As a result, the development of pharmacotherapies to tackle this life-threatening pandemic is of utmost importance. Since the beginning of the 19th century, a variety of drugs have been evaluated for their ability to decrease body weight and/or to improve deranged glycemic control. The list of evaluated drugs includes, among many others, sheep-derived thyroid extracts, mitochondrial uncouplers, amphetamines, serotonergics, lipase inhibitors, and a variety of hormones produced and secreted by the gastrointestinal tract or adipose tissue. Unfortunately, when used as a single hormone therapy, most of these drugs are underwhelming in their efficacy or safety, and placebo-subtracted weight loss attributed to such therapy is typically not more than 10%. In 2009, the generation of a single molecule with agonism at the receptors for glucagon and the glucagon-like peptide 1 broke new ground in obesity pharmacology. This molecule combined the beneficial anorectic and glycemic effects of glucagon-like peptide 1 with the thermogenic effect of glucagon into a single molecule with enhanced potency and sustained action. Several other unimolecular dual agonists have subsequently been developed, and, based on their preclinical success, these molecules illuminate the path to a new and more fruitful era in obesity pharmacology. In this review, we focus on the historical pharmacological approaches to treat obesity and glucose intolerance and describe how the knowledge obtained by these studies led to the discovery of unimolecular polypharmacology.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany (T.D.M., C.C., M.H.T.); German Center for Diabetes Research, Neuherberg, Germany (T.D.M., C.C., M.H.T.); Department of Chemistry, Indiana University, Bloomington, Indiana (B.F., R.D.D.); and Division of Metabolic Diseases, Technische Universität München, Munich, Germany (M.H.T.)
| | - C Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany (T.D.M., C.C., M.H.T.); German Center for Diabetes Research, Neuherberg, Germany (T.D.M., C.C., M.H.T.); Department of Chemistry, Indiana University, Bloomington, Indiana (B.F., R.D.D.); and Division of Metabolic Diseases, Technische Universität München, Munich, Germany (M.H.T.)
| | - B Finan
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany (T.D.M., C.C., M.H.T.); German Center for Diabetes Research, Neuherberg, Germany (T.D.M., C.C., M.H.T.); Department of Chemistry, Indiana University, Bloomington, Indiana (B.F., R.D.D.); and Division of Metabolic Diseases, Technische Universität München, Munich, Germany (M.H.T.)
| | - R D DiMarchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany (T.D.M., C.C., M.H.T.); German Center for Diabetes Research, Neuherberg, Germany (T.D.M., C.C., M.H.T.); Department of Chemistry, Indiana University, Bloomington, Indiana (B.F., R.D.D.); and Division of Metabolic Diseases, Technische Universität München, Munich, Germany (M.H.T.)
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany (T.D.M., C.C., M.H.T.); German Center for Diabetes Research, Neuherberg, Germany (T.D.M., C.C., M.H.T.); Department of Chemistry, Indiana University, Bloomington, Indiana (B.F., R.D.D.); and Division of Metabolic Diseases, Technische Universität München, Munich, Germany (M.H.T.)
| |
Collapse
|
50
|
Zhang X, Jin Y, Wu Y, Zhang C, Jin D, Zheng Q, Li Y. Anti-hyperglycemic and anti-hyperlipidemia effects of the alkaloid-rich extract from barks of Litsea glutinosa in ob/ob mice. Sci Rep 2018; 8:12646. [PMID: 30140027 PMCID: PMC6107583 DOI: 10.1038/s41598-018-30823-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023] Open
Abstract
The present study investigated the anti-hyperglycemic and anti-hyperlipidemia effects of the alkaloid-rich extract from Litsea glutinosa barks (CG) in ob/ob mice. CG was orally administrated (50, 100 and 200 mg/kg) to ob/ob mice for 4 weeks. Parameters of glucose metabolism, hepatotoxicity, hyperlipidemia and inflammation were measured. CG was chemically characterized using UPLC-QTOF-MS. CG dose-dependently decreased body and fat weights without reducing average food intake. CG (100–200 mg/kg) significantly reduced the serum levels of fasting glucose, glycosylated hemoglobin (HbAlc) and glycosylated serum protein (GSP). CG increased insulin sensitivity as manifested by decreased fasting serum insulin, reduced homeostasis model assessment-estimated insulin resistance (HOMA-IR) and improved oral glucose tolerance. CG also alleviated dyslipidemia, ameliorated liver steatosis, increased the activity of serum lipase and alleviated inflammation. The activities of liver pyruvate kinase and glucokinase as well as liver content of glycogen were increased after CG treatment. CG was rich in alkaloids and eight main alkaloids were identified, many of which had been demonstrated to possess adequate anti-diabetic activities. These results suggest that the alkaloid-rich extract of CG possesses potential anti-hyperglycemic and anti-hyperlipidemic effects and can be utilized as an effective agent for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Xiaopo Zhang
- School of Pharmaceutical Science, Hainan Medical University, Haikou, 571199, China
| | - Yan Jin
- School of Pharmaceutical Science, Hainan Medical University, Haikou, 571199, China
| | - Younan Wu
- School of Pharmaceutical Science, Hainan Medical University, Haikou, 571199, China
| | - Caiyun Zhang
- School of Pharmaceutical Science, Hainan Medical University, Haikou, 571199, China
| | - Dejun Jin
- School of Pharmaceutical Science, Hainan Medical University, Haikou, 571199, China
| | - Qingxia Zheng
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China.
| | - Youbin Li
- School of Pharmaceutical Science, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|