1
|
Liang Z, Murugappan SK, Li Y, Lai MN, Qi Y, Wang Y, Chan HYE, Lee MM, Chan MK. Gene delivery of SUMO1-derived peptide rescues neuronal degeneration and motor deficits in a mouse model of Parkinson's disease. Mol Ther 2025:S1525-0016(25)00279-5. [PMID: 40189878 DOI: 10.1016/j.ymthe.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/18/2024] [Accepted: 04/02/2025] [Indexed: 04/22/2025] Open
Abstract
Developing α-synuclein aggregation inhibitors is challenging because its aggregation process involves several microscopic steps and heterogeneous intermediates. Previously, we identified a SUMO1-derived peptide, SUMO1(15-55), that exhibits tight binding to monomeric α-synuclein via SUMO-SUMO-interacting motif (SIM) interactions, and effectively blocks the initiation of aggregation and formation of toxic aggregates in vitro. In cellular and Drosophila models, SUMO1(15-55) was efficacious in protecting neuronal cells from α-synuclein-induced neurotoxicity and neuronal degeneration. Given the demonstrated ability of SUMO1(15-55) to sequester α-synuclein monomers thereby blocking oligomer formation, we sought to evaluate whether it could be equally effective against the aggregation-prone familial mutant α-synuclein-A53T. Herein, we show that SUMO1(15-55) selectively binds to monomeric α-synuclein-A53T, inhibits primary nucleation, and prevents the formation of structured protofibrils in vitro, thereby protecting neuronal cells from protofibril-induced cell death. We further demonstrate that larval feeding of a designed His10-SUMO1(15-55) that exhibits enhanced sub-stoichiometric suppression of α-synuclein-A53T aggregation in vitro can ameliorate Parkinson's disease (PD)-related symptoms in α-synuclein-A53T transgenic Drosophila models, while its rAAV-mediated gene delivery can relieve the PD-related histological and behavioral deficiencies in an rAAV-α-synuclein-A53T mouse PD model. Our findings suggest that gene delivery of His10-SUMO1(15-55) may serve as a clinical therapy for a spectrum of α-synuclein-aggregation associated synucleinopathies.
Collapse
Affiliation(s)
- Zhaohui Liang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China; Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Suresh Kanna Murugappan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China; Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Yuxuan Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China; Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Man Nga Lai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China; Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Yajing Qi
- Department of Physics, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Yi Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China; Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China
| | - Marianne M Lee
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China; Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China.
| | - Michael K Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China; Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin 999077, Hong Kong SAR, China.
| |
Collapse
|
2
|
Ding Y, Wang L, Liu J, Deng Y, Jiao Y, Zhao A. Distinct CSF α-synuclein aggregation profiles associated with Alzheimer's disease phenotypes and MCI-to-AD conversion. J Prev Alzheimers Dis 2025; 12:100040. [PMID: 39863324 DOI: 10.1016/j.tjpad.2024.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/29/2024] [Accepted: 12/14/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND α-Synuclein (α-Syn) pathology is present in 30-50 % of Alzheimer's disease (AD) patients, and its interactions with tau proteins may further exacerbate pathological changes in AD. However, the specific role of different aggregation forms of α-Syn in the progression of AD remains unclear. OBJECTIVES To explore the relationship between various aggregation types of CSF α-Syn and Alzheimer's disease progression. DESIGN We conducted a retrospective analysis of data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to examine the association between different α-Syn aggregation forms-Syn0 (no detectable α-Syn aggregates) and Syn1 (α-Syn aggregates detected, resembling those found in Parkinson's disease)-with the pathological and clinical features of AD. Additionally, we evaluated their potential as predictors of conversion from mild cognitive impairment (MCI) to AD. SETTING The ADNI database. PARTICIPANTS A total of 250 participants, including 70 cognitively normal controls, 119 patients diagnosed with MCI, and 61 patients diagnosed with AD. MEASUREMENTS Pearson correlation was employed to assess the relationship between α-Syn levels and cerebrospinal fluid (CSF) biomarkers, including total tau (T-tau), phosphorylated tau (p-tau), and amyloid-β42 (Aβ42). Multivariate Cox proportional hazards models were applied, adjusting for APOE4 status, age, and sex, to determine the association between α-Syn forms and AD-related pathological and clinical outcomes. Kaplan-Meier curves were used to evaluate the prognostic value of different α-Syn aggregation states in predicting the conversion from MCI to AD. RESULTS Compared with controls, overall MCI and AD patients had elevated α-Syn levels. Notably, in the α-Syn0 group, α-Syn levels were increased in the MCI patients and further increased in AD patients, whereas in the α-Syn1 group, α-Syn levels did not significantly differ across diagnostic groups. Both in the α-Syn0 and α-Syn1 groups, α-Syn levels were found to correlate more strongly with CSF tau levels than with Aβ42, indicating a possible role for α-Syn in tau-related pathology in AD. Importantly, α-Syn0-AD patients exhibited more rapid cognitive decline and greater hippocampal atrophy than α-Syn1-AD patients. However, MCI patients with CSF α-Syn1 aggregation status had an increased risk of conversion to AD. CONCLUSIONS CSF α-Syn is associated with tau pathology and neurodegeneration in Alzheimer's disease. The distinct aggregation profiles of α-Syn serve as valuable biomarkers, offering insights into differing prognoses in AD and aiding in the prediction of early disease progression.
Collapse
Affiliation(s)
- Yanfei Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated to the Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Lingbing Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated to the Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated to the Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yulei Deng
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated to the Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Yang Jiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated to the Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Aonan Zhao
- Department of Neurology and Institute of Neurology, Ruijin Hospital affiliated to the Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
3
|
Ding X, Shang D, Cui Y, Dong X, Chen C, Zhao Y, Li X, Liang X. Tandem HILIC-IMAC strategy for simultaneous N-glycoproteomics and phosphoproteomics in aging mouse brain. J Chromatogr A 2025; 1739:465525. [PMID: 39566287 DOI: 10.1016/j.chroma.2024.465525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Abnormal glycosylation and phosphorylation are strongly associated with brain aging. N-glycosylation and phosphorylation are closely involved in pathological processes in a crosstalk dependent manner. However, simultaneous characterization of glycosylation and phosphorylation together in aging brain was uncommon. Herein we developed a novel tandem HILIC-IMAC strategy for simultaneous analysis of N-glycoproteomics and phosphoproteomics. This tandem method showed higher enrichment repeatability, more identifications of glycopeptides and phosphopeptides, and lower overlap. Application of the established method to mouse brain at two ages (8 weeks and 65 weeks) to explore changes in glycosylation and phosphorylation during aging. Up to 10,990 N-glycopeptides and 11,409 phosphopeptides were identified from mouse brain. Among these, differentially expressed phosphoproteins were involved in regulation of microtubule depolymerization, synapse, and transmission of nerve impulse. And glycoproteins differentially expressed with age were mostly related to cell adhesion processes and extracellular matrix. Furthermore, we found the opposite expression trends in glycosylation and phosphorylation during aging on Grin2b. Together, the HILIC-IMAC strategy has potential to discover aging biomarkers and analyze complex biosamples, paving the way for in-depth investigations for the changes of protein glycosylation and phosphorylation in aging brain.
Collapse
Affiliation(s)
- Xinlian Ding
- Pharmacy College, Dalian Medical University, Dalian, 116044, PR China; Key Laboratory of Phytochemistry and Natural Medicines. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, PR China
| | - Danyi Shang
- Key Laboratory of Phytochemistry and Natural Medicines. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, PR China
| | - Yun Cui
- Key Laboratory of Phytochemistry and Natural Medicines. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, PR China
| | - Xuefang Dong
- Key Laboratory of Phytochemistry and Natural Medicines. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, PR China
| | - Cheng Chen
- Key Laboratory of Phytochemistry and Natural Medicines. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, PR China
| | - Yanyan Zhao
- Pharmacy College, Dalian Medical University, Dalian, 116044, PR China.
| | - Xiuling Li
- Key Laboratory of Phytochemistry and Natural Medicines. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, PR China.
| | - Xinmiao Liang
- Key Laboratory of Phytochemistry and Natural Medicines. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, PR China
| |
Collapse
|
4
|
Sun W, van Ginneken D, Perié L. scMitoMut for calling mitochondrial lineage-related mutations in single cells. Brief Bioinform 2024; 26:bbaf072. [PMID: 40036721 PMCID: PMC11878546 DOI: 10.1093/bib/bbaf072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/11/2024] [Accepted: 02/13/2025] [Indexed: 03/06/2025] Open
Abstract
Tracing cell lineages has become a valuable tool for studying biological processes. Among the available tools for human data, mitochondrial DNA (mtDNA) has a high potential due to its ability to be used in conjunction with single-cell chromatin accessibility data, giving access to the cell phenotype. Nonetheless, the existing mutation calling tools are ill-equipped to deal with the polyploid nature of the mtDNA and lack a robust statistical framework. Here we introduce scMitoMut, an innovative R package that leverages statistical methodologies to accurately identify mitochondrial lineage-related mutations at the single-cell level. scMitoMut assigns a mutation quality q-value based on beta-binomial distribution to each mutation at each locus within individual cells, ensuring higher sensitivity and precision of lineage-related mutation calling in comparison to current methodologies. We tested scMitoMut using single-cell DNA sequencing, single-cell transposase-accessible chromatin (scATAC) sequencing, and 10× Genomics single-cell multiome datasets. Using a single-cell DNA sequencing dataset from a mixed population of cell lines, scMitoMut demonstrated superior sensitivity in identifying a small proportion of cancer cell line compared to existing methods. In a human colorectal cancer scATAC dataset, scMitoMut identified more mutations than state-of-the-art methods. Applied to 10× Genomics multiome datasets, scMitoMut effectively measured the lineage distance in cells from blood or brain tissues. Thus, the scMitoMut is a freely available, and well-engineered toolkit (https://www.bioconductor.org/packages/devel/bioc/html/scMitoMut.html) for mtDNA mutation calling with high memory and computational efficiency. Consequently, it will significantly advance the application of single-cell sequencing, facilitating the precise delineation of mitochondrial mutations for lineage-tracing purposes in development, tumour, and stem cell biology.
Collapse
Affiliation(s)
- Wenjie Sun
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physique des Cellules et Cancer, 16 rue Pierre et Marie Curie, 75005 Paris, France
| | - Daphne van Ginneken
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physique des Cellules et Cancer, 16 rue Pierre et Marie Curie, 75005 Paris, France
| | - Leïla Perié
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physique des Cellules et Cancer, 16 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
5
|
Chen Y, Gu Y, Cao C, Zheng Q, Sun L, Ding W, Ma L, Wang C, Zhang W. Exploring α-synuclein Interaction Partners and their Potential Clinical Implications for Parkinson's Disease. Neurochem Res 2024; 50:23. [PMID: 39560845 DOI: 10.1007/s11064-024-04250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Alpha-synuclein aggregates are strongly associated with Parkinson's disease (PD), a degenerative neurological disorder characterized by a progressive loss in motor functions. Our study aimed to unravel the potential interaction partners of α-synuclein for exploring the synucleinpathy of PD related to α-synuclein aggregates. α-synuclein was expressed in E.coli and purified by affinity chromatography followed by isolation and identification of its interaction partners using pulldown assay coupled with LC-MS/MS. The impacts of the identified interaction partners on PD were evaluated based on GSE205450 dataset. Consequently, 157 proteins were identified by the criteria of unique peptide = 5. Four proteins including ACO2, ANT1, ATP5F1B and CKB were confirmed using immunostaining coupled with α-synuclein-pulldown assay. Transcriptomics assay showed that the dominant biological processes influenced by α-synuclein interaction partners with differential expression were energy metabolism. Together with GSE205450, Western blot assay showed that α-synuclein interaction partners involved in energy metabolism were down-regulated in PD patients and the MPTP-lesioned mice. ROC curves indicated their clinical implications as diagnostic indices of PD. Using ANT1 as an example, we found that protein aggregates formed by ANT1 and α-synuclein predominantly solely appeared in the cells and mice with PD-like variations. Thereby, low levels of the interaction partners of α-synuclein associated with energy metabolism were associated with PD pathogenesis via forming protein aggregates. This study provides an insight into developing innovative targets on PD based on synucleinpathy.
Collapse
Affiliation(s)
- Yingfei Chen
- Grade 2020, Capital Medical University, Beijing, 100069, China
| | - Yanan Gu
- Laboratory Department, The first affiliated hospital of Dalian Medical University, Dalian, 116021, China
| | - Can Cao
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Qiuying Zheng
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Lili Sun
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China
| | - Wenyong Ding
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China
| | - Li Ma
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Cui Wang
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, 116033, China.
| | - Wenli Zhang
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
6
|
Maity S, Huang Y, Kilgore MD, Thurmon AN, Vaasjo LO, Galazo MJ, Xu X, Cao J, Wang X, Ning B, Liu N, Fan J. Mapping dynamic molecular changes in hippocampal subregions after traumatic brain injury through spatial proteomics. Clin Proteomics 2024; 21:32. [PMID: 38735925 PMCID: PMC11089002 DOI: 10.1186/s12014-024-09485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) often results in diverse molecular responses, challenging traditional proteomic studies that measure average changes at tissue levels and fail to capture the complexity and heterogeneity of the affected tissues. Spatial proteomics offers a solution by providing insights into sub-region-specific alterations within tissues. This study focuses on the hippocampal sub-regions, analyzing proteomic expression profiles in mice at the acute (1 day) and subacute (7 days) phases of post-TBI to understand subregion-specific vulnerabilities and long-term consequences. METHODS Three mice brains were collected from each group, including Sham, 1-day post-TBI and 7-day post-TBI. Hippocampal subregions were extracted using Laser Microdissection (LMD) and subsequently analyzed by label-free quantitative proteomics. RESULTS The spatial analysis reveals region-specific protein abundance changes, highlighting the elevation of FN1, LGALS3BP, HP, and MUG-1 in the stratum moleculare (SM), suggesting potential immune cell enrichment post-TBI. Notably, established markers of chronic traumatic encephalopathy, IGHM and B2M, exhibit specific upregulation in the dentate gyrus bottom (DG2) independent of direct mechanical injury. Metabolic pathway analysis identifies disturbances in glucose and lipid metabolism, coupled with activated cholesterol synthesis pathways enriched in SM at 7-Day post-TBI and subsequently in deeper DG1 and DG2 suggesting a role in neurogenesis and the onset of recovery. Coordinated activation of neuroglia and microtubule dynamics in DG2 suggest recovery mechanisms in less affected regions. Cluster analysis revealed spatial variations post-TBI, indicative of dysregulated neuronal plasticity and neurogenesis and further predisposition to neurological disorders. TBI-induced protein upregulation (MUG-1, PZP, GFAP, TJP, STAT-1, and CD44) across hippocampal sub-regions indicates shared molecular responses and links to neurological disorders. Spatial variations were demonstrated by proteins dysregulated in both or either of the time-points exclusively in each subregion (ELAVL2, CLIC1 in PL, CD44 and MUG-1 in SM, and SHOC2, LGALS3 in DG). CONCLUSIONS Utilizing advanced spatial proteomics techniques, the study unveils the dynamic molecular responses in distinct hippocampal subregions post-TBI. It uncovers region-specific vulnerabilities and dysregulated neuronal processes, and potential recovery-related pathways that contribute to our understanding of TBI's neurological consequences and provides valuable insights for biomarker discovery and therapeutic targets.
Collapse
Affiliation(s)
- Sudipa Maity
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yuanyu Huang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mitchell D Kilgore
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Abbigail N Thurmon
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, New Orleans, LA, USA
| | | | - Maria J Galazo
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, New Orleans, LA, USA
| | - Xiaojiang Xu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jing Cao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bo Ning
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ning Liu
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane University Translational Sciences Institute, New Orleans, LA, USA.
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
7
|
T P, Katta B, Lulu S S, Sundararajan V. Gene expression analysis reveals GRIN1, SYT1, and SYN2 as significant therapeutic targets and drug repurposing reveals lorazepam and lorediplon as potent inhibitors to manage Alzheimer's disease. J Biomol Struct Dyn 2023; 42:10352-10373. [PMID: 37691428 DOI: 10.1080/07391102.2023.2256878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Alzheimer's disease (AD) is a slowly progressive neurodegenerative disease and a leading cause of dementia. We aim to identify key genes for the development of therapeutic targets and biomarkers for potential treatments for AD. Meta-analysis was performed on six microarray datasets and identified the differentially expressed genes between healthy and Alzheimer's disease samples. Thereafter, we filtered out the common genes which were present in at least four microarray datasets for downstream analysis. We have constructed a gene-gene network for the common genes and identified six hub genes. Furthermore, we investigated the regulatory mechanisms of these hub genes by analysing their interaction with miRNAs and transcription factors. The gene ontology analysis results highlighted the enriched terms significantly associated with hub genes. Through an extensive literature survey, we found that three of the hub genes including GRIN1, SYN2, and SYT1 were critically involved in disease development. To leverage existing drugs for potential repurposing, we predicted drug-gene interaction using the drug-gene interaction database, and performed molecular docking studies. The docking results revealed that the drug compounds had strong interactions and favorable binding with selected hub genes. Lorazepam exhibits a binding energy of -7.3 kcal/mol with GRIN1, Lorediplon exhibits binding energies of -7.7 kcal/mol and -6.3 kcal/mol with the SYT1, and SYN2 respectively. In addition, 100 ns molecular dynamics simulations were carried out for the top complexes and apo protein as well. Furthermore, the MM-PBSA free energy calculations also revealed that these complexes are stable and had favorable energies. According to our study, the identified hub gene could serve as a biomarker as well as a therapeutic target for AD, and the proposed repurposed drug molecules appear to have promising efficacy in treating the disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Premkumar T
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Bhavana Katta
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sajitha Lulu S
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Vino Sundararajan
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
8
|
Sant'Anna R, Robbs BK, de Freitas JA, Dos Santos PP, König A, Outeiro TF, Foguel D. The alpha-synuclein oligomers activate nuclear factor of activated T-cell (NFAT) modulating synaptic homeostasis and apoptosis. Mol Med 2023; 29:111. [PMID: 37596531 PMCID: PMC10439599 DOI: 10.1186/s10020-023-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Soluble oligomeric forms of alpha-synuclein (aSyn-O) are believed to be one of the main toxic species in Parkinson's disease (PD) leading to degeneration. aSyn-O can induce Ca2+ influx, over activating downstream pathways leading to PD phenotype. Calcineurin (CN), a phosphatase regulated by Ca2+ levels, activates NFAT transcription factors that are involved in the regulation of neuronal plasticity, growth, and survival. METHODS Here, using a combination of cell toxicity and gene regulation assays performed in the presence of classical inhibitors of the NFAT/CN pathway, we investigate NFAT's role in neuronal degeneration induced by aSyn-O. RESULTS aSyn-O are toxic to neurons leading to cell death, loss of neuron ramification and reduction of synaptic proteins which are reversed by CN inhibition with ciclosporin-A or VIVIT, a NFAT specific inhibitor. aSyn-O induce NFAT nuclear translocation and transactivation. We found that aSyn-O modulates the gene involved in the maintenance of synapses, synapsin 1 (Syn 1). Syn1 mRNA and protein and synaptic puncta are drastically reduced in cells treated with aSyn-O which are reversed by NFAT inhibition. CONCLUSIONS For the first time a direct role of NFAT in aSyn-O-induced toxicity and Syn1 gene regulation was demonstrated, enlarging our understanding of the pathways underpinnings synucleinopathies.
Collapse
Affiliation(s)
- Ricardo Sant'Anna
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Bloco E sala 42, Rio de Janeiro, 21941-590, Brazil
| | - Bruno K Robbs
- Departamento de Ciência Básica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Nova Friburgo, RJ, 28625-650, Brazil
| | - Júlia Araújo de Freitas
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Bloco E sala 42, Rio de Janeiro, 21941-590, Brazil
| | - Patrícia Pires Dos Santos
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany.
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| | - Debora Foguel
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Bloco E sala 42, Rio de Janeiro, 21941-590, Brazil.
| |
Collapse
|
9
|
Park JS, Choe K, Lee HJ, Park TJ, Kim MO. Neuroprotective effects of osmotin in Parkinson's disease-associated pathology via the AdipoR1/MAPK/AMPK/mTOR signaling pathways. J Biomed Sci 2023; 30:66. [PMID: 37568205 PMCID: PMC10422754 DOI: 10.1186/s12929-023-00961-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most frequent age-related neurodegenerative disorder and is characterized by the loss of dopaminergic neurons. Both environmental and genetic aspects are involved in the pathogenesis of PD. Osmotin is a structural and functional homolog of adiponectin, which regulates the phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK) via adiponectin receptor 1 (AdipoR1), thus attenuating PD-associated pathology. Therefore, the current study investigated the neuroprotective effects of osmotin using in vitro and in vivo models of PD. METHODS The study used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced and neuron-specific enolase promoter human alpha-synuclein (NSE-hαSyn) transgenic mouse models and 1-methyl-4-phenylpyridinium (MPP+)- or alpha-synuclein A53T-treated cell models. MPTP was injected at a dose of 30 mg/kg/day for five days, and osmotin was injected twice a week at a dose of 15 mg/kg for five weeks. We performed behavioral tests and analyzed the biochemical and molecular changes in the substantia nigra pars compacta (SNpc) and the striatum. RESULTS Based on our study, osmotin mitigated MPTP- and α-synuclein-induced motor dysfunction by upregulating the nuclear receptor-related 1 protein (Nurr1) transcription factor and its downstream markers tyrosine hydroxylase (TH), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2). From a pathological perspective, osmotin ameliorated neuronal cell death and neuroinflammation by regulating the mitogen-activated protein kinase (MAPK) signaling pathway. Additionally, osmotin alleviated the accumulation of α-synuclein by promoting the AMPK/mammalian target of rapamycin (mTOR) autophagy signaling pathway. Finally, in nonmotor symptoms of PD, such as cognitive deficits, osmotin restored synaptic deficits, thereby improving cognitive impairment in MPTP- and α-synuclein-induced mice. CONCLUSIONS Therefore, our findings indicated that osmotin significantly rescued MPTP/α-synuclein-mediated PD neuropathology. Altogether, these results suggest that osmotin has potential neuroprotective effects in PD neuropathology and may provide opportunities to develop novel therapeutic interventions for the treatment of PD.
Collapse
Affiliation(s)
- Jun Sung Park
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Kyonghwan Choe
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229ER Maastricht, the Netherlands
| | - Hyeon Jin Lee
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Tae Ju Park
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, Glasgow, G12 0ZD UK
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
- Alz-Dementia Korea Co., Jinju, 52828 Republic of Korea
| |
Collapse
|
10
|
Brolin E, Ingelsson M, Bergström J, Erlandsson A. Altered Distribution of SNARE Proteins in Primary Neurons Exposed to Different Alpha-Synuclein Proteoforms. Cell Mol Neurobiol 2023:10.1007/s10571-023-01355-3. [PMID: 37130995 DOI: 10.1007/s10571-023-01355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
Growing evidence indicates that the pathological alpha-synuclein (α-syn) aggregation in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) starts at the synapses. Physiologic α-syn is involved in regulating neurotransmitter release by binding to the SNARE complex protein VAMP-2 on synaptic vesicles. However, in which way the SNARE complex formation is affected by α-syn pathology remains unclear. In this study, primary cortical neurons were exposed to either α-syn monomers or preformed fibrils (PFFs) for different time points and the effect on SNARE protein distribution was analyzed with a novel proximity ligation assay (PLA). Short-term exposure to monomers or PFFs for 24 h increased the co-localization of VAMP-2 and syntaxin-1, but reduced the co-localization of SNAP-25 and syntaxin-1, indicating a direct effect of the added α-syn on SNARE protein distribution. Long-term exposure to α-syn PFFs for 7 d reduced VAMP-2 and SNAP-25 co-localization, although there was only a modest induction of ser129 phosphorylated (pS129) α-syn. Similarly, exposure to extracellular vesicles collected from astrocytes treated with α-syn PFFs for 7 d influenced VAMP-2 and SNAP-25 co-localization despite only low levels of pS129 α-syn being formed. Taken together, our results demonstrate that different α-syn proteoforms have the potential to alter the distribution of SNARE proteins at the synapse.
Collapse
Affiliation(s)
- Emma Brolin
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joakim Bergström
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37, Uppsala, Sweden
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37, Uppsala, Sweden.
| |
Collapse
|
11
|
Kim JR. Oligomerization by co-assembly of β-amyloid and α-synuclein. Front Mol Biosci 2023; 10:1153839. [PMID: 37021111 PMCID: PMC10067735 DOI: 10.3389/fmolb.2023.1153839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Aberrant self-assembly of an intrinsically disordered protein is a pathological hallmark of protein misfolding diseases, such as Alzheimer's and Parkinson's diseases (AD and PD, respectively). In AD, the 40-42 amino acid-long extracellular peptide, β-amyloid (Aβ), self-assembles into oligomers, which eventually aggregate into fibrils. A similar self-association of the 140 amino acid-long intracellular protein, α-synuclein (αS), is responsible for the onset of PD pathology. While Aβ and αS are primarily extracellular and intracellular polypeptides, respectively, there is evidence of their colocalization and pathological overlaps of AD and PD. This evidence has raised the likelihood of synergistic, toxic protein-protein interactions between Aβ and αS. This mini review summarizes the findings of studies on Aβ-αS interactions related to enhanced oligomerization via co-assembly, aiming to provide a better understanding of the complex biology behind AD and PD and common pathological mechanisms among the major neurodegenerative diseases.
Collapse
|
12
|
Shim KH, Kang MJ, Youn YC, An SSA, Kim S. Alpha-synuclein: a pathological factor with Aβ and tau and biomarker in Alzheimer's disease. Alzheimers Res Ther 2022; 14:201. [PMID: 36587215 PMCID: PMC9805257 DOI: 10.1186/s13195-022-01150-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Alpha-synuclein (α-syn) is considered the main pathophysiological protein component of Lewy bodies in synucleinopathies. α-Syn is an intrinsically disordered protein (IDP), and several types of structural conformations have been reported, depending on environmental factors. Since IDPs may have distinctive functions depending on their structures, α-syn can play different roles and interact with several proteins, including amyloid-beta (Aβ) and tau, in Alzheimer's disease (AD) and other neurodegenerative disorders. MAIN BODY In previous studies, α-syn aggregates in AD brains suggested a close relationship between AD and α-syn. In addition, α-syn directly interacts with Aβ and tau, promoting mutual aggregation and exacerbating the cognitive decline. The interaction of α-syn with Aβ and tau presented different consequences depending on the structural forms of the proteins. In AD, α-syn and tau levels in CSF were both elevated and revealed a high positive correlation. Especially, the CSF α-syn concentration was significantly elevated in the early stages of AD. Therefore, it could be a diagnostic marker of AD and help distinguish AD from other neurodegenerative disorders by incorporating other biomarkers. CONCLUSION The overall physiological and pathophysiological functions, structures, and genetics of α-syn in AD are reviewed and summarized. The numerous associations of α-syn with Aβ and tau suggested the significance of α-syn, as a partner of the pathophysiological roles in AD. Understanding the involvements of α-syn in the pathology of Aβ and tau could help address the unresolved issues of AD. In particular, the current status of the CSF α-syn in AD recommends it as an additional biomarker in the panel for AD diagnosis.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- grid.256155.00000 0004 0647 2973Department of Bionano Technology, Gachon University, Seongnam-Si, Gyeonggi-Do Republic of Korea
| | - Min Ju Kang
- Department of Neurology, Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, Republic of Korea
| | - Young Chul Youn
- grid.411651.60000 0004 0647 4960Department of Neurology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Seong Soo A. An
- grid.256155.00000 0004 0647 2973Department of Bionano Technology, Gachon University, Seongnam-Si, Gyeonggi-Do Republic of Korea
| | - SangYun Kim
- grid.412480.b0000 0004 0647 3378Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam-Si, Gyeonggi-Do Republic of Korea
| |
Collapse
|
13
|
Brown JL, Hart DW, Boyle GE, Brown TG, LaCroix M, Baraibar AM, Pelzel R, Kim M, Sherman MA, Boes S, Sung M, Cole T, Lee MK, Araque A, Lesné SE. SNCA genetic lowering reveals differential cognitive function of alpha-synuclein dependent on sex. Acta Neuropathol Commun 2022; 10:180. [PMID: 36517890 PMCID: PMC9749314 DOI: 10.1186/s40478-022-01480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Antisense oligonucleotide (ASO) therapy for neurological disease has been successful in clinical settings and its potential has generated hope for Alzheimer's disease (AD). We previously described that ablating SNCA encoding for α-synuclein (αSyn) in a mouse model of AD was beneficial. Here, we sought to demonstrate whether transient reduction of αSyn expression using ASOSNCA could be therapeutic in a mouse model of AD. The efficacy of the ASOSNCA was measured via immunocytochemistry, RT-qPCR and western blotting. To assess spatial learning and memory, ASOSNCA or PBS-injected APP and non-transgenic (NTG) mice, and separate groups of SNCA-null mice, were tested on the Barnes circular maze. Hippocampal slice electrophysiology and transcriptomic profiling were used to explore synaptic function and differential gene expression between groups. Reduction of SNCA transcripts alleviated cognitive deficits in male transgenic animals, but surprisingly, not in females. To determine the functional cause of this differential effect, we assessed memory function in SNCA-null mice. Learning and memory were intact in male mice but impaired in female animals, revealing that the role of αSyn on cognitive function is sex-specific. Transcriptional analyses identified a differentially expressed gene network centered around EGR1, a central modulator of learning and memory, in the hippocampi of SNCA-null mice. Thus, these novel results demonstrate that the function of αSyn on memory differs between male and female brains.
Collapse
Affiliation(s)
- Jennifer L Brown
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN, 55414, USA
| | - Damyan W Hart
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN, 55414, USA
| | - Gabriel E Boyle
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN, 55414, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, USA
| | - Taylor G Brown
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Medical Scientist Training Program, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN, 55414, USA
| | - Michael LaCroix
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN, 55414, USA
- Medical Scientist Training Program, University of Texas Southwestern Medical School, Dallas, TX, 75390, USA
| | - Andrés M Baraibar
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Ross Pelzel
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN, 55414, USA
| | - Minwoo Kim
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN, 55414, USA
| | - Mathew A Sherman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN, 55414, USA
| | - Samuel Boes
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN, 55414, USA
| | - Michelle Sung
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN, 55414, USA
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tracy Cole
- Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
- n-Lorem Foundation, Carlsbad, CA, 92010, USA
| | - Michael K Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN, 55414, USA
| | - Alfonso Araque
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Sylvain E Lesné
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA.
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
- Institute for Translational Neuroscience, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN, 55414, USA.
| |
Collapse
|
14
|
Prieto Huarcaya S, Drobny A, Marques ARA, Di Spiezio A, Dobert JP, Balta D, Werner C, Rizo T, Gallwitz L, Bub S, Stojkovska I, Belur NR, Fogh J, Mazzulli JR, Xiang W, Fulzele A, Dejung M, Sauer M, Winner B, Rose-John S, Arnold P, Saftig P, Zunke F. Recombinant pro-CTSD (cathepsin D) enhances SNCA/α-Synuclein degradation in α-Synucleinopathy models. Autophagy 2022; 18:1127-1151. [PMID: 35287553 PMCID: PMC9196656 DOI: 10.1080/15548627.2022.2045534] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by the abnormal intracellular accumulation of SNCA/α-synuclein. While the exact mechanisms underlying SNCA pathology are not fully understood, increasing evidence suggests the involvement of autophagy as well as lysosomal deficiencies. Because CTSD (cathepsin D) has been proposed to be the major lysosomal protease involved in SNCA degradation, its deficiency has been linked to the presence of insoluble SNCA conformers in the brain of mice and humans as well as to the transcellular transmission of SNCA aggregates. We here postulate that SNCA degradation can be enhanced by the application of the recombinant human proform of CTSD (rHsCTSD). Our results reveal that rHsCTSD is efficiently endocytosed by neuronal cells, correctly targeted to lysosomes and matured to an enzymatically active protease. In dopaminergic neurons derived from induced pluripotent stem cells (iPSC) of PD patients harboring the A53T mutation within the SNCA gene, we confirm the reduction of insoluble SNCA after treatment with rHsCTSD. Moreover, we demonstrate a decrease of pathological SNCA conformers in the brain and within primary neurons of a ctsd-deficient mouse model after dosing with rHsCTSD. Boosting lysosomal CTSD activity not only enhanced SNCA clearance in human and murine neurons as well as tissue, but also restored endo-lysosome and autophagy function. Our findings indicate that CTSD is critical for SNCA clearance and function. Thus, enzyme replacement strategies utilizing CTSD may also be of therapeutic interest for the treatment of PD and other synucleinopathies aiming to decrease the SNCA burden.Abbreviations: aa: amino acid; SNCA/α-synuclein: synuclein alpha; APP: amyloid beta precursor protein; BBB: blood brain barrier; BF: basal forebrain; CBB: Coomassie Brilliant Blue; CLN: neuronal ceroid lipofuscinosis; CNL10: neuronal ceroid lipofuscinosis type 10; Corr.: corrected; CTSD: cathepsin D; CTSB: cathepsin B; DA: dopaminergic; DA-iPSn: induced pluripotent stem cell-derived dopaminergic neurons; dox: doxycycline; ERT: enzyme replacement therapy; Fx: fornix, GBA/β-glucocerebrosidase: glucosylceramidase beta; h: hour; HC: hippocampus; HT: hypothalamus; i.c.: intracranially; IF: immunofluorescence; iPSC: induced pluripotent stem cell; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LSDs: lysosomal storage disorders; MAPT: microtubule associated protein tau; M6P: mannose-6-phosphate; M6PR: mannose-6-phosphate receptor; MB: midbrain; mCTSD: mature form of CTSD; neurofil.: neurofilament; PD: Parkinson disease; proCTSD: proform of CTSD; PRNP: prion protein; RFU: relative fluorescence units; rHsCTSD: recombinant human proCTSD; SAPC: Saposin C; SIM: structured illumination microscopy; T-insol: Triton-insoluble; T-sol: Triton-soluble; TEM: transmission electron microscopy, TH: tyrosine hydroxylase; Thal: thalamus.
Collapse
Affiliation(s)
| | - Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - André R A Marques
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), Nova Medical School, Nms, Nova University Lisbon, Lisboa, Portugal
| | | | - Jan Philipp Dobert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Denise Balta
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Christian Werner
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Tania Rizo
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Gallwitz
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Simon Bub
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Iva Stojkovska
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | - Nandkishore R Belur
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | | | - Joseph R Mazzulli
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Amitkumar Fulzele
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz, Germany
| | - Mario Dejung
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| |
Collapse
|
15
|
Chau E, Kim JR. α-synuclein-assisted oligomerization of β-amyloid (1-42). Arch Biochem Biophys 2022; 717:109120. [PMID: 35041853 PMCID: PMC8818042 DOI: 10.1016/j.abb.2022.109120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/24/2021] [Accepted: 01/12/2022] [Indexed: 11/02/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative disorders, characterized by aggregation of amyloid polypeptides, β-amyloid (Aβ) and α-synuclein (αS), respectively. Aβ and αS follow similar aggregation pathways, starting from monomers, to soluble toxic oligomeric assemblies, and to insoluble fibrils. Various studies have suggested overlaps in the pathologies of AD and PD, and have shown Aβ-αS interactions. Unfortunately, whether these protein-protein interactions lead to self- and co-assembly of Aβ and αS into oligomers - a potentially toxic synergistic mechanism - is poorly understood. Among the various Aβ isoforms, interactions of Aβ containing 42 amino acids (Aβ (1-42), referred to as Aβ42) with αS are of most direct relevance due to the high aggregation propensity and the strong toxic effect of this Aβ isoform. In this study, we carefully determined molecular consequences of interactions between Aβ42 and αS in their respective monomeric, oligomeric, and fibrillar forms using a comprehensive set of experimental tools. We show that the three αS conformers, namely, monomers, oligomers and fibrils interfered with fibrillization of Aβ42. Specifically, αS monomers and oligomers promoted oligomerization and stabilization of soluble Aβ42, possibly via direct binding or co-assembly, while αS fibrils hindered soluble Aβ42 species from converting into insoluble aggregates by the formation of large oligomers. We also provide evidence that the interactions with αS were mediated by various parts of Aβ42, depending on Aβ42 and αS conformers. Furthermore, we compared similarities and dissimilarities between Aβ42-αS and Aβ40-αS interactions. Overall, the present study provides a comprehensive depiction of the molecular interplay between Aβ42 and αS, providing insight into its synergistic toxic mechanism.
Collapse
Affiliation(s)
- Edward Chau
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA.
| |
Collapse
|
16
|
Sun F, Salinas AG, Filser S, Blumenstock S, Medina-Luque J, Herms J, Sgobio C. Impact of α-synuclein spreading on the nigrostriatal dopaminergic pathway depends on the onset of the pathology. Brain Pathol 2021; 32:e13036. [PMID: 34806235 PMCID: PMC8877754 DOI: 10.1111/bpa.13036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/12/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Misfolded α‐synuclein spreads along anatomically connected areas through the brain, prompting progressive neurodegeneration of the nigrostriatal pathway in Parkinson's disease. To investigate the impact of early stage seeding and spreading of misfolded α‐synuclein along with the nigrostriatal pathway, we studied the pathophysiologic effect induced by a single acute α‐synuclein preformed fibrils (PFFs) inoculation into the midbrain. Further, to model the progressive vulnerability that characterizes the dopamine (DA) neuron life span, we used two cohorts of mice with different ages: 2‐month‐old (young) and 5‐month‐old (adult) mice. Two months after α‐synuclein PFFs injection, we found that striatal DA release decreased exclusively in adult mice. Adult DA neurons showed an increased level of pathology spreading along with the nigrostriatal pathway accompanied with a lower volume of α‐synuclein deposition in the midbrain, impaired neurotransmission, rigid DA terminal composition, and less microglial reactivity compared with young neurons. Notably, preserved DA release and increased microglial coverage in the PFFs‐seeded hemisphere coexist with decreased large‐sized terminal density in young DA neurons. This suggests the presence of a targeted pruning mechanism that limits the detrimental effect of α‐synuclein early spreading. This study suggests that the impact of the pathophysiology caused by misfolded α‐synuclein spreading along the nigrostriatal pathway depends on the age of the DA network, reducing striatal DA release specifically in adult mice.
Collapse
Affiliation(s)
- Fanfan Sun
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany
| | - Armando G Salinas
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisina, USA
| | - Severin Filser
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
| | - Sonja Blumenstock
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Molecular Neurodegeneration Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Jose Medina-Luque
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carmelo Sgobio
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
17
|
Nie L, He K, Xie F, Xiao S, Li S, Xu J, Zhang K, Yang C, Zhou L, Liu J, Zou L, Yang X. Loganin substantially ameliorates molecular deficits, pathologies and cognitive impairment in a mouse model of Alzheimer's disease. Aging (Albany NY) 2021; 13:23739-23756. [PMID: 34689137 PMCID: PMC8580356 DOI: 10.18632/aging.203646] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022]
Abstract
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disease threatening the health of the elderly, but the available therapeutic and preventive drugs remain suboptimal. Loganin, an iridoid glycoside extracted from Cornus officinalis, is reported to have anti-inflammatory and memory-enhancing properties. This study is aimed to explore the influence of loganin on cognitive function in 3xTg-AD mice and the underlying mechanism associated with its neuroprotection. According to the results of behavioral tests, we found that administration of loganin could significantly alleviate anxiety behavior and improve memory deficits of 3xTg-AD mice. Furthermore, immunohistochemical analysis displayed that there were decreased Aβ deposition in the hippocampus and cortex of 3xTg-AD mice treated with loganin compared with the control mice. Importantly, the Aβ-related pathological change was mainly involved in altering APP expression and processing. And loganin was also found to reduce the levels of phosphorylated tau (i.e. pTauS396 and pTauS262) in 3xTg-AD mice. By performing 2D-DIGE combined with MALDI-TOF-MS/MS, we revealed 28 differentially expressed proteins in the 3xTg-AD mice treated with loganin compared with the control mice. Notably, 10 proteins largely involved in energy metabolism, synaptic proteins, inflammatory response, and ATP binding were simultaneously detected in 3xTg-AD mice compared to WT mice. The abnormal changes of energy metabolism (PAGM1 and ENO1), synaptic proteins (SYN2 and Cplx2), inflammatory response (1433Z) were verified by western blot. Overall, our study suggested that loganin could be used as a feasible candidate drug to ameliorate molecular deficits, pathologies and cognitive impairment for prevention and treatment of AD.
Collapse
Affiliation(s)
- Lulin Nie
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Kaiwu He
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Fengzhu Xie
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, China
| | - Shifeng Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shupeng Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jia Xu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.,Department of Pathophysiology, Guangzhou Medical University, Guangzhou 510182, China
| | - Kaiqin Zhang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.,College of Public Health, University of South China, Hengyang 421001, China
| | - Chen Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Li Zhou
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Liangyu Zou
- Department of Neurology, Shenzhen People's Hospital, Second Clinical College, Jinan University, Shenzhen 518020, China
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| |
Collapse
|
18
|
Kayed R, Dettmer U, Lesné SE. Soluble endogenous oligomeric α-synuclein species in neurodegenerative diseases: Expression, spreading, and cross-talk. JOURNAL OF PARKINSON'S DISEASE 2021; 10:791-818. [PMID: 32508330 PMCID: PMC7458533 DOI: 10.3233/jpd-201965] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is growing recognition in the field of neurodegenerative diseases that mixed proteinopathies are occurring at greater frequency than originally thought. This is particularly true for three amyloid proteins defining most of these neurological disorders, amyloid-beta (Aβ), tau, and alpha-synuclein (αSyn). The co-existence and often co-localization of aggregated forms of these proteins has led to the emergence of concepts positing molecular interactions and cross-seeding between Aβ, tau, and αSyn aggregates. Amongst this trio, αSyn has received particular attention in this context during recent years due to its ability to modulate Aβ and tau aggregation in vivo, to interact at a molecular level with Aβ and tau in vivo and to cross-seed tau in mice. Here we provide a comprehensive, critical, and accessible review about the expression, role and nature of endogenous soluble αSyn oligomers because of recent developments in the understanding of αSyn multimerization, misfolding, aggregation, cross-talk, spreading and cross-seeding in neurodegenerative disorders, including Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, Alzheimer's disease, and Huntington's disease. We will also discuss our current understanding about the relative toxicity of endogenous αSyn oligomers in vivo and in vitro, and introduce potential opportunities to counter their deleterious effects.
Collapse
Affiliation(s)
- Rakez Kayed
- Departments of Neurology & Neuroscience & Cell Biology & Anatomy, University of Texas Medical Branch Galveston, Galveston, TX, USA,George and Cynthia Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Galveston, Galveston, TX, USA
| | - Ulf Dettmer
- Department of Neurology, Harvard Medical School, Boston, MA, USA,Ann Romney Center for Neurologic Diseases, Harvard Medical School, Boston, MA, USA
| | - Sylvain E. Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA,Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA,Correspondence to: Sylvain E. Lesné, PhD, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN 55414, USA. Tel.: +1 612 626 8341; E-mail: ; Website: https://lesnelab.org
| |
Collapse
|
19
|
Longhena F, Faustini G, Brembati V, Pizzi M, Benfenati F, Bellucci A. An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neurosci Biobehav Rev 2021; 130:33-60. [PMID: 34407457 DOI: 10.1016/j.neubiorev.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Fabio Benfenati
- Italian Institute of Technology, Via Morego 30, Genova, Italy; IRCSS Policlinico San Martino Hospital, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy; Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
20
|
Winkel I, Ermann N, Żelwetro A, Sambor B, Mroczko B, Kornhuber J, Paradowski B, Lewczuk P. Cerebrospinal fluid α synuclein concentrations in patients with positive AD biomarkers and extrapyramidal symptoms. J Neural Transm (Vienna) 2021; 128:817-825. [PMID: 34036433 PMCID: PMC8205875 DOI: 10.1007/s00702-021-02351-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
Extrapyramidal symptoms (EP) are not uncommon in Alzheimer's Disease (AD); when present, they negatively influence the course of the disorder. A large proportion of AD patients shows concomitant Lewy bodies' pathology post mortem. Total α Synuclein (αSyn) concentrations are frequently increased in the cerebrospinal fluid (CSF) of AD patients, but are decreased in Parkinson's Disease (PD) and Dementia with Lewy Bodies (DLB). αSyn CSF concentrations in AD patients with EP (EP+) have not been reported so far. αSyn and the four Neurochemical Dementia Diagnostics (NDD) CSF biomarkers, (Aβ1-42, Aβ42/40, Tau, and pTau181), interpreted according to the Erlangen Score algorithm, were measured in patients with positive NDD results and presence of extrapyramidal symptoms (NDD + / EP+; n = 26), in patients with positive NDD results and absence of extrapyramidal symptoms (NDD+ / EP-; n = 54), and in subjects with negative NDD results (NDD-; n = 34). Compared to the NDD- controls (379.8 ± 125.2 pg/mL), NDD+ patients showed, on average, highly significantly increased CSF αSyn (519 ± 141.3 pg/mL, p < 0.01), but without differences between NDD+ / EP+ and NDD+ / EP- subgroups (p = 0. 38). Moderate but highly significant association was observed between concentrations of αSyn and Tau (r = 0.47, p < 0.01) and pTau181 (r = 0.65, p < 0.01). Adjusted for diagnoses, age, and sex, subjects with more advanced neurodegeneration on neuroimaging showed significantly lower αSyn concentrations (p < 0.02). In the setting AD versus controls, the area under the receiver operating characteristic (ROC) curve was 0.804 [0.712; 0.896] with the sensitivity and the specificity of 0.863 and 0.618, respectively. αSyn in AD patients does not differentiate between subjects with- and without EP. Its increased average concentration reflects probably neurodegenerative process, and is not specific for any pathophysiologic mechanisms. Further studies are necessary to explain the role of CSF αSyn as a potential biomarker.
Collapse
Affiliation(s)
- Izabela Winkel
- Dementia Disorders Center of the Medical University of Wrocław, Ścinawa, Poland.,Department and Clinic of Geriatrics, Medical University of Wrocław, Wrocław, Poland
| | - Natalia Ermann
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Agnieszka Żelwetro
- Interdyscyplinarne Studia Doktoranckie Uniwersytetu SWPS, II Wydział Psychologii, Wrocław, Poland
| | | | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland.,Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany. .,Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland. .,Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland. .,Department of Psychiatry and Psychotherapy, Lab for Clinical Neurochemistry and Neurochemical Dementia Diagnostics, Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
21
|
Almeida MF, Piehler T, Carstens KE, Zhao M, Samadi M, Dudek SM, Norton CJ, Parisian CM, Farizatto KL, Bahr BA. Distinct and dementia-related synaptopathy in the hippocampus after military blast exposures. Brain Pathol 2021; 31:e12936. [PMID: 33629462 PMCID: PMC8412116 DOI: 10.1111/bpa.12936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Explosive shockwaves, and other types of blast exposures, are linked to injuries commonly associated with military service and to an increased risk for the onset of dementia. Neurological complications following a blast injury, including depression, anxiety, and memory problems, often persist even when brain damage is undetectable. Here, hippocampal explants were exposed to the explosive 1,3,5-trinitro-1,3,5-triazinane (RDX) to identify indicators of blast-induced changes within important neuronal circuitries. Highly controlled detonations of small, 1.7-gram RDX spherical charges reduced synaptic markers known to be downregulated in cognitive disorders, but without causing overt neuronal loss or astroglial responses. In the absence of neuromorphological alterations, levels of synaptophysin, GluA1, and synapsin IIb were significantly diminished within 24 hr, and these synaptic components exhibited progressive reductions following blast exposure as compared to their stable maintenance in control explants. In contrast, labeling of the synapsin IIa isoform remained unaltered, while neuropilar staining of other markers decreased, including synapsin IIb and neural cell adhesion molecule (NCAM) isoforms, along with evidence of NCAM proteolytic breakdown. NCAM180 displayed a distinct decline after the RDX blasts, whereas NCAM140 and NCAM120 exhibited smaller or no deterioration, respectively. Interestingly, the extent of synaptic marker reduction correlated with AT8-positive tau levels, with tau pathology stochastically found in CA1 neurons and their dendrites. The decline in synaptic components was also reflected in the size of evoked postsynaptic currents recorded from CA1 pyramidals, which exhibited a severe and selective reduction. The identified indicators of blast-mediated synaptopathy point to the need for early biomarkers of explosives altering synaptic integrity with links to dementia risk, to advance strategies for both cognitive health and therapeutic monitoring.
Collapse
Affiliation(s)
- Michael F. Almeida
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| | - Thuvan Piehler
- U.S. Army Research LaboratoryAberdeen Proving GroundMDUSA
| | - Kelly E. Carstens
- Neurobiology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
- Present address:
Center for Computational Toxicology and ExposureU.S. Environmental Protection AgencyResearch Triangle ParkNCUSA
| | - Meilan Zhao
- Neurobiology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
| | - Mahsa Samadi
- Neurobiology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
- Present address:
Faculty of Medicine CentreImperial College LondonLondonUK
| | - Serena M. Dudek
- Neurobiology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
| | - Christopher J. Norton
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| | - Catherine M. Parisian
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| | - Karen L.G. Farizatto
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| | - Ben A. Bahr
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| |
Collapse
|
22
|
Runwal G, Edwards RH. The Membrane Interactions of Synuclein: Physiology and Pathology. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:465-485. [PMID: 33497259 DOI: 10.1146/annurev-pathol-031920-092547] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Specific proteins accumulate in neurodegenerative disease, and human genetics has indicated a causative role for many. In most cases, however, the mechanisms remain poorly understood. Degeneration is thought to involve a gain of abnormal function, although we do not know the normal function of many proteins implicated. The protein α-synuclein accumulates in the Lewy pathology of Parkinson's disease and related disorders, and mutations in α-synuclein cause degeneration, but we have not known its normal function or how it triggers disease. α-Synuclein localizes to presynaptic boutons and interacts with membranes in vitro. Overexpression slows synaptic vesicle exocytosis, and recent data suggest a normal role for the endogenous synucleins in dilation of the exocytic fusion pore. Disrupted membranes also appear surprisingly prominent in Lewy pathology. Synuclein thus interacts with membranes under both physiological and pathological conditions, suggesting that the normal function of synuclein may illuminate its role in degeneration.
Collapse
Affiliation(s)
- Gautam Runwal
- Departments of Neurology and Physiology, Graduate Programs in Cell Biology, Biomedical Sciences and Neuroscience, School of Medicine, University of California, San Francisco, California 94143, USA;
| | - Robert H Edwards
- Departments of Neurology and Physiology, Graduate Programs in Cell Biology, Biomedical Sciences and Neuroscience, School of Medicine, University of California, San Francisco, California 94143, USA;
| |
Collapse
|
23
|
Forloni G, La Vitola P, Cerovic M, Balducci C. Inflammation and Parkinson's disease pathogenesis: Mechanisms and therapeutic insight. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 177:175-202. [PMID: 33453941 DOI: 10.1016/bs.pmbts.2020.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
After Alzheimer's disease, Parkinson's disease is the most frequent neurodegenerative disorder. Although numerous treatments have been developed to control the disease symptomatology, with some successes, an efficacious therapy affecting the causes of PD is still a goal to pursue. The genetic evidence and the identification of α-synuclein as the main component of intracellular Lewy bodies, the neuropathological hallmark of PD and related disorders, have changed the approach to these disorders. More recently, the detrimental role of α-synuclein has been further extended to explain the wide spread of cerebral pathology through its oligomers. To emphasize the central pathogenic role of these soluble aggregates, we have defined synucleinopathies and other neurodegenerative disorders associated with protein misfolding as oligomeropathies. Another common element in the pathogenesis of oligomeropathies is the role played by inflammation, both at the peripheral and cerebral levels. In the brain parenchyma, inflammatory reaction has been considered an obvious consequence of neuronal degeneration, but recent observations indicate a direct contribution of glial alteration in the early phase of the disease. Furthermore, systemic inflammation also influences the development of neuronal dysfunction caused by specific elements, β amyloid, α-synuclein, tau or prion. However, each disorder has its own specific pathological process and within the same pathological condition, it is possible to find inter-individual differences. This heterogeneity might explain the difficulties developing efficacious therapeutic approaches, even though the possibility of intervention is supported by robust biological evidence. We have recently demonstrated that peripheral inflammation can amplify the neuronal dysfunction induced by α-synuclein oligomers and the neuropathological consequences observed in a Parkinson's disease model. In both cases, activation of microglia was incremented by the "double hit" process, compared to the single treatment. In contrast, astrocyte activation was attenuated and these cells appeared damaged when chronic inflammation was combined with α-synuclein exposure. This evidence might indicate a more specific anti-inflammatory strategy rather than the generic anti-inflammatory treatment.
Collapse
Affiliation(s)
- Gianluigi Forloni
- Biology of Neurodegenerative Diseases, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| | - Pietro La Vitola
- Biology of Neurodegenerative Diseases, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Milica Cerovic
- Biology of Neurodegenerative Diseases, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Claudia Balducci
- Biology of Neurodegenerative Diseases, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| |
Collapse
|
24
|
Teravskis PJ, Ashe KH, Liao D. The Accumulation of Tau in Postsynaptic Structures: A Common Feature in Multiple Neurodegenerative Diseases? Neuroscientist 2020; 26:503-520. [PMID: 32389059 DOI: 10.1177/1073858420916696] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increasingly, research suggests that neurodegenerative diseases and dementias are caused not by unique, solitary cellular mechanisms, but by multiple contributory mechanisms manifesting as heterogeneous clinical presentations. However, diverse neurodegenerative diseases also share common pathological hallmarks and cellular mechanisms. One such mechanism involves the redistribution of the microtubule associated protein tau from the axon into the somatodendritic compartment of neurons, followed by the mislocalization of tau into dendritic spines, resulting in postsynaptic functional deficits. Here we review various signaling pathways that trigger the redistribution of tau to the cell body and dendritic tree, and its mislocalization to dendritic spines. The convergence of multiple pathways in different disease models onto this final common pathway suggests that it may be an attractive pathway to target for developing new treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter J Teravskis
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,University of Minnesota Medical School, Minneapolis, MN, USA
| | - Karen H Ashe
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA.,N. Budd Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA.,Geriatric Research Education and Clinical Center, Veterans Affairs Medical Center, Minneapolis, MN, USA
| | - Dezhi Liao
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
25
|
Diniz LP, Matias I, Araujo APB, Garcia MN, Barros-Aragão FGQ, Alves-Leon SV, de Souza JM, Foguel D, Figueiredo CP, Braga C, Romão L, Gomes FCA. α-synuclein oligomers enhance astrocyte-induced synapse formation through TGF-β1 signaling in a Parkinson's disease model. J Neurochem 2020; 150:138-157. [PMID: 31009074 DOI: 10.1111/jnc.14710] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is characterized by selective death of dopaminergic neurons in the substantia nigra, degeneration of the nigrostriatal pathway, increases in glutamatergic synapses in the striatum and aggregation of α-synuclein. Evidence suggests that oligomeric species of α-synuclein (αSO) are the genuine neurotoxins of PD. Although several studies have supported the direct neurotoxic effects of αSO on neurons, their effects on astrocytes have not been directly addressed. Astrocytes are essential to several steps of synapse formation and function, including secretion of synaptogenic factors, control of synaptic elimination and stabilization, secretion of neural/glial modulators, and modulation of extracellular ions, and neurotransmitter levels in the synaptic cleft. Here, we show that αSO induced the astrocyte reactivity and enhanced the synaptogenic capacity of human and murine astrocytes by increasing the levels of the known synaptogenic molecule transforming growth factor beta 1 (TGF-β1). Moreover, intracerebroventricular injection of αSO in mice increased the number of astrocytes, the density of excitatory synapses, and the levels of TGF-β1 in the striatum of injected animals. Inhibition of TGF-β1 signaling impaired the effect of the astrocyte-conditioned medium on glutamatergic synapse formation in vitro and on striatal synapse formation in vivo, whereas addition of TGF-β1 protected mesencephalic neurons against synapse loss triggered by αSO. Together, our data suggest that αSO have important effects on astrocytic functions and describe TGF-β1 as a new endogenous astrocyte-derived molecule involved in the increase in striatal glutamatergic synaptic density present in early stages of PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Cover Image for this issue: doi: 10.1111/jnc.14514.
Collapse
Affiliation(s)
- Luan Pereira Diniz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Isadora Matias
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ana Paula Bérgamo Araujo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Matheus Nunes Garcia
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Soniza Vieira Alves-Leon
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Jorge Marcondes de Souza
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Débora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Carolina Braga
- Núcleo Multidisciplinar de Pesquisa em Biologia - NUMPEX-BIO, Campus Duque de Caxias Professor Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Luciana Romão
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | |
Collapse
|
26
|
Vasquez V, Mitra J, Wang H, Hegde PM, Rao KS, Hegde ML. A multi-faceted genotoxic network of alpha-synuclein in the nucleus and mitochondria of dopaminergic neurons in Parkinson's disease: Emerging concepts and challenges. Prog Neurobiol 2020; 185:101729. [PMID: 31863801 PMCID: PMC7098698 DOI: 10.1016/j.pneurobio.2019.101729] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/15/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
α-Synuclein is a hallmark amyloidogenic protein component of the Lewy bodies (LBs) present in dopaminergic neurons affected by Parkinson's disease (PD). Despite an enormous increase in emerging knowledge, the mechanism(s) of α-synuclein neurobiology and crosstalk among pathological events that are critical for PD progression remains enigmatic, creating a roadblock for effective intervention strategies. One confounding question is about the potential link between α-synuclein toxicity and genome instability in PD. We previously reported that pro-oxidant metal ions, together with reactive oxygen species (ROS), act as a "double whammy" in dopaminergic neurons by not only inducing genome damage but also inhibiting their repair. Our recent studies identified a direct role for chromatin-bound, oxidized α-synuclein in the induction of DNA strand breaks, which raised the question of a paradoxical role for α-synuclein's DNA binding in neuroprotection versus neurotoxicity. Furthermore, recent advances in our understanding of α-synuclein mediated mitochondrial dysfunction warrants revisiting the topics of α-synuclein pathophysiology in order to devise and assess the efficacy of α-synuclein-targeted interventions. In this review article, we discuss the multi-faceted neurotoxic role of α-synuclein in the nucleus and mitochondria with a particular emphasis on the role of α-synuclein in DNA damage/repair defects. We utilized a protein-DNA binding simulation to identify potential residues in α-synuclein that could mediate its binding to DNA and may be critical for its genotoxic functions. These emerging insights and paradigms may guide new drug targets and therapeutic modalities.
Collapse
Affiliation(s)
- Velmarini Vasquez
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, 77030, USA; Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, 77030, USA; Center for Neuroregeneration, Department of Neurosurgery, Methodist Neurological Institute, Institute of Academic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Pavana M Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - K S Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, 77030, USA; Center for Neuroregeneration, Department of Neurosurgery, Methodist Neurological Institute, Institute of Academic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA; Weill Cornell Medical College of Cornell University, New York, 10065, USA.
| |
Collapse
|
27
|
Singh B, Covelo A, Martell-Martínez H, Nanclares C, Sherman MA, Okematti E, Meints J, Teravskis PJ, Gallardo C, Savonenko AV, Benneyworth MA, Lesné SE, Liao D, Araque A, Lee MK. Tau is required for progressive synaptic and memory deficits in a transgenic mouse model of α-synucleinopathy. Acta Neuropathol 2019; 138:551-574. [PMID: 31168644 PMCID: PMC6778173 DOI: 10.1007/s00401-019-02032-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 01/01/2023]
Abstract
Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are clinically and neuropathologically highly related α-synucleinopathies that collectively constitute the second leading cause of neurodegenerative dementias. Genetic and neuropathological studies directly implicate α-synuclein (αS) abnormalities in PDD and DLB pathogenesis. However, it is currently unknown how αS abnormalities contribute to memory loss, particularly since forebrain neuronal loss in PDD and DLB is less severe than in Alzheimer's disease. Previously, we found that familial Parkinson's disease-linked human mutant A53T αS causes aberrant localization of the microtubule-associated protein tau to postsynaptic spines in neurons, leading to postsynaptic deficits. Thus, we directly tested if the synaptic and memory deficits in a mouse model of α-synucleinopathy (TgA53T) are mediated by tau. TgA53T mice exhibit progressive memory deficits associated with postsynaptic deficits in the absence of obvious neuropathological and neurodegenerative changes in the hippocampus. Significantly, removal of endogenous mouse tau expression in TgA53T mice (TgA53T/mTau-/-), achieved by mating TgA53T mice to mouse tau-knockout mice, completely ameliorates cognitive dysfunction and concurrent synaptic deficits without affecting αS expression or accumulation of selected toxic αS oligomers. Among the known tau-dependent effects, memory deficits in TgA53T mice were associated with hippocampal circuit remodeling linked to chronic network hyperexcitability. This remodeling was absent in TgA53T/mTau-/- mice, indicating that postsynaptic deficits, aberrant network hyperactivity, and memory deficits are mechanistically linked. Our results directly implicate tau as a mediator of specific human mutant A53T αS-mediated abnormalities related to deficits in hippocampal neurotransmission and suggest a mechanism for memory impairment that occurs as a consequence of synaptic dysfunction rather than synaptic or neuronal loss. We hypothesize that these initial synaptic deficits contribute to network hyperexcitability which, in turn, exacerbate cognitive dysfunction. Our results indicate that these synaptic changes present potential therapeutic targets for amelioration of memory deficits in α-synucleinopathies.
Collapse
Affiliation(s)
- Balvindar Singh
- Medical Scientist Training Program, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- Graduate Program in Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Ana Covelo
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Héctor Martell-Martínez
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Carmen Nanclares
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Mathew A Sherman
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Emmanuel Okematti
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Joyce Meints
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Peter J Teravskis
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Christopher Gallardo
- Graduate Program in Pharmacology, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Alena V Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Michael A Benneyworth
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- Institute for Translational Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- Mouse Behavior Core, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Sylvain E Lesné
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- Institute for Translational Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- N. Budd Grossman Center for Memory Research and Care, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Dezhi Liao
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- Institute for Translational Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- Institute for Translational Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Michael K Lee
- Department of Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
- Institute for Translational Neuroscience, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
- Geriatric Research Education and Clinical Center, Minneapolis Veterans Affairs Health Care System, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
28
|
He J, Huang Y, Du G, Wang Z, Xiang Y, Wang Q. Lasting spatial learning and memory deficits following chronic cerebral hypoperfusion are associated with hippocampal mitochondrial aging in rats. Neuroscience 2019; 415:215-229. [DOI: 10.1016/j.neuroscience.2019.04.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
|
29
|
Sulzer D, Edwards RH. The physiological role of α-synuclein and its relationship to Parkinson's Disease. J Neurochem 2019; 150:475-486. [PMID: 31269263 PMCID: PMC6707892 DOI: 10.1111/jnc.14810] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/03/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
The protein α-synuclein has a central role in the pathogenesis of Parkinson's disease (PD). In this review, we discuss recent results concerning its primary function, which appears to be on cell membranes. The pre-synaptic location of synuclein has suggested a role in neurotransmitter release and it apparently associates with synaptic vesicles because of their high curvature. Indeed, synuclein over-expression inhibits synaptic vesicle exocytosis. However, loss of synuclein has not yet been shown to have a major effect on synaptic transmission. Consistent with work showing that synuclein can promote as well as sense membrane curvature, recent analysis of synuclein triple knockout mice now shows that synuclein accelerates dilation of the exocytic fusion pore. This form of regulation affects primarily the release of slowly discharged lumenal cargo such as neural peptides, but presumably also contributes to maintenance of the release site. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- David Sulzer
- Departments of Psychiatry, Neurology and Pharmacology, Columbia University Medical Center, New York State Psychiatric Institute
| | - Robert H Edwards
- Departments of Neurology and Physiology, Graduate Programs in Cell Biology, Biomedical Sciences and Neuroscience, UCSF School of Medicine
| |
Collapse
|
30
|
Sun J, Xu J, Ling Y, Wang F, Gong T, Yang C, Ye S, Ye K, Wei D, Song Z, Chen D, Liu J. Fecal microbiota transplantation alleviated Alzheimer's disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry 2019; 9:189. [PMID: 31383855 PMCID: PMC6683152 DOI: 10.1038/s41398-019-0525-3] [Citation(s) in RCA: 322] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/22/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common dementia in the elderly. Treatment for AD is still a difficult task in clinic. AD is associated with abnormal gut microbiota. However, little is known about the role of fecal microbiota transplantation (FMT) in AD. Here, we evaluated the efficacy of FMT for the treatment of AD. We used an APPswe/PS1dE9 transgenic (Tg) mouse model. Cognitive deficits, brain deposits of amyloid-β (Aβ) and phosphorylation of tau, synaptic plasticity as well as neuroinflammation were assessed. Gut microbiota and its metabolites short-chain fatty acids (SCFAs) were analyzed by 16S rRNA sequencing and 1H nuclear magnetic resonance (NMR). Our results showed that FMT treatment could improve cognitive deficits and reduce the brain deposition of amyloid-β (Aβ) in APPswe/PS1dE9 transgenic (Tg) mice. These improvements were accompanied by decreased phosphorylation of tau protein and the levels of Aβ40 and Aβ42. We observed an increases in synaptic plasticity in the Tg mice, showing that postsynaptic density protein 95 (PSD-95) and synapsin I expression were increased after FMT. We also observed the decrease of COX-2 and CD11b levels in Tg mice after FMT. We also found that FMT treatment reversed the changes of gut microbiota and SCFAs. Thus, FMT may be a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Jing Sun
- 0000 0004 1764 2632grid.417384.dDepartment of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 China
| | - Jingxuan Xu
- 0000 0004 1764 2632grid.417384.dDepartment of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 China
| | - Yi Ling
- 0000 0004 1764 2632grid.417384.dDepartment of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 China
| | - Fangyan Wang
- 0000 0001 0348 3990grid.268099.cDepartment of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Tianyu Gong
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Changwei Yang
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Shiqing Ye
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Keyue Ye
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Dianhui Wei
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Ziqing Song
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Danna Chen
- 0000 0001 0348 3990grid.268099.cDepartment of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Jiaming Liu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China. .,Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
31
|
Cascella R, Perni M, Chen SW, Fusco G, Cecchi C, Vendruscolo M, Chiti F, Dobson CM, De Simone A. Probing the Origin of the Toxicity of Oligomeric Aggregates of α-Synuclein with Antibodies. ACS Chem Biol 2019; 14:1352-1362. [PMID: 31050886 PMCID: PMC7007184 DOI: 10.1021/acschembio.9b00312] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
The
aggregation of α-synuclein, a protein involved in neurotransmitter
release at presynaptic terminals, is associated with a range of highly
debilitating neurodegenerative conditions, most notably Parkinson’s
disease. Intraneuronal inclusion bodies, primarily composed of α-synuclein
fibrils, are the major histopathological hallmarks of these disorders,
although small oligomeric assemblies are believed to play a crucial
role in neuronal impairment. We have probed the mechanism of neurotoxicity
of α-synuclein oligomers isolated in vitro using
antibodies targeting the N-terminal region of the protein and found
that the presence of the antibody resulted in a substantial reduction
of the damage induced by the aggregates when incubated with primary
cortical neurons and neuroblastoma cells. We observed a similar behavior in vivo using a strain of C. elegans overexpressing
α-synuclein, where the aggregation process itself is also partially
inhibited as a result of incubation with the antibodies. The similar
effects of the antibodies in reducing the toxicity of the aggregated
species formed in vitro and in vivo provide evidence for a common origin of cellular impairment induced
by α-synuclein aggregates.
Collapse
Affiliation(s)
- Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Michele Perni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Serene W. Chen
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Giuliana Fusco
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Christopher M. Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
32
|
Twohig D, Nielsen HM. α-synuclein in the pathophysiology of Alzheimer's disease. Mol Neurodegener 2019; 14:23. [PMID: 31186026 PMCID: PMC6558879 DOI: 10.1186/s13024-019-0320-x] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
The Alzheimer’s disease (AD) afflicted brain is neuropathologically defined by extracellular amyloid-β (Aβ) plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated tau protein. However, accumulating evidence suggests that the presynaptic protein α-synuclein (αSyn), mainly associated with synucleinopathies like Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), is involved in the pathophysiology of AD. Lewy-related pathology (LRP), primarily comprised of αSyn, is present in a majority of autopsied AD brains, and higher levels of αSyn in the cerebrospinal fluid (CSF) of patients with mild cognitive impairment (MCI) and AD have been linked to cognitive decline. Recent studies also suggest that the asymptomatic accumulation of Aβ plaques is associated with higher CSF αSyn levels in subjects at risk of sporadic AD and in individuals carrying autosomal dominant AD mutations. Experimental evidence has further linked αSyn mainly to tau hyperphosphorylation, but also to the pathological actions of Aβ and the APOEε4 allele, the latter being a major genetic risk factor for both AD and DLB. In this review, we provide a summary of the current evidence proposing an involvement of αSyn either as an active or passive player in the pathophysiological ensemble of AD, and furthermore describe in detail the current knowledge of αSyn structure and inferred function.
Collapse
Affiliation(s)
- Daniel Twohig
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius Väg 16B, 10691, Stockholm, Sweden
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius Väg 16B, 10691, Stockholm, Sweden.
| |
Collapse
|
33
|
An acetylation mimicking mutation, K274Q, in tau imparts neurotoxicity by enhancing tau aggregation and inhibiting tubulin polymerization. Biochem J 2019; 476:1401-1417. [PMID: 31036717 DOI: 10.1042/bcj20190042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 01/30/2023]
Abstract
In Alzheimer's disease, tau is predominantly acetylated at K174, K274, K280, and K281 residues. The acetylation of K274-tau is linked with memory loss and dementia. In this study, we have examined the molecular mechanism of the toxicity of acetylated K274-tau. We incorporated an acetylation mimicking mutation at K274 (K→Q) residue of tau. The mutation (K274Q) strongly reduced the ability of tau to bind to tubulin and also to polymerize tubulin while K274R mutation did not reduce the ability of tau either to bind or polymerize tubulin. In addition, K274Q-tau displayed a higher aggregation propensity than wild-type tau as evident from thioflavin S fluorescence, tryptophan fluorescence, and electron microscopic images. Furthermore, dynamic light scattering, atomic force microscopy, and dot blot analysis using an oligomer-specific antibody suggested that K274Q mutation enhanced the oligomerization of tau. The K274Q mutation also strongly decreased the critical concentration for the liquid-liquid phase separation of tau. The oligomeric forms of K274Q-tau were found to be more toxic than wild tau to neuroblastoma cells. Using circular dichroism and fluorescence spectroscopy, we provide evidence indicating that the acetylation mimicking mutation (K274Q) induced conformational changes in tau. The results suggested that the acetylation of tau at 274 residues can increase tau aggregation and enhance the cytotoxicity of tau oligomers.
Collapse
|
34
|
Matsuo K, Cheng A, Yabuki Y, Takahata I, Miyachi H, Fukunaga K. Inhibition of MPTP-induced α-synuclein oligomerization by fatty acid-binding protein 3 ligand in MPTP-treated mice. Neuropharmacology 2019; 150:164-174. [PMID: 30930168 DOI: 10.1016/j.neuropharm.2019.03.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
Accumulation and aggregation of α-synuclein (αSyn) triggers dopaminergic (DAergic) neuronal loss in Parkinson's disease (PD). This pathological event is partly facilitated by the presence of long-chain polyunsaturated fatty acids (LC-PUFAs), including arachidonic acid. The intracellular transport and metabolism of LC-PUFAs are mediated by fatty acid-binding proteins (FABPs). We previously reported that heart-type FABP (FABP3) interacts with αSyn, thereby promoting αSyn oligomerization in DAergic neurons in the substantia nigra pars compacta (SNpc) following 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. This αSyn oligomerization is prevented in Fabp3 gene knock out mice. We document a novel FABP3 ligand, MF1 (4-(2-(1-(2-chlorophenyl)-5-phenyl-1H-pyrazol-3-yl)phenoxy)butanoic acid), that inhibits αSyn accumulation in DA neurons, thereby inhibiting the oligomerization of αSyn, loss of DAergic neurons, and PD-like motor deficits in MPTP-treated mice. Chronic oral administration of MF1 (0.3 or 1.0 mg/kg/day) significantly improved motor impairments and inhibited MPTP-induced accumulation and oligomerization of αSyn in the SNpc, and in turn prevented loss of tyrosine hydroxylase (TH)-positive cells in the SNpc. MF1 administration (0.1, 0.3, or 1.0 mg/kg/day) also restored MPTP-induced cognitive impairments. Although chronic administration of l-DOPA (3,4-dihydroxl-l-phenylalanine; 25 mg/kg/day, i.p.) also improved motor deficits, it failed to improve the cognitive impairments. In addition, l-DOPA failed to inhibit DAergic neuronal loss and αSyn pathologies in the SNpc. In summary, the novel FABP3 ligand MF1 rescues MPTP-induced behavioural and neuropathological features, suggesting that MF1 may be a disease-modifying drug candidate for synucleinopathies.
Collapse
Affiliation(s)
- Kazuya Matsuo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - An Cheng
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ibuki Takahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroyuki Miyachi
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
35
|
Sun J, Liu S, Ling Z, Wang F, Ling Y, Gong T, Fang N, Ye S, Si J, Liu J. Fructooligosaccharides Ameliorating Cognitive Deficits and Neurodegeneration in APP/PS1 Transgenic Mice through Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3006-3017. [PMID: 30816709 DOI: 10.1021/acs.jafc.8b07313] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alzheimer's disease (AD) is closely related to gut microbial alteration. Prebiotic fructooligosaccharides (FOS) play major roles by regulating gut microbiota. The present study aimed to explore the effect and mechanism of FOS protection against AD via regulating gut microbiota. Male Apse/PSEN 1dE9 (APP/PS1) transgenic (Tg) mice were administrated with FOS for 6 weeks. Cognitive deficits and amyloid deposition were evaluated. The levels of synaptic plasticity markers including postsynaptic density protein 95 (PSD-95) and synapsin I, as well as phosphorylation of c-Jun N-terminal kinase (JNK), were determined. The intestinal microbial constituent was detected by 16S rRNA sequencing. Moreover, the levels of glucagon-like peptide-1 (GLP-1) in the gut and GLP-1 receptor (GLP-1R) in the brain were measured. The results indicated that FOS treatment ameliorated cognitive deficits and pathological changes in the Tg mice. FOS significantly upregulated the expression levels of synapsin I and PSD-95, as well as decreased phosphorylated level of JNK. The sequencing results showed that FOS reversed the altered microbial composition. Furthermore, FOS increased the level of GLP-1 and decreased the level of GLP-1R in the Tg mice. These findings indicated that FOS exerted beneficial effects against AD via regulating the gut microbiota-GLP-1/GLP-1R pathway.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325027 , China
| | - Suzhi Liu
- Department of Neurology, The Affiliated Taizhou Hospital , Wenzhou Medical University , 150# Ximen Road , Linhai District, Taizhou 317000 , Zhejiang China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , Zhejiang 310003 , China
| | - Fangyan Wang
- Departments of Pathophysiology, School of Basic Medicine Science , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Yi Ling
- Department of Neurology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325027 , China
| | - Tianyu Gong
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Na Fang
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Shiqing Ye
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Jue Si
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Jiaming Liu
- Department of Neurology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325027 , China
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| |
Collapse
|
36
|
Tripchlorolide May Improve Spatial Cognition Dysfunction and Synaptic Plasticity after Chronic Cerebral Hypoperfusion. Neural Plast 2019; 2019:2158285. [PMID: 30923551 PMCID: PMC6409048 DOI: 10.1155/2019/2158285] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/10/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is a common pathophysiological mechanism that underlies cognitive decline and degenerative processes in dementia and other neurodegenerative diseases. Low cerebral blood flow (CBF) during CCH leads to disturbances in the homeostasis of hemodynamics and energy metabolism, which in turn results in oxidative stress, astroglia overactivation, and synaptic protein downregulation. These events contribute to synaptic plasticity and cognitive dysfunction after CCH. Tripchlorolide (TRC) is an herbal compound with potent neuroprotective effects. The potential of TRC to improve CCH-induced cognitive impairment has not yet been determined. In the current study, we employed behavioral techniques, electrophysiology, Western blotting, immunofluorescence, and Golgi staining to investigate the effect of TRC on spatial learning and memory impairment and on synaptic plasticity changes in rats after CCH. Our findings showed that TRC could rescue CCH-induced spatial learning and memory dysfunction and improve long-term potentiation (LTP) disorders. We also found that TRC could prevent CCH-induced reductions in N-methyl-D-aspartic acid receptor 2B, synapsin I, and postsynaptic density protein 95 levels. Moreover, TRC upregulated cAMP-response element binding protein, which is an important transcription factor for synaptic proteins. TRC also prevented the reduction in dendritic spine density that is caused by CCH. However, sham rats treated with TRC did not show any improvement in cognition. Because CCH causes disturbances in brain energy homeostasis, TRC therapy may resolve this instability by correcting a variety of cognitive-related signaling pathways. However, for the normal brain, TRC treatment led to neither disturbance nor improvement in neural plasticity. Additionally, this treatment neither impaired nor further improved cognition. In conclusion, we found that TRC can improve spatial learning and memory, enhance synaptic plasticity, upregulate the expression of some synaptic proteins, and increase the density of dendritic spines. Our findings suggest that TRC may be beneficial in the treatment of cognitive impairment induced by CCH.
Collapse
|
37
|
Living in Promiscuity: The Multiple Partners of Alpha-Synuclein at the Synapse in Physiology and Pathology. Int J Mol Sci 2019; 20:ijms20010141. [PMID: 30609739 PMCID: PMC6337145 DOI: 10.3390/ijms20010141] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/18/2022] Open
Abstract
Alpha-synuclein (α-syn) is a small protein that, in neurons, localizes predominantly to presynaptic terminals. Due to elevated conformational plasticity, which can be affected by environmental factors, in addition to undergoing disorder-to-order transition upon interaction with different interactants, α-syn is counted among the intrinsically disordered proteins (IDPs) family. As with many other IDPs, α-syn is considered a hub protein. This function is particularly relevant at synaptic sites, where α-syn is abundant and interacts with many partners, such as monoamine transporters, cytoskeletal components, lipid membranes, chaperones and synaptic vesicles (SV)-associated proteins. These protein–protein and protein–lipid membrane interactions are crucial for synaptic functional homeostasis, and alterations in α-syn can cause disruption of this complex network, and thus a failure of the synaptic machinery. Alterations of the synaptic environment or post-translational modification of α-syn can induce its misfolding, resulting in the formation of oligomers or fibrillary aggregates. These α-syn species are thought to play a pathological role in neurodegenerative disorders with α-syn deposits such as Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), which are referred to as synucleinopathies. Here, we aim at revising the complex and promiscuous role of α-syn at synaptic terminals in order to decipher whether α-syn molecular interactants may influence its conformational state, contributing to its aggregation, or whether they are just affected by it.
Collapse
|
38
|
Albeely AM, Ryan SD, Perreault ML. Pathogenic Feed-Forward Mechanisms in Alzheimer's and Parkinson's Disease Converge on GSK-3. Brain Plast 2018; 4:151-167. [PMID: 30598867 PMCID: PMC6311352 DOI: 10.3233/bpl-180078] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) share many commonalities ranging from signaling deficits such as altered cholinergic activity, neurotrophin and insulin signaling to cell stress cascades that result in proteinopathy, mitochondrial dysfunction and neuronal cell death. These pathological processes are not unidirectional, but are intertwined, resulting in a series of feed-forward loops that worsen symptoms and advance disease progression. At the center of these loops is glycogen synthase kinase-3 (GSK-3), a keystone protein involved in many of the multidirectional biological processes that contribute to AD and PD neuropathology. Here, a unified overview of the involvement of GSK-3 in the major processes involved in these diseases will be presented. The mechanisms by which these processes are linked will be discussed and the feed-forward pathways identified. In this regard, this review will put forth the notion that combination therapy, targeting these multiple facets of AD or PD neuropathology is a necessary next step in the search for effective therapies.
Collapse
Affiliation(s)
- Abdalla M. Albeely
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Scott D. Ryan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Melissa L. Perreault
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
39
|
Twohig D, Rodriguez-Vieitez E, Sando SB, Berge G, Lauridsen C, Møller I, Grøntvedt GR, Bråthen G, Patra K, Bu G, Benzinger TLS, Karch CM, Fagan A, Morris JC, Bateman RJ, Nordberg A, White LR, Nielsen HM. The relevance of cerebrospinal fluid α-synuclein levels to sporadic and familial Alzheimer's disease. Acta Neuropathol Commun 2018; 6:130. [PMID: 30477568 PMCID: PMC6260771 DOI: 10.1186/s40478-018-0624-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 12/30/2022] Open
Abstract
Accumulating evidence demonstrating higher cerebrospinal fluid (CSF) α-synuclein (αSyn) levels and αSyn pathology in the brains of Alzheimer's disease (AD) patients suggests that αSyn is involved in the pathophysiology of AD. To investigate whether αSyn could be related to specific aspects of the pathophysiology present in both sporadic and familial disease, we quantified CSF levels of αSyn and assessed links to various disease parameters in a longitudinally followed cohort (n = 136) including patients with sporadic mild cognitive impairment (MCI) and AD, and in a cross-sectional sample from the Dominantly Inherited Alzheimer's Network (n = 142) including participants carrying autosomal dominant AD (ADAD) gene mutations and their non-mutation carrying family members.Our results show that sporadic MCI patients that developed AD over a period of two years exhibited higher baseline αSyn levels (p = 0.03), which inversely correlated to their Mini-Mental State Examination scores, compared to cognitively normal controls (p = 0.02). In the same patients, there was a dose-dependent positive association between CSF αSyn and the APOEε4 allele. Further, CSF αSyn levels were higher in symptomatic ADAD mutation carriers versus non-mutation carriers (p = 0.03), and positively correlated to the estimated years from symptom onset (p = 0.05) across all mutation carriers. In asymptomatic (Clinical Dementia Rating < 0.5) PET amyloid-positive ADAD mutation carriers CSF αSyn was positively correlated to 11C-Pittsburgh Compound-B (PiB) retention in several brain regions including the posterior cingulate, superior temporal and frontal cortical areas. Importantly, APOEε4-positive ADAD mutation carriers exhibited an association between CSF αSyn levels and mean cortical PiB retention (p = 0.032). In both the sporadic AD and ADAD cohorts we found several associations predominantly between CSF levels of αSyn, tau and amyloid-β1-40.Our results suggest that higher CSF αSyn levels are linked to AD pathophysiology at the early stages of disease development and to the onset of cognitive symptoms in both sporadic and autosomal dominant AD. We conclude that APOEε4 may promote the processes driven by αSyn, which in turn may reflect on molecular mechanisms linked to the asymptomatic build-up of amyloid plaque burden in brain regions involved in the early stages of AD development.
Collapse
|
40
|
Khan SS, LaCroix M, Boyle G, Sherman MA, Brown JL, Amar F, Aldaco J, Lee MK, Bloom GS, Lesné SE. Bidirectional modulation of Alzheimer phenotype by alpha-synuclein in mice and primary neurons. Acta Neuropathol 2018; 136:589-605. [PMID: 29995210 DOI: 10.1007/s00401-018-1886-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/14/2018] [Accepted: 07/07/2018] [Indexed: 01/01/2023]
Abstract
α-Synuclein (αSyn) histopathology defines several neurodegenerative disorders, including Parkinson's disease, Lewy body dementia, and Alzheimer's disease (AD). However, the functional link between soluble αSyn and disease etiology remains elusive, especially in AD. We, therefore, genetically targeted αSyn in APP transgenic mice modeling AD and mouse primary neurons. Our results demonstrate bidirectional modulation of behavioral deficits and pathophysiology by αSyn. Overexpression of human wild-type αSyn in APP animals markedly reduced amyloid deposition but, counter-intuitively, exacerbated deficits in spatial memory. It also increased extracellular amyloid-β oligomers (AβOs), αSyn oligomers, exacerbated tau conformational and phosphorylation variants associated with AD, and enhanced neuronal cell cycle re-entry (CCR), a frequent prelude to neuron death in AD. Conversely, ablation of the SNCA gene encoding for αSyn in APP mice improved memory retention in spite of increased plaque burden. Reminiscent of the effect of MAPT ablation in APP mice, SNCA deletion prevented premature mortality. Moreover, the absence of αSyn decreased extracellular AβOs, ameliorated CCR, and rescued postsynaptic marker deficits. In summary, this complementary, bidirectional genetic approach implicates αSyn as an essential mediator of key phenotypes in AD and offers new functional insight into αSyn pathophysiology.
Collapse
|
41
|
Synapsin III deficiency hampers α-synuclein aggregation, striatal synaptic damage and nigral cell loss in an AAV-based mouse model of Parkinson's disease. Acta Neuropathol 2018; 136:621-639. [PMID: 30046897 DOI: 10.1007/s00401-018-1892-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by the progressive loss of nigral dopamine neurons. The deposition of fibrillary aggregated α-synuclein in Lewy bodies (LB), that is considered to play a causative role in the disease, constitutes another key neuropathological hallmark of PD. We have recently described that synapsin III (Syn III), a synaptic phosphoprotein that regulates dopamine release in cooperation with α-synuclein, is present in the α-synuclein insoluble fibrils composing the LB of patients affected by PD. Moreover, we observed that silencing of Syn III gene could prevent α-synuclein fibrillary aggregation in vitro. This evidence suggests that Syn III might be crucially involved in α-synuclein pathological deposition. To test this hypothesis, we studied whether mice knock-out (ko) for Syn III might be protected from α-synuclein aggregation and nigrostriatal neuron degeneration resulting from the unilateral injection of adeno-associated viral vectors (AAV)-mediating human wild-type (wt) α-synuclein overexpression (AAV-hαsyn). We found that Syn III ko mice injected with AAV-hαsyn did not develop fibrillary insoluble α-synuclein aggregates, showed reduced amount of α-synuclein oligomers detected by in situ proximity ligation assay (PLA) and lower levels of Ser129-phosphorylated α-synuclein. Moreover, the nigrostriatal neurons of Syn III ko mice were protected from both synaptic damage and degeneration triggered by the AAV-hαsyn injection. Our observations indicate that Syn III constitutes a crucial mediator of α-synuclein aggregation and toxicity and identify Syn III as a novel therapeutic target for PD.
Collapse
|
42
|
Froula JM, Henderson BW, Gonzalez JC, Vaden JH, Mclean JW, Wu Y, Banumurthy G, Overstreet-Wadiche L, Herskowitz JH, Volpicelli-Daley LA. α-Synuclein fibril-induced paradoxical structural and functional defects in hippocampal neurons. Acta Neuropathol Commun 2018; 6:35. [PMID: 29716652 PMCID: PMC5928584 DOI: 10.1186/s40478-018-0537-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 11/10/2022] Open
Abstract
Neuronal inclusions composed of α-synuclein (α-syn) characterize Parkinson’s Disease (PD) and Dementia with Lewy bodies (DLB). Cognitive dysfunction defines DLB, and up to 80% of PD patients develop dementia. α-Syn inclusions are abundant in the hippocampus, yet functional consequences are unclear. To determine if pathologic α-syn causes neuronal defects, we induced endogenous α-syn to form inclusions resembling those found in diseased brains by treating hippocampal neurons with α-syn fibrils. At seven days after adding fibrils, α-syn inclusions are abundant in axons, but there is no cell death at this time point, allowing us to assess for potential alterations in neuronal function that are not caused by neuron death. We found that exposure of neurons to fibrils caused a significant reduction in mushroom spine densities, adding to the growing body of literature showing that altered spine morphology is a major pathologic phenotype in synucleinopathies. The reduction in spine densities occurred only in wild type neurons and not in neurons from α-syn knockout mice, suggesting that the changes in spine morphology result from fibril-induced corruption of endogenously expressed α-syn. Paradoxically, reduced postsynaptic spine density was accompanied by increased frequency of miniature excitatory postsynaptic currents (EPSCs) and presynaptic docked vesicles, suggesting enhanced presynaptic function. Action-potential dependent activity was unchanged, suggesting compensatory mechanisms responding to synaptic defects. Although activity at the level of the synapse was unchanged, neurons exposed to α-syn fibrils, showed reduced frequency and amplitudes of spontaneous Ca2+ transients. These findings open areas of research to determine the mechanisms that alter neuronal function in brain regions critical for cognition at time points before neuron death.
Collapse
|
43
|
Abeyawardhane DL, Fernández RD, Murgas CJ, Heitger DR, Forney AK, Crozier MK, Lucas HR. Iron Redox Chemistry Promotes Antiparallel Oligomerization of α-Synuclein. J Am Chem Soc 2018; 140:5028-5032. [PMID: 29608844 DOI: 10.1021/jacs.8b02013] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Brain metal dyshomeostasis and altered structural dynamics of the presynaptic protein α-synuclein (αS) are both implicated in the pathology of Parkinson's disease (PD), yet a mechanistic understanding of disease progression in the context of αS structure and metal interactions remains elusive. In this Communication, we detail the influence of iron, a prevalent redox-active brain biometal, on the aggregation propensity and secondary structure of N-terminally acetylated αS (NAcαS), the physiologically relevant form in humans. We demonstrate that under aerobic conditions, Fe(II) commits NAcαS to a PD-relevant oligomeric assembly, verified by the oligomer-selective A11 antibody, that does not have any parallel β-sheet character but contains a substantial right-twisted antiparallel β-sheet component based on CD analyses and descriptive deconvolution of the secondary structure. This NAcαS-FeII oligomer does not develop into the β-sheet fibrils that have become hallmarks of PD, even after extended incubation, as verified by TEM imaging and the fibril-specific OC antibody. Thioflavin T (ThT), a fluorescent probe for β-sheet fibril formation, also lacks coordination to this antiparallel conformer. We further show that this oligomeric state is not observed when O2 is excluded, indicating a role for iron(II)-mediated O2 chemistry in locking this dynamic protein into a conformation that may have physiological or pathological implications.
Collapse
Affiliation(s)
- Dinendra L Abeyawardhane
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Ricardo D Fernández
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Cody J Murgas
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Denver R Heitger
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Ashley K Forney
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Madeleine K Crozier
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Heather R Lucas
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| |
Collapse
|
44
|
Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA. Religious Orders Study and Rush Memory and Aging Project. J Alzheimers Dis 2018; 64:S161-S189. [PMID: 29865057 PMCID: PMC6380522 DOI: 10.3233/jad-179939] [Citation(s) in RCA: 809] [Impact Index Per Article: 115.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The Religious Orders Study and Rush Memory and Aging Project are both ongoing longitudinal clinical-pathologic cohort studies of aging and Alzheimer's disease (AD). OBJECTIVES To summarize progress over the past five years and its implications for understanding neurodegenerative diseases. METHODS Participants in both studies are older adults who enroll without dementia and agree to detailed longitudinal clinical evaluations and organ donation. The last review summarized findings through the end of 2011. Here we summarize progress and study findings over the past five years and discuss new directions for how these studies can inform on aging and AD in the future. RESULTS We summarize 1) findings on the relation of neurobiology to clinical AD; 2) neurobiologic pathways linking risk factors to clinical AD; 3) non-cognitive AD phenotypes including motor function and decision making; 4) the development of a novel drug discovery platform. CONCLUSION Complexity at multiple levels needs to be understood and overcome to develop effective treatments and preventions for cognitive decline and AD dementia.
Collapse
Affiliation(s)
- David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Lisa L. Barnes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Robert S. Wilson
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL., USA
| |
Collapse
|
45
|
Miraglia F, Ricci A, Rota L, Colla E. Subcellular localization of alpha-synuclein aggregates and their interaction with membranes. Neural Regen Res 2018; 13:1136-1144. [PMID: 30028312 PMCID: PMC6065224 DOI: 10.4103/1673-5374.235013] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
For more than a decade numerous evidence has been reported on the mechanisms of toxicity of α-synuclein (αS) oligomers and aggregates in α-synucleinopathies. These species were thought to form freely in the cytoplasm but recent reports of αS multimer conformations when bound to synaptic vesicles in physiological conditions, have raised the question about where αS aggregation initiates. In this review we focus on recent literature regarding the impact on membrane binding and subcellular localization of αS toxic species to understand how regular cellular function of αS contributes to pathology. Notably αS has been reported to mainly associate with specific membranes in neurons such as those of synaptic vesicles, ER/Golgi and the mitochondria, while toxic species of αS have been shown to inhibit, among others, neurotransmission, protein trafficking and mitochondrial function. Strategies interfering with αS membrane binding have shown to improve αS-driven toxicity in worms and in mice. Thus, a selective membrane binding that would result in a specific subcellular localization could be the key to understand how aggregation and pathology evolves, pointing out to αS functions that are primarily affected before onset of irreversible damage.
Collapse
Affiliation(s)
- Fabiana Miraglia
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa; Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Alessio Ricci
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | - Lucia Rota
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | - Emanuela Colla
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
46
|
Nouraei N, Mason DM, Miner KM, Carcella MA, Bhatia TN, Dumm BK, Soni D, Johnson DA, Luk KC, Leak RK. Critical appraisal of pathology transmission in the α-synuclein fibril model of Lewy body disorders. Exp Neurol 2018; 299:172-196. [PMID: 29056362 PMCID: PMC5736319 DOI: 10.1016/j.expneurol.2017.10.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
Lewy body disorders are characterized by the emergence of α-synucleinopathy in many parts of the central and peripheral nervous systems, including in the telencephalon. Dense α-synuclein+ pathology appears in regio inferior of the hippocampus in both Parkinson's disease and dementia with Lewy bodies and may disturb cognitive function. The preformed α-synuclein fibril model of Parkinson's disease is growing in use, given its potential for seeding the self-propagating spread of α-synucleinopathy throughout the mammalian brain. Although it is often assumed that the spread occurs through neuroanatomical connections, this is generally not examined vis-à-vis the uptake and transport of tract-tracers infused at precisely the same stereotaxic coordinates. As the neuronal connections of the hippocampus are historically well defined, we examined the first-order spread of α-synucleinopathy three months following fibril infusions centered in the mouse regio inferior (CA2+CA3), and contrasted this to retrograde and anterograde transport of the established tract-tracers FluoroGold and biotinylated dextran amines (BDA). Massive hippocampal α-synucleinopathy was insufficient to elicit memory deficits or loss of cells and synaptic markers in this model of early disease processes. However, dense α-synuclein+ inclusions in the fascia dentata were negatively correlated with memory capacity. A modest compensatory increase in synaptophysin was evident in the stratum radiatum of cornu Ammonis in fibril-infused animals, and synaptophysin expression correlated inversely with memory function in fibril but not PBS-infused mice. No changes in synapsin I/II expression were observed. The spread of α-synucleinopathy was somewhat, but not entirely consistent with FluoroGold and BDA axonal transport, suggesting that variables other than innervation density also contribute to the materialization of α-synucleinopathy. For example, layer II entorhinal neurons of the perforant pathway exhibited somal α-synuclein+ inclusions as well as retrogradely labeled FluoroGold+ somata. However, some afferent brain regions displayed dense retrograde FluoroGold label and no α-synuclein+ inclusions (e.g. medial septum/diagonal band), supporting the selective vulnerability hypothesis. The pattern of inclusions on the contralateral side was consistent with specific spread through commissural connections (e.g. stratum pyramidale of CA3), but again, not all commissural projections exhibited α-synucleinopathy (e.g. hilar mossy cells). The topographical extent of inclusions is displayed here in high-resolution images that afford viewers a rich opportunity to dissect the potential spread of pathology through neural circuitry. Finally, the results of this expository study were leveraged to highlight the challenges and limitations of working with preformed α-synuclein fibrils.
Collapse
Affiliation(s)
- Negin Nouraei
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Daniel M Mason
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Michael A Carcella
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Benjamin K Dumm
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Dishaben Soni
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - David A Johnson
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Kelvin C Luk
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19147, United States
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
47
|
Zhou W, Barkow JC, Freed CR. Running wheel exercise reduces α-synuclein aggregation and improves motor and cognitive function in a transgenic mouse model of Parkinson's disease. PLoS One 2017; 12:e0190160. [PMID: 29272304 PMCID: PMC5741244 DOI: 10.1371/journal.pone.0190160] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/08/2017] [Indexed: 01/01/2023] Open
Abstract
Exercise has been recommended to improve motor function in Parkinson patients, but its value in altering progression of disease is unknown. In this study, we examined the neuroprotective effects of running wheel exercise in mice. In adult wild-type mice, one week of running wheel activity led to significantly increased DJ-1 protein concentrations in muscle and plasma. In DJ-1 knockout mice, running wheel performance was much slower and Rotarod performance was reduced, suggesting that DJ-1 protein is required for normal motor activity. To see if exercise can prevent abnormal protein deposition and behavioral decline in transgenic animals expressing a mutant human form of α-synuclein in all neurons, we set up running wheels in the cages of pre-symptomatic animals at 12 months old. Activity was monitored for a 3-month period. After 3 months, motor and cognitive performance on the Rotarod and Morris Water Maze were significantly better in running animals compared to control transgenic animals with locked running wheels. Biochemical analysis revealed that running mice had significantly higher DJ-1, Hsp70 and BDNF concentrations and had significantly less α-synuclein aggregation in brain compared to control mice. By contrast, plasma concentrations of α-synuclein were significantly higher in exercising mice compared to control mice. Our results suggest that exercise may slow the progression of Parkinson's disease by preventing abnormal protein aggregation in brain.
Collapse
Affiliation(s)
- Wenbo Zhou
- Division of Clinical Pharmacology and Toxicology, Departments of Medicine, Pharmacology, Neurology, and Neurosurgery; University of Colorado Denver, School of Medicine, Aurora, CO, United States of America
| | - Jessica Cummiskey Barkow
- Division of Clinical Pharmacology and Toxicology, Departments of Medicine, Pharmacology, Neurology, and Neurosurgery; University of Colorado Denver, School of Medicine, Aurora, CO, United States of America
| | - Curt R. Freed
- Division of Clinical Pharmacology and Toxicology, Departments of Medicine, Pharmacology, Neurology, and Neurosurgery; University of Colorado Denver, School of Medicine, Aurora, CO, United States of America
| |
Collapse
|