1
|
Liu S, Xiao F, Lv L, Wang M, Li W, Niu G. Morphology-engineered alleviation of mycelial aggregation in Streptomyces chassis for potentiated production of secondary metabolites. Synth Syst Biotechnol 2025; 10:1059-1069. [PMID: 40529627 PMCID: PMC12173525 DOI: 10.1016/j.synbio.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/20/2025] [Accepted: 05/23/2025] [Indexed: 06/20/2025] Open
Abstract
The genus Streptomyces exhibits a complex life cycle of morphological differentiation and an extraordinary capacity to produce numerous bioactive secondary metabolites. In submerged cultures, Streptomyces species usually grow in the form of mycelial networks and aggregate into large pellets or clumps, which is generally unfavorable for industrial production. This study aimed to construct efficient microbial cell factories by manipulating morphology-related genes. We herein employed a morphology engineering approach to generate eight engineered derivatives (MECS01∼MECS08) of Streptomyces coelicolor M1146, a versatile chassis widely used for the heterologous production of various secondary metabolites. We found that genetic manipulation of morphology-related genes exerted a substantial influence on the growth and mycelial characteristics of the engineered strains. Once the native actinorhodin gene cluster was introduced into these strains, antibiotic production increased in all engineered strains compared to the parental strain. Notably, a significant elevation of actinorhodin production was observed in three of the engineered strains, MECS01, MECS03 and MECS05. Similar scenarios occurred when expressing the staurosporine gene cluster and the carotenoid gene cluster in these three engineered derivatives, respectively. Our study demonstrates that morphology engineering represents an effective strategy for alleviating mycelial aggregation. It has also expanded the toolkit of Streptomyces chassis available for the heterologous expression of gene clusters encoding a variety of secondary metabolites.
Collapse
Affiliation(s)
- Shuo Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Fei Xiao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Lanxin Lv
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Meiyan Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Guoqing Niu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, Shanxi, China
| |
Collapse
|
2
|
Bush MJ, Casu B, Schlimpert S. Dividing lines: compartmentalisation and division in Streptomyces. Curr Opin Microbiol 2025; 85:102611. [PMID: 40300397 DOI: 10.1016/j.mib.2025.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025]
Abstract
Bacteria display diverse strategies for cell division, exemplified by the multicellular life cycle of Streptomyces, a genus within the Actinomycetota phylum. Filamentous growing Streptomyces utilise two distinct division modes: during vegetative growth, nonconstricting cross-walls divide the mycelial network into long multinucleate compartments, while during reproductive growth, sporulation septation results in a 'multiple division event' that produces dozens of unigenomic spores that can separate and disperse in the environment. The cellular mechanisms governing these two types of cell division in Streptomyces are inherently complex and present specific biological challenges that involve core cell division proteins and several genus-specific factors. This review highlights recent advances and open questions in our understanding of Streptomyces cell biology, with a focus on key cell division components and the interplay of the chromosome with the division machinery, enabling these organisms to grow as multicellular filaments and form unicellular spores.
Collapse
Affiliation(s)
- Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; Centre for Microbial Interactions, Norwich Research Park, Norwich NR4 7UG, UK.
| | - Bastien Casu
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; Centre for Microbial Interactions, Norwich Research Park, Norwich NR4 7UG, UK.
| |
Collapse
|
3
|
Mavi PS, Flärdh K. Deletion of fbiC in Streptomyces venezuelae removes autofluorescence in the excitation-emission range of cyan fluorescent protein. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 40232129 DOI: 10.1099/mic.0.001552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Autofluorescence poses an impediment to fluorescence microscopy of biological samples. In the Gram-positive, soil-dwelling bacteria of the genus Streptomyces, sources of autofluorescence have not been examined systematically to date. Here, we show that the model organism for the genus, Streptomyces venezuelae, shows autofluorescence in two of the commonly used fluorescence channels for visualizing cyan and green/yellow fluorescent proteins. We identify the source of autofluorescence in the cyan fluorescence channel as redox cofactor factor 420 (F420) and target its synthesis to remove it. By deleting the vnz15170 (fbiC) gene, which is a key biosynthetic gene for the production of F420, we were able to create an autofluorescence-free strain in the cyan range of fluorescence excitation-emission. We demonstrate the usefulness of this strain by imaging the mTurquoise-tagged polar growth-related protein DivIVA and the cell division-related protein FtsZ in the fbiC deletion background. Using live-cell imaging to follow the dynamics of DivIVA and FtsZ, we demonstrate an improved signal-to-noise ratio in the mutant strain. We show that this strain can be a suitable tool for visualizing the localization of proteins in Streptomyces spp. and can facilitate the utilization of multi-colour imaging and fluorescence resonance energy transfer-based imaging.
Collapse
Affiliation(s)
| | - Klas Flärdh
- Department of Biology, Lund University, Kontaktvägen 13, 223 62 Lund, Sweden
| |
Collapse
|
4
|
Morel CA, Asencio C, Moreira D, Blancard C, Salin B, Gontier E, Duvezin-Caubet S, Rojo M, Bringaud F, Tetaud E. A new member of the dynamin superfamily modulates mitochondrial membrane branching in Trypanosoma brucei. Curr Biol 2025; 35:1337-1352.e5. [PMID: 40081380 DOI: 10.1016/j.cub.2025.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
Unlike most other eukaryotes, where mitochondria continuously fuse and divide, the mitochondrion of trypanosome cells forms a single and continuously interconnected network that divides only during cytokinesis. However, the machinery governing mitochondrial remodeling and interconnection of trypanosome mitochondrion remain largely unknown. We functionally characterize a new member of the dynamin superfamily protein (DSP) from T. brucei (TbMfnL), which shares similarity with a family of homologs present in various eukaryotic and prokaryotic phyla but not in opisthokonts like mammals and budding yeast. The sequence and domain organization of TbMfnL is distinct, and it is phylogenetically very distant from the yeast and mammalian dynamin-related proteins involved in mitochondrial fusion/fission dynamics, such as optic atrophy 1 (Opa1) and mitofusin (Mfn). TbMfnL localizes to the inner mitochondrial membrane facing the matrix and, upon overexpression, induces a strong increase in the interconnection and branching of mitochondrial filaments in a GTPase-dependent manner. TbMfnL is a component of a novel membrane remodeling machinery with an unprecedented matrix-side localization that is able to modulate the degree of inter-mitochondrial connections.
Collapse
Affiliation(s)
| | - Corinne Asencio
- Univ. Bordeaux, CNRS, MFP, UMR 5234, F-33000 Bordeaux, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France
| | | | - Bénédicte Salin
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Etienne Gontier
- Univ. Bordeaux, CNRS, INSERM, BIC, US4, UAR 3420, F-33000 Bordeaux, France
| | | | - Manuel Rojo
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | | | - Emmanuel Tetaud
- Univ. Bordeaux, CNRS, MFP, UMR 5234, F-33000 Bordeaux, France.
| |
Collapse
|
5
|
Sen BC, Mavi PS, Irazoki O, Datta S, Kaiser S, Cava F, Flärdh K. A dispensable SepIVA orthologue in Streptomyces venezuelae is associated with polar growth and not cell division. BMC Microbiol 2024; 24:481. [PMID: 39558276 PMCID: PMC11571769 DOI: 10.1186/s12866-024-03625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND SepIVA has been reported to be an essential septation factor in Mycolicibacterium smegmatis and Mycobacterium tuberculosis. It is a coiled-coil protein with similarity to DivIVA, a protein necessary for polar growth in members of the phylum Actinomycetota. Orthologues of SepIVA are broadly distributed among actinomycetes, including in Streptomyces spp. RESULTS To clarify the role of SepIVA and its potential involvement in cell division in streptomycetes, we generated sepIVA deletion mutants in Streptomyces venezuelae and found that sepIVA is dispensable for growth, cell division and sporulation. Further, mNeonGreen-SepIVA fusion protein did not localize at division septa, and we found no evidence of involvement of SepIVA in cell division. Instead, mNeonGreen-SepIVA was accumulated at the tips of growing vegetative hyphae in ways reminiscent of the apical localization of polarisome components like DivIVA. Bacterial two-hybrid system analyses revealed an interaction between SepIVA and DivIVA. The results indicate that SepIVA is associated with polar growth. However, no phenotypic effects of sepIVA deletion could be detected, and no evidence was observed of redundancy with the other DivIVA-like coiled-coil proteins Scy and FilP that are also associated with apical growth in streptomycetes. CONCLUSIONS We conclude that S. venezuelae SepIVA, in contrast to the situation in mycobacteria, is dispensable for growth and viability. The results suggest that it is associated with polar growth rather than septum formation.
Collapse
Affiliation(s)
- Beer Chakra Sen
- Department of Biology, Lund University, Kontaktvägen 13, Lund, 223 62, Sweden
| | | | - Oihane Irazoki
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Susmita Datta
- Department of Biology, Lund University, Kontaktvägen 13, Lund, 223 62, Sweden
| | - Sebastian Kaiser
- Department of Biology, Lund University, Kontaktvägen 13, Lund, 223 62, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Klas Flärdh
- Department of Biology, Lund University, Kontaktvägen 13, Lund, 223 62, Sweden.
| |
Collapse
|
6
|
Bhowmick S, Viveros RP, Latoscha A, Commichau FM, Wrede C, Al-Bassam MM, Tschowri N. Cell shape and division septa positioning in filamentous Streptomyces require a functional cell wall glycopolymer ligase CglA. mBio 2024; 15:e0149224. [PMID: 39248520 PMCID: PMC11481543 DOI: 10.1128/mbio.01492-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
The cell wall of monoderm bacteria consists of peptidoglycan and glycopolymers in roughly equal proportions and is crucial for cellular integrity, cell shape, and bacterial vitality. Despite the immense value of Streptomyces in biotechnology and medicine as antibiotic producers, we know very little about their cell wall biogenesis, composition, and functions. Here, we have identified the LCP-LytR_C domain protein CglA (Vnz_13690) as a key glycopolymer ligase, which specifically localizes in zones of cell wall biosynthesis in S. venezuelae. Reduced amount of glycopolymers in the cglA mutant results in enlarged vegetative hyphae and failures in FtsZ-rings formation and positioning. Consequently, division septa are misplaced leading to the formation of aberrant cell compartments, misshaped spores, and reduced cell vitality. In addition, we report our discovery that c-di-AMP signaling and decoration of the cell wall with glycopolymers are physiologically linked in Streptomyces since the deletion of cglA restores growth of the S. venezuelae disA mutant at high salt. Altogether, we have identified and characterized CglA as a novel component of cell wall biogenesis in Streptomyces, which is required for cell shape maintenance and cellular vitality in filamentous, multicellular bacteria.IMPORTANCEStreptomyces are our key producers of antibitiotics and other bioactive molecules and are, therefore, of high value for medicine and biotechnology. They proliferate by apical extension and branching of hyphae and undergo complex cell differentiation from filaments to spores during their life cycle. For both, growth and sporulation, coordinated cell wall biogenesis is crucial. However, our knowledge about cell wall biosynthesis, functions, and architecture in Streptomyces and in other Actinomycetota is still very limited. Here, we identify CglA as the key enzyme needed for the attachment of glycopolymers to the cell wall of S. venezuelae. We demonstrate that defects in the cell wall glycopolymer content result in loss of cell shape in these filamentous bacteria and show that division-competent FtsZ-rings cannot assemble properly and fail to be positioned correctly. As a consequence, cell septa placement is disturbed leading to the formation of misshaped spores with reduced viability.
Collapse
Affiliation(s)
- Sukanya Bhowmick
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Ruth P. Viveros
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Andreas Latoscha
- Institute of Biology/Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fabian M. Commichau
- Institute of Biology, FG Molecular Microbiology 190 h, Universität Hohenheim, Stuttgart, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | | | - Natalia Tschowri
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
7
|
Javorova R, Sevcikova B, Rezuchova B, Novakova R, Opaterny F, Csolleiova D, Feckova L, Kormanec J. Multiple SigB homologues govern the transcription of the ssgBp promoter in the sporulation-specific ssgB gene in Streptomyces coelicolor A3(2). Res Microbiol 2024; 175:104201. [PMID: 38522628 DOI: 10.1016/j.resmic.2024.104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Unlike Bacillus subtilis, Streptomyces coelicolor contains nine SigB homologues of the stress-response sigma factor SigB. By using a two-plasmid system, we previously identified promoters recognized by these sigma factors. Almost all promoters were recognized by several SigB homologues. However, no specific sequences of these promoters were found. One of these promoters, ssgBp, was selected to examine this cross-recognition in the native host. It controls the expression of the sporulation-specific gene ssgB. Using a luciferase reporter, the activity of this promoter in S. coelicolor and nine mutant strains lacking individual sigB homologous genes showed that sgBp is dependent on three sigma factors, SigH, SigN, and SigI. To determine which nucleotides in the-10 region are responsible for the selection of a specific SigB homologue, promoters mutated at the last three nucleotide positions were tested in the two-plasmid system. Some mutant promoters were specifically recognized by a distinct set of SigB homologues. Analysis of these mutant promoters in the native host showed the role of these nucleotides. A conserved nucleotide A at position 5 was essential for promoter activity, and two variable nucleotides at positions 4 and 6 were responsible for the partial selectivity of promoter recognition by SigB homologues.
Collapse
Affiliation(s)
- Rachel Javorova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Beatrica Sevcikova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Bronislava Rezuchova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Renata Novakova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Filip Opaterny
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Dominika Csolleiova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Lubomira Feckova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| |
Collapse
|
8
|
Akutsu T, Tezuka T, Maruko M, Hirata A, Ohnishi Y. The ssgB gene is required for the early stages of sporangium formation in Actinoplanes missouriensis. J Bacteriol 2024; 206:e0042823. [PMID: 38353530 PMCID: PMC10956132 DOI: 10.1128/jb.00428-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/26/2024] [Indexed: 03/22/2024] Open
Abstract
In Streptomyces, multiple paralogs of SsgA-like proteins (SALPs) are involved in spore formation from aerial hyphae. However, the functions of SALPs have not yet been elucidated in other actinobacterial genera. Here, we report the primary function of an SsgB ortholog (AmSsgB) in Actinoplanes missouriensis, which develops terminal sporangia on the substrate mycelia via short sporangiophores. Importantly, AmSsgB is the sole SALP in A. missouriensis. The transcription of AmssgB was upregulated during sporangium formation, consistent with our previous findings that AmssgB is a member of the AmBldD regulon. The AmssgB null mutant (ΔAmssgB) strain formed non-globose irregular structures on the substrate mycelium. Transmission electron microscopy revealed that the irregular structures contained abnormally septate hypha-like cells, without an intrasporangial matrix. These phenotypic changes were restored by complementation with AmssgB. Additionally, analysis of the heterologous expression of seven SALP-encoding genes from Streptomyces coelicolor A3(2) (ssgA-G) in the ΔAmssgB strain revealed that only ssgB could compensate for AmSsgB deficiency. This indicated that SsgB of S. coelicolor A3(2) and AmSsgB have comparable functions in A. missouriensis. In contrast to the ΔAmssgB strain, the ftsZ-disrupted strain showed a severe growth defect and produced small sporangium-like structures that swelled to some extent. These findings indicate that AmSsgB is crucial for the early stages of sporangium formation, not for spore septum formation in the late stages. We propose that AmSsgB is involved in sporangium formation by promoting the expansion of the "presporangium" structures formed on the tips of the substrate hyphae. IMPORTANCE SsgB has been proposed as an archetypical SsgA-like protein with an evolutionarily conserved function in the morphological development of spore-forming actinomycetes. SsgB in Streptomyces coelicolor A3(2) is involved in spore septum formation. However, it is unclear whether this is the primary function of SsgBs in actinobacteria. This study demonstrated that the SsgB ortholog (AmSsgB) in Actinoplanes missouriensis is essential for sporangium expansion, which does not seem to be related to spore septum formation. However, the heterologous expression of ssgB from S. coelicolor A3(2) restored morphological abnormalities in the ΔAmssgB mutant. We propose that the primary function of SsgB is to initiate sporulation in differentiating cells (e.g., aerial hyphae in Streptomyces and "presporangium" cells in A. missouriensis) although its molecular mechanism remains unknown.
Collapse
Affiliation(s)
- Takuya Akutsu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Manato Maruko
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Aiko Hirata
- Bioimaging Center, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Baquero F, Rodríguez-Beltrán J, Levin BR. Bacteriostatic cells instead of bacteriostatic antibiotics? mBio 2024; 15:e0268023. [PMID: 38126752 PMCID: PMC10865802 DOI: 10.1128/mbio.02680-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
This year we commemorate the centennial of the birth of the mature concept of bacteriostasis by John W. Churchman at Cornell University Medical School. The term bacteriostasis has primarily been applied to antibiotics (bacteriostatic antibiotics). In this Opinion paper, we are revisiting this concept by suggesting that bacteriostasis essentially reflects a distinct cellular status (or "cell variant") characterized by the inability to be killed as a consequence of an antibiotic-induced stress impacting on bacterial physiology/metabolism (growth). Note that the term "bacteriostasis" should not be associated only with antimicrobials but with many stressful conditions. In that respect, the drug promotion of bacteriostasis might resemble other types of stress-induced cellular differentiation, such as sporulation, in which spores can be considered "bacteriostatic cells" or perhaps as persister bacteria, which can become "normal cells" again when the stressful conditions have abated.IMPORTANCEThis year we commemorate the centennial of the birth of the mature concept of bacteriostasis by John W. Churchman at Cornell University Medical School. The term bacteriostasis has primarily been applied to antibiotics (bacteriostatic antibiotics). In this Opinion paper, we are revisiting this concept by suggesting that some antibiotics are drugs that induce bacteria to become bacteriostatic. Cells that are unable to multiply, thereby preventing the antibiotic from exerting major lethal effects on them, are a variant ("different") type of cells, bacteriostatic cells. Note that the term "bacteriostasis" should not be associated only with antimicrobials but with many stressful conditions. In that respect, the drug promotion of bacteriostasis might resemble other types of stress-induced cellular differentiation, such as sporulation, in which spores can be considered "bacteriostatic cells" or perhaps as persister bacteria, which can become "normal cells" again when the stressful conditions have abated.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
- Public Health Networking Biomedical Research Centre in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
- Public Health Networking Biomedical Research Centre in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Bruce R. Levin
- Department of Biology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
10
|
De Franceschi N, Barth R, Meindlhumer S, Fragasso A, Dekker C. Dynamin A as a one-component division machinery for synthetic cells. NATURE NANOTECHNOLOGY 2024; 19:70-76. [PMID: 37798563 DOI: 10.1038/s41565-023-01510-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/08/2023] [Indexed: 10/07/2023]
Abstract
Membrane abscission, the final cut of the last connection between emerging daughter cells, is an indispensable event in the last stage of cell division and in other cellular processes such as endocytosis, virus release or bacterial sporulation. However, its mechanism remains poorly understood, impeding its application as a cell-division machinery for synthetic cells. Here we use fluorescence microscopy and fluorescence recovery after photobleaching measurements to study the in vitro reconstitution of the bacterial protein dynamin A inside liposomes. Upon external reshaping of the liposomes into dumbbells, dynamin A self-assembles at the membrane neck, resulting in membrane hemi-scission and even full scission. Dynamin A proteins constitute a simple one-component division machinery capable of splitting dumbbell-shaped liposomes, marking an important step towards building a synthetic cell.
Collapse
Affiliation(s)
- Nicola De Franceschi
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
- IMol Polish Academy of Sciences, Warsaw, Poland
| | - Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Sabrina Meindlhumer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Alessio Fragasso
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
11
|
Bramkamp M, Scheffers DJ. Bacterial membrane dynamics: Compartmentalization and repair. Mol Microbiol 2023; 120:490-501. [PMID: 37243899 DOI: 10.1111/mmi.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023]
Abstract
In every bacterial cell, the plasma membrane plays a key role in viability as it forms a selective barrier between the inside of the cell and its environment. This barrier function depends on the physical state of the lipid bilayer and the proteins embedded or associated with the bilayer. Over the past decade or so, it has become apparent that many membrane-organizing proteins and principles, which were described in eukaryote systems, are ubiquitous and play important roles in bacterial cells. In this minireview, we focus on the enigmatic roles of bacterial flotillins in membrane compartmentalization and bacterial dynamins and ESCRT-like systems in membrane repair and remodeling.
Collapse
Affiliation(s)
- Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dirk-Jan Scheffers
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
Naha A, Haeusser DP, Margolin W. Anchors: A way for FtsZ filaments to stay membrane bound. Mol Microbiol 2023; 120:525-538. [PMID: 37503768 PMCID: PMC10593102 DOI: 10.1111/mmi.15067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 07/29/2023]
Abstract
Most bacteria use the tubulin homolog FtsZ to organize their cell division. FtsZ polymers initially assemble into mobile complexes that circle around a ring-like structure at the cell midpoint, followed by the recruitment of other proteins that will constrict the cytoplasmic membrane and synthesize septal peptidoglycan to divide the cell. Despite the need for FtsZ polymers to associate with the membrane, FtsZ lacks intrinsic membrane binding ability. Consequently, FtsZ polymers have evolved to interact with the membrane through adaptor proteins that both bind FtsZ and the membrane. Here, we discuss recent progress in understanding the functions of these FtsZ membrane tethers. Some, such as FtsA and SepF, are widely conserved and assemble into varied oligomeric structures bound to the membrane through an amphipathic helix. Other less-conserved proteins, such as EzrA and ZipA, have transmembrane domains, make extended structures, and seem to bind to FtsZ through two separate interactions. This review emphasizes that most FtsZs use multiple membrane tethers with overlapping functions, which not only attach FtsZ polymers to the membrane but also organize them in specific higher-order structures that can optimize cell division activity. We discuss gaps in our knowledge of these concepts and how future studies can address them.
Collapse
Affiliation(s)
- Arindam Naha
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
| | - Daniel P. Haeusser
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
- Department of Biology, Canisius College, Buffalo, NY 14208, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
| |
Collapse
|
13
|
Schlimpert S, Elliot MA. The Best of Both Worlds-Streptomyces coelicolor and Streptomyces venezuelae as Model Species for Studying Antibiotic Production and Bacterial Multicellular Development. J Bacteriol 2023; 205:e0015323. [PMID: 37347176 PMCID: PMC10367585 DOI: 10.1128/jb.00153-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Streptomyces bacteria have been studied for more than 80 years thanks to their ability to produce an incredible array of antibiotics and other specialized metabolites and their unusual fungal-like development. Their antibiotic production capabilities have ensured continual interest from both academic and industrial sectors, while their developmental life cycle has provided investigators with unique opportunities to address fundamental questions relating to bacterial multicellular growth. Much of our understanding of the biology and metabolism of these fascinating bacteria, and many of the tools we use to manipulate these organisms, have stemmed from investigations using the model species Streptomyces coelicolor and Streptomyces venezuelae. Here, we explore the pioneering work in S. coelicolor that established foundational genetic principles relating to specialized metabolism and development, alongside the genomic and cell biology developments that led to the emergence of S. venezuelae as a new model system. We highlight key discoveries that have stemmed from studies of these two systems and discuss opportunities for future investigations that leverage the power and understanding provided by S. coelicolor and S. venezuelae.
Collapse
Affiliation(s)
- Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Marie A. Elliot
- Department of Biology and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Gewehr L, Junglas B, Jilly R, Franz J, Zhu WE, Weidner T, Bonn M, Sachse C, Schneider D. SynDLP is a dynamin-like protein of Synechocystis sp. PCC 6803 with eukaryotic features. Nat Commun 2023; 14:2156. [PMID: 37059718 PMCID: PMC10104851 DOI: 10.1038/s41467-023-37746-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/29/2023] [Indexed: 04/16/2023] Open
Abstract
Dynamin-like proteins are membrane remodeling GTPases with well-understood functions in eukaryotic cells. However, bacterial dynamin-like proteins are still poorly investigated. SynDLP, the dynamin-like protein of the cyanobacterium Synechocystis sp. PCC 6803, forms ordered oligomers in solution. The 3.7 Å resolution cryo-EM structure of SynDLP oligomers reveals the presence of oligomeric stalk interfaces typical for eukaryotic dynamin-like proteins. The bundle signaling element domain shows distinct features, such as an intramolecular disulfide bridge that affects the GTPase activity, or an expanded intermolecular interface with the GTPase domain. In addition to typical GD-GD contacts, such atypical GTPase domain interfaces might be a GTPase activity regulating tool in oligomerized SynDLP. Furthermore, we show that SynDLP interacts with and intercalates into membranes containing negatively charged thylakoid membrane lipids independent of nucleotides. The structural characteristics of SynDLP oligomers suggest it to be the closest known bacterial ancestor of eukaryotic dynamin.
Collapse
Affiliation(s)
- Lucas Gewehr
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Benedikt Junglas
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany
- Institute for Biological Information Processing (IBI-6): Cellular Structural Biology, Jülich, Germany
| | - Ruven Jilly
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johannes Franz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Wenyu Eva Zhu
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Carsten Sachse
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Jülich, Germany.
- Institute for Biological Information Processing (IBI-6): Cellular Structural Biology, Jülich, Germany.
- Department of Biology, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany.
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany.
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
15
|
Shanbhag C, Saraogi I. Bacterial GTPases as druggable targets to tackle antimicrobial resistance. Bioorg Med Chem Lett 2023; 87:129276. [PMID: 37030567 DOI: 10.1016/j.bmcl.2023.129276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Small molecules as antibacterial agents have contributed immensely to the growth of modern medicine over the last several decades. However, the emergence of drug resistance among bacterial pathogens has undermined the effectiveness of the existing antibiotics. Thus, there is an exigency to address the antibiotic crisis by developing new antibacterial agents and identifying novel drug targets in bacteria. In this review, we summarize the importance of guanosine triphosphate hydrolyzing proteins (GTPases) as key agents for bacterial survival. We also discuss representative examples of small molecules that target bacterial GTPases as novel antibacterial agents, and highlight areas that are ripe for exploration. Given their vital roles in cell viability, virulence, and antibiotic resistance, bacterial GTPases are highly attractive antibacterial targets that will likely play a vital role in the fight against antimicrobial resistance.
Collapse
|
16
|
Cyanobacterial membrane dynamics in the light of eukaryotic principles. Biosci Rep 2023; 43:232406. [PMID: 36602300 PMCID: PMC9950537 DOI: 10.1042/bsr20221269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Intracellular compartmentalization is a hallmark of eukaryotic cells. Dynamic membrane remodeling, involving membrane fission/fusion events, clearly is crucial for cell viability and function, as well as membrane stabilization and/or repair, e.g., during or after injury. In recent decades, several proteins involved in membrane stabilization and/or dynamic membrane remodeling have been identified and described in eukaryotes. Yet, while typically not having a cellular organization as complex as eukaryotes, also bacteria can contain extra internal membrane systems besides the cytoplasmic membranes (CMs). Thus, also in bacteria mechanisms must have evolved to stabilize membranes and/or trigger dynamic membrane remodeling processes. In fact, in recent years proteins, which were initially defined being eukaryotic inventions, have been recognized also in bacteria, and likely these proteins shape membranes also in these organisms. One example of a complex prokaryotic inner membrane system is the thylakoid membrane (TM) of cyanobacteria, which contains the complexes of the photosynthesis light reaction. Cyanobacteria are evolutionary closely related to chloroplasts, and extensive remodeling of the internal membrane systems has been observed in chloroplasts and cyanobacteria during membrane biogenesis and/or at changing light conditions. We here discuss common principles guiding eukaryotic and prokaryotic membrane dynamics and the proteins involved, with a special focus on the dynamics of the cyanobacterial TMs and CMs.
Collapse
|
17
|
Zhang L, Willemse J, Yagüe P, de Waal E, Claessen D, van Wezel GP. The SepF-like proteins SflA and SflB prevent ectopic localization of FtsZ and DivIVA during sporulation of Streptomyces coelicolor. Biochem Biophys Res Commun 2023; 645:79-87. [PMID: 36680940 DOI: 10.1016/j.bbrc.2023.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Bacterial cytokinesis starts with the polymerization of the tubulin-like FtsZ, which forms the cell division scaffold. SepF aligns FtsZ polymers and also acts as a membrane anchor for the Z-ring. While in most bacteria cell division takes place at midcell, during sporulation of Streptomyces many septa are laid down almost simultaneously in multinucleoid aerial hyphae. The genomes of streptomycetes encode two additional SepF paralogs, SflA and SflB, which can interact with SepF. Here we show that the sporogenic aerial hyphae of sflA and sflB mutants of Streptomyces coelicolor frequently branch, a phenomenon never seen in the wild-type strain. The branching coincided with ectopic localization of DivIVA along the lateral wall of sporulating aerial hyphae. Constitutive expression of SflA and SflB largely inhibited hyphal growth, further correlating SflAB activity to that of DivIVA. SflAB localized in foci prior to and after the time of sporulation-specific cell division, while SepF co-localized with active septum synthesis. Foci of FtsZ and DivIVA frequently persisted between adjacent spores in spore chains of sflA and sflB mutants, at sites occupied by SflAB in wild-type cells. Taken together, our data show that SflA and SflB play an important role in the control of growth and cell division during Streptomyces development.
Collapse
Affiliation(s)
- Le Zhang
- Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, Leiden, 2300, AB, the Netherlands
| | - Joost Willemse
- Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, Leiden, 2300, AB, the Netherlands
| | - Paula Yagüe
- Departamento de Biología Funcional e IUOPA, Área de Microbiología, Facultad de Medicina, Universidad de Oviedo, Oviedo, 33006, Spain
| | - Ellen de Waal
- Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, Leiden, 2300, AB, the Netherlands
| | - Dennis Claessen
- Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, Leiden, 2300, AB, the Netherlands
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, Leiden, 2300, AB, the Netherlands.
| |
Collapse
|
18
|
Yagüe P, Willemse J, Xiao X, Zhang L, Manteca A, van Wezel GP. FtsZ phosphorylation pleiotropically affects Z-ladder formation, antibiotic production, and morphogenesis in Streptomyces coelicolor. Antonie Van Leeuwenhoek 2023; 116:1-19. [PMID: 36383329 PMCID: PMC9823044 DOI: 10.1007/s10482-022-01778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
The GTPase FtsZ forms the cell division scaffold in bacteria, which mediates the recruitment of the other components of the divisome. Streptomycetes undergo two different forms of cell division. Septa without detectable peptidoglycan divide the highly compartmentalised young hyphae during early vegetative growth, and cross-walls are formed that dissect the hyphae into long multinucleoid compartments in the substrate mycelium, while ladders of septa are formed in the aerial hyphae that lead to chains of uninucleoid spores. In a previous study, we analysed the phosphoproteome of Streptomyces coelicolor and showed that FtsZ is phosphorylated at Ser 317 and Ser389. Substituting Ser-Ser for either Glu-Glu (mimicking phosphorylation) or Ala-Ala (mimicking non-phosphorylation) hinted at changes in antibiotic production. Here we analyse development, colony morphology, spore resistance, and antibiotic production in FtsZ knockout mutants expressing FtsZ alleles mimicking Ser319 and Ser387 phosphorylation and non-phosphorylation: AA (no phosphorylation), AE, EA (mixed), and EE (double phosphorylation). The FtsZ-eGFP AE, EA and EE alleles were not able to form observable FtsZ-eGFP ladders when they were expressed in the S. coelicolor wild-type strain, whereas the AA allele could form apparently normal eGFP Z-ladders. The FtsZ mutant expressing the FtsZ EE or EA or AE alleles is able to sporulate indicating that the mutant alleles are able to form functional Z-rings leading to sporulation when the wild-type FtsZ gene is absent. The four mutants were pleiotropically affected in colony morphogenesis, antibiotic production, substrate mycelium differentiation and sporulation (sporulation timing and spore resistance) which may be an indirect result of the effect in sporulation Z-ladder formation. Each mutant showed a distinctive phenotype in antibiotic production, single colony morphology, and sporulation (sporulation timing and spore resistance) indicating that the different FtsZ phosphomimetic alleles led to different phenotypes. Taken together, our data provide evidence for a pleiotropic effect of FtsZ phosphorylation in colony morphology, antibiotic production, and sporulation.
Collapse
Affiliation(s)
- Paula Yagüe
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Joost Willemse
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Xiansha Xiao
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Le Zhang
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Angel Manteca
- grid.10863.3c0000 0001 2164 6351Departamento de Biología Funcional e IUOPA, Área de Microbiología, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Gilles P. van Wezel
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| |
Collapse
|
19
|
De Franceschi N, Pezeshkian W, Fragasso A, Bruininks BMH, Tsai S, Marrink SJ, Dekker C. Synthetic Membrane Shaper for Controlled Liposome Deformation. ACS NANO 2022; 17:966-978. [PMID: 36441529 PMCID: PMC9878720 DOI: 10.1021/acsnano.2c06125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Shape defines the structure and function of cellular membranes. In cell division, the cell membrane deforms into a "dumbbell" shape, while organelles such as the autophagosome exhibit "stomatocyte" shapes. Bottom-up in vitro reconstitution of protein machineries that stabilize or resolve the membrane necks in such deformed liposome structures is of considerable interest to characterize their function. Here we develop a DNA-nanotechnology-based approach that we call the synthetic membrane shaper (SMS), where cholesterol-linked DNA structures attach to the liposome membrane to reproducibly generate high yields of stomatocytes and dumbbells. In silico simulations confirm the shape-stabilizing role of the SMS. We show that the SMS is fully compatible with protein reconstitution by assembling bacterial divisome proteins (DynaminA, FtsZ:ZipA) at the catenoidal neck of these membrane structures. The SMS approach provides a general tool for studying protein binding to complex membrane geometries that will greatly benefit synthetic cell research.
Collapse
Affiliation(s)
- Nicola De Franceschi
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| | - Weria Pezeshkian
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
- The
Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, 17DK-2100Copenhagen, Denmark
| | - Alessio Fragasso
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| | - Bart M. H. Bruininks
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
| | - Sean Tsai
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
| | - Cees Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| |
Collapse
|
20
|
Liu W, Han L, Chen J, Liang X, Wang B, Gleason ML, Zhang R, Sun G. The CfMcm1 Regulates Pathogenicity, Conidium Germination, and Sexual Development in Colletotrichum fructicola. PHYTOPATHOLOGY 2022; 112:2159-2173. [PMID: 35502927 DOI: 10.1094/phyto-03-22-0090-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glomerella leaf spot (GLS), caused by Colletotrichum fructicola, is a severe disease worldwide on apple, causing defoliation, leaf and fruit spot, and substantial yield loss. However, little is known about its molecular mechanisms of pathogenesis. Previous transcriptome analysis revealed that a transcription factor, CfMcm1, was induced during leaf infection. In the present work, expression pattern analysis verified that the CfMcm1 gene was strongly expressed in conidia and early infection. Phenotypic analysis revealed that the gene deletion mutant ΔCfMcm1 lost pathogenicity to apple leaves by inhibiting conidial germination and appressorium formation. In addition to appressorium-mediated pathogenicity, ΔCfMcm1 colonization and hyphal extension in wounded apple fruit was also reduced, and conidial germination mode and conidial color were altered. ΔCfMcm1 displayed impairment of cell wall integrity and response to stress caused by oxidation, osmosis, and an acid environment. Furthermore, the deletion mutant produced fewer and smaller perithecia and no ascospores. In contrast, melanin deposition in mycelia of ΔCfMcm1 was strengthened. Further comparative transcriptome and quantitative PCR analysis revealed that CfMcm1 modulated expression of genes related to conidial development (CfERG5A, CfERG5B, CfHik5, and CfAbaA), appressorium formation (CfCBP1 and CfCHS7), pectin degradation (CfPelA and CfPelB), sexual development (CfMYB, CfFork, CfHMG, and CfMAT1-2-1), and melanin biosynthesis (CfCmr1, CfPKS1, CfT4HR1, CfTHR1, and CfSCD1). Our results demonstrated that CfMcm1 is a pivotal regulator possessing multiple functions in pathogenicity, asexual and sexual reproduction, and melanin biosynthesis.
Collapse
Affiliation(s)
- Wenkui Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Lu Han
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Jinzhu Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Bo Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Mark L Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| |
Collapse
|
21
|
Falguera JVT, Stratton KJ, Bush MJ, Jani C, Findlay KC, Schlimpert S, Nodwell JR. DNA damage-induced block of sporulation in Streptomyces venezuelae involves downregulation of ssgB. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35704023 DOI: 10.1099/mic.0.001198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
DNA damage often causes an arrest of the cell cycle that provides time for genome integrity to be restored. In bacteria, the classical SOS DNA damage response leads to an inhibition of cell division resulting in temporarily filamentous growth. This raises the question as to whether such a response mechanism might similarly function in naturally filamentous bacteria such as Streptomyces. Streptomyces exhibit two functionally distinct forms of cell division: cross-wall formation in vegetative hyphae and sporulation septation in aerial hyphae. Here, we show that the genotoxic agent mitomycin C confers a block in sporulation septation in
Streptomyces venezuelae
in a mechanism that involves, at least in part, the downregulation of ssgB. Notably, this DNA damage response does not appear to block cross-wall formation and may be independent of canonical SOS and developmental regulators. We also show that the mitomycin C-induced block in sporulation can be partially bypassed by the constitutive expression of ssgB, though this appears to be largely limited to mitomycin C treatment and the resultant spore-like cells have reduced viability.
Collapse
Affiliation(s)
- Jan V T Falguera
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, Ontario, M5G 1M1, Canada
| | - Kathryn J Stratton
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Charul Jani
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kim C Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
22
|
Zambri MP, Williams MA, Elliot MA. How Streptomyces thrive: Advancing our understanding of classical development and uncovering new behaviors. Adv Microb Physiol 2022; 80:203-236. [PMID: 35489792 DOI: 10.1016/bs.ampbs.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Streptomyces are soil- and marine-dwelling microbes that need to survive dramatic fluctuations in nutrient levels and environmental conditions. Here, we explore the advances made in understanding how Streptomyces bacteria can thrive in their natural environments. We examine their classical developmental cycle, and the intricate regulatory cascades that govern it. We discuss alternative growth strategies and behaviors, like the rapid expansion and colonization properties associated with exploratory growth, the release of membrane vesicles and S-cells from hyphal tips, and the acquisition of exogenous DNA along the lateral walls. We further investigate Streptomyces interactions with other organisms through the release of volatile compounds that impact nutrient levels, microbial growth, and insect behavior. Finally, we explore the increasingly diverse strategies employed by Streptomyces species in escaping and thwarting phage infections.
Collapse
Affiliation(s)
- Matthew P Zambri
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Michelle A Williams
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Marie A Elliot
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
23
|
Hyphal compartmentalization and sporulation in Streptomyces require the conserved cell division protein SepX. Nat Commun 2022; 13:71. [PMID: 35013186 PMCID: PMC8748795 DOI: 10.1038/s41467-021-27638-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022] Open
Abstract
Filamentous actinobacteria such as Streptomyces undergo two distinct modes of cell division, leading to partitioning of growing hyphae into multicellular compartments via cross-walls, and to septation and release of unicellular spores. Specific determinants for cross-wall formation and the importance of hyphal compartmentalization for Streptomyces development are largely unknown. Here we show that SepX, an actinobacterial-specific protein, is crucial for both cell division modes in Streptomyces venezuelae. Importantly, we find that sepX-deficient mutants grow without cross-walls and that this substantially impairs the fitness of colonies and the coordinated progression through the developmental life cycle. Protein interaction studies and live-cell imaging suggest that SepX contributes to the stabilization of the divisome, a mechanism that also requires the dynamin-like protein DynB. Thus, our work identifies an important determinant for cell division in Streptomyces that is required for cellular development and sporulation. Streptomyces bacteria undergo two modes of cell division: formation of cross-walls in hyphae, leading to multicellular compartments, and septation for release of unicellular spores. Here, Bush et al. identify a protein that is important for both cell division modes in Streptomyces, likely by contributing to stabilization of the divisome.
Collapse
|
24
|
Płachetka M, Krawiec M, Zakrzewska-Czerwińska J, Wolański M. AdpA Positively Regulates Morphological Differentiation and Chloramphenicol Biosynthesis in Streptomyces venezuelae. Microbiol Spectr 2021; 9:e0198121. [PMID: 34878326 PMCID: PMC8653842 DOI: 10.1128/spectrum.01981-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
In members of genus Streptomyces, AdpA is a master transcriptional regulator that controls the expression of hundreds of genes involved in morphological differentiation, secondary metabolite biosynthesis, chromosome replication, etc. However, the function of AdpASv, an AdpA ortholog of Streptomyces venezuelae, is unknown. This bacterial species is a natural producer of chloramphenicol and has recently become a model organism for studies on Streptomyces. Here, we demonstrate that AdpASv is essential for differentiation and antibiotic biosynthesis in S. venezuelae and provide evidence suggesting that AdpASv positively regulates its own gene expression. We speculate that the different modes of AdpA-dependent transcriptional autoregulation observed in S. venezuelae and other Streptomyces species reflect the arrangement of AdpA binding sites in relation to the transcription start site. Lastly, we present preliminary data suggesting that AdpA may undergo a proteolytic processing and we speculate that this may potentially constitute a novel regulatory mechanism controlling cellular abundance of AdpA in Streptomyces. IMPORTANCEStreptomyces are well-known producers of valuable secondary metabolites which include a large variety of antibiotics and important model organisms for developmental studies in multicellular bacteria. The conserved transcriptional regulator AdpA of Streptomyces exerts a pleiotropic effect on cellular processes, including the morphological differentiation and biosynthesis of secondary metabolites. Despite extensive studies, the function of AdpA in these processes remains elusive. This work provides insights into the role of a yet unstudied AdpA ortholog of Streptomyces venezuelae, now considered a novel model organism. We found that AdpA plays essential role in morphological differentiation and biosynthesis of chloramphenicol, a broad-spectrum antibiotic. We also propose that AdpA may undergo a proteolytic processing that presumably constitutes a novel mechanism regulating cellular abundance of this master regulator.
Collapse
Affiliation(s)
| | - Michał Krawiec
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | | | - Marcin Wolański
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
25
|
Olivi L, Berger M, Creyghton RNP, De Franceschi N, Dekker C, Mulder BM, Claassens NJ, Ten Wolde PR, van der Oost J. Towards a synthetic cell cycle. Nat Commun 2021; 12:4531. [PMID: 34312383 PMCID: PMC8313558 DOI: 10.1038/s41467-021-24772-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/29/2021] [Indexed: 02/08/2023] Open
Abstract
Recent developments in synthetic biology may bring the bottom-up generation of a synthetic cell within reach. A key feature of a living synthetic cell is a functional cell cycle, in which DNA replication and segregation as well as cell growth and division are well integrated. Here, we describe different approaches to recreate these processes in a synthetic cell, based on natural systems and/or synthetic alternatives. Although some individual machineries have recently been established, their integration and control in a synthetic cell cycle remain to be addressed. In this Perspective, we discuss potential paths towards an integrated synthetic cell cycle.
Collapse
Affiliation(s)
- Lorenzo Olivi
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Nicola De Franceschi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | | | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
26
|
Gomez-Escribano JP, Holmes NA, Schlimpert S, Bibb MJ, Chandra G, Wilkinson B, Buttner MJ, Bibb MJ. Streptomyces venezuelae NRRL B-65442: genome sequence of a model strain used to study morphological differentiation in filamentous actinobacteria. J Ind Microbiol Biotechnol 2021; 48:6294913. [PMID: 34100946 PMCID: PMC8788739 DOI: 10.1093/jimb/kuab035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
For over a decade, Streptomyces venezuelae has been used to study the molecular mechanisms that control morphological development in streptomycetes and it is now a well-established model strain. Its rapid growth and ability to sporulate in a near-synchronised manner in liquid culture, unusual among streptomycetes, greatly facilitates the application of modern molecular techniques such as ChIP-seq and RNA-seq, as well as fluorescence time-lapse imaging of the complete Streptomyces life cycle. Here we describe a high-quality genome sequence of our isolate of the strain (NRRL B-65442) consisting of an 8.2 Mb chromosome and a 158 kb plasmid, pSVJI1, which had not been reported previously. Surprisingly, while NRRL B-65442 yields green spores on MYM agar, the ATCC type strain 10712 (from which NRRL B-65442 was derived) produces grey spores. While comparison of the genome sequences of the two isolates revealed almost total identity, it did reveal a single nucleotide substitution in a gene, vnz_33525, likely to be involved in spore pigment biosynthesis. Replacement of the vnz_33525 allele of ATCC 10712 with that of NRRL B-65442 resulted in green spores, explaining the discrepancy in spore pigmentation. We also applied CRISPR-Cas9 to delete the essential parB of pSVJI1 to cure the plasmid from the strain without obvious phenotypic consequences.
Collapse
Affiliation(s)
| | - Neil A Holmes
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Maureen J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mervyn J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
27
|
Pende N, Sogues A, Megrian D, Sartori-Rupp A, England P, Palabikyan H, Rittmann SKMR, Graña M, Wehenkel AM, Alzari PM, Gribaldo S. SepF is the FtsZ anchor in archaea, with features of an ancestral cell division system. Nat Commun 2021; 12:3214. [PMID: 34088904 PMCID: PMC8178401 DOI: 10.1038/s41467-021-23099-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Most archaea divide by binary fission using an FtsZ-based system similar to that of bacteria, but they lack many of the divisome components described in model bacterial organisms. Notably, among the multiple factors that tether FtsZ to the membrane during bacterial cell constriction, archaea only possess SepF-like homologs. Here, we combine structural, cellular, and evolutionary analyses to demonstrate that SepF is the FtsZ anchor in the human-associated archaeon Methanobrevibacter smithii. 3D super-resolution microscopy and quantitative analysis of immunolabeled cells show that SepF transiently co-localizes with FtsZ at the septum and possibly primes the future division plane. M. smithii SepF binds to membranes and to FtsZ, inducing filament bundling. High-resolution crystal structures of archaeal SepF alone and in complex with the FtsZ C-terminal domain (FtsZCTD) reveal that SepF forms a dimer with a homodimerization interface driving a binding mode that is different from that previously reported in bacteria. Phylogenetic analyses of SepF and FtsZ from bacteria and archaea indicate that the two proteins may date back to the Last Universal Common Ancestor (LUCA), and we speculate that the archaeal mode of SepF/FtsZ interaction might reflect an ancestral feature. Our results provide insights into the mechanisms of archaeal cell division and pave the way for a better understanding of the processes underlying the divide between the two prokaryotic domains.
Collapse
Affiliation(s)
- Nika Pende
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France
| | - Adrià Sogues
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université de Paris, Paris, France
| | - Daniela Megrian
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France
- École Doctorale Complexité du vivant, Sorbonne University, Paris, France
| | | | - Patrick England
- Plate-forme de biophysique moléculaire, C2RT-Institut Pasteur, CNRS, UMR 3528, Paris, France
| | - Hayk Palabikyan
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | - Martín Graña
- Bioinformatics Unit, Institut Pasteur of Montevideo, Montevideo, Uruguay
| | - Anne Marie Wehenkel
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université de Paris, Paris, France.
| | - Pedro M Alzari
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université de Paris, Paris, France
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France.
| |
Collapse
|
28
|
Ramos-León F, Bush MJ, Sallmen JW, Chandra G, Richardson J, Findlay KC, McCormick JR, Schlimpert S. A conserved cell division protein directly regulates FtsZ dynamics in filamentous and unicellular actinobacteria. eLife 2021; 10:e63387. [PMID: 33729912 PMCID: PMC7968930 DOI: 10.7554/elife.63387] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/03/2021] [Indexed: 01/05/2023] Open
Abstract
Bacterial cell division is driven by the polymerization of the GTPase FtsZ into a contractile structure, the so-called Z-ring. This essential process involves proteins that modulate FtsZ dynamics and hence the overall Z-ring architecture. Actinobacteria like Streptomyces and Mycobacterium lack known key FtsZ-regulators. Here we report the identification of SepH, a conserved actinobacterial protein that directly regulates FtsZ dynamics. We show that SepH is crucially involved in cell division in Streptomyces venezuelae and that it binds FtsZ via a conserved helix-turn-helix motif, stimulating the assembly of FtsZ protofilaments. Comparative in vitro studies using the SepH homolog from Mycobacterium smegmatis further reveal that SepH can also bundle FtsZ protofilaments, indicating an additional Z-ring stabilizing function in vivo. We propose that SepH plays a crucial role at the onset of cytokinesis in actinobacteria by promoting the assembly of FtsZ filaments into division-competent Z-rings that can go on to mediate septum synthesis.
Collapse
Affiliation(s)
- Félix Ramos-León
- Department of Molecular Microbiology, John Innes CentreNorwichUnited Kingdom
| | - Matthew J Bush
- Department of Molecular Microbiology, John Innes CentreNorwichUnited Kingdom
| | - Joseph W Sallmen
- Department of Molecular Microbiology, John Innes CentreNorwichUnited Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes CentreNorwichUnited Kingdom
| | - Jake Richardson
- Department of Cell and Developmental Biology, John Innes CentreNorwichUnited Kingdom
| | - Kim C Findlay
- Department of Cell and Developmental Biology, John Innes CentreNorwichUnited Kingdom
| | - Joseph R McCormick
- Department of Biological Sciences, Duquesne UniversityPittsburghUnited States
| | - Susan Schlimpert
- Department of Molecular Microbiology, John Innes CentreNorwichUnited Kingdom
| |
Collapse
|
29
|
Beskrovnaya P, Sexton DL, Golmohammadzadeh M, Hashimi A, Tocheva EI. Structural, Metabolic and Evolutionary Comparison of Bacterial Endospore and Exospore Formation. Front Microbiol 2021; 12:630573. [PMID: 33767680 PMCID: PMC7985256 DOI: 10.3389/fmicb.2021.630573] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Sporulation is a specialized developmental program employed by a diverse set of bacteria which culminates in the formation of dormant cells displaying increased resilience to stressors. This represents a major survival strategy for bacteria facing harsh environmental conditions, including nutrient limitation, heat, desiccation, and exposure to antimicrobial compounds. Through dispersal to new environments via biotic or abiotic factors, sporulation provides a means for disseminating genetic material and promotes encounters with preferable environments thus promoting environmental selection. Several types of bacterial sporulation have been characterized, each involving numerous morphological changes regulated and performed by non-homologous pathways. Despite their likely independent evolutionary origins, all known modes of sporulation are typically triggered by limited nutrients and require extensive membrane and peptidoglycan remodeling. While distinct modes of sporulation have been observed in diverse species, two major types are at the forefront of understanding the role of sporulation in human health, and microbial population dynamics and survival. Here, we outline endospore and exospore formation by members of the phyla Firmicutes and Actinobacteria, respectively. Using recent advances in molecular and structural biology, we point to the regulatory, genetic, and morphological differences unique to endo- and exospore formation, discuss shared characteristics that contribute to the enhanced environmental survival of spores and, finally, cover the evolutionary aspects of sporulation that contribute to bacterial species diversification.
Collapse
Affiliation(s)
| | | | | | | | - Elitza I. Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Thomas GH. Microbial Musings - February 2021. MICROBIOLOGY-SGM 2021; 167. [PMID: 33635187 PMCID: PMC8131028 DOI: 10.1099/mic.0.001046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Gavin H Thomas
- Department of Biology, University of York, York YO10 5YW, UK
| |
Collapse
|
31
|
Xiao X, Willemse J, Voskamp P, Li X, Prota AE, Lamers M, Pannu N, Abrahams JP, van Wezel GP. Ectopic positioning of the cell division plane is associated with single amino acid substitutions in the FtsZ-recruiting SsgB in Streptomyces. Open Biol 2021; 11:200409. [PMID: 33622102 PMCID: PMC8061694 DOI: 10.1098/rsob.200409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In most bacteria, cell division begins with the polymerization of the GTPase FtsZ at mid-cell, which recruits the division machinery to initiate cell constriction. In the filamentous bacterium Streptomyces, cell division is positively controlled by SsgB, which recruits FtsZ to the future septum sites and promotes Z-ring formation. Here, we show that various amino acid (aa) substitutions in the highly conserved SsgB protein result in ectopically placed septa that sever spores diagonally or along the long axis, perpendicular to the division plane. Fluorescence microscopy revealed that between 3.3% and 9.8% of the spores of strains expressing SsgB E120 variants were severed ectopically. Biochemical analysis of SsgB variant E120G revealed that its interaction with FtsZ had been maintained. The crystal structure of Streptomyces coelicolor SsgB was resolved and the key residues were mapped on the structure. Notably, residue substitutions (V115G, G118V, E120G) that are associated with septum misplacement localize in the α2-α3 loop region that links the final helix and the rest of the protein. Structural analyses and molecular simulation revealed that these residues are essential for maintaining the proper angle of helix α3. Our data suggest that besides altering FtsZ, aa substitutions in the FtsZ-recruiting protein SsgB also lead to diagonally or longitudinally divided cells in Streptomyces.
Collapse
Affiliation(s)
- Xiansha Xiao
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Joost Willemse
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Patrick Voskamp
- Biophysical Structural Chemistry, Leiden University, PO Box 9502, 2300RA Leiden, The Netherlands
| | - Xinmeng Li
- LIC/Energy and Sustainability, Leiden University, PO Box 9502, 2300RA Leiden, The Netherlands
| | | | - Meindert Lamers
- Leiden University Medical Center, PO Box 9600, 2300RC Leiden, The Netherlands
| | - Navraj Pannu
- Biophysical Structural Chemistry, Leiden University, PO Box 9502, 2300RA Leiden, The Netherlands
| | - Jan Pieter Abrahams
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands.,Paul Scherrer Institute, CH-5232 Villigen, Switzerland.,Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Gilles P van Wezel
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| |
Collapse
|
32
|
Abstract
In bacteria, a condensed structure of FtsZ (Z-ring) recruits cell division machinery at the midcell, and Z-ring formation is discouraged over the chromosome by a poorly understood phenomenon called nucleoid occlusion. In B. subtilis, nucleoid occlusion has been reported to be mediated, at least in part, by the DNA-membrane bridging protein, Noc. Bacteria that divide by binary fission form FtsZ rings at the geometric midpoint of the cell between the bulk of the replicated nucleoids. In Bacillus subtilis, the DNA- and membrane-binding Noc protein is thought to participate in nucleoid occlusion by preventing FtsZ rings from forming over the chromosome. To explore the role of Noc, we used time-lapse fluorescence microscopy to monitor FtsZ and the nucleoid of cells growing in microfluidic channels. Our data show that Noc does not prevent de novo FtsZ ring formation over the chromosome nor does Noc control cell division site selection. Instead, Noc corrals FtsZ at the cytokinetic ring and reduces migration of protofilaments over the chromosome to the future site of cell division. Moreover, we show that FtsZ protofilaments travel due to a local reduction in ZapA association, and the diffuse FtsZ rings observed in the Noc mutant can be suppressed by ZapA overexpression. Thus, Noc sterically hinders FtsZ migration away from the Z-ring during cytokinesis and retains FtsZ at the postdivisional polar site for full disassembly by the Min system.
Collapse
|
33
|
Abstract
The division and cell wall (dcw) cluster is a highly conserved region of the bacterial genome consisting of genes that encode several cell division and cell wall synthesis factors, including the central division protein FtsZ. The region immediately downstream of ftsZ encodes the ylm genes and is conserved across diverse lineages of Gram-positive bacteria and Cyanobacteria In some organisms, this region remains part of the dcw cluster, but in others, it appears as an independent operon. A well-studied protein coded from this region is the positive FtsZ regulator SepF (YlmF), which anchors FtsZ to the membrane. Recent developments have shed light on the importance of SepF in a range of species. Additionally, new studies are highlighting the importance of the other conserved genes in this neighborhood. In this minireview, we aim to bring together the current research linking the ylm region to cell division and highlight further questions surrounding these conserved genes.
Collapse
|
34
|
Cantlay S, Sen BC, Flärdh K, McCormick JR. Influence of core divisome proteins on cell division in Streptomyces venezuelae ATCC 10712. MICROBIOLOGY-SGM 2021; 167. [PMID: 33400639 DOI: 10.1099/mic.0.001015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sporulating, filamentous soil bacterium Streptomyces venezuelae ATCC 10712 differentiates under submerged and surface growth conditions. In order to lay a solid foundation for the study of development-associated division for this organism, a congenic set of mutants was isolated, individually deleted for a gene encoding either a cytoplasmic (i.e. ftsZ) or core inner membrane (i.e. divIC, ftsL, ftsI, ftsQ, ftsW) component of the divisome. While ftsZ mutants are completely blocked for division, single mutants in the other core divisome genes resulted in partial, yet similar, blocks in sporulation septum formation. Double and triple mutants for core divisome membrane components displayed phenotypes that were similar to those of the single mutants, demonstrating that the phenotypes were not synergistic. Division in this organism is still partially functional without multiple core divisome proteins, suggesting that perhaps other unknown lineage-specific proteins perform redundant functions. In addition, by isolating an ftsZ2p mutant with an altered -10 region, the conserved developmentally controlled promoter was also shown to be required for sporulation-associated division. Finally, microscopic observation of FtsZ-YFP dynamics in the different mutant backgrounds led to the conclusion that the initial assembly of regular Z rings does not per se require the tested divisome membrane proteins, but the stability of Z rings is dependent on the divisome membrane components tested. The observation is consistent with the interpretation that Z ring instability likely results from and further contributes to the observed defects in sporulation septation in mutants lacking core divisome proteins.
Collapse
Affiliation(s)
- Stuart Cantlay
- Present address: Department of Biological Sciences, West Liberty University, West Liberty, WV 26074, USA
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | | | - Klas Flärdh
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Joseph R McCormick
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
35
|
Royes J, Biou V, Dautin N, Tribet C, Miroux B. Inducible intracellular membranes: molecular aspects and emerging applications. Microb Cell Fact 2020; 19:176. [PMID: 32887610 PMCID: PMC7650269 DOI: 10.1186/s12934-020-01433-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Membrane remodeling and phospholipid biosynthesis are normally tightly regulated to maintain the shape and function of cells. Indeed, different physiological mechanisms ensure a precise coordination between de novo phospholipid biosynthesis and modulation of membrane morphology. Interestingly, the overproduction of certain membrane proteins hijack these regulation networks, leading to the formation of impressive intracellular membrane structures in both prokaryotic and eukaryotic cells. The proteins triggering an abnormal accumulation of membrane structures inside the cells (or membrane proliferation) share two major common features: (1) they promote the formation of highly curved membrane domains and (2) they lead to an enrichment in anionic, cone-shaped phospholipids (cardiolipin or phosphatidic acid) in the newly formed membranes. Taking into account the available examples of membrane proliferation upon protein overproduction, together with the latest biochemical, biophysical and structural data, we explore the relationship between protein synthesis and membrane biogenesis. We propose a mechanism for the formation of these non-physiological intracellular membranes that shares similarities with natural inner membrane structures found in α-proteobacteria, mitochondria and some viruses-infected cells, pointing towards a conserved feature through evolution. We hope that the information discussed in this review will give a better grasp of the biophysical mechanisms behind physiological and induced intracellular membrane proliferation, and inspire new applications, either for academia (high-yield membrane protein production and nanovesicle production) or industry (biofuel production and vaccine preparation).
Collapse
Affiliation(s)
- Jorge Royes
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France. .,Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France.
| | - Valérie Biou
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France
| | - Christophe Tribet
- Département de Chimie, École Normale Supérieure, PASTEUR, PSL University, CNRS, Sorbonne Université, 24 Rue Lhomond, 75005, Paris, France
| | - Bruno Miroux
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005, Paris, France. .,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005, Paris, France.
| |
Collapse
|
36
|
Haist J, Neumann SA, Al-Bassam MM, Lindenberg S, Elliot MA, Tschowri N. Specialized and shared functions of diguanylate cyclases and phosphodiesterases in Streptomyces development. Mol Microbiol 2020; 114:808-822. [PMID: 32797697 DOI: 10.1111/mmi.14581] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/20/2020] [Indexed: 12/26/2022]
Abstract
The second messenger bis-3,5-cyclic di-guanosine monophosphate (c-di-GMP) determines when Streptomyces initiate sporulation. c-di-GMP signals are integrated into the genetic differentiation network by the regulator BldD and the sigma factor σWhiG . However, functions of the development-specific diguanylate cyclases (DGCs) CdgB and CdgC, and the c-di-GMP phosphodiesterases (PDEs) RmdA and RmdB, are poorly understood. Here, we provide biochemical evidence that the GGDEF-EAL domain protein RmdB from S. venezuelae is a monofunctional PDE that hydrolyzes c-di-GMP to 5'pGpG. Despite having an equivalent GGDEF-EAL domain arrangement, RmdA cleaves c-di-GMP to GMP and exhibits residual DGC activity. We show that an intact EAL motif is crucial for the in vivo function of both enzymes since strains expressing protein variants with an AAA motif instead of EAL are delayed in development, similar to null mutants. Transcriptome analysis of ∆cdgB, ∆cdgC, ∆rmdA, and ∆rmdB strains revealed that the c-di-GMP specified by these enzymes has a global regulatory role, with about 20% of all S. venezuelae genes being differentially expressed in the cdgC mutant. Our data suggest that the major c-di-GMP-controlled targets determining the timing and mode of sporulation are genes involved in cell division and the production of the hydrophobic sheath that covers Streptomyces aerial hyphae and spores.
Collapse
Affiliation(s)
- Julian Haist
- Department of Biology/Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sara Alina Neumann
- Department of Biology/Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Sandra Lindenberg
- Department of Biology/Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marie A Elliot
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Natalia Tschowri
- Department of Biology/Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
37
|
c-di-AMP hydrolysis by the phosphodiesterase AtaC promotes differentiation of multicellular bacteria. Proc Natl Acad Sci U S A 2020; 117:7392-7400. [PMID: 32188788 PMCID: PMC7132281 DOI: 10.1073/pnas.1917080117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacteria use the nucleotide cyclic di-3′,5′-adenosine monophosphate (c-di-AMP) for adaptation to changing environments and host–pathogen interactions. Enzymes for nucleotide synthesis and degradation and proteins for binding of the second messenger are key components of signal transduction pathways. It was long unknown how the majority of Actinobacteria, one of the largest bacterial phyla, stop c-di-AMP signals and which proteins bind the molecule to elicit cellular responses. Here, we identify a c-di-AMP phosphodiesterase that bacteria evolved to terminate c-di-AMP signaling and a protein that forms a complex with c-di-AMP in Streptomyces. We also demonstrate that balance of c-di-AMP is critical for developmental transitions from filaments to spores in multicellular bacteria. Antibiotic-producing Streptomyces use the diadenylate cyclase DisA to synthesize the nucleotide second messenger c-di-AMP, but the mechanism for terminating c-di-AMP signaling and the proteins that bind the molecule to effect signal transduction are unknown. Here, we identify the AtaC protein as a c-di-AMP-specific phosphodiesterase that is also conserved in pathogens such as Streptococcus pneumoniae and Mycobacterium tuberculosis. AtaC is monomeric in solution and binds Mn2+ to specifically hydrolyze c-di-AMP to AMP via the intermediate 5′-pApA. As an effector of c-di-AMP signaling, we characterize the RCK_C domain protein CpeA. c-di-AMP promotes interaction between CpeA and the predicted cation/proton antiporter, CpeB, linking c-di-AMP signaling to ion homeostasis in Actinobacteria. Hydrolysis of c-di-AMP is critical for normal growth and differentiation in Streptomyces, connecting ionic stress to development. Thus, we present the discovery of two components of c-di-AMP signaling in bacteria and show that precise control of this second messenger is essential for ion balance and coordinated development in Streptomyces.
Collapse
|
38
|
Gallagher KA, Schumacher MA, Bush MJ, Bibb MJ, Chandra G, Holmes NA, Zeng W, Henderson M, Zhang H, Findlay KC, Brennan RG, Buttner MJ. c-di-GMP Arms an Anti-σ to Control Progression of Multicellular Differentiation in Streptomyces. Mol Cell 2020; 77:586-599.e6. [PMID: 31810759 PMCID: PMC7005675 DOI: 10.1016/j.molcel.2019.11.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022]
Abstract
Streptomyces are our primary source of antibiotics, produced concomitantly with the transition from vegetative growth to sporulation in a complex developmental life cycle. We previously showed that the signaling molecule c-di-GMP binds BldD, a master repressor, to control initiation of development. Here we demonstrate that c-di-GMP also intervenes later in development to control differentiation of the reproductive hyphae into spores by arming a novel anti-σ (RsiG) to bind and sequester a sporulation-specific σ factor (σWhiG). We present the structure of the RsiG-(c-di-GMP)2-σWhiG complex, revealing an unusual, partially intercalated c-di-GMP dimer bound at the RsiG-σWhiG interface. RsiG binds c-di-GMP in the absence of σWhiG, employing a novel E(X)3S(X)2R(X)3Q(X)3D motif repeated on each helix of a coiled coil. Further studies demonstrate that c-di-GMP is essential for RsiG to inhibit σWhiG. These findings reveal a newly described control mechanism for σ-anti-σ complex formation and establish c-di-GMP as the central integrator of Streptomyces development.
Collapse
Affiliation(s)
- Kelley A. Gallagher
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Maria A. Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA,Corresponding author
| | - Matthew J. Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Maureen J. Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Neil A. Holmes
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Wenjie Zeng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Max Henderson
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hengshan Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kim C. Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard G. Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mark J. Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK,Corresponding author
| |
Collapse
|
39
|
Abstract
In this Guest Editorial, Heidi McBride introduces our special issue on membranes with a discussion of the contribution of mitochondria to the emergence of the endomembrane system.
Collapse
Affiliation(s)
- Heidi M McBride
- Montreal Neurological Institute, McGill University, 3801 University Avenue, Montreal, Quebec, Canada H3A 2B4.
| |
Collapse
|
40
|
Hirakata T, Urabe H, Sugita T. Phosphoproteomic and proteomic profiling of serine/threonine protein kinase PkaE of Streptomyces coelicolor A3(2) and its role in secondary metabolism and morphogenesis. Biosci Biotechnol Biochem 2019; 83:1843-1850. [DOI: 10.1080/09168451.2019.1618698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ABSTRACT
This study aimed to investigate the role of serine/threonine kinase PkaE in Streptomyces coelicolor A3(2). Liquid chromatography tandem mass spectrometry was performed for comparative phosphoproteome and proteome analyses of S. coelicolor A3(2), followed by an in vitro phosphorylation assay. Actinorhodin production in the pkaE deletion mutant was lower than that in wild-type S. coelicolor A3(2), and the spores of the pkaE deletion mutant were damaged. Furthermore, phosphoproteome analysis revealed that 6 proteins were significantly differentially hypophosphorylated in pkaE deletion mutant (p < 0.05, fold-change ≤ 0.66), including BldG and FtsZ. In addition, the in vitro phosphorylation assay revealed that PkaE phosphorylated FtsZ. Comparative proteome analysis revealed 362 differentially expressed proteins (p < 0.05) and six downregulated proteins in the pkaE deletion mutant involved in actinorhodin biosynthesis. Gene ontology enrichment analysis revealed that PkaE participates in various biological and cellular processes. Hence, S. coelicolor PkaE participates in actinorhodin biosynthesis and morphogenesis.
Collapse
Affiliation(s)
- Toshiyuki Hirakata
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hiroaki Urabe
- Education and Research Center for Pharmacy, Meiji Pharmaceutical University, Tokyo, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
41
|
Zhao X, Yang X, Lu Z, Wang H, He Z, Zhou G, Luo Z, Zhang Y. MADS-box transcription factor Mcm1 controls cell cycle, fungal development, cell integrity and virulence in the filamentous insect pathogenic fungus Beauveria bassiana. Environ Microbiol 2019; 21:3392-3416. [PMID: 30972885 DOI: 10.1111/1462-2920.14629] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/09/2019] [Indexed: 12/15/2022]
Abstract
MADS-box transcription factor Mcm1 plays crucial roles in regulating mating processes and pathogenesis in some fungi. However, its roles are varied in fungal species, and its function remains unclear in entomopathogenic fungi. Here, Mcm1 orthologue, Bbmcm1, was characterized in a filamentous entomopathogenic fungus, Beauveria bassiana. Disruption of Bbmcm1 resulted in a distinct reduction in growth with abnormal conidiogenesis, and a significant decrease in conidial viability with abnormal germination. ΔBbmcm1 displayed impaired cell integrity, with distorted cell wall structure and altered cell wall component. Abnormal cell cycle was detected in ΔBbmcm1 with longer G2 /M phase but shorter G1 /G0 and S phases in unicellular blastospores, and sparser septa in multicellular hyphae, which might be responsible for defects in development and differentiation due to the regulation of cell cycle-involved genes, as well as the corresponding cellular events-associated genes. Dramatically decreased virulence was examined in ΔBbmcm1, with impaired ability to escape haemocyte encapsulation, which was consistent with markedly reduced cuticle-degrading enzyme production by repressing their coding genes, and downregulated fungal effector protein-coding genes, suggesting a novel role of Mcm1 in interaction with host insect. These data indicate that Mcm1 is a crucial regulator of development, cell integrity, cell cycle and virulence in insect fungal pathogens.
Collapse
Affiliation(s)
- Xin Zhao
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xingju Yang
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhuoyue Lu
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Huifang Wang
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhangjiang He
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Guangyan Zhou
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhibing Luo
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yongjun Zhang
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| |
Collapse
|
42
|
Mycobacterial dynamin-like protein IniA mediates membrane fission. Nat Commun 2019; 10:3906. [PMID: 31467269 PMCID: PMC6715688 DOI: 10.1038/s41467-019-11860-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis infection remains a major threat to human health worldwide. Drug treatments against tuberculosis (TB) induce expression of several mycobacterial proteins, including IniA, but its structure and function remain poorly understood. Here, we report the structures of Mycobacterium smegmatis IniA in both the nucleotide-free and GTP-bound states. The structures reveal that IniA folds as a bacterial dynamin-like protein (BDLP) with a canonical GTPase domain followed by two helix-bundles (HBs), named Neck and Trunk. The distal end of its Trunk domain exists as a lipid-interacting (LI) loop, which binds to negatively charged lipids for membrane attachment. IniA does not form detectable nucleotide-dependent dimers in solution. However, lipid tethering indicates nucleotide-independent association of IniA on the membrane. IniA also deforms membranes and exhibits GTP-hydrolyzing dependent membrane fission. These results confirm the membrane remodeling activity of BDLP and suggest that IniA mediates TB drug-resistance through fission activity to maintain plasma membrane integrity.
Collapse
|
43
|
Abstract
Many bacterial species contain dynamin-like proteins (DLPs). However, so far the functional mechanisms of bacterial DLPs are poorly understood. DynA in Bacillus subtilis is a 2-headed DLP, mediating nucleotide-independent membrane tethering in vitro and contributing to the innate immunity of bacteria against membrane stress and phage infection. Here, we employed content mixing and lipid mixing assays in reconstituted systems to study if DynA induces membrane full fusion, characterize its subunits in membrane fusion, and further test the possibility that GTP hydrolysis of DynA may act on the fusion-through-hemifusion pathway. Our results based on fluorescence resonance energy transfer indicated that DynA could induce aqueous content mixing even in the absence of GTP. Moreover, DynA-induced membrane fusion in vitro is a thermo-promoted slow process, and it has phospholipid and membrane curvature preferences. The D1 part of DynA is crucial for membrane binding and fusion, whereas D2 subunit plays a role in facilitating membrane fusion. Surprisingly, digestion of DynA mediated an instant rise of content exchange, supporting the assumption that disassembly of DynA is a driving force for fusion-through-hemifusion. DynA is a rare example of a membrane fusion catalyst that lacks a transmembrane domain and hence sets this system apart from well-characterized fusion systems such as the soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes.-Guo, L., Bramkamp, M. Bacterial dynamin-like protein DynA mediates lipid and content mixing.
Collapse
Affiliation(s)
- Lijun Guo
- Ludwig-Maximilians-Universität München, Fakultät Biologie, Planegg-Martinsried, Germany
| | - Marc Bramkamp
- Ludwig-Maximilians-Universität München, Fakultät Biologie, Planegg-Martinsried, Germany
| |
Collapse
|
44
|
Dynamin-Like Protein B of Dictyostelium Contributes to Cytokinesis Cooperatively with Other Dynamins. Cells 2019; 8:cells8080781. [PMID: 31357517 PMCID: PMC6721605 DOI: 10.3390/cells8080781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 01/31/2023] Open
Abstract
Dynamin is a large GTPase responsible for diverse cellular processes, such as endocytosis, division of organelles, and cytokinesis. The social amoebozoan, Dictyostelium discoideum, has five dynamin-like proteins: dymA, dymB, dlpA, dlpB, and dlpC. DymA, dlpA, or dlpB-deficient cells exhibited defects in cytokinesis. DlpA and dlpB were found to colocalize at cleavage furrows from the early phase, and dymA localized at the intercellular bridge connecting the two daughter cells, indicating that these dynamins contribute to cytokinesis at distinct dividing stages. Total internal reflection fluorescence microscopy revealed that dlpA and dlpB colocalized at individual dots at the furrow cortex. However, dlpA and dlpB did not colocalize with clathrin, suggesting that they are not involved in clathrin-mediated endocytosis. The fact that dlpA did not localize at the furrow in dlpB null cells and vice versa, as well as other several lines of evidence, suggests that hetero-oligomerization of dlpA and dlpB is required for them to bind to the furrow. The hetero-oligomers directly or indirectly associate with actin filaments, stabilizing them in the contractile rings. Interestingly, dlpA, but not dlpB, accumulated at the phagocytic cups independently of dlpB. Our results suggest that the hetero-oligomers of dlpA and dlpB contribute to cytokinesis cooperatively with dymA.
Collapse
|
45
|
Vollmer B, Steblau N, Ladwig N, Mayer C, Macek B, Mitousis L, Sigle S, Walter A, Wohlleben W, Muth G. Role of the Streptomyces spore wall synthesizing complex SSSC in differentiation of Streptomyces coelicolor A3(2). Int J Med Microbiol 2019; 309:151327. [PMID: 31324525 DOI: 10.1016/j.ijmm.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022] Open
Abstract
A crucial stage of the Streptomyces life cycle is the sporulation septation, a process were dozens of cross walls are synchronously formed in the aerial hyphae in a highly coordinated manner. This process includes the remodeling of the spore envelopes to make Streptomyces spores resistant to detrimental environmental conditions. Sporulation septation and the synthesis of the thickened spore envelope in S. coelicolor A3(2) involves the Streptomyces spore wall synthesizing complex SSSC. The SSSC is a multi-protein complex including proteins directing peptidoglycan synthesis (MreBCD, PBP2, Sfr, RodZ) and cell wall glycopolymer synthesis (PdtA). It also includes two eukaryotic like serin/threonine protein kinases (eSTPK), PkaI and PkaH, which were shown to phosphorylate MreC. Since unbalancing phosphorylation activity by either deleting eSTPK genes or by expressing a second copy of an eSTPK gene affected proper sporulation, a model was developed, in which the activity of the SSSC is controlled by protein phosphorylation.
Collapse
Affiliation(s)
- B Vollmer
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - N Steblau
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - N Ladwig
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - C Mayer
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - B Macek
- Proteome Center Tuebingen, Interfakultaeres Institut für Zellbiologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - L Mitousis
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - S Sigle
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - A Walter
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - W Wohlleben
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany
| | - G Muth
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany.
| |
Collapse
|
46
|
Sen BC, Wasserstrom S, Findlay K, Söderholm N, Sandblad L, von Wachenfeldt C, Flärdh K. Specific amino acid substitutions in β strand S2 of FtsZ cause spiraling septation and impair assembly cooperativity in Streptomyces spp. Mol Microbiol 2019; 112:184-198. [PMID: 31002418 DOI: 10.1111/mmi.14262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2019] [Indexed: 01/18/2023]
Abstract
Bacterial cell division is orchestrated by the Z ring, which is formed by single-stranded treadmilling protofilaments of FtsZ. In Streptomyces, during sporulation, multiple Z rings are assembled and lead to formation of septa that divide a filamentous hyphal cell into tens of prespore compartments. We describe here mutant alleles of ftsZ in Streptomyces coelicolor and Streptomyces venezuelae that perturb cell division in such a way that constriction is initiated along irregular spiral-shaped paths rather than as regular septa perpendicular to the cell length axis. This conspicuous phenotype is caused by amino acid substitutions F37I and F37R in β strand S2 of FtsZ. The F37I mutation leads, instead of regular Z rings, to formation of relatively stable spiral-shaped FtsZ structures that are capable of initiating cell constriction. Further, we show that the F37 mutations affect the polymerization properties and impair the cooperativity of FtsZ assembly in vitro. The results suggest that specific residues in β strand S2 of FtsZ affect the conformational switch in FtsZ that underlies assembly cooperativity and enable treadmilling of protofilaments, and that these features are required for formation of regular Z rings. However, the data also indicate FtsZ-directed cell constriction is not dependent on assembly cooperativity.
Collapse
Affiliation(s)
- Beer Chakra Sen
- Department of Biology, Lund University, Sölvegatan 35, Lund, 223 62, Sweden
| | | | - Kim Findlay
- Department of Cell & Molecular Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Niklas Söderholm
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Linda Sandblad
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | | | - Klas Flärdh
- Department of Biology, Lund University, Sölvegatan 35, Lund, 223 62, Sweden
| |
Collapse
|
47
|
Jimah JR, Hinshaw JE. Structural Insights into the Mechanism of Dynamin Superfamily Proteins. Trends Cell Biol 2019; 29:257-273. [DOI: 10.1016/j.tcb.2018.11.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022]
|
48
|
BldC Delays Entry into Development To Produce a Sustained Period of Vegetative Growth in Streptomyces venezuelae. mBio 2019; 10:mBio.02812-18. [PMID: 30723132 PMCID: PMC6428758 DOI: 10.1128/mbio.02812-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Understanding the mechanisms that drive bacterial morphogenesis depends on the dissection of the regulatory networks that underpin the cell biological processes involved. Recently, Streptomyces venezuelae has emerged as an attractive model system for the study of morphological differentiation in Streptomyces. This has led to significant progress in identifying the genes controlled by the transcription factors that regulate aerial mycelium formation (Bld regulators) and sporulation (Whi regulators). Taking advantage of S. venezuelae, we used ChIP-seq coupled with RNA-seq to identify the genes directly under the control of BldC. Because S. venezuelae sporulates in liquid culture, the complete spore-to-spore life cycle can be examined using time-lapse microscopy, and we applied this technique to the bldC mutant. These combined approaches reveal BldC to be a member of an emerging class of Bld regulators that function principally to repress key sporulation genes, thereby extending vegetative growth and blocking the onset of morphological differentiation. Streptomycetes are filamentous bacteria that differentiate by producing spore-bearing reproductive structures called aerial hyphae. The transition from vegetative to reproductive growth is controlled by the bld (bald) loci, and mutations in bld genes prevent the formation of aerial hyphae, either by blocking entry into development (typically mutations in activators) or by inducing precocious sporulation in the vegetative mycelium (typically mutations in repressors). One of the bld genes, bldC, encodes a 68-residue DNA-binding protein related to the DNA-binding domain of MerR-family transcription factors. Recent work has shown that BldC binds DNA by a novel mechanism, but there is less insight into its impact on Streptomyces development. Here we used ChIP-seq coupled with RNA-seq to define the BldC regulon in the model species Streptomyces venezuelae, showing that BldC can function both as a repressor and as an activator of transcription. Using electron microscopy and time-lapse imaging, we show that bldC mutants are bald because they initiate development prematurely, bypassing the formation of aerial hyphae. This is consistent with the premature expression of BldC target genes encoding proteins with key roles in development (e.g., whiD, whiI, sigF), chromosome condensation and segregation (e.g., smeA-sffA, hupS), and sporulation-specific cell division (e.g., dynAB), suggesting that BldC-mediated repression is critical to maintain a sustained period of vegetative growth prior to sporulation. We discuss the possible significance of BldC as an evolutionary link between MerR family transcription factors and DNA architectural proteins.
Collapse
|
49
|
Al-Bassam MM, Haist J, Neumann SA, Lindenberg S, Tschowri N. Expression Patterns, Genomic Conservation and Input Into Developmental Regulation of the GGDEF/EAL/HD-GYP Domain Proteins in Streptomyces. Front Microbiol 2018; 9:2524. [PMID: 30405580 PMCID: PMC6205966 DOI: 10.3389/fmicb.2018.02524] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/03/2018] [Indexed: 11/13/2022] Open
Abstract
To proliferate, antibiotic-producing Streptomyces undergo a complex developmental transition from vegetative growth to the production of aerial hyphae and spores. This morphological switch is controlled by the signaling molecule cyclic bis-(3',5') di-guanosine-mono-phosphate (c-di-GMP) that binds to the master developmental regulator, BldD, leading to repression of key sporulation genes during vegetative growth. However, a systematical analysis of all the GGDEF/EAL/HD-GYP proteins that control c-di-GMP levels in Streptomyces is still lacking. Here, we have FLAG-tagged all 10 c-di-GMP turnover proteins in Streptomyces venezuelae and characterized their expression patterns throughout the life cycle, revealing that the diguanylate cyclase (DGC) CdgB and the phosphodiesterase (PDE) RmdB are the most abundant GGDEF/EAL proteins. Moreover, we have deleted all the genes coding for c-di-GMP turnover enzymes individually and analyzed morphogenesis of the mutants in macrocolonies. We show that the composite GGDEF-EAL protein CdgC is an active DGC and that deletion of the DGCs cdgB and cdgC enhance sporulation whereas deletion of the PDEs rmdA and rmdB delay development in S. venezuelae. By comparing the pan genome of 93 fully sequenced Streptomyces species we show that the DGCs CdgA, CdgB, and CdgC, and the PDE RmdB represent the most conserved c-di-GMP-signaling proteins in the genus Streptomyces.
Collapse
Affiliation(s)
- Mahmoud M Al-Bassam
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Julian Haist
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sara Alina Neumann
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra Lindenberg
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Natalia Tschowri
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
50
|
Bacterial dynamin-like proteins reveal mechanism for membrane fusion. Nat Commun 2018; 9:3993. [PMID: 30266939 PMCID: PMC6162298 DOI: 10.1038/s41467-018-06559-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/07/2018] [Indexed: 12/03/2022] Open
Abstract
The dynamin superfamily of large GTPases comprises specialized members that catalyze fusion and fission of biological membranes. While fission-specific proteins such as dynamin work as homo-oligomeric complexes, many fusion catalysts such as mitofusins or bacterial dynamin-like proteins (DLPs) act as hetero-oligomers. However, so far it was unclear how these hetero-oligomeric DLPs assemble and how they function in membrane remodeling. The group of Harry Low report now on the structure of a DLP pair from Campylobacter jejuni, allowing detailed insight into the assembly mechanism and membrane tethering activity.
Collapse
|