1
|
Dai M, Li X, Zhu S, Chen W, Smith AL, Liao M. Chicken TCRγδ+CD8α+T cells are antigen-specific and protective in H9N2 AIV infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf083. [PMID: 40359378 DOI: 10.1093/jimmun/vkaf083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/25/2025] [Indexed: 05/15/2025]
Abstract
TCRγδ+ T cells are a major lymphocyte population of chickens, but their response or contribution to immunity against avian influenza virus (AIV) remains unknown. Here, we report an increase in the proportion and activation state of TCRγδ+CD8α+ T cells in the PBMCs of 3 chicken lines (MHC homozygous H-B2 and H-B21 lines and outbred G-WL line) with the strongest responses observed in the more resistant H-B2 chickens. H9N2 AIV infection induced mRNA upregulation of interferon (IFN)-γ and cytotoxicity-associated molecules, including, Granzyme A, Granzyme K, and perforin in sorted TCRγδ+CD8α+ T cells. Moreover, in ex vivo cultured TCRγδ+CD8α+ T cells in response to H9N2 AIV infected splenocytes, strongly indicates the activation of these cells' cytolytic potential via detection of transcription levels of cytotoxic genes with quantitative reverse transcription polymerase chain reaction (qRT-PCR), and IFN-γ protein level with ELISPOT and an intracellular cytokine staining assays. Most importantly, in vivo depletion of γδ T cells led to reduced H9N2 AIV control, which was particularly evident in the early phase of infection. Taken together, these results indicate that strong TCRγδ+CD8α+T cell response plays a critical role in protecting chicken against H9N2 AIV infection.
Collapse
Affiliation(s)
- Manman Dai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, UK-China Centre of Excellence for Research on Avian Diseases, Guangzhou, China
| | - Xueqing Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, UK-China Centre of Excellence for Research on Avian Diseases, Guangzhou, China
| | - Sufang Zhu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, UK-China Centre of Excellence for Research on Avian Diseases, Guangzhou, China
| | - Weisan Chen
- T cell lab, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Adrian L Smith
- Department of Biology, Medawar Building, University of Oxford, Oxford, United Kingdom
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, UK-China Centre of Excellence for Research on Avian Diseases, Guangzhou, China
| |
Collapse
|
2
|
Mohammed F, Willcox CR, Willcox BE. A Brief Molecular History of Vγ9Vδ2 TCR-Mediated Phosphoantigen Sensing. Immunol Rev 2025; 331:e70023. [PMID: 40181561 PMCID: PMC11969061 DOI: 10.1111/imr.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/08/2025] [Indexed: 04/05/2025]
Abstract
Vγ9Vδ2 T-cells are universally present in humans and represent one of the most prevalent TCR reactivities, evolutionarily conserved across diverse mammalian species. They are an innate-like subset featuring a semi-invariant TCR repertoire that drives their well-recognized reactivity to small, non-peptidic phosphoantigens (pAg). Crucially, they can distinguish between highly immunostimulatory microbially derived pAg and much less potent host-derived pAg, with the former effectively acting as a pathogen associated molecular pattern (PAMP) and the Vγ9Vδ2 TCR as a surrogate pattern recognition receptor (PRR). Ample evidence supports important Vγ9Vδ2-mediated contributions to immunity against diverse pathogenic bacteria and parasites, mediated by their potent effector and immunoregulatory functions. The molecular basis of the pAg sensing mechanism underpinning such responses has, however, remained highly mysterious. Despite this, past studies have established that pAg sensing is MHC-independent, extremely fast, exquisitely pAg-sensitive, and dependent upon target cell expression of key BTN-family molecules, notably BTN3A and BTN2A1. Here we contextualize these findings and several recent studies addressing pAg sensing. We integrate these into a single unified theory of pAg sensing interpretable from different perspectives, both intracellular and extracellular, biophysical, and topological. We prioritize critical questions to address in the context of this proposed model. Finally, we suggest the model will provide a molecular template for antigen recognition by other related γδ T-cell subsets.
Collapse
Affiliation(s)
- Fiyaz Mohammed
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and HealthUniversity of BirminghamBirminghamUK
- Cancer Immunology and Immunotherapy Centre, College of Medicine and HealthUniversity of BirminghamBirminghamUK
| | - Carrie R. Willcox
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and HealthUniversity of BirminghamBirminghamUK
- Cancer Immunology and Immunotherapy Centre, College of Medicine and HealthUniversity of BirminghamBirminghamUK
- National Institute for Health and Care Research (NIHR)Birmingham Biomedical Research CentreBirminghamUK
| | - Benjamin E. Willcox
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and HealthUniversity of BirminghamBirminghamUK
- Cancer Immunology and Immunotherapy Centre, College of Medicine and HealthUniversity of BirminghamBirminghamUK
- National Institute for Health and Care Research (NIHR)Birmingham Biomedical Research CentreBirminghamUK
| |
Collapse
|
3
|
Zhu Y, Gao W, Zheng J, Bai Y, Tian X, Huang T, Lu Z, Dong D, Zhang A, Guo C, Huang Z. Phosphoantigen-induced inside-out stabilization of butyrophilin receptor complexes drives dimerization-dependent γδ TCR activation. Immunity 2025:S1074-7613(25)00175-X. [PMID: 40334665 DOI: 10.1016/j.immuni.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/14/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
Phosphoantigens (pAgs), produced by infected or cancer cells, trigger the assembly of a membrane receptor complex comprising butyrophilin (BTN) members BTN3A1 and BTN2A1, leading to the activation of γδ T cells. BTN3A2 or BTN3A3 forms heteromers with BTN3A1, exhibiting higher γδ T cell receptor (TCR)-stimulating activity than BTN3A1 homomers. Cryoelectron microscopy (cryo-EM) structure reveals a pAg-induced BTN2A1-BTN3A1 heterotetramer with a 2:2 stoichiometry, stabilized by interactions between the intracellular B30.2 domains and the extracellular immunoglobulin V (IgV) domains. BTN3A2 or BTN3A3 heterodimerizes with BTN3A1, forming a pAg-induced tetrameric complex with BTN2A1. However, BTN3A1 heterodimers are more stable than BTN3A1 homodimers in this interaction. Cryo-EM reveals that BTN2A1-BTN3A1-BTN3A2 binds two γδ TCR ectodomains, with one being sandwiched between the IgV domains of BTN2A1 and BTN3A2, while the other interacts with the free BTN2A1 IgV in the complex, as evidenced by functional data. Together, our findings uncover the mechanism of ligand-induced inside-out stabilization of BTN receptor complexes for dimeric activation of γδ TCR.
Collapse
Affiliation(s)
- Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Wenbo Gao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Jianlin Zheng
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ye Bai
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyu Tian
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Tengjin Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zebin Lu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - De Dong
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Anqi Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Changyou Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; New Cornerstone Science Institute, Harbin Institute of Technology, Harbin 150080, China.
| |
Collapse
|
4
|
Park D, Cenik C. Long-read RNA sequencing reveals allele-specific N 6-methyladenosine modifications. Genome Res 2025; 35:999-1011. [PMID: 39472020 PMCID: PMC12047277 DOI: 10.1101/gr.279270.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024]
Abstract
Long-read sequencing technology enables highly accurate detection of allele-specific RNA expression, providing insights into the effects of genetic variation on splicing and RNA abundance. Furthermore, the ability to directly sequence RNA enables the detection of RNA modifications in tandem with ascertaining the allelic origin of each molecule. Here, we leverage these advantages to determine allele-biased patterns of N 6-methyladenosine (m6A) modifications in native mRNA. We used human and mouse cells with known genetic variants to assign the allelic origin of each mRNA molecule combined with a supervised machine learning model to detect read-level m6A modification ratios. Our analyses reveal the importance of sequences adjacent to the DRACH motif in determining m6A deposition, in addition to allelic differences that directly alter the motif. Moreover, we discover allele-specific m6A modification events with no genetic variants in close proximity to the differentially modified nucleotide, demonstrating the unique advantage of using long-reads and surpassing the capabilities of antibody-based short-read approaches. This technological advance will further our understanding of the role of genetics in determining mRNA modifications.
Collapse
Affiliation(s)
- Dayea Park
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
5
|
Nguyen K, Hsiao CHC, Jin Y, Wiemer AJ, Vinogradova O. Investigation of structural and dynamic properties of the Butyrophilin BTN3A1/BTN2A1 cytoplasmic complex by 19F solution NMR. FASEB J 2025; 39:e70449. [PMID: 40079188 PMCID: PMC11908674 DOI: 10.1096/fj.202402975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Butyrophilin 3A1 (BTN3A1) is an integral membrane protein capable of detecting phosphoantigens, like (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), through its internal B30.2 domain. Detection of phosphoantigens leads to interactions with butyrophilin 2A1 and the subsequent activation of γδ-T cells. Though crystallography and functional assays have been crucial for determining vital residues of the BTN3A1/HMBPP/BTN2A1 complex, the mechanism for signal transduction is still unclear. Here, we utilize 19F solution NMR to observe potential conformational and dynamic changes of specific residues upon complex formation. With point mutants of BTN3A1, we show that W421C, T449C, and T506C are residues that are influenced by HMBPP and BTN2A1 association, while T304C, G323C, C387, and C511 are not impacted. 19F labeling of W421C reduces the binding affinity of BTN2A1 toward BTN3A1/HMBPP, which indicates that W421 is located at the binding interface. T506 is located away from the phosphoantigen binding site, so its observable chemical shift perturbation suggests that there is a larger conformational change of the BTN3A1 B30.2 domain upon binding HMBPP and BTN2A1. The juxtamembrane residues, T304C, and G323C are not affected, showing that the changes are localized within the B30.2 domain of BTN3A1. Using BTN3A1 T449C, we were able to detect differential binding modes of synthetic HMBPP analogs, showing that it is possible to assess differences in protein conformations that are induced by binding of different ligands. Taken together, these findings illustrate the dynamic processes involved in phosphoantigen detection by the HMBPP receptor.
Collapse
Affiliation(s)
- Khiem Nguyen
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | - Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
6
|
Loureiro JP, Vacchini A, Berloffa G, Devan J, Schaefer V, Nosi V, Colombo R, Beshirova A, Montanelli G, Meyer B, Sharpe T, Chancellor A, Recher M, Mori L, De Libero G. Recognition of MR1-antigen complexes by TCR Vγ9Vδ2. Front Immunol 2025; 16:1519128. [PMID: 40040716 PMCID: PMC11876030 DOI: 10.3389/fimmu.2025.1519128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
The TCR-mediated activation of T cells expressing the TCR Vγ9Vδ2 relies on an innate-like mechanism involving the butyrophilin 3A1, 3A2 and 2A1 molecules and phospho-antigens, without the participation of classical antigen-presenting molecules. Whether TCR Vγ9Vδ2 cells also recognize complexes composed of antigens and antigen-presenting molecules in an adaptive-like manner is unknown. Here, we identify MR1-autoreactive cells expressing the TCR Vγ9Vδ2. This MR1-restricted response is antigen- and CDR3δ-dependent and butyrophilin-independent. TCR gene transfer reconstitutes MR1-antigen recognition, and engineered TCR Vγ9Vδ2 tetramers interact with soluble MR1-antigen complexes in an antigen-dependent manner. These cells are present in healthy individuals with low frequency and are mostly CD8+ or CD4-CD8 double negative. We also describe a patient with autoimmune symptoms and TCR γδ lymphocytosis in which ~10% of circulating T cells are MR1-self-reactive and express a TCR Vγ9Vδ2. These cells release pro-inflammatory cytokines, suggesting a possible participation in disease pathogenesis. Thus, MR1-self-antigen complexes can interact with some TCRs Vγ9Vδ2, promoting full cell activation and potentially contributing to diseases.
Collapse
Affiliation(s)
- José Pedro Loureiro
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Jan Devan
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Aisha Beshirova
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Giulia Montanelli
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Benedikt Meyer
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | | | - Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Mike Recher
- Immunodeficiency Laboratory, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Bellos E, Santillo D, Vantourout P, Jackson HR, Duret A, Hearn H, Seeleuthner Y, Talouarn E, Hodeib S, Patel H, Powell O, Yeoh S, Mustafa S, Habgood-Coote D, Nichols S, Estramiana Elorrieta L, D’Souza G, Wright VJ, Estrada-Rivadeneyra D, Tremoulet AH, Dummer KB, Netea SA, Condino-Neto A, Lau YL, Núñez Cuadros E, Toubiana J, Holanda Pena M, Rieux-Laucat F, Luyt CE, Haerynck F, Mège JL, Chakravorty S, Haddad E, Morin MP, Metin Akcan Ö, Keles S, Emiroglu M, Alkan G, Tüter Öz SK, Elmas Bozdemir S, Morelle G, Volokha A, Kendir-Demirkol Y, Sözeri B, Coskuner T, Yahsi A, Gulhan B, Kanik-Yuksek S, Bayhan GI, Ozkaya-Parlakay A, Yesilbas O, Hatipoglu N, Ozcelik T, Belot A, Chopin E, Barlogis V, Sevketoglu E, Menentoglu E, Gayretli Aydin ZG, Bloomfield M, AlKhater SA, Cyrus C, Stepanovskiy Y, Bondarenko A, Öz FN, Polat M, Fremuth J, Lebl J, Geraldo A, Jouanguy E, Carter MJ, Wellman P, Peters M, Pérez de Diego R, Edwards LA, Chiu C, Noursadeghi M, Bolze A, Shimizu C, Kaforou M, Hamilton MS, Herberg JA, Schmitt EG, Rodriguez-Palmero A, Pujol A, Kim J, Cobat A, Abel L, Zhang SY, Casanova JL, Kuijpers TW, Burns JC, Levin M, Hayday AC, Sancho-Shimizu V. Heterozygous BTNL8 variants in individuals with multisystem inflammatory syndrome in children (MIS-C). J Exp Med 2024; 221:e920240699. [PMID: 39576310 PMCID: PMC11586762 DOI: 10.1084/jem.20240699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 11/24/2024] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare condition following SARS-CoV-2 infection associated with intestinal manifestations. Genetic predisposition, including inborn errors of the OAS-RNAseL pathway, has been reported. We sequenced 154 MIS-C patients and utilized a novel statistical framework of gene burden analysis, "burdenMC," which identified an enrichment for rare predicted-deleterious variants in BTNL8 (OR = 4.2, 95% CI: 3.5-5.3, P < 10-6). BTNL8 encodes an intestinal epithelial regulator of Vγ4+γδ T cells implicated in regulating gut homeostasis. Enrichment was exclusive to MIS-C, being absent in patients with COVID-19 or bacterial disease. Using an available functional test for BTNL8, rare variants from a larger cohort of MIS-C patients (n = 835) were tested which identified eight variants in 18 patients (2.2%) with impaired engagement of Vγ4+γδ T cells. Most of these variants were in the B30.2 domain of BTNL8 implicated in sensing epithelial cell status. These findings were associated with altered intestinal permeability, suggesting a possible link between disrupted gut homeostasis and MIS-C-associated enteropathy triggered by SARS-CoV-2.
Collapse
Affiliation(s)
- Evangelos Bellos
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Dilys Santillo
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
- Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Pierre Vantourout
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Heather R. Jackson
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Amedine Duret
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Henry Hearn
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
| | - Estelle Talouarn
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
| | - Stephanie Hodeib
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
- Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Harsita Patel
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Oliver Powell
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Sophya Yeoh
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Sobia Mustafa
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Dominic Habgood-Coote
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Samuel Nichols
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Leire Estramiana Elorrieta
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Giselle D’Souza
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Victoria J. Wright
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Diego Estrada-Rivadeneyra
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Adriana H. Tremoulet
- Department of Pediatrics, Kawasaki Disease Research Center, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Hospital-San Diego, San Diego, CA, USA
| | - Kirsten B. Dummer
- Department of Pediatrics, Kawasaki Disease Research Center, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Hospital-San Diego, San Diego, CA, USA
| | - Stejara A. Netea
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children’s Hospital, Amsterdam University Medical Center (AmsterdamUMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Esmeralda Núñez Cuadros
- Department of Pediatrics, Regional University Hospital of Málaga, IBIMA Research Institute, Málaga, Spain
| | - Julie Toubiana
- Department of General Pediatrics and Infectious Diseases, Necker-Enfants Malades University Hospital, AP-HP, Université Paris Cité, Paris, France
| | | | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163-Institut Imagine, Paris, France
- Imagine Institute, Paris Descartes-Sorbonne Université Paris Cité, Paris, France
| | - Charles-Edouard Luyt
- Intensive Care Unit, AP-HP Pitié-Salpêtrière Hospital, Paris University, Paris, France
| | | | | | - Samya Chakravorty
- Biocon Bristol Myers Squibb Research and Development Center, Syngene Intl. Ltd., Bengaluru, India
- Bristol Myers Squibb, Lawrenceville, NJ, USA
- Emory University Department of Pediatrics and Human Genetics, Atlanta GA, USA
| | - Elie Haddad
- CHU Sainte-Justine Azrieli Research Center, Montreal, Canada
- Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, Montreal, Canada
- Department of Pediatrics, University of Montreal, Montreal, Canada
| | | | - Özge Metin Akcan
- Division of Pediatric Infectious Diseases, Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Melike Emiroglu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Gulsum Alkan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Sadiye Kübra Tüter Öz
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Sefika Elmas Bozdemir
- Division of Pediatric Allergy and Immunology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Guillaume Morelle
- Department of General Paediatrics, Hôpital Bicêtre, AP-HP, University of Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Alla Volokha
- Pediatric Infectious Disease and Pediatric Immunology Department, Shupyk National Healthcare University, Kyiv, Ukraine
| | - Yasemin Kendir-Demirkol
- Department of Pediatric Genetics, Umraniye Education and Research Hospital, Health Sciences University, İstanbul, Turkey
| | - Betul Sözeri
- Division of Pediatric Rheumatology, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Taner Coskuner
- Division of Pediatric Rheumatology, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Aysun Yahsi
- Department of Pediatric Infectious Diseases, Ankara City Hospital, Ankara, Turkey
| | - Belgin Gulhan
- Department of Pediatric Infectious Diseases, Ankara City Hospital, Ankara, Turkey
| | - Saliha Kanik-Yuksek
- Department of Pediatric Infectious Diseases, Ankara City Hospital, Ankara, Turkey
| | | | | | - Osman Yesilbas
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Nevin Hatipoglu
- Pediatric Infectious Diseases Unit, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Alexandre Belot
- Service de Rhumatologie Pédiatrique, Hôpital Femme-Mère-Enfant, Groupement Hospitalier Est – Bâtiment “Pinel”, Bron, France
| | - Emilie Chopin
- CBC BIOTEC Biobank, GHE, Hospices Civils de Lyon, Lyon, France
| | - Vincent Barlogis
- La Timone Children Hospital, Aix-Marseille University, APHM, Marseille, France
| | - Esra Sevketoglu
- Univeristy of Health Sciences Turkiye Bakirkoy Dr. Sadi Konuk Research and Training Hospital Pediatirc Intensive Care Department, Istanbul, Türkiye
| | - Emin Menentoglu
- Univeristy of Health Sciences Turkiye Bakirkoy Dr. Sadi Konuk Research and Training Hospital Pediatirc Intensive Care Department, Istanbul, Türkiye
| | - Zeynep Gokce Gayretli Aydin
- Division of Pediatric Infectious Disease, Department of Pediatrics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Marketa Bloomfield
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
- Department of Paediatrics, 1st Faculty of Medicine, Charles University in Prague and Thomayer University Hospital, Prague, Czech Republic
| | - Suzan A. AlKhater
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Department of Pediatrics, King Fahad Hospital of the University, Al-Khobar, Saudi Arabia
| | - Cyril Cyrus
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Yuriy Stepanovskiy
- Department of Pediatrics, Immunology, Infectious, and Rare Diseases at the International European University, Kyiv, Ukraine
| | - Anastasiia Bondarenko
- Department of Pediatrics, Immunology, Infectious, and Rare Diseases at the International European University, Kyiv, Ukraine
| | - Fatma Nur Öz
- Department of Pediatric Infectious Disease, SBU Ankara Dr. Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Meltem Polat
- Department of Pediatric Infectious Diseases, Gazi University School of Medicine, Ankara, Turkey
| | - Jiří Fremuth
- Department of Pediatrics - PICU, Faculty of Medicine in Pilsen, Charles University in Prague, Prague, Czech Republic
| | - Jan Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Amyrath Geraldo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
- Department of Pediatircs, Germans Trias i Pujol Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
- Department of Pediatircs, Germans Trias i Pujol Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Michael J. Carter
- Paediatric Intensive Care, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, St Thomas’ Hospital, London, UK
| | - Paul Wellman
- Paediatric Intensive Care, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Mark Peters
- Paediatric Intensive Care Unit, Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR Biomedical Research Centre, London, UK
- University College London Great Ormond St Institute of Child Health, London, UK
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, University Hospital “La Paz”, Madrid, Spain
| | - Lindsey Ann Edwards
- Centre Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Guy’s Tower, Guy’s Hospital, London, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| | | | - Chisato Shimizu
- Department of Pediatrics, Kawasaki Disease Research Center, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Hospital-San Diego, San Diego, CA, USA
| | - Myrsini Kaforou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Melissa Shea Hamilton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Jethro A. Herberg
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Erica G. Schmitt
- Division of Rheumatology and Immunology, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Agusti Rodriguez-Palmero
- Department of Pediatircs, Germans Trias i Pujol Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Catalan Institution of Research and Advanced Studies, Barcelona, Spain
| | - Jihoon Kim
- Department of Biomedical Informatics, University of California, San Diego, CA, USA
- Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163 Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Taco W. Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children’s Hospital, Amsterdam University Medical Center (AmsterdamUMC), University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory at the AmsterdamUMC, Amsterdam Institute for Infection and Immunity, AmsterdamUMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jane C. Burns
- Department of Pediatrics, Kawasaki Disease Research Center, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Hospital-San Diego, San Diego, CA, USA
| | - Michael Levin
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Vanessa Sancho-Shimizu
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
- Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
8
|
Morikka J, Federico A, Möbus L, Inkala S, Pavel A, Sani S, Vaani M, Peltola S, Serra A, Greco D. Toxicogenomic assessment of in vitro macrophages exposed to profibrotic challenge reveals a sustained transcriptomic immune signature. Comput Struct Biotechnol J 2024; 25:194-204. [PMID: 39430886 PMCID: PMC11490883 DOI: 10.1016/j.csbj.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/27/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024] Open
Abstract
Immune signalling is a crucial component in the progression of fibrosis. However, approaches for the safety assessment of potentially profibrotic substances, that provide information on mechanistic immune responses, are underdeveloped. This study aimed to develop a novel framework for assessing the immunotoxicity of fibrotic compounds. We exposed macrophages in vitro to multiple sublethal concentrations of the profibrotic agent bleomycin, over multiple timepoints, and generated RNA sequencing data. Using a toxicogenomic approach, we performed dose-dependent analysis to discover genes dysregulated by bleomycin exposure in a dose-responsive manner. A subset of immune genes displayed a sustained dose-dependent and differential expression response to profibrotic challenge. An immunoassay revealed cytokines and proteinases responding to bleomycin exposure that closely correlated to transcriptomic alterations, underscoring the integration between transcriptional immune response and external immune signalling activity. This study not only increases our understanding of the immunological mechanisms of fibrosis, but also offers an innovative framework for the toxicological evaluation of substances with potential fibrogenic effects on macrophage signalling. Our work brings a new immunotoxicogenomic direction for hazard assessment of fibrotic compounds, through the implementation of a time and resource efficient in vitro methodology.
Collapse
Affiliation(s)
- Jack Morikka
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Lena Möbus
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Simo Inkala
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alisa Pavel
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Copenhagen, Denmark
| | - Saara Sani
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maaret Vaani
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sanna Peltola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Herrmann T, Karunakaran MM. Phosphoantigen recognition by Vγ9Vδ2 T cells. Eur J Immunol 2024; 54:e2451068. [PMID: 39148158 DOI: 10.1002/eji.202451068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Vγ9Vδ2 T cells comprise 1-10% of human peripheral blood T cells. As multifunctional T cells with a strong antimicrobial and antitumor potential, they are of strong interest for immunotherapeutic development. Their hallmark is the eponymous Vγ9Vδ2 T-cell antigen receptor (TCR), which mediates activation by so-called "phosphoantigens" (PAg). PAg are small pyrophosphorylated intermediates of isoprenoid synthesis of microbial or host origin, with the latter elevated in some tumors and after administration of aminobisphosphonates. This review summarizes the progress in understanding PAg-recognition, with emphasis on the interaction between butyrophilins (BTN) and PAg and insights gained by phylogenetic studies on BTNs and Vγ9Vδ2 T cells, especially the comparison of human and alpaca. It proposes a composite ligand model in which BTN3A1-A2/A3-heteromers and BTN2A1 homodimers form a Vγ9Vδ2 TCR activating complex. An initiating step is the binding of PAg to the intracellular BTN3A1-B30.2 domain and formation of a complex with the B30.2 domains of BTN2A1. On the extracellular surface this results in BTN2A1-IgV binding to Vγ9-TCR framework determinants and BTN3A-IgV to additional complementarity determining regions of both TCR chains. Unresolved questions of this model are discussed, as well as questions on the structural basis and the physiological consequences of PAg-recognition.
Collapse
Affiliation(s)
- Thomas Herrmann
- Institute for Virology and Immunobiology, Dept of Medicine, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
10
|
Liu Y, Freeborn J, Okeugo B, Armbrister SA, Saleh ZM, Fadhel Alvarez AB, Hoang TK, Park ES, Lindsey JW, Rapini RP, Glazer S, Rubin K, Rhoads JM. Intranasal sensitization model of alopecia areata using pertussis toxin as adjuvant. Front Immunol 2024; 15:1469424. [PMID: 39450167 PMCID: PMC11499204 DOI: 10.3389/fimmu.2024.1469424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Nasopharyngeal Bordetella pertussis (BP) colonization is common, with about 5% of individuals having PCR evidence of subclinical BP infection on nasal swab, even in countries with high vaccination rates. BP secretes pertussis toxin (PTx). PTx is an adjuvant commonly used to induce autoimmunity in multiple animal models of human disease. Colocalization of PTx and myelin from myelinated nerves in the nasopharynx may lead to host sensitization to myelin with subsequent autoimmune pathology. METHODS C57BL/6J female adult mice were given varied doses and schedules of intranasal PTx, MOG35-55 antigen, or controls to test whether intranasal administration of PTx and myelin oligodendrocyte peptide (MOG35-55) could induce experimental autoimmune encephalomyelitis (EAE) in mice. While we observed systemic cell-mediated immunity against MOG35-55, we did not observe EAE. Unexpectedly, many mice developed alopecia. We systematically investigated this finding. RESULTS Patchy alopecia developed in 36.4% of mice with the optimized protocol. Pathology consistent with alopecia areata was confirmed histologically by documenting concomitant reduced anagen phase and increased telogen phase hair follicles (HFs) in biopsies from patches of hair loss in mice with alopecia. We also found reduced CD200 staining and increased CD3+T cells surrounding the HFs of mice with alopecia compared to the mice without alopecia, indicating HF Immune Privilege (HFIP) collapse. Systemic immune responses were also found, with increased proportions of activated T cells and B cells, as well as MHCII+ dendritic cells in peripheral blood and/or splenocytes. Finally, in mice initially exposed to intranasal MOG35-55 and PTx in combination, but not to either agent alone, splenocytes were shown to proliferate after in vitro stimulation by MOG35-55. Consistent with prior investigations, PTx exhibited a dose-response effect on immune cell induction and phenotype, with the lowest PTx dose failing to induce autoimmunity, the highest PTx dose suppressing autoimmunity, and intermediate doses optimizing autoimmunity. CONCLUSIONS We propose that this is the first report of an autoimmune disease in an animal model triggered by colocalization of intranasal PTx and autoantigen. This model parallels a natural exposure and potential intranasal sensitization-to-pathology paradigm and supports the plausibility that nasopharyngeal subclinical BP colonization is a cause of alopecia areata.
Collapse
Affiliation(s)
- Yuying Liu
- Division of Pediatric Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jasmin Freeborn
- Division of Pediatric Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Beanna Okeugo
- Division of Pediatric Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shabba A. Armbrister
- Division of Pediatric Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Zeina M. Saleh
- Division of Pediatric Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ana Beatriz Fadhel Alvarez
- Division of Pediatric Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Thomas K. Hoang
- Division of Pediatric Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Evelyn S. Park
- Division of Pediatric Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - John William Lindsey
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ronald P. Rapini
- Departments of Dermatology and Pathology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Keith Rubin
- ILiAD Biotechnologies, Weston, FL, United States
| | - Jon Marc Rhoads
- Division of Pediatric Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
11
|
Hayday A, Dechanet-Merville J, Rossjohn J, Silva-Santos B. Cancer immunotherapy by γδ T cells. Science 2024; 386:eabq7248. [PMID: 39361750 PMCID: PMC7616870 DOI: 10.1126/science.abq7248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 08/22/2024] [Indexed: 10/05/2024]
Abstract
The premise of cancer immunotherapy is that cancers are specifically visible to an immune system tolerized to healthy self. The promise of cancer immunotherapy is that immune effector mechanisms and immunological memory can jointly eradicate cancers and inoperable metastases and de facto vaccinate against recurrence. For some patients with hitherto incurable diseases, including metastatic melanoma, this promise is being realized by game-changing immunotherapies based on αβ T cells. Today's challenges are to bring benefit to greater numbers of patients of diverse ethnicities, target more cancer types, and achieve a cure while incurring fewer adverse events. In meeting those challenges, specific benefits may be offered by γδ T cells, which compose a second T cell lineage with distinct recognition capabilities and functional traits that bridge innate and adaptive immunity. γδ T cell-based clinical trials, including off-the-shelf adoptive cell therapy and agonist antibodies, are yielding promising results, although identifiable problems remain. In addressing those problems, we advocate that immunotherapies be guided by the distinctive biology of γδ T cells, as elucidated by ongoing research.
Collapse
Affiliation(s)
- Adrian Hayday
- Francis Crick Institute, Peter Gorer Dept of Immunobiology, King’s College London, and CRUK City of London Cancer Centre, UK
| | - Julie Dechanet-Merville
- ImmunoConcEpT, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5164, University of Bordeaux, Bordeaux, France
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
12
|
Park D, Cenik C. Long-read RNA sequencing reveals allele-specific N 6-methyladenosine modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602538. [PMID: 39026828 PMCID: PMC11257478 DOI: 10.1101/2024.07.08.602538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Long-read sequencing technology enables highly accurate detection of allele-specific RNA expression, providing insights into the effects of genetic variation on splicing and RNA abundance. Furthermore, the ability to directly sequence RNA promises the detection of RNA modifications in tandem with ascertaining the allelic origin of each molecule. Here, we leverage these advantages to determine allele-biased patterns of N6-methyladenosine (m6A) modifications in native mRNA. We utilized human and mouse cells with known genetic variants to assign allelic origin of each mRNA molecule combined with a supervised machine learning model to detect read-level m6A modification ratios. Our analyses revealed the importance of sequences adjacent to the DRACH-motif in determining m6A deposition, in addition to allelic differences that directly alter the motif. Moreover, we discovered allele-specific m6A modification (ASM) events with no genetic variants in close proximity to the differentially modified nucleotide, demonstrating the unique advantage of using long reads and surpassing the capabilities of antibody-based short-read approaches. This technological advancement promises to advance our understanding of the role of genetics in determining mRNA modifications.
Collapse
Affiliation(s)
- Dayea Park
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
13
|
Xu L, Yu D, Xu M, Liu Y, Yang LX, Zou QC, Feng XL, Li MH, Sheng N, Yao YG. Primate-specific BTN3A2 protects against SARS-CoV-2 infection by interacting with and reducing ACE2. EBioMedicine 2024; 107:105281. [PMID: 39142074 PMCID: PMC11367481 DOI: 10.1016/j.ebiom.2024.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is an immune-related disorder caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The complete pathogenesis of the virus remains to be determined. Unraveling the molecular mechanisms governing SARS-CoV-2 interactions with host cells is crucial for the formulation of effective prophylactic measures and the advancement of COVID-19 therapeutics. METHODS We analyzed human lung single-cell RNA sequencing dataset to discern the association of butyrophilin subfamily 3 member A2 (BTN3A2) expression with COVID-19. The BTN3A2 gene edited cell lines and transgenic mice were infected by live SARS-CoV-2 in a biosafety level 3 (BSL-3) laboratory. Immunoprecipitation, flow cytometry, biolayer interferometry and competition ELISA assays were performed in BTN3A2 gene edited cells. We performed quantitative real-time PCR, histological and/or immunohistochemical analyses for tissue samples from mice with or without SARS-CoV-2 infection. FINDINGS The BTN3A2 mRNA level was correlated with COVID-19 severity. BTN3A2 expression was predominantly identified in epithelial cells, elevated in pathological epithelial cells from COVID-19 patients and co-occurred with ACE2 expression in the same lung cell subtypes. BTN3A2 targeted the early stage of the viral life cycle by inhibiting SARS-CoV-2 attachment through interactions with the receptor-binding domain (RBD) of the Spike protein and ACE2. BTN3A2 inhibited ACE2-mediated SARS-CoV-2 infection by reducing ACE2 in vitro and in vivo. INTERPRETATION These results reveal a key role of BTN3A2 in the fight against COVID-19. Identifying potential monoclonal antibodies which mimic BTN3A2 may facilitate disruption of SARS-CoV-2 infection, providing a therapeutic avenue for COVID-19. FUNDING This study was supported by the National Natural Science Foundation of China (32070569, U1902215, and 32371017), the CAS "Light of West China" Program, and Yunnan Province (202305AH340006).
Collapse
Affiliation(s)
- Ling Xu
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China; Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China.
| | - Dandan Yu
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China; Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Min Xu
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yamin Liu
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Lu-Xiu Yang
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China
| | - Qing-Cui Zou
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Xiao-Li Feng
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Ming-Hua Li
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Nengyin Sheng
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.
| | - Yong-Gang Yao
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China; Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China; National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China.
| |
Collapse
|
14
|
Sok CL, Rossjohn J, Gully BS. The Evolving Portrait of γδ TCR Recognition Determinants. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:543-552. [PMID: 39159405 PMCID: PMC11335310 DOI: 10.4049/jimmunol.2400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/14/2024] [Indexed: 08/21/2024]
Abstract
In αβ T cells, immunosurveillance is enabled by the αβ TCR, which corecognizes peptide, lipid, or small-molecule Ags presented by MHC- and MHC class I-like Ag-presenting molecules, respectively. Although αβ TCRs vary in their Ag recognition modes, in general they corecognize the presented Ag and the Ag-presenting molecule and do so in an invariable "end-to-end" manner. Quite distinctly, γδ T cells, by way of their γδ TCR, can recognize ligands that extend beyond the confines of MHC- and MHC class I-like restrictions. From structural studies, it is now becoming apparent that γδ TCR recognition modes can break the corecognition paradigm and deviate markedly from the end-to-end docking mechanisms of αβ TCR counterparts. This brief review highlights the emerging portrait of how γδ TCRs can recognize diverse epitopes of their Ags in a manner reminiscent to how Abs recognize Ags.
Collapse
MESH Headings
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Humans
- Animals
- Antigen Presentation/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Epitopes, T-Lymphocyte/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Chhon Ling Sok
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK
| | - Benjamin S. Gully
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Fulford TS, Soliman C, Castle RG, Rigau M, Ruan Z, Dolezal O, Seneviratna R, Brown HG, Hanssen E, Hammet A, Li S, Redmond SJ, Chung A, Gorman MA, Parker MW, Patel O, Peat TS, Newman J, Behren A, Gherardin NA, Godfrey DI, Uldrich AP. Vγ9Vδ2 T cells recognize butyrophilin 2A1 and 3A1 heteromers. Nat Immunol 2024; 25:1355-1366. [PMID: 39014161 DOI: 10.1038/s41590-024-01892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
Butyrophilin (BTN) molecules are emerging as key regulators of T cell immunity; however, how they trigger cell-mediated responses is poorly understood. Here, the crystal structure of a gamma-delta T cell antigen receptor (γδTCR) in complex with BTN2A1 revealed that BTN2A1 engages the side of the γδTCR, leaving the apical TCR surface bioavailable. We reveal that a second γδTCR ligand co-engages γδTCR via binding to this accessible apical surface in a BTN3A1-dependent manner. BTN2A1 and BTN3A1 also directly interact with each other in cis, and structural analysis revealed formation of W-shaped heteromeric multimers. This BTN2A1-BTN3A1 interaction involved the same epitopes that BTN2A1 and BTN3A1 each use to mediate the γδTCR interaction; indeed, locking BTN2A1 and BTN3A1 together abrogated their interaction with γδTCR, supporting a model wherein the two γδTCR ligand-binding sites depend on accessibility to cryptic BTN epitopes. Our findings reveal a new paradigm in immune activation, whereby γδTCRs sense dual epitopes on BTN complexes.
Collapse
MESH Headings
- Butyrophilins/metabolism
- Butyrophilins/immunology
- Butyrophilins/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Humans
- Protein Binding
- Protein Multimerization
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Antigens, CD/chemistry
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Crystallography, X-Ray
- Lymphocyte Activation/immunology
- Models, Molecular
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
Collapse
Affiliation(s)
- Thomas S Fulford
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Caroline Soliman
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Rebecca G Castle
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Marc Rigau
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- Institute of Molecular Medicine and Experimental Immunology, Rheinische Friedrichs-Wilhelms University of Bonn, Bonn, Germany
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Zheng Ruan
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Olan Dolezal
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Parkville, Victoria, Australia
| | - Rebecca Seneviratna
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Hamish G Brown
- Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Eric Hanssen
- Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- ARC Industrial Transformation Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Hammet
- CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Shihan Li
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Samuel J Redmond
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Amy Chung
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Michael A Gorman
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- ARC Industrial Transformation Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Melbourne, Parkville, Victoria, Australia
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Onisha Patel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Thomas S Peat
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Parkville, Victoria, Australia
| | - Janet Newman
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Parkville, Victoria, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas A Gherardin
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Dale I Godfrey
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
| | - Adam P Uldrich
- Department of Microbiology & Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
16
|
Brunschwiler F, Nakka S, Guerra J, Guarda G. A Ménage à trois: NLRC5, immunity, and metabolism. Front Immunol 2024; 15:1426620. [PMID: 39035010 PMCID: PMC11257985 DOI: 10.3389/fimmu.2024.1426620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
The nucleotide-binding and oligomerization domain-like receptors (NLRs) NLR family CARD domain-containing protein 5 (NLRC5) and Class II Major Histocompatibility Complex Transactivator (CIITA) are transcriptional regulators of major histocompatibility complex (MHC) class I and class II genes, respectively. MHC molecules are central players in our immune system, allowing the detection of hazardous 'non-self' antigens and, thus, the recognition and elimination of infected or transformed cells from the organism. Recently, CIITA and NLRC5 have emerged as regulators of selected genes of the butyrophilin (BTN) family that interestingly are located in the extended MHC locus. BTNs are transmembrane proteins exhibiting structural similarities to B7 family co-modulatory molecules. The family member BTN2A2, which indeed contributes to the control of T cell activation, was found to be transcriptionally regulated by CIITA. NLRC5 emerged instead as an important regulator of the BTN3A1, BTN3A2, and BTN3A3 genes. Together with BTN2A1, BTN3As regulate non-conventional Vγ9Vδ2 T cell responses triggered by selected metabolites of microbial origin or accumulating in hematologic cancer cells. Even if endogenous metabolites conform to the canonical definition of 'self', metabolically abnormal cells can represent a danger for the organism and should be recognized and controlled by immune system cells. Collectively, new data on the role of NLRC5 in the expression of BTN3As link the mechanisms regulating canonical 'non-self' presentation and those marking cells with abnormal metabolic configurations for immune recognition, an evolutionary parallel that we discuss in this perspective review.
Collapse
Affiliation(s)
| | | | - Jessica Guerra
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Greta Guarda
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
17
|
Bai Y, Wang J, Feng X, Xie L, Qin S, Ma G, Zhang F. Identification of drug targets for Sjögren's syndrome: multi-omics Mendelian randomization and colocalization analyses. Front Immunol 2024; 15:1419363. [PMID: 38933282 PMCID: PMC11199405 DOI: 10.3389/fimmu.2024.1419363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Background Targeted therapy for Sjögren's syndrome (SS) has become an important focus for clinicians. Multi-omics-wide Mendelian randomization (MR) analyses have provided new ideas for identifying potential drug targets. Methods We conducted summary-data-based Mendelian randomization (SMR) analysis to evaluate therapeutic targets associated with SS by integrating DNA methylation, gene expression and protein quantitative trait loci (mQTL, eQTL, and pQTL, respectively). Genetic associations with SS were derived from the FinnGen study (discovery) and the GWAS catalog (replication). Colocalization analyses were employed to determine whether two potentially relevant phenotypes share the same genetic factors in a given region. Moreover, to delve deeper into potential regulation among DNA methylation, gene expression, and protein abundance, we conducted MR analysis to explore the causal relationship between candidate gene methylation and expression, as well as between gene expression and protein abundance. Drug prediction and molecular docking were further employed to validate the pharmacological activity of the candidate drug targets. Results Upon integrating the multi-omics data, we identified three genes associated with SS risk: TNFAIP3, BTN3A1, and PLAU. The methylation of cg22068371 in BTN3A1 was positively associated with protein levels, consistent with the negative effect of cg22068371 methylation on the risk of SS. Additionally, positive correlations were observed between the gene methylation of PLAU (cg04939496) and expression, as well as between expression and protein levels. This consistency elucidates the promotional effects of PLAU on SS risk at the DNA methylation, gene expression, and protein levels. At the protein level, genetically predicted TNFAIP3 (OR 2.47, 95% CI 1.56-3.92) was positively associated with SS risk, while BTN3A1 (OR 2.96E-03, 95% CI 2.63E-04-3.33E-02) was negatively associated with SS risk. Molecular docking showed stable binding for candidate drugs and target proteins. Conclusion Our study reveals promising therapeutic targets for the treatment of SS, providing valuable insights into targeted therapy for SS. However, further validation through future experiments is warranted.
Collapse
Affiliation(s)
- Yingjie Bai
- School of Stomatology, Dalian Medical University, Dalian, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Jiayi Wang
- School of Stomatology, Dalian Medical University, Dalian, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Xuefeng Feng
- School of Stomatology, Dalian Medical University, Dalian, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Le Xie
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Implantology, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Shengao Qin
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Dalian, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
- Department of Stomatology, Stomatological Hospital Affiliated School of Stomatology of Dalian Medical University, Dalian, China
| | - Fan Zhang
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
18
|
Liu J, Wu M, Yang Y, Wang Z, He S, Tian X, Wang H. γδ T cells and the PD-1/PD-L1 axis: a love-hate relationship in the tumor microenvironment. J Transl Med 2024; 22:553. [PMID: 38858763 PMCID: PMC11163710 DOI: 10.1186/s12967-024-05327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
Gamma delta (γδ) T cells demonstrate strong cytotoxicity against diverse cancer cell types in an MHC-independent manner, rendering them promising contenders for cancer therapy. Although amplification and adoptive transfer of γδ T cells are being evaluated in the clinic, their therapeutic efficacy remains unsatisfactory, primarily due to the influence of the immunosuppressive tumor microenvironment (TME). Currently, the utilization of targeted therapeutic antibodies against inhibitory immune checkpoint (ICP) molecules is a viable approach to counteract the immunosuppressive consequences of the TME. Notably, PD-1/PD-L1 checkpoint inhibitors are considered primary treatment options for diverse malignancies, with the objective of preserving the response of αβ T cells. However, γδ T cells also infiltrate various human cancers and are important participants in cancer immunity, thereby influencing patient prognosis. Hence, it is imperative to comprehend the reciprocal impact of the PD-1/PD-L1 axis on γδ T cells. This understanding can serve as a therapeutic foundation for improving γδ T cells adoptive transfer therapy and may offer a novel avenue for future combined immunotherapeutic approaches.
Collapse
Affiliation(s)
- Jian Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifan Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixuan Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan He
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gynecologic Oncology, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Wu Z, Lamao Q, Gu M, Jin X, Liu Y, Tian F, Yu Y, Yuan P, Gao S, Fulford TS, Uldrich AP, Wong CC, Wei W. Unsynchronized butyrophilin molecules dictate cancer cell evasion of Vγ9Vδ2 T-cell killing. Cell Mol Immunol 2024; 21:362-373. [PMID: 38374404 PMCID: PMC10978999 DOI: 10.1038/s41423-024-01135-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
Vγ9Vδ2 T cells are specialized effector cells that have gained prominence as immunotherapy agents due to their ability to target and kill cells with altered pyrophosphate metabolites. In our effort to understand how cancer cells evade the cell-killing activity of Vγ9Vδ2 T cells, we performed a comprehensive genome-scale CRISPR screening of cancer cells. We found that four molecules belonging to the butyrophilin (BTN) family, specifically BTN2A1, BTN3A1, BTN3A2, and BTN3A3, are critically important and play unique, nonoverlapping roles in facilitating the destruction of cancer cells by primary Vγ9Vδ2 T cells. The coordinated function of these BTN molecules was driven by synchronized gene expression, which was regulated by IFN-γ signaling and the RFX complex. Additionally, an enzyme called QPCTL was shown to play a key role in modifying the N-terminal glutamine of these BTN proteins and was found to be a crucial factor in Vγ9Vδ2 T cell killing of cancer cells. Through our research, we offer a detailed overview of the functional genomic mechanisms that underlie how cancer cells escape Vγ9Vδ2 T cells. Moreover, our findings shed light on the importance of the harmonized expression and function of gene family members in modulating T-cell activity.
Collapse
Affiliation(s)
- Zeguang Wu
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Qiezhong Lamao
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Meichao Gu
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Xuanxuan Jin
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Ying Liu
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Feng Tian
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Ying Yu
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Pengfei Yuan
- EdiGene Inc., Life Science Park, Changping District, 102206, Beijing, China
| | - Shuaixin Gao
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, 100191, Beijing, China
| | - Thomas S Fulford
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Catherine Cl Wong
- State Key Laboratory for Complex, Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China.
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
20
|
Xu WD, Yang C, Li R, Tang YY, Wang DC, Huang AF. Association of BTN3A1 gene polymorphisms with systemic lupus erythematosus in a Chinese Han population. Int J Rheum Dis 2024; 27:e15112. [PMID: 38450995 DOI: 10.1111/1756-185x.15112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, School of Public health, Southwest Medical University, Luzhou, Sichuan, China
| | - Chan Yang
- Department of Evidence-Based Medicine, School of Public health, Southwest Medical University, Luzhou, Sichuan, China
- Preventive Health Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Rong Li
- Department of Evidence-Based Medicine, School of Public health, Southwest Medical University, Luzhou, Sichuan, China
| | - Yang-Yang Tang
- Department of Evidence-Based Medicine, School of Public health, Southwest Medical University, Luzhou, Sichuan, China
| | - Da-Cheng Wang
- Department of Evidence-Based Medicine, School of Public health, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
21
|
Revesz IA, Joyce P, Ebert LM, Prestidge CA. Effective γδ T-cell clinical therapies: current limitations and future perspectives for cancer immunotherapy. Clin Transl Immunology 2024; 13:e1492. [PMID: 38375329 PMCID: PMC10875631 DOI: 10.1002/cti2.1492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
γδ T cells are a unique subset of T lymphocytes, exhibiting features of both innate and adaptive immune cells and are involved with cancer immunosurveillance. They present an attractive alternative to conventional T cell-based immunotherapy due, in large part, to their lack of major histocompatibility (MHC) restriction and ability to secrete high levels of cytokines with well-known anti-tumour functions. To date, clinical trials using γδ T cell-based immunotherapy for a range of haematological and solid cancers have yielded limited success compared with in vitro studies. This inability to translate the efficacy of γδ T-cell therapies from preclinical to clinical trials is attributed to a combination of several factors, e.g. γδ T-cell agonists that are commonly used to stimulate populations of these cells have limited cellular uptake yet rely on intracellular mechanisms; administered γδ T cells display low levels of tumour-infiltration; and there is a gap in the understanding of γδ T-cell inhibitory receptors. This review explores the discrepancy between γδ T-cell clinical and preclinical performance and offers viable avenues to overcome these obstacles. Using more direct γδ T-cell agonists, encapsulating these agonists into lipid nanocarriers to improve their pharmacokinetic and pharmacodynamic profiles and the use of combination therapies to overcome checkpoint inhibition and T-cell exhaustion are ways to bridge the gap between preclinical and clinical success. Given the ability to overcome these limitations, the development of a more targeted γδ T-cell agonist-checkpoint blockade combination therapy has the potential for success in clinical trials which has to date remained elusive.
Collapse
Affiliation(s)
- Isabella A Revesz
- Clinical Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Paul Joyce
- Clinical Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Lisa M Ebert
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Cancer Clinical Trials UnitRoyal Adelaide HospitalAdelaideSAAustralia
- School of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Clive A Prestidge
- Clinical Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| |
Collapse
|
22
|
Singh U, Pawge G, Rani S, Hsiao CHC, Wiemer AJ, Wiemer DF. Diester Prodrugs of a Phosphonate Butyrophilin Ligand Display Improved Cell Potency, Plasma Stability, and Payload Internalization. J Med Chem 2023; 66:15309-15325. [PMID: 37934915 PMCID: PMC10683022 DOI: 10.1021/acs.jmedchem.3c01358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
Activation of Vγ9Vδ2 T cells with butyrophilin 3A1 (BTN3A1) agonists such as (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) has the potential to boost the immune response. Because HMBPP is highly charged and metabolically unstable, prodrugs may be needed to overcome these liabilities, but the prodrugs themselves may be limited by slow payload release or low plasma stability. To identify effective prodrug forms of a phosphonate agonist of BTN3A1, we have prepared a set of diesters bearing one aryl and one acyloxymethyl group. The compounds were evaluated for their ability to stimulate Vγ9Vδ2 T cell proliferation, increase production of interferon γ, resist plasma metabolism, and internalize into leukemia cells. These bioassays have revealed that varied aryl and acyloxymethyl groups can decouple plasma and cellular metabolism and have a significant impact on bioactivity (>200-fold range) and stability (>10 fold range), including some with subnanomolar potency. Our findings increase the understanding of the structure-activity relationships of mixed aryl/acyloxymethyl phosphonate prodrugs.
Collapse
Affiliation(s)
- Umed Singh
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United
States
| | - Girija Pawge
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - Sarita Rani
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - Chia-Hung Christine Hsiao
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - Andrew J. Wiemer
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
- Institute
for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269-3092, United
States
| | - David F. Wiemer
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United
States
- Department
of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109, United
States
| |
Collapse
|
23
|
Karunakaran MM, Subramanian H, Jin Y, Mohammed F, Kimmel B, Juraske C, Starick L, Nöhren A, Länder N, Willcox CR, Singh R, Schamel WW, Nikolaev VO, Kunzmann V, Wiemer AJ, Willcox BE, Herrmann T. A distinct topology of BTN3A IgV and B30.2 domains controlled by juxtamembrane regions favors optimal human γδ T cell phosphoantigen sensing. Nat Commun 2023; 14:7617. [PMID: 37993425 PMCID: PMC10665462 DOI: 10.1038/s41467-023-41938-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/21/2023] [Indexed: 11/24/2023] Open
Abstract
Butyrophilin (BTN)-3A and BTN2A1 molecules control the activation of human Vγ9Vδ2 T cells during T cell receptor (TCR)-mediated sensing of phosphoantigens (PAg) derived from microbes and tumors. However, the molecular rules governing PAg sensing remain largely unknown. Here, we establish three mechanistic principles of PAg-mediated γδ T cell activation. First, in humans, following PAg binding to the intracellular BTN3A1-B30.2 domain, Vγ9Vδ2 TCR triggering involves the extracellular V-domain of BTN3A2/BTN3A3. Moreover, the localization of both protein domains on different chains of the BTN3A homo-or heteromers is essential for efficient PAg-mediated activation. Second, the formation of BTN3A homo-or heteromers, which differ in intracellular trafficking and conformation, is controlled by molecular interactions between the juxtamembrane regions of the BTN3A chains. Finally, the ability of PAg not simply to bind BTN3A-B30.2, but to promote its subsequent interaction with the BTN2A1-B30.2 domain, is essential for T-cell activation. Defining these determinants of cooperation and the division of labor in BTN proteins improves our understanding of PAg sensing and elucidates a mode of action that may apply to other BTN family members.
Collapse
Affiliation(s)
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Yiming Jin
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, UK
| | - Brigitte Kimmel
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg, Germany
| | - Claudia Juraske
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Lisa Starick
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Anna Nöhren
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Nora Länder
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Carrie R Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, UK
| | - Rohit Singh
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, Dr. Vishwanath Karad, MIT World peace University, Pune, 411038, India
| | - Wolfgang W Schamel
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Volker Kunzmann
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg, Germany
| | - Andrew J Wiemer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, UK
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
24
|
Fischer K, Bradlerova M, Decker T, Supper V. Vγ9+Vδ2+ T cell control of Listeria monocytogenes growth in infected epithelial cells requires butyrophilin 3A genes. Sci Rep 2023; 13:18651. [PMID: 37903831 PMCID: PMC10616279 DOI: 10.1038/s41598-023-45587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/21/2023] [Indexed: 11/01/2023] Open
Abstract
Intracellular bacteria produce antigens, which serve as potent activators of γδ T cells. Phosphoantigens are presented via a complex of butyrophilins (BTN) to signal infection to human Vγ9+Vδ2+ T cells. Here, we established an in vitro system allowing for studies of Vγ9+Vδ2+ T cell activity in coculture with epithelial cells infected with the intracellular bacterial pathogen Listeria monocytogenes. We report that the Vγ9+Vδ2+ T cells efficiently control L. monocytogenes growth in such cultures. This effector function requires the expression of members of the BTN3A family on epithelial cells. Specifically, we observed a BTN3A1-independent BTN3A3 activity to present antigen to Vγ9+Vδ2+ T cells. Since BTN3A1 is the only BTN3A associated with phosphoantigen presentation, our study suggests that BTN3A3 may present different classes of antigens to mediate Vγ9+Vδ2+ T cell effector function against L. monocytogenes-infected epithelia.
Collapse
Affiliation(s)
- Katrin Fischer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Michaela Bradlerova
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna, Austria.
| | - Verena Supper
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| |
Collapse
|
25
|
Hada A, Li L, Kandel A, Jin Y, Xiao Z. Characterization of Bovine Intraepithelial T Lymphocytes in the Gut. Pathogens 2023; 12:1173. [PMID: 37764981 PMCID: PMC10535955 DOI: 10.3390/pathogens12091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Intraepithelial T lymphocytes (T-IELs), which constitute over 50% of the total T lymphocytes in the animal, patrol the mucosal epithelial lining to defend against pathogen invasion while maintaining gut homeostasis. In addition to expressing T cell markers such as CD4 and CD8, T-IELs display T cell receptors (TCR), including either TCRαβ or TCRγδ. Both humans and mice share similar T-IEL subsets: TCRγδ+, TCRαβ+CD8αα+, TCRαβ+CD4+, and TCRαβ+CD8αβ+. Among these subsets, human T-IELs are predominantly TCRαβ+ (over 80%), whereas those in mice are mostly TCRγδ+ (~60%). Of note, the majority of the TCRγδ+ subset expresses CD8αα in both species. Although T-IELs have been extensively studied in humans and mice, their profiles in cattle have not been well examined. Our study is the first to characterize bovine T-IELs using flow cytometry, where we identified several distinct features. The percentage of TCRγδ+ was comparable to that of TCRαβ+ T-IELs (both ~50% of CD3+), and the majority of bovine TCRγδ+ T-IELs did not express CD8 (CD8-) (above 60%). Furthermore, about 20% of TCRαβ+ T-IELs were CD4+CD8αβ+, and the remaining TCRαβ+ T-IELs were evenly distributed between CD4+ and CD8αβ+ (~40% of TCRαβ+ T-IELs each) with no TCRαβ+CD8αα+ identified. Despite these unique properties, bovine T-IELs, similar to those in humans and mice, expressed a high level of CD69, an activation and tissue-retention marker, and a low level of CD62L, a lymphoid adhesion marker. Moreover, bovine T-IELs produced low levels of inflammatory cytokines such as IFNγ and IL17A, and secreted small amounts of the immune regulatory cytokine TGFβ1. Hence, bovine T-IELs' composition largely differs from that of human and mouse, with the dominance of the CD8- population among TCRγδ+ T-IELs, the substantial presence of TCRαβ+CD4+CD8αβ+ cells, and the absence of TCRαβ+CD8αα+ T-IELs. These results provide the groundwork for conducting future studies to examine how bovine T-IELs respond to intestinal pathogens and maintain the integrity of the gut epithelial barrier in animals.
Collapse
Affiliation(s)
| | | | | | | | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.H.); (L.L.); (A.K.); (Y.J.)
| |
Collapse
|
26
|
Dart RJ, Zlatareva I, Vantourout P, Theodoridis E, Amar A, Kannambath S, East P, Recaldin T, Mansfield JC, Lamb CA, Parkes M, Irving PM, Prescott NJ, Hayday AC. Conserved γδ T cell selection by BTNL proteins limits progression of human inflammatory bowel disease. Science 2023; 381:eadh0301. [PMID: 37708268 PMCID: PMC7615126 DOI: 10.1126/science.adh0301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/19/2023] [Indexed: 09/16/2023]
Abstract
Murine intraepithelial γδ T cells include distinct tissue-protective cells selected by epithelial butyrophilin-like (BTNL) heteromers. To determine whether this biology is conserved in humans, we characterized the colonic γδ T cell compartment, identifying a diverse repertoire that includes a phenotypically distinct subset coexpressing T cell receptor Vγ4 and the epithelium-binding integrin CD103. This subset was disproportionately diminished and dysregulated in inflammatory bowel disease, whereas on-treatment CD103+γδ T cell restoration was associated with sustained inflammatory bowel disease remission. Moreover, CD103+Vγ4+cell dysregulation and loss were also displayed by humans with germline BTNL3/BTNL8 hypomorphism, which we identified as a risk factor for penetrating Crohn's disease (CD). Thus, BTNL-dependent selection and/or maintenance of distinct tissue-intrinsic γδ T cells appears to be an evolutionarily conserved axis limiting the progression of a complex, multifactorial, tissue-damaging disease of increasing global incidence.
Collapse
Affiliation(s)
- Robin J Dart
- Peter Gorer Dept of Immunobiology, King’s College London at Guy’s Hospital Campus, London, United Kingdom
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
- Department of Gastroenterology, Guy’s and St Thomas’ Foundation Trust, London, UK
| | - Iva Zlatareva
- Peter Gorer Dept of Immunobiology, King’s College London at Guy’s Hospital Campus, London, United Kingdom
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Pierre Vantourout
- Peter Gorer Dept of Immunobiology, King’s College London at Guy’s Hospital Campus, London, United Kingdom
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Efstathios Theodoridis
- Peter Gorer Dept of Immunobiology, King’s College London at Guy’s Hospital Campus, London, United Kingdom
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Ariella Amar
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| | | | - Philip East
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | | | - John C Mansfield
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Christopher A Lamb
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Miles Parkes
- Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Peter M Irving
- Department of Gastroenterology, Guy’s and St Thomas’ Foundation Trust, London, UK
| | - Natalie J Prescott
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| | - Adrian C Hayday
- Peter Gorer Dept of Immunobiology, King’s College London at Guy’s Hospital Campus, London, United Kingdom
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
27
|
Mamedov MR, Vedova S, Freimer JW, Sahu AD, Ramesh A, Arce MM, Meringa AD, Ota M, Chen PA, Hanspers K, Nguyen VQ, Takeshima KA, Rios AC, Pritchard JK, Kuball J, Sebestyen Z, Adams EJ, Marson A. CRISPR screens decode cancer cell pathways that trigger γδ T cell detection. Nature 2023; 621:188-195. [PMID: 37648854 PMCID: PMC11003766 DOI: 10.1038/s41586-023-06482-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/26/2023] [Indexed: 09/01/2023]
Abstract
γδ T cells are potent anticancer effectors with the potential to target tumours broadly, independent of patient-specific neoantigens or human leukocyte antigen background1-5. γδ T cells can sense conserved cell stress signals prevalent in transformed cells2,3, although the mechanisms behind the targeting of stressed target cells remain poorly characterized. Vγ9Vδ2 T cells-the most abundant subset of human γδ T cells4-recognize a protein complex containing butyrophilin 2A1 (BTN2A1) and BTN3A1 (refs. 6-8), a widely expressed cell surface protein that is activated by phosphoantigens abundantly produced by tumour cells. Here we combined genome-wide CRISPR screens in target cancer cells to identify pathways that regulate γδ T cell killing and BTN3A cell surface expression. The screens showed previously unappreciated multilayered regulation of BTN3A abundance on the cell surface and triggering of γδ T cells through transcription, post-translational modifications and membrane trafficking. In addition, diverse genetic perturbations and inhibitors disrupting metabolic pathways in the cancer cells, particularly ATP-producing processes, were found to alter BTN3A levels. This induction of both BTN3A and BTN2A1 during metabolic crises is dependent on AMP-activated protein kinase (AMPK). Finally, small-molecule activation of AMPK in a cell line model and in patient-derived tumour organoids led to increased expression of the BTN2A1-BTN3A complex and increased Vγ9Vδ2 T cell receptor-mediated killing. This AMPK-dependent mechanism of metabolic stress-induced ligand upregulation deepens our understanding of γδ T cell stress surveillance and suggests new avenues available to enhance γδ T cell anticancer activity.
Collapse
Affiliation(s)
- Murad R. Mamedov
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Shane Vedova
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jacob W. Freimer
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Avinash Das Sahu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Amrita Ramesh
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Maya M. Arce
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Angelo D. Meringa
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Mineto Ota
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Peixin Amy Chen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kristina Hanspers
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Vinh Q. Nguyen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA, USA
| | | | - Anne C. Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Jonathan K. Pritchard
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Zsolt Sebestyen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
28
|
Parihar N, Bhatt LK. The emerging paradigm of Unconventional T cells as a novel therapeutic target for celiac disease. Int Immunopharmacol 2023; 122:110666. [PMID: 37473709 DOI: 10.1016/j.intimp.2023.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Celiac disease (CD) is an organ-specific autoimmune disorder that occurs in genetically predisposed individuals when exposed to exogenous dietary gluten. This exposure to wheat gluten and related proteins from rye and barley triggers an immune response which leads to the development of enteropathy associated with symptoms of bloating, diarrhea, or malabsorption. The sole current treatment is to follow a gluten-free diet for the rest of one's life. Intestinal barriers are enriched with Unconventional T cells such as iNKT, MAIT, and γδ T cells, which lack or express only a limited range of rearranged antigen receptors. Unconventional T cells play a crucial role in regulating mucosal barrier function and microbial colonization. Unconventional T cell populations are widely represented in diseased conditions, where changes in disease activity related to iNKT and MAIT cell reduction, as well as γδ T cell expansion, are demonstrated. In this review, we discuss the role and potential employment of Unconventional T cells as a therapeutic target in the pathophysiology of celiac disease.
Collapse
Affiliation(s)
- Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
29
|
Yuan L, Ma X, Yang Y, Qu Y, Li X, Zhu X, Ma W, Duan J, Xue J, Yang H, Huang JW, Yi S, Zhang M, Cai N, Zhang L, Ding Q, Lai K, Liu C, Zhang L, Liu X, Yao Y, Zhou S, Li X, Shen P, Chang Q, Malwal SR, He Y, Li W, Chen C, Chen CC, Oldfield E, Guo RT, Zhang Y. Phosphoantigens glue butyrophilin 3A1 and 2A1 to activate Vγ9Vδ2 T cells. Nature 2023; 621:840-848. [PMID: 37674084 PMCID: PMC10533412 DOI: 10.1038/s41586-023-06525-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
In both cancer and infections, diseased cells are presented to human Vγ9Vδ2 T cells through an 'inside out' signalling process whereby structurally diverse phosphoantigen (pAg) molecules are sensed by the intracellular domain of butyrophilin BTN3A11-4. Here we show how-in both humans and alpaca-multiple pAgs function as 'molecular glues' to promote heteromeric association between the intracellular domains of BTN3A1 and the structurally similar butyrophilin BTN2A1. X-ray crystallography studies visualized that engagement of BTN3A1 with pAgs forms a composite interface for direct binding to BTN2A1, with various pAg molecules each positioned at the centre of the interface and gluing the butyrophilins with distinct affinities. Our structural insights guided mutagenesis experiments that led to disruption of the intracellular BTN3A1-BTN2A1 association, abolishing pAg-mediated Vγ9Vδ2 T cell activation. Analyses using structure-based molecular-dynamics simulations, 19F-NMR investigations, chimeric receptor engineering and direct measurement of intercellular binding force revealed how pAg-mediated BTN2A1 association drives BTN3A1 intracellular fluctuations outwards in a thermodynamically favourable manner, thereby enabling BTN3A1 to push off from the BTN2A1 ectodomain to initiate T cell receptor-mediated γδ T cell activation. Practically, we harnessed the molecular-glue model for immunotherapeutics design, demonstrating chemical principles for developing both small-molecule activators and inhibitors of human γδ T cell function.
Collapse
MESH Headings
- Animals
- Humans
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Butyrophilins/immunology
- Butyrophilins/metabolism
- Camelids, New World/immunology
- Lymphocyte Activation
- Molecular Dynamics Simulation
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Crystallography, X-Ray
- Nuclear Magnetic Resonance, Biomolecular
- Thermodynamics
Collapse
Affiliation(s)
- Linjie Yuan
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xianqiang Ma
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yunyun Yang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yingying Qu
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xin Li
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Ma
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | | | - Jing Xue
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Haoyu Yang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Simin Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Mengting Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Ningning Cai
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Lin Zhang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qingyang Ding
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Kecheng Lai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Chang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Xinyi Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Yirong Yao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuqi Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xian Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Panpan Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Qing Chang
- School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Technology Center for Protein Sciences, Tsinghua University, Beijing, China
| | - Satish R Malwal
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuan He
- Research Beyond Borders, Boehringer Ingelheim (China), Shanghai, China
| | - Wenqi Li
- School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Technology Center for Protein Sciences, Tsinghua University, Beijing, China
| | - Chunlai Chen
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China.
| | - Yonghui Zhang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
30
|
Hajdara A, Çakır U, Érsek B, Silló P, Széky B, Barna G, Faqi S, Gyöngy M, Kárpáti S, Németh K, Mayer B. Targeting Melanoma-Associated Fibroblasts (MAFs) with Activated γδ (Vδ2) T Cells: An In Vitro Cytotoxicity Model. Int J Mol Sci 2023; 24:12893. [PMID: 37629075 PMCID: PMC10454423 DOI: 10.3390/ijms241612893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The tumor microenvironment (TME) has gained considerable scientific attention by playing a role in immunosuppression and tumorigenesis. Besides tumor cells, TME is composed of various other cell types, including cancer-associated fibroblasts (CAFs or MAFs when referring to melanoma-derived CAFs) and tumor-infiltrating lymphocytes (TILs), a subpopulation of which is labeled as γδ T cells. Since the current anti-cancer therapies using γδ T cells in various cancers have exhibited mixed treatment responses, to better understand the γδ T cell biology in melanoma, our research group aimed to investigate whether activated γδ T cells are capable of killing MAFs. To answer this question, we set up an in vitro platform using freshly isolated Vδ2-type γδ T cells and cultured MAFs that were biobanked from our melanoma patients. This study proved that the addition of zoledronic acid (1-2.5 µM) to the γδ T cells was necessary to drive MAFs into apoptosis. The MAF cytotoxicity of γδ T cells was further enhanced by using the stimulatory clone 20.1 of anti-BTN3A1 antibody but was reduced when anti-TCR γδ or anti-BTN2A1 antibodies were used. Since the administration of zoledronic acid is safe and tolerable in humans, our results provide further data for future clinical studies on the treatment of melanoma.
Collapse
Affiliation(s)
- Anna Hajdara
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (A.H.); (U.Ç.); (P.S.); (B.S.); (S.F.); (S.K.); (K.N.)
- Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| | - Uğur Çakır
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (A.H.); (U.Ç.); (P.S.); (B.S.); (S.F.); (S.K.); (K.N.)
| | - Barbara Érsek
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089 Budapest, Hungary;
| | - Pálma Silló
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (A.H.); (U.Ç.); (P.S.); (B.S.); (S.F.); (S.K.); (K.N.)
| | - Balázs Széky
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (A.H.); (U.Ç.); (P.S.); (B.S.); (S.F.); (S.K.); (K.N.)
- Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| | - Gábor Barna
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Shaaban Faqi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (A.H.); (U.Ç.); (P.S.); (B.S.); (S.F.); (S.K.); (K.N.)
- Károly Rácz Doctoral School of Clinical Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Miklós Gyöngy
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary;
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (A.H.); (U.Ç.); (P.S.); (B.S.); (S.F.); (S.K.); (K.N.)
| | - Krisztián Németh
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (A.H.); (U.Ç.); (P.S.); (B.S.); (S.F.); (S.K.); (K.N.)
| | - Balázs Mayer
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (A.H.); (U.Ç.); (P.S.); (B.S.); (S.F.); (S.K.); (K.N.)
| |
Collapse
|
31
|
Zlatareva I, Wu Y. Local γδ T cells: translating promise to practice in cancer immunotherapy. Br J Cancer 2023; 129:393-405. [PMID: 37311978 PMCID: PMC10403623 DOI: 10.1038/s41416-023-02303-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
Rapid bench-to-bedside translation of basic immunology to cancer immunotherapy has revolutionised the clinical practice of oncology over the last decade. Immune checkpoint inhibitors targeting αβ T cells now offer durable remissions and even cures for some patients with hitherto treatment-refractory metastatic cancers. Unfortunately, these treatments only benefit a minority of patients and efforts to improve efficacy through combination therapies utilising αβ T cells have seen diminishing returns. Alongside αβ T cells and B cells, γδ T cells are a third lineage of adaptive lymphocytes. Less is known about these cells, and they remain relatively untested in cancer immunotherapy. Whilst preclinical evidence supports their utility, the few early-phase trials involving γδ T cells have failed to demonstrate convincing efficacy in solid cancers. Here we review recent progress in our understanding of how these cells are regulated, especially locally within tissues, and the potential for translation. In particular, we focus on the latest advances in the field of butyrophilin (BTN) and BTN-like (BTNL) regulation of γδ T cells and speculate on how these advances may address the limitations of historical approaches in utilising these cells, as well as how they may inform novel approaches in deploying these cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Iva Zlatareva
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
| | - Yin Wu
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK.
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, SE1 9RT, UK.
- Department of Medical Oncology, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
32
|
Nguyen K, Jin Y, Howell M, Hsiao CHC, Wiemer AJ, Vinogradova O. Mutations to the BTN2A1 Linker Region Impact Its Homodimerization and Its Cytoplasmic Interaction with Phospho-Antigen-Bound BTN3A1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:23-33. [PMID: 37171180 PMCID: PMC10330345 DOI: 10.4049/jimmunol.2200949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Intracellular binding of small-molecule phospho-Ags to the HMBPP receptor complex in infected cells leads to extracellular detection by T cells expressing the Vγ9Vδ2 TCR, a noncanonical method of Ag detection. The butyrophilin proteins BTN2A1 and BTN3A1 are part of the complex; however, their precise roles are unclear. We suspected that BTN2A1 and BTN3A1 form a tetrameric (dimer of dimers) structure, and we wanted to probe the importance of the BTN2A1 homodimer. We analyzed mutations to human BTN2A1, using internal domain or full-length BTN2A1 constructs, expressed in Escherichia coli or human K562 cells, that might disrupt its structure and/or function. Although BTN2A1 is a disulfide-linked homodimer, mutation of cysteine residues C247 and C265 did not affect the ability to stimulate T cell IFN-γ production by ELISA. Two mutations of the juxtamembrane region (at EKE282) failed to impact BTN2A1 function. In contrast, single point mutations (L318G and L325G) near the BTN2A1 B30.2 domain blocked phospho-Ag response. Size exclusion chromatography and nuclear magnetic resonance (NMR) experiments showed that the isolated BTN2A1 B30.2 domain is a homodimer, even in the absence of its extracellular and transmembrane region. [31P]-NMR experiments confirmed that HMBPP binds to BTN3A1 but not BTN2A1, and binding abrogates signals from both phosphorus atoms. Furthermore, the BTN2A1 L325G mutation but not the L318G mutation prevents both homodimerization of BTN2A1 internal domain constructs in size exclusion chromatography (and NMR) experiments and their binding to HMBPP-bound BTN3A1 in isothermal titration calorimetry experiments. Together, these findings support the importance of homodimerization within the BTN2A1 internal domain for phospho-Ag detection.
Collapse
Affiliation(s)
- Khiem Nguyen
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT
| | - Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT
| | - Matthew Howell
- Department of Chemistry, University of Connecticut, Storrs, CT
| | | | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT
- Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT
| |
Collapse
|
33
|
Lv H, Lou S, Zhang L, Cui D, Li Y, Yang Y, Chen M, Chen P. Evaluation of the impacts of photodynamic therapy on the prognosis of patients with hrHPV infection based on BTNL8 expression. Front Oncol 2023; 13:1218808. [PMID: 37456250 PMCID: PMC10342195 DOI: 10.3389/fonc.2023.1218808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Objective The aim of this study was to evaluate the prognostic value of Butyrophilin-like protein 8 (BTNL8) expression in high-risk HPV (hrHPV) infection treated with photodynamic therapy. Methods A total of 93 patients with hrHPV infection were enrolled as research study subjects, along with 69 healthy women who served as controls. Serum samples were obtained from each participant, and BTNL8 levels were quantified. The patients were divided into high- and low-expression groups (n = 45 and n = 48, respectively), and both groups underwent photodynamic therapy. We recorded the following data: BTNL8 expression pre-treatment and at 3/6 months post-treatment, HPV negative conversion ratio, regression rate of low-grade squamous intraepithelial lesions (LSIL), incidence of adverse reactions, complication rate, serum inflammatory factors, persistence of HPV positivity, LSIL residue or recurrence, and incidence of high-grade cervical intraepithelial lesions (HCIL). Results Patients with HPV infection exhibited higher BTNL8 expression than healthy individuals. Compared to the low-expression group, the high-expression group showed increased HPV negative conversion ratios, LSIL regression rates, and levels of IL-17 and IL-23. This group also demonstrated decreased total complication rate, HPV positivity persistence, LSIL residue or recurrence, and IL-10 levels. Additionally, there was no significant difference between the two groups in terms of the number of adverse reactions and cases with LSIL residue/recurrence. Conclusion Serum BTNL8 expression may serve as a valuable tool for early screening and prognosis monitoring of patients with hrHPV infection.
Collapse
Affiliation(s)
- Hongqing Lv
- Department of Gynecology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Shuai Lou
- Department of Gynecology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Lin Zhang
- Department of Gynecology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Dawei Cui
- Department of Gynecology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Yao Li
- Department of Gynecology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Ying Yang
- Department of Gynecology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Meilan Chen
- Department of Gynecology, Jinhua Maternal and Child Health Hospital, Jinhua, Zhejiang, China
| | - Pan Chen
- Department of Gynecology, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| |
Collapse
|
34
|
Meringa AD, Hernández-López P, Cleven A, de Witte M, Straetemans T, Kuball J, Beringer DX, Sebestyen Z. Strategies to improve γδTCRs engineered T-cell therapies for the treatment of solid malignancies. Front Immunol 2023; 14:1159337. [PMID: 37441064 PMCID: PMC10333927 DOI: 10.3389/fimmu.2023.1159337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Affiliation(s)
- A. D. Meringa
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - P. Hernández-López
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - A. Cleven
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M. de Witte
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - T. Straetemans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - J. Kuball
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - D. X. Beringer
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Z. Sebestyen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
35
|
Rimailho L, Faria C, Domagala M, Laurent C, Bezombes C, Poupot M. γδ T cells in immunotherapies for B-cell malignancies. Front Immunol 2023; 14:1200003. [PMID: 37426670 PMCID: PMC10325712 DOI: 10.3389/fimmu.2023.1200003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/11/2023] [Indexed: 07/11/2023] Open
Abstract
Despite the advancements in therapy for B cell malignancies and the increase in long-term survival of patients, almost half of them lead to relapse. Combinations of chemotherapy and monoclonal antibodies such as anti-CD20 leads to mixed outcomes. Recent developments in immune cell-based therapies are showing many encouraging results. γδ T cells, with their potential of functional plasticity and their anti-tumoral properties, emerged as good candidates for cancer immunotherapies. The representation and the diversity of γδ T cells in tissues and in the blood, in physiological conditions or in B-cell malignancies such as B cell lymphoma, chronic lymphoblastic leukemia or multiple myeloma, provides the possibility to manipulate them with immunotherapeutic approaches for these patients. In this review, we summarized several strategies based on the activation and tumor-targeting of γδ T cells, optimization of expansion protocols, and development of gene-modified γδ T cells, using combinations of antibodies and therapeutic drugs and adoptive cell therapy with autologous or allogenic γδ T cells following potential genetic modifications.
Collapse
Affiliation(s)
- Léa Rimailho
- Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm-Univ. Toulouse III Paul Sabatier-ERL5294 CNRS, Toulouse, France
| | - Carla Faria
- Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm-Univ. Toulouse III Paul Sabatier-ERL5294 CNRS, Toulouse, France
| | - Marcin Domagala
- Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm-Univ. Toulouse III Paul Sabatier-ERL5294 CNRS, Toulouse, France
| | - Camille Laurent
- Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm-Univ. Toulouse III Paul Sabatier-ERL5294 CNRS, Toulouse, France
- Department of Pathology, Institut Universitaire du Cancer de Toulouse - Oncopôle, Toulouse, France
| | - Christine Bezombes
- Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm-Univ. Toulouse III Paul Sabatier-ERL5294 CNRS, Toulouse, France
| | - Mary Poupot
- Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm-Univ. Toulouse III Paul Sabatier-ERL5294 CNRS, Toulouse, France
| |
Collapse
|
36
|
Kumari R, Hosseini ES, Warrington KE, Milonas T, Payne KK. Butyrophilins: Dynamic Regulators of Protective T Cell Immunity in Cancer. Int J Mol Sci 2023; 24:8722. [PMID: 37240071 PMCID: PMC10218201 DOI: 10.3390/ijms24108722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The efficacy of current immunotherapies remains limited in many solid epithelial malignancies. Recent investigations into the biology of butyrophilin (BTN) and butyrophilin-like (BTNL) molecules, however, suggest these molecules are potent immunosuppressors of antigen-specific protective T cell activity in tumor beds. BTN and BTNL molecules also associate with each other dynamically on cellular surfaces in specific contexts, which modulates their biology. At least in the case of BTN3A1, this dynamism drives the immunosuppression of αβ T cells or the activation of Vγ9Vδ2 T cells. Clearly, there is much to learn regarding the biology of BTN and BTNL molecules in the context of cancer, where they may represent intriguing immunotherapeutic targets that could potentially synergize with the current class of immune modulators in cancer. Here, we discuss our current understanding of BTN and BTNL biology, with a particular focus on BTN3A1, and potential therapeutic implications for cancer.
Collapse
Affiliation(s)
- Rinkee Kumari
- Medical Immunology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Elaheh Sadat Hosseini
- Medical Immunology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Cellular and Molecular Pharmacology, Rutgers School of Graduate Studies, Rutgers, The State University of New Jersey, New Brunswick, NJ 08854, USA
| | - Kristen E. Warrington
- Medical Immunology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Tyler Milonas
- Medical Immunology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Kyle K. Payne
- Medical Immunology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Cellular and Molecular Pharmacology, Rutgers School of Graduate Studies, Rutgers, The State University of New Jersey, New Brunswick, NJ 08854, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
37
|
Willcox CR, Salim M, Begley CR, Karunakaran MM, Easton EJ, von Klopotek C, Berwick KA, Herrmann T, Mohammed F, Jeeves M, Willcox BE. Phosphoantigen sensing combines TCR-dependent recognition of the BTN3A IgV domain and germline interaction with BTN2A1. Cell Rep 2023; 42:112321. [PMID: 36995939 DOI: 10.1016/j.celrep.2023.112321] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Vγ9Vδ2 T cells play critical roles in microbial immunity by detecting target cells exposed to pathogen-derived phosphoantigens (P-Ags). Target cell expression of BTN3A1, the "P-Ag sensor," and BTN2A1, a direct ligand for T cell receptor (TCR) Vγ9, is essential for this process; however, the molecular mechanisms involved are unclear. Here, we characterize BTN2A1 interactions with Vγ9Vδ2 TCR and BTN3A1. Nuclear magnetic resonance (NMR), modeling, and mutagenesis establish a BTN2A1-immunoglobulin V (IgV)/BTN3A1-IgV structural model compatible with their cell-surface association in cis. However, TCR and BTN3A1-IgV binding to BTN2A1-IgV is mutually exclusive, owing to binding site proximity and overlap. Moreover, mutagenesis indicates that the BTN2A1-IgV/BTN3A1-IgV interaction is non-essential for recognition but instead identifies a molecular surface on BTN3A1-IgV essential to P-Ag sensing. These results establish a critical role for BTN3A-IgV in P-Ag sensing, in mediating direct or indirect interactions with the γδ-TCR. They support a composite-ligand model whereby intracellular P-Ag detection coordinates weak extracellular germline TCR/BTN2A1 and clonotypically influenced TCR/BTN3A-mediated interactions to initiate Vγ9Vδ2 TCR triggering.
Collapse
Affiliation(s)
- Carrie R Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK.
| | - Mahboob Salim
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | - Charlotte R Begley
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | | | - Emily J Easton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | | | - Katie A Berwick
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | - Mark Jeeves
- Henry Wellcome Building for NMR, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | - Benjamin E Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK.
| |
Collapse
|
38
|
Corcoran M, Chernyshev M, Mandolesi M, Narang S, Kaduk M, Ye K, Sundling C, Färnert A, Kreslavsky T, Bernhardsson C, Larena M, Jakobsson M, Karlsson Hedestam GB. Archaic humans have contributed to large-scale variation in modern human T cell receptor genes. Immunity 2023; 56:635-652.e6. [PMID: 36796364 DOI: 10.1016/j.immuni.2023.01.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/21/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023]
Abstract
Human T cell receptors (TCRs) are critical for mediating immune responses to pathogens and tumors and regulating self-antigen recognition. Yet, variations in the genes encoding TCRs remain insufficiently defined. Detailed analysis of expressed TCR alpha, beta, gamma, and delta genes in 45 donors from four human populations-African, East Asian, South Asian, and European-revealed 175 additional TCR variable and junctional alleles. Most of these contained coding changes and were present at widely differing frequencies in the populations, a finding confirmed using DNA samples from the 1000 Genomes Project. Importantly, we identified three Neanderthal-derived, introgressed TCR regions including a highly divergent TRGV4 variant, which mediated altered butyrophilin-like molecule 3 (BTNL3) ligand reactivity and was frequent in all modern Eurasian population groups. Our results demonstrate remarkable variation in TCR genes in both individuals and populations, providing a strong incentive for including allelic variation in studies of TCR function in human biology.
Collapse
Affiliation(s)
- Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Mark Chernyshev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sanjana Narang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mateusz Kaduk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kewei Ye
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Sundling
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Anna Färnert
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Taras Kreslavsky
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Bernhardsson
- Department of Organismal Biology, Human Evolution, Norbyvägen 18C, 752 63 Uppsala, Sweden
| | - Maximilian Larena
- Department of Organismal Biology, Human Evolution, Norbyvägen 18C, 752 63 Uppsala, Sweden
| | - Mattias Jakobsson
- Department of Organismal Biology, Human Evolution, Norbyvägen 18C, 752 63 Uppsala, Sweden
| | | |
Collapse
|
39
|
Gao Z, Bai Y, Lin A, Jiang A, Zhou C, Cheng Q, Liu Z, Chen X, Zhang J, Luo P. Gamma delta T-cell-based immune checkpoint therapy: attractive candidate for antitumor treatment. Mol Cancer 2023; 22:31. [PMID: 36793048 PMCID: PMC9930367 DOI: 10.1186/s12943-023-01722-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023] Open
Abstract
As a nontraditional T-cell subgroup, γδT cells have gained popularity in the field of immunotherapy in recent years. They have extraordinary antitumor potential and prospects for clinical application. Immune checkpoint inhibitors (ICIs), which are efficacious in tumor patients, have become pioneer drugs in the field of tumor immunotherapy since they were incorporated into clinical practice. In addition, γδT cells that have infiltrated into tumor tissues are found to be in a state of exhaustion or anergy, and there is upregulation of many immune checkpoints (ICs) on their surface, suggesting that γδT cells have a similar ability to respond to ICIs as traditional effector T cells. Studies have shown that targeting ICs can reverse the dysfunctional state of γδT cells in the tumor microenvironment (TME) and exert antitumor effects by improving γδT-cell proliferation and activation and enhancing cytotoxicity. Clarification of the functional state of γδT cells in the TME and the mechanisms underlying their interaction with ICs will solidify ICIs combined with γδT cells as a good treatment option.
Collapse
Affiliation(s)
- Zhifei Gao
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China ,grid.284723.80000 0000 8877 7471The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 People’s Republic of China
| | - Yifeng Bai
- grid.54549.390000 0004 0369 4060The Department of Oncology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Anqi Lin
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China
| | - Aimin Jiang
- grid.73113.370000 0004 0369 1660The Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chaozheng Zhou
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China ,grid.284723.80000 0000 8877 7471The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- grid.216417.70000 0001 0379 7164The Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zaoqu Liu
- grid.412633.10000 0004 1799 0733The Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Xin Chen
- The Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jian Zhang
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, 510282, People's Republic of China.
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
40
|
Karunakaran MM, Subramanian H, Jin Y, Mohammed F, Kimmel B, Juraske C, Starick L, Nöhren A, Länder N, Willcox CR, Singh R, Schamel WW, Nikolaev VO, Kunzmann V, Wiemer AJ, Willcox BE, Herrmann T. Division of labor and cooperation between different butyrophilin proteins controls phosphoantigen-mediated activation of human γδ T cells. RESEARCH SQUARE 2023:rs.3.rs-2583246. [PMID: 36824912 PMCID: PMC9949253 DOI: 10.21203/rs.3.rs-2583246/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Butyrophilin (BTN)-3A and BTN2A1 molecules control TCR-mediated activation of human Vγ9Vδ2 T-cells triggered by phosphoantigens (PAg) from microbes and tumors, but the molecular rules governing antigen sensing are unknown. Here we establish three mechanistic principles of PAg-action. Firstly, in humans, following PAg binding to the BTN3A1-B30.2 domain, Vγ9Vδ2 TCR triggering involves the V-domain of BTN3A2/BTN3A3. Moreover, PAg/B30.2 interaction, and the critical γδ-T-cell-activating V-domain, localize to different molecules. Secondly, this distinct topology as well as intracellular trafficking and conformation of BTN3A heteromers or ancestral-like BTN3A homomers are controlled by molecular interactions of the BTN3 juxtamembrane region. Finally, the ability of PAg not simply to bind BTN3A-B30.2, but to promote its subsequent interaction with the BTN2A1-B30.2 domain, is essential for T-cell activation. Defining these determinants of cooperation and division of labor in BTN proteins deepens understanding of PAg sensing and elucidates a mode of action potentially applicable to other BTN/BTNL family members.
Collapse
Affiliation(s)
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Brigitte Kimmel
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg Germany
| | - Claudia Juraske
- Signaling Research Centers BIOSS and CIBSS and Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany; Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Lisa Starick
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| | - Anna Nöhren
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| | - Nora Länder
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| | - Carrie R Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Rohit Singh
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Wolfgang W Schamel
- Signaling Research Centers BIOSS and CIBSS and Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany; Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Volker Kunzmann
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg Germany
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Benjamin E Willcox
- 6Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Thomas Herrmann
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
Zhang T, Wang J, Zhao A, Xia L, Jin H, Xia S, Shi T. The way of interaction between Vγ9Vδ2 T cells and tumor cells. Cytokine 2023; 162:156108. [PMID: 36527892 DOI: 10.1016/j.cyto.2022.156108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Immunotherapy has been a promising, emerging treatment for various cancers. Gamma delta (γδ) T cells own a T cell receptor composed of γ- and δ- chain and act as crucial players in the anti-tumor immune effect. Currently, Vγ9Vδ2 T cells, the predominate γδ T cell subset in human peripheral blood, has been shown to exert multiple biological functions. In addition, a growing body of evidence notes that Vγ9Vδ2 T cells interact with tumor cells in many ways, such as TCR-mediated nonpeptidic-phosphorylated phosphoantigens (pAgs) recognization, NKG2D/NKG2D ligand (NKG2DL) pathway, Fas-FasL axis and antibody-dependent cellular cytotoxicity (ADCC) as well as exosome. More importantly, clinical studies with Vγ9Vδ2 T cells in cancers have propelled several clinical applications to investigate their safety and efficacy. Herein, this review summarized the underlying ways and mechanisms of interplay cancer cells and Vγ9Vδ2 T cells, which may help us to generate new strategies for tumor immunotherapy in the future.
Collapse
Affiliation(s)
- Ting Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China; Department of Oncology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Anjing Zhao
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Lu Xia
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Haiyan Jin
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Suhua Xia
- Department of Oncology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China.
| |
Collapse
|
42
|
Giannotta C, Autino F, Massaia M. Vγ9Vδ2 T-cell immunotherapy in blood cancers: ready for prime time? Front Immunol 2023; 14:1167443. [PMID: 37143664 PMCID: PMC10153673 DOI: 10.3389/fimmu.2023.1167443] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
In the last years, the tumor microenvironment (TME) has emerged as a promising target for therapeutic interventions in cancer. Cancer cells are highly dependent on the TME to growth and evade the immune system. Three major cell subpopulations are facing each other in the TME: cancer cells, immune suppressor cells, and immune effector cells. These interactions are influenced by the tumor stroma which is composed of extracellular matrix, bystander cells, cytokines, and soluble factors. The TME can be very different depending on the tissue where cancer arises as in solid tumors vs blood cancers. Several studies have shown correlations between the clinical outcome and specific patterns of TME immune cell infiltration. In the recent years, a growing body of evidence suggests that unconventional T cells like natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells, and γδ T cells are key players in the protumor or antitumor TME commitment in solid tumors and blood cancers. In this review, we will focus on γδ T cells, especially Vγ9Vδ2 T cells, to discuss their peculiarities, pros, and cons as potential targets of therapeutic interventions in blood cancers.
Collapse
Affiliation(s)
- Claudia Giannotta
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università Degli Studi di Torino, Torino, Italy
| | - Federica Autino
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università Degli Studi di Torino, Torino, Italy
| | - Massimo Massaia
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università Degli Studi di Torino, Torino, Italy
- Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S. Croce e Carle, Cuneo, Italy
- *Correspondence: Massimo Massaia,
| |
Collapse
|
43
|
Kone AS, Ait Ssi S, Sahraoui S, Badou A. BTN3A: A Promising Immune Checkpoint for Cancer Prognosis and Treatment. Int J Mol Sci 2022; 23:13424. [PMID: 36362212 PMCID: PMC9653866 DOI: 10.3390/ijms232113424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 08/15/2023] Open
Abstract
Butyrophilin-3A (BTN3A) subfamily members are a group of immunoglobulins present on the surface of different cell types, including innate and cancer cells. Due to their high similarity with the B7 family members, different studies have been conducted and revealed the involvement of BTN3A molecules in modulating T cell activity within the tumor microenvironment (TME). However, a great part of this research focused on γδ T cells and how BTN3A contributes to their functions. In this review, we will depict the roles and various aspects of BTN3A molecules in distinct tumor microenvironments and review how BTN3A receptors modulate diverse immune effector functions including those of CD4+ (Th1), cytotoxic CD8+ T cells, and NK cells. We will also highlight the potential of BTN3A molecules as therapeutic targets for effective immunotherapy and successful cancer control, which could represent a bright future for patient treatment.
Collapse
Affiliation(s)
- Abdou-samad Kone
- Laboratory of Immuno-Genetics and Human Pathologies, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20000, Morocco
| | - Saadia Ait Ssi
- Laboratory of Immuno-Genetics and Human Pathologies, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20000, Morocco
| | - Souha Sahraoui
- Mohammed VI Center of Oncology, CHU Ibn Rochd, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20000, Morocco
| | - Abdallah Badou
- Laboratory of Immuno-Genetics and Human Pathologies, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20000, Morocco
| |
Collapse
|
44
|
Liu Z, Yang H, Chen Z, Jing C. A novel chromatin regulator-related immune checkpoint related gene prognostic signature and potential candidate drugs for endometrial cancer patients. Hereditas 2022; 159:40. [PMID: 36253800 PMCID: PMC9578220 DOI: 10.1186/s41065-022-00253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/22/2022] [Indexed: 11/14/2022] Open
Abstract
Background Endometrial cancer (EC) is the most common gynecologic malignancy in developed countries and its prevalence is increasing. As an emerging therapy with a promising efficacy, immunotherapy has been extensively applied in the treatment of solid tumors. In addition, chromatin regulators (CRs), as essential upstream regulators of epigenetics, play a significant role in tumorigenesis and cancer development. Methods CRs and immune checkpoint-related genes (ICRGs) were obtained from the previous top research. The Genome Cancer Atlas (TCGA) was utilized to acquire the mRNA expression and clinical information of patients with EC. Correlation analysis was utilized for screen CRs-related ICRGs (CRRICRGs). By Cox regression and least absolute shrinkage and selection operator (LASSO) analysis, prognosis related CRRICRGs were screened out and risk model was constructed. The Kaplan–Meier curve was used to estimate the prognosis between high- and low-risk group. By comparing the IC50 value, the drugs sensitivity difference was explored. We obtained small molecule drugs for the treatment of UCEC patients based on CAMP dataset. Results We successfully constructed a 9 CRRICRs-based prognostic signature for patients with UCEC and found the riskscore was an independent prognostic factor. The results of functional analysis suggested that CRRICRGs may be involved in immune processes associated with cancer. Immune characteristics analysis provided further evidence that the CRRICRGs-based model was correlated with immune cells infiltration and immune checkpoint. Eight small molecule drugs that may be effective for the treatment of UCEC patients were screened. Effective drugs identified by drug sensitivity profiling in high- and low-risk groups. Conclusion In summary, our study provided novel insights into the function of CRRICRGs in UCEC. We also developed a reliable prognostic panel for the survival of patients with UCEC. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-022-00253-w.
Collapse
Affiliation(s)
- Zesi Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Hongxia Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Ziyu Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Chunli Jing
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China.
| |
Collapse
|
45
|
Positron Emission Tomography Probes for Imaging Cytotoxic Immune Cells. Pharmaceutics 2022; 14:pharmaceutics14102040. [PMID: 36297474 PMCID: PMC9610635 DOI: 10.3390/pharmaceutics14102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Non-invasive positron emission tomography (PET) imaging of immune cells is a powerful approach for monitoring the dynamics of immune cells in response to immunotherapy. Despite the clinical success of many immunotherapeutic agents, their clinical efficacy is limited to a subgroup of patients. Conventional imaging, as well as analysis of tissue biopsies and blood samples do not reflect the complex interaction between tumour and immune cells. Consequently, PET probes are being developed to capture the dynamics of such interactions, which may improve patient stratification and treatment evaluation. The clinical efficacy of cancer immunotherapy relies on both the infiltration and function of cytotoxic immune cells at the tumour site. Thus, various immune biomarkers have been investigated as potential targets for PET imaging of immune response. Herein, we provide an overview of the most recent developments in PET imaging of immune response, including the radiosynthesis approaches employed in their development.
Collapse
|
46
|
Yu H, Mi C, Wang Q, Dai G, Zhang T, Zhang G, Xie K, Zhao Z. Long noncoding RNA profiling reveals that LncRNA BTN3A2 inhibits the host inflammatory response to Eimeria tenella infection in chickens. Front Immunol 2022; 13:891001. [PMID: 36091044 PMCID: PMC9452752 DOI: 10.3389/fimmu.2022.891001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/05/2022] [Indexed: 02/02/2023] Open
Abstract
Coccidiosis is a widespread parasitic disease that causes serious economic losses to the poultry industry every year. Long noncoding RNAs (lncRNAs) play important roles in transcriptional regulation and are involved in a variety of diseases and immune responses. However, the lncRNAs associated with Eimeria tenella (E. tenella) resistance have not been identified in chickens. In addition, the expression profiles and functions of lncRNAs during E. tenella infection remain unclear. In the present study, high-throughput sequencing was applied to identify lncRNAs in chicken cecal tissues from control (JC), resistant (JR), and susceptible (JS) groups on day 4.5 post-infection (pi), and functional tests were performed. A total of 564 lncRNAs were differentially expressed, including 263 lncRNAs between the JS and JC groups, 192 between the JR and JS groups, and 109 between the JR and JC groups. Functional analyses indicated that these differentially expressed lncRNAs were involved in pathways related to E. tenella infection, including the NF-kappa B signaling, B cell receptor signaling and natural killer cell-mediated cytotoxicity pathways. Moreover, through cis regulation network analysis of the differentially expressed lncRNAs, we found that a novel lncRNA termed lncRNA BTN3A2 was significantly increased in both cecum tissue and DF-1 cells after coccidia infection or sporozoite stimulation. Functional test data showed that the overexpression of lncRNA BTN3A2 reduced the production of inflammatory cytokines, including IL-6, IL-1β, TNF-α and IL-8, while lncRNA BTN3A2 knockdown promoted the production of these inflammatory cytokines. Taken together, this study identify the differentially expressed lncRNAs during E. tenella infection in chickens for the first time and provide the direct evidence that lncRNA BTN3A2 regulates the host immune response to coccidia infection.
Collapse
Affiliation(s)
- Hailiang Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Changhao Mi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Guojun Dai,
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhenhua Zhao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| |
Collapse
|
47
|
Lin Y, Zhou H, Li S. BTN3A2 Expression Is Connected With Favorable Prognosis and High Infiltrating Immune in Lung Adenocarcinoma. Front Genet 2022; 13:848476. [PMID: 35873496 PMCID: PMC9298880 DOI: 10.3389/fgene.2022.848476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Butyrophilin subfamily 3 member A2 (BTN3A2) is an important mediator in immune activation, and it is reported to be linked to many cancer progresses. However, the relation with infiltrating immune and prognosis of BTN3A2 in lung adenocarcinoma are not clear. Methods: In our study, we checked the mRNA expression and protein expression profile of BTN3A2 in lung adenocarcinoma (LUAD) and its relation to clinical outcomes using TIMER and UALCAN databases. In addition, we analyzed the survival of BTN3A2 in LUAD using the Kaplan–Meier Plotter database and PrognoScan database. Moreover, we analyzed gene set enrichment analysis (GSEA) of the BTN3A2. Next, we explored the relation of BTN3A2 expression with the immune infiltration by TIMER. At last, in order to enrich the regulatory mechanism of BTN3A2, we used miRarbase, starbase, and miRDB databases to look for miRNA targets of BTN3A2. Results: The mRNA along with the protein expression of BTN3A2 in the LUAD group was lower than that in the normal group. In addition, high BTN3A2 expression was connected with good first progression (FP) and overall survival (OS) in LUAD. Then, the GSEA analysis demonstrated that T-cell receptor signaling cascade, B-cell receptor signaling cascade, natural killer cell–mediated cytotoxicity, immune receptor activity, immunological synapse, and T-cell activation were enriched differentially in the BTN3A2 high expression phenotype of LUAD. Moreover, BTN3A2 expression is a remarkable positive correlation with invading levels of tumor purity, B cells, neutrophils, CD4+ T cells, dendritic cells, macrophages, and CD8+ T cells in LUAD, and B cells and dendritic cells were linked with a good prognosis of LUAD. To further enrich the possible regulatory mechanisms of BTN3A2, we analyzed the miRNA targets. The results showed that hsa-miR-17-5p may be miRNA targets of BTN3A2. Conclusion: Taking together, we provide evidence of BTN3A2 as possible prognosis biomarkers of LUAD. In addition, high BTN3A2 expression in LUAD may influence the prognosis because of immune invasion. Moreover, our findings provide a potential mechanism that hsa-miR-17-5p may be miRNA targets of BTN3A2.
Collapse
Affiliation(s)
- Yuansheng Lin
- Suzhou Science and Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hao Zhou
- Suzhou Science and Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Shengjun Li
- Suzhou Science and Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
48
|
Nezhad Shamohammadi F, Yazdanifar M, Oraei M, Kazemi MH, Roohi A, Mahya Shariat Razavi S, Rezaei F, Parvizpour F, Karamlou Y, Namdari H. Controversial role of γδ T cells in pancreatic cancer. Int Immunopharmacol 2022; 108:108895. [PMID: 35729831 DOI: 10.1016/j.intimp.2022.108895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022]
Abstract
γδ T cells are rare lymphocytes with cogent impact on immune responses. These cells are one of the earliest cells to be recruited in the sites of infection or tumors and play a critical role in coordinating innate and adaptive immune responses. The anti-tumor activity of γδ T cells have been numerously reported; nonetheless, there is controversy among published studies regarding their anti-tumor vs pro-tumor effect- especially in pancreatic cancer. A myriad of studies has confirmed that activated γδ T cells can potently lyse a broad variety of solid tumors and leukemia/lymphoma cells and produce an array of cytokines; however, early γδ T cell-based clinical trials did not lead to optimal efficacy, despite acceptable safety. Depending on the local micromilieu, γδ T cells can differentiate into tumor promoting or suppressing cells such as Th1-, Th2-, or Th17-like cells and produce prototypical cytokines such as interferon-γ (IFNγ) and interleukin (IL)-4/-10, IL-9, or IL-17. In an abstruse tumor such as pancreatic cancer- also known as immunologically cold tumor- γδ T cells are more likely to switch to their immunosuppressive phenotype. In this review we will adduce the accumulated knowledge on these two controversial aspects of γδ T cells in cancers- with a focus on solid tumors and pancreatic cancer. In addition, we propose strategies for enhancing the anti-tumor function of γδ T cells in cancers and discuss the potential future directions.
Collapse
Affiliation(s)
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mona Oraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Roohi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Karamlou
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Involvement of the Intestinal Microbiota in the Appearance of Multiple Sclerosis: Aloe vera and Citrus bergamia as Potential Candidates for Intestinal Health. Nutrients 2022; 14:nu14132711. [PMID: 35807891 PMCID: PMC9269320 DOI: 10.3390/nu14132711] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple sclerosis (MS) is a neurological and inflammatory autoimmune disease of the Central Nervous System in which selective activation of T and B lymphocytes prompts a reaction against myelin, inducing demyelination and axonal loss. Although MS is recognized to be an autoimmune pathology, the specific causes are many; thus, to date, it has been considered a disorder resulting from environmental factors in genetically susceptible individuals. Among the environmental factors hypothetically involved in MS, nutrition seems to be well related, although the role of nutritional factors is still unclear. The gut of mammals is home to a bacterial community of about 2000 species known as the “microbiota”, whose composition changes throughout the life of each individual. There are five bacterial phylas that make up the microbiota in healthy adults: Firmicutes (79.4%), Bacteroidetes (16.9%), Actinobacteria (2.5%), Proteobacteria (1%) and Verrucomicrobia (0.1%). The diversity and abundance of microbial populations justifies a condition known as eubiosis. On the contrary, the state of dysbiosis refers to altered diversity and abundance of the microbiota. Many studies carried out in the last few years have demonstrated that there is a relationship between the intestinal microflora and the progression of multiple sclerosis. This correlation was also demonstrated by the discovery that patients with MS, treated with specific prebiotics and probiotics, have greatly increased bacterial diversity in the intestinal microbiota, which might be otherwise reduced or absent. In particular, natural extracts of Aloe vera and bergamot fruits, rich in polyphenols and with a high percentage of polysaccharides (mostly found in indigestible and fermentable fibers), appear to be potential candidates to re-equilibrate the gut microbiota in MS patients. The present review article aims to assess the pathophysiological mechanisms that reveal the role of the microbiota in the development of MS. In addition, the potential for supplementing patients undergoing early stages of MS with Aloe vera as well as bergamot fibers, on top of conventional drug treatments, is discussed.
Collapse
|
50
|
Qu G, Wang S, Zhou Z, Jiang D, Liao A, Luo J. Comparing Mouse and Human Tissue-Resident γδ T Cells. Front Immunol 2022; 13:891687. [PMID: 35757696 PMCID: PMC9215113 DOI: 10.3389/fimmu.2022.891687] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/06/2022] [Indexed: 12/28/2022] Open
Abstract
Circulating immune cell compartments have been extensively studied for decades, but limited access to peripheral tissue and cell yield have hampered our understanding of tissue-based immunity, especially in γδ T cells. γδ T cells are a unique subset of T cells that are rare in secondary lymphoid organs, but enriched in many peripheral tissues including the skin, uterus, and other epithelial tissues. In addition to immune surveillance activities, recent reports have revealed exciting new roles for γδ T cells in homeostatic tissue physiology in mice and humans. It is therefore important to investigate to what extent the developmental rules described using mouse models transfer to human γδ T cells. Besides, it will be necessary to understand the differences in the development and biogenesis of human and mouse γδ T cells; to understand how γδ T cells are maintained in physiological and pathological circumstances within different tissues, as well as characterize the progenitors of different tissue-resident γδ T cells. Here, we summarize current knowledge of the γδ T phenotype in various tissues in mice and humans, describing the similarities and differences of tissue-resident γδ T cells in mice and humans.
Collapse
Affiliation(s)
- Guanyu Qu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengli Wang
- School of Basic Medicine, Jinan University, Guangzhou, China
| | - Zhenlong Zhou
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|