1
|
Karina A, Li H, Eklund T, Ladd-Parada M, Massani B, Filianina M, Kondedan N, Rydh A, Holl K, Trevorah R, Huotari S, Bauer RPC, Goy C, Striker NN, Dallari F, Westermeier F, Sprung M, Lehmkühler F, Amann-Winkel K. Multicomponent dynamics in amorphous ice studied using X-ray photon correlation spectroscopy at elevated pressure and cryogenic temperatures. Commun Chem 2025; 8:82. [PMID: 40091131 PMCID: PMC11911450 DOI: 10.1038/s42004-025-01480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Knowing the pressure dependence of glass forming liquids is important in various contexts. Here, we study the case of supercooled water, which has at least two different amorphous states with different densities. The pressure dependencies of the two glass transitions are predicted to show opposite behaviour, crossing in the P-T plane at elevated pressure. The experimental identification of the glass transition at elevated pressure and cryo-conditions is technically difficult. Moreover, in the case of amorphous ices, the glass transition is interrupted by crystallization, which makes it even more challenging. We show the feasibility of performing X-ray photon correlation spectroscopy experiments at elevated pressure using a diamond anvil cell at cryogenic temperatures. We observe two dynamic components when approaching the glass transition temperature. For high-density amorphous ice at a pressure of around (0.08 ± 0.02) GPa we determine the glass transition to be at higher temperatures compared to ambient conditions.
Collapse
Affiliation(s)
- Aigerim Karina
- Department of Physics, Stockholm University, Stockholm, Sweden
| | - Hailong Li
- Max-Planck-Institute for Polymer Research, Mainz, Germany
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Tobias Eklund
- Max-Planck-Institute for Polymer Research, Mainz, Germany
- Institute of Physics, Johannes Gutenberg University Mainz, Mainz, Germany
- European X-ray Free-Electron Laser, Schenefeld, Germany
| | | | - Bernhard Massani
- The University of Edinburgh, School of Physics and Astronomy (SoPA), Centre for Science at Extreme Conditions (CSEC), Edinburgh, UK
| | | | - Neha Kondedan
- Department of Physics, Stockholm University, Stockholm, Sweden
| | - Andreas Rydh
- Department of Physics, Stockholm University, Stockholm, Sweden
| | - Klara Holl
- Max-Planck-Institute for Polymer Research, Mainz, Germany
- Institute of Physics, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ryan Trevorah
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Simo Huotari
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Robert P C Bauer
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Freiberg Center for Water Research, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | - Claudia Goy
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | | | - Francesco Dallari
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Physics and Astronomy, University of Padova, Padova, Italy
| | | | | | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - Katrin Amann-Winkel
- Department of Physics, Stockholm University, Stockholm, Sweden.
- Max-Planck-Institute for Polymer Research, Mainz, Germany.
- Institute of Physics, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
2
|
Dunlap MK, Kringle L, Kay BD, Kimmel GA. Proton diffusion and hydrogen/deuterium exchange in amorphous solid water at temperatures from 114 to 134 K. J Chem Phys 2024; 161:244504. [PMID: 39723704 DOI: 10.1063/5.0233755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
The reaction coefficient for hydrogen/deuterium (H/D) exchange and the diffusion of hydrated excess protons within amorphous solid water (ASW) are characterized as a function of temperature. For these experiments, water films are deposited on a Pt(111) substrate at 108 K, and reactions with pre-adsorbed hydrogen atoms produce hydrated protons. Upon heating, protons diffuse within the water, and H/D exchange occurs when they encounter D2O probe molecules deposited in the films. The time-dependent concentration of D2O is monitored with infrared spectroscopy, and it indicates the protons diffusion from the substrate and establish an equilibrium distribution prior to significant H/D exchange for temperatures 114 K ≤T≤ 134 K. By controlling the distance between the D2O molecules and the substrate, we probe the distribution of protons within the film. It decays as x-2 for the examined range of x (12-52 nm) due to the electric field that develops between the diffusing protons and their image charges in the metal substrate. This agrees with the theoretical distance scaling for the equilibrated proton concentration in a dielectric near a metal boundary. From the proton concentration and the measured D2O decay rate, a lower bound for the proton diffusion coefficient ranging from 10-20 m2/s at 114 K to 10-18 m2/s at 134 K is estimated. The diffusion coefficient has an activation energy of 0.40 eV, which is comparable to energies reported for molecular translations and rotations of H2O, suggesting they may play a critical role in the proton diffusion mechanism within ASW.
Collapse
Affiliation(s)
- Megan K Dunlap
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Loni Kringle
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Bruce D Kay
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Greg A Kimmel
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| |
Collapse
|
3
|
Eltareb A, Khan BA, Lopez GE, Giovambattista N. Nuclear quantum effects on glassy water under pressure: Vitrification and pressure-induced transformations. J Chem Phys 2024; 161:234502. [PMID: 39679523 DOI: 10.1063/5.0238823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
We perform classical molecular dynamics (MD) and path-integral MD (PIMD) simulations of H2O and D2O using the q-TIP4P/F model over a wide range of temperatures and pressures to study the nuclear quantum effects (NQEs) on (i) the vitrification of liquid water upon isobaric cooling at different pressures and (ii) pressure-induced transformations at constant temperature between low-density amorphous and high-density amorphous ice (LDA and HDA) and hexagonal ice Ih and HDA. Upon isobaric cooling, classical and quantum H2O and D2O vitrify into a continuum of intermediate amorphous ices (IA), with densities in-between those of LDA and HDA (depending on pressure). Importantly, the density of the IA varies considerably if NQEs are included (similar conclusions hold for ice Ih at all pressures studied). While the structure of the IA is not very sensitive to NQE, the geometry of the hydrogen-bond (HB) is. NQE leads to longer and less linear HB in LDA, HDA, and ice Ih than found in the classical case. Interestingly, the delocalization of the H/D atoms is non-negligible and identical in LDA, HDA, and ice Ih at all pressures studied. Our isothermal compression/decompression MD/PIMD simulations show that classical and quantum H2O and D2O all exhibit LDA-HDA and ice Ih-HDA transformations, consistent with experiments. The inclusion of NQE leads to a softer HB-network, which lowers slightly the LDA/ice Ih-to-HDA transformation pressures. Interestingly, the HB in HDA is longer and less linear than in LDA, which is counterintuitive given that HDA is ≈25% denser than LDA. Overall, our results show that, while classical computer simulations provide the correct qualitative phenomenology of ice and glassy water, NQEs are necessary for a quantitative description.
Collapse
Affiliation(s)
- Ali Eltareb
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Bibi A Khan
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Gustavo E Lopez
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
- Department of Chemistry, Lehman College of the City University of New York, Bronx, New York 10468, USA
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| |
Collapse
|
4
|
Berkowicz S, Andronis I, Girelli A, Filianina M, Bin M, Nam K, Shin M, Kowalewski M, Katayama T, Giovambattista N, Kim KH, Perakis F. Supercritical density fluctuations and structural heterogeneity in supercooled water-glycerol microdroplets. Nat Commun 2024; 15:10610. [PMID: 39638810 PMCID: PMC11621323 DOI: 10.1038/s41467-024-54890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Recent experiments and theoretical studies strongly indicate that water exhibits a liquid-liquid phase transition (LLPT) in the supercooled domain. An open question is how the LLPT of water can affect the properties of aqueous solutions. Here, we study the structural and thermodynamic properties of supercooled glycerol-water microdroplets at dilute conditions (χg = 3.2% glycerol mole fraction). The combination of rapid evaporative cooling with femtosecond X-ray scattering allows us to outrun crystallization and gain access to the deeply supercooled regime down to T = 229.3 K. We find that the density fluctuations of the glycerol-water solution or, equivalently, its isothermal compressibility, κT, increases upon cooling. This is confirmed by molecular dynamics simulations, which indicate that the presence of glycerol shifts the temperature of maximum κT from T = 230 K in pure water down to T = 223 K in the solution. Our findings elucidate the interplay between the complex behavior of water, including its LLPT, and the properties of aqueous solutions at low temperatures, which can have practical consequences in cryogenic biological applications and cryopreservation techniques.
Collapse
Affiliation(s)
- Sharon Berkowicz
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691, Stockholm, Sweden
| | - Iason Andronis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691, Stockholm, Sweden
| | - Anita Girelli
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691, Stockholm, Sweden
| | - Mariia Filianina
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691, Stockholm, Sweden
| | - Maddalena Bin
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691, Stockholm, Sweden
| | - Kyeongmin Nam
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Myeongsik Shin
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Markus Kowalewski
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691, Stockholm, Sweden
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
- The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Kyung Hwan Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691, Stockholm, Sweden.
| |
Collapse
|
5
|
Coronas LE, Franzese G. Phase behavior of metastable water from large-scale simulations of a quantitatively accurate model near ambient conditions: The liquid-liquid critical point. J Chem Phys 2024; 161:164502. [PMID: 39435842 DOI: 10.1063/5.0219313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/30/2024] [Indexed: 10/23/2024] Open
Abstract
The molecular mechanisms of water's unique anomalies are still debated upon. Experimental challenges have led to simulations suggesting a liquid-liquid (LL) phase transition, culminating in the supercooled region's LL critical point (LLCP). Computational expense, small system sizes, and the reliability of water models often limit these simulations. We adopt the CVF model, which is reliable, transferable, scalable, and efficient across a wide range of temperatures and pressures around ambient conditions. By leveraging the timescale separation between fast hydrogen bonds and slow molecular coordinates, the model allows a thorough exploration of the metastable phase diagram of liquid water. Using advanced numerical techniques to bypass dynamical slowing down, we perform finite-size scaling on larger systems than those used in previous analyses. Our study extrapolates thermodynamic behavior in the infinite-system limit, demonstrating the existence of the LLCP in the 3D Ising universality class in the low-temperature, low-pressure side of the line of temperatures of maximum density, specifically at TC = 186 ± 4 K and PC = 174 ± 14 MPa, at the end of a liquid-liquid phase separation stretching up to ∼200 MPa. These predictions align with recent experimental data and sophisticated models, highlighting that hydrogen bond cooperativity governs the LLCP and the origin of water anomalies. We also observe substantial cooperative fluctuations in the hydrogen bond network at scales larger than 10 nm, even at temperatures relevant to biopreservation. These findings have significant implications for nanotechnology and biophysics, providing new insights into water's behavior under varied conditions.
Collapse
Affiliation(s)
- Luis Enrique Coronas
- 1 Secció de Física Estadística i Interdisciplinària, Departament de Física de la Matèria Condensada, Facutat de Física, University of Barcelona, Martí i Franquès 1, Barcelona 08028, Spain and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| | - Giancarlo Franzese
- 1 Secció de Física Estadística i Interdisciplinària, Departament de Física de la Matèria Condensada, Facutat de Física, University of Barcelona, Martí i Franquès 1, Barcelona 08028, Spain and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| |
Collapse
|
6
|
Melillo JH, Cangialosi D, Di Lisio V, Steinrücken E, Vogel M, Cerveny S. Complexity of confined water vitrification and its glass transition temperature. Proc Natl Acad Sci U S A 2024; 121:e2407030121. [PMID: 39356669 PMCID: PMC11474062 DOI: 10.1073/pnas.2407030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/25/2024] [Indexed: 10/04/2024] Open
Abstract
The ability of vitrification when crossing the glass transition temperature (Tg) of confined and bulk water is crucial for myriad phenomena in diverse fields, ranging from the cryopreservation of organs and food to the development of cryoenzymatic reactions, frost damage to buildings, and atmospheric water. However, determining water's Tg remains a major challenge. Here, we elucidate the glass transition of water by analyzing the calorimetric behavior of nano-confined water across various pore topologies (diameters: 0.3 to 2.5 nm). Our approach involves subjecting confined water to annealing protocols to identify the temperature and time evolution of nonequilibrium glass kinetics. Furthermore, we complement this calorimetric approach with the dynamics of confined water, as seen by broadband dielectric spectroscopy and linear calorimetric measurements, including the fast scanning technique. This study demonstrated that confined water undergoes a glass transition in the temperature range of 170 to 200 K, depending on the confinement size and the interaction with the confinement walls. Moreover, we also show that the thermal event observed at ~136 K must be interpreted as an annealing prepeak, also referred to as the "shadow glass transition." Calorimetric measurements also allow the detection of a specific heat step above 200 K, which is insensitive to annealing and, thereby, interpreted as a true thermodynamic transition. Finally, by connecting our results to bulk water behavior, we offer a comprehensive understanding of confined water vitrification with potential implications for numerous applications.
Collapse
Affiliation(s)
- Jorge H. Melillo
- Centro de Física de Materiales (Consejo Superior de Investigaciones Científicas (CSIC) - Universidad del País Vasco (UPV/EHU))–Material Physics Centre, San Sebastian20018, Spain
- Donostia International Physics Center, San Sebastian20018, Spain
| | - Daniele Cangialosi
- Centro de Física de Materiales (Consejo Superior de Investigaciones Científicas (CSIC) - Universidad del País Vasco (UPV/EHU))–Material Physics Centre, San Sebastian20018, Spain
- Donostia International Physics Center, San Sebastian20018, Spain
| | - Valerio Di Lisio
- Donostia International Physics Center, San Sebastian20018, Spain
| | - Elisa Steinrücken
- Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Darmstadt64289, Germany
| | - Michael Vogel
- Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Darmstadt64289, Germany
| | - Silvina Cerveny
- Centro de Física de Materiales (Consejo Superior de Investigaciones Científicas (CSIC) - Universidad del País Vasco (UPV/EHU))–Material Physics Centre, San Sebastian20018, Spain
- Donostia International Physics Center, San Sebastian20018, Spain
| |
Collapse
|
7
|
Horwath JP, Lin XM, He H, Zhang Q, Dufresne EM, Chu M, Sankaranarayanan SKRS, Chen W, Narayanan S, Cherukara MJ. AI-NERD: Elucidation of relaxation dynamics beyond equilibrium through AI-informed X-ray photon correlation spectroscopy. Nat Commun 2024; 15:5945. [PMID: 39009571 PMCID: PMC11251071 DOI: 10.1038/s41467-024-49381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
Understanding and interpreting dynamics of functional materials in situ is a grand challenge in physics and materials science due to the difficulty of experimentally probing materials at varied length and time scales. X-ray photon correlation spectroscopy (XPCS) is uniquely well-suited for characterizing materials dynamics over wide-ranging time scales. However, spatial and temporal heterogeneity in material behavior can make interpretation of experimental XPCS data difficult. In this work, we have developed an unsupervised deep learning (DL) framework for automated classification of relaxation dynamics from experimental data without requiring any prior physical knowledge of the system. We demonstrate how this method can be used to accelerate exploration of large datasets to identify samples of interest, and we apply this approach to directly correlate microscopic dynamics with macroscopic properties of a model system. Importantly, this DL framework is material and process agnostic, marking a concrete step towards autonomous materials discovery.
Collapse
Affiliation(s)
- James P Horwath
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
| | - Xiao-Min Lin
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - Hongrui He
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Qingteng Zhang
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Eric M Dufresne
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Miaoqi Chu
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Subramanian K R S Sankaranarayanan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, IL, USA
| | - Wei Chen
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
| | | |
Collapse
|
8
|
Warias JE, Petersdorf L, Hövelmann SC, Giri RP, Lemke C, Festersen S, Greve M, Mandin P, LeBideau D, Bertram F, Magnussen OM, Murphy BM. The laser pump X-ray probe system at LISA P08 PETRA III. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:779-790. [PMID: 38843001 PMCID: PMC11226150 DOI: 10.1107/s1600577524003400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/17/2024] [Indexed: 07/06/2024]
Abstract
Understanding and controlling the structure and function of liquid interfaces is a constant challenge in biology, nanoscience and nanotechnology, with applications ranging from molecular electronics to controlled drug release. X-ray reflectivity and grazing incidence diffraction provide invaluable probes for studying the atomic scale structure at liquid-air interfaces. The new time-resolved laser system at the LISA liquid diffractometer situated at beamline P08 at the PETRA III synchrotron radiation source in Hamburg provides a laser pump with X-ray probe. The femtosecond laser combined with the LISA diffractometer allows unique opportunities to investigate photo-induced structural changes at liquid interfaces on the pico- and nanosecond time scales with pump-probe techniques. A time resolution of 38 ps has been achieved and verified with Bi. First experiments include laser-induced effects on salt solutions and liquid mercury surfaces with static and varied time scales measurements showing the proof of concept for investigations at liquid surfaces.
Collapse
Affiliation(s)
- Jonas Erik Warias
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | - Lukas Petersdorf
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
- Ruprecht-Haensel Laboratory, Olshausenstrasse 40, 24098Kiel, Germany
| | - Svenja Carolin Hövelmann
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
- Ruprecht-Haensel Laboratory, Olshausenstrasse 40, 24098Kiel, Germany
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | - Rajendra Prasad Giri
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | - Christoph Lemke
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | - Sven Festersen
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | - Matthias Greve
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | | | | | - Florian Bertram
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | - Olaf Magnus Magnussen
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
- Ruprecht-Haensel Laboratory, Olshausenstrasse 40, 24098Kiel, Germany
| | - Bridget Mary Murphy
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
- Ruprecht-Haensel Laboratory, Olshausenstrasse 40, 24098Kiel, Germany
| |
Collapse
|
9
|
Yang C, Ladd-Parada M, Nam K, Jeong S, You S, Eklund T, Späh A, Pathak H, Lee JH, Eom I, Kim M, Perakis F, Nilsson A, Kim KH, Amann-Winkel K. Unveiling a common phase transition pathway of high-density amorphous ices through time-resolved x-ray scattering. J Chem Phys 2024; 160:244503. [PMID: 38916268 DOI: 10.1063/5.0216904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/07/2024] [Indexed: 06/26/2024] Open
Abstract
Here, we investigate the hypothesis that despite the existence of at least two high-density amorphous ices, only one high-density liquid state exists in water. We prepared a very-high-density amorphous ice (VHDA) sample and rapidly increased its temperature to around 205 ± 10 K using laser-induced isochoric heating. This temperature falls within the so-called "no-man's land" well above the glass-liquid transition, wherein the IR laser pulse creates a metastable liquid state. Subsequently, this high-density liquid (HDL) state of water decompresses over time, and we examined the time-dependent structural changes using short x-ray pulses from a free electron laser. We observed a liquid-liquid transition to low-density liquid water (LDL) over time scales ranging from 20 ns to 3 μs, consistent with previous experimental results using expanded high-density amorphous ice (eHDA) as the initial state. In addition, the resulting LDL derived both from VHDA and eHDA displays similar density and degree of inhomogeneity. Our observation supports the idea that regardless of the initial annealing states of the high-density amorphous ices, the same HDL and final LDL states are reached at temperatures around 205 K.
Collapse
Affiliation(s)
- Cheolhee Yang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Marjorie Ladd-Parada
- Chemistry Department, Glycoscience Division, Kungliga Tekniska Högskola, Roslagstullsbacken 21, 11421 Stockholm, Sweden
| | - Kyeongmin Nam
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sangmin Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seonju You
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Tobias Eklund
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
- Institute for Physics, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Alexander Späh
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Harshad Pathak
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Kyung Hwan Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
- Institute for Physics, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
10
|
Fransson T, Pettersson LGM. TDDFT and the x-ray absorption spectrum of liquid water: Finding the "best" functional. J Chem Phys 2024; 160:234105. [PMID: 38884399 DOI: 10.1063/5.0209719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
We investigate the performance of time-dependent density functional theory (TDDFT) for reproducing high-level reference x-ray absorption spectra of liquid water and water clusters. For this, we apply the integrated absolute difference (IAD) metric, previously used for x-ray emission spectra of liquid water [T. Fransson and L. G. M. Pettersson, J. Chem. Theory Comput. 19, 7333-7342 (2023)], in order to investigate which exchange-correlation (xc) functionals yield TDDFT spectra in best agreement to reference, as well as to investigate the suitability of IAD for x-ray absorption spectroscopy spectrum calculations. Considering highly asymmetric and symmetric six-molecule clusters, it is seen that long-range corrected xc-functionals are required to yield good agreement with the reference coupled cluster (CC) and algebraic-diagrammatic construction spectra, with 100% asymptotic Hartree-Fock exchange resulting in the lowest IADs. The xc-functionals with best agreement to reference have been adopted for larger water clusters, yielding results in line with recently published CC theory, but which still show some discrepancies in the relative intensity of the features compared to experiment.
Collapse
Affiliation(s)
- Thomas Fransson
- Department of Physics, AlbaNova University Center, Stockholm University, 10961 Stockholm, Sweden
| | - Lars G M Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University, 10961 Stockholm, Sweden
| |
Collapse
|
11
|
Saito S. Unraveling the dynamic slowdown in supercooled water: The role of dynamic disorder in jump motions. J Chem Phys 2024; 160:194506. [PMID: 38767263 DOI: 10.1063/5.0209713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
When a liquid is rapidly cooled below its melting point without inducing crystallization, its dynamics slow down significantly without noticeable structural changes. Elucidating the origin of this slowdown has been a long-standing challenge. Here, we report a theoretical investigation into the mechanism of the dynamic slowdown in supercooled water, a ubiquitous yet extraordinary substance characterized by various anomalous properties arising from local density fluctuations. Using molecular dynamics simulations, we found that the jump dynamics, which are elementary structural change processes, deviate from Poisson statistics with decreasing temperature. This deviation is attributed to slow variables competing with the jump motions, i.e., dynamic disorder. The present analysis of the dynamic disorder showed that the primary slow variable is the displacement of the fourth nearest oxygen atom of a jumping molecule, which occurs in an environment created by the fluctuations of molecules outside the first hydration shell. As the temperature decreases, the jump dynamics become slow and intermittent. These intermittent dynamics are attributed to the prolonged trapping of jumping molecules within extended and stable low-density domains. As the temperature continues to decrease, the number of slow variables increases due to the increased cooperative motions. Consequently, the jump dynamics proceed in a higher-dimensional space consisting of multiple slow variables, becoming slower and more intermittent. It is then conceivable that with further decreasing temperature, the slowing and intermittency of the jump dynamics intensify, eventually culminating in a glass transition.
Collapse
Affiliation(s)
- Shinji Saito
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan and The Graduate University for Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
12
|
Schulz F, Jain A, Dallari F, Markmann V, Lehmkühler F. In situ aggregation and early states of gelation of gold nanoparticle dispersions. SOFT MATTER 2024; 20:3836-3844. [PMID: 38651356 DOI: 10.1039/d4sm00080c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The aggregation and onset of gelation of PEGylated gold nanoparticles dispersed in a glycerol-water mixture is studied by small-angle X-ray scattering and X-ray photon correlation spectroscopy. Tracking structural dynamics with sub-ms time resolution over a total experimental time of 8 hours corresponding to a time windows larger than 108 Brownian times and varying the temperature between 298 K and 266 K we can identify three regimes. First, while cooling to 275 K the particles show Brownian motion that slows down due to the increasing viscosity. Second, upon further cooling the static structure changes significantly, indicated by a broad structure factor peak. We attribute this to the formation of aggregates while the dynamics are still dominated by single-particle diffusion. Finally, the relaxation functions become more and more stretched accompanied by an increased slow down of the dynamics. At the same time the structure changes continuously indicating the onset of gelation. Our observations further suggest that the colloidal aggregation and gelation is characterized first by structural changes with a subsequent slowing down of the systems dynamics. The analysis also reveals that the details of the gelation process and the gel structure strongly depend on the thickness of the PEG-coating of the gold nanoparticles.
Collapse
Affiliation(s)
- Florian Schulz
- Institute of Nanostructure and Solid State Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Avni Jain
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Francesco Dallari
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Verena Markmann
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Felix Lehmkühler
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| |
Collapse
|
13
|
Cornet A, Ronca A, Shen J, Zontone F, Chushkin Y, Cammarata M, Garbarino G, Sprung M, Westermeier F, Deschamps T, Ruta B. High-pressure X-ray photon correlation spectroscopy at fourth-generation synchrotron sources. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:527-539. [PMID: 38597746 PMCID: PMC11075710 DOI: 10.1107/s1600577524001784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/23/2024] [Indexed: 04/11/2024]
Abstract
A new experimental setup combining X-ray photon correlation spectroscopy (XPCS) in the hard X-ray regime and a high-pressure sample environment has been developed to monitor the pressure dependence of the internal motion of complex systems down to the atomic scale in the multi-gigapascal range, from room temperature to 600 K. The high flux of coherent high-energy X-rays at fourth-generation synchrotron sources solves the problems caused by the absorption of diamond anvil cells used to generate high pressure, enabling the measurement of the intermediate scattering function over six orders of magnitude in time, from 10-3 s to 103 s. The constraints posed by the high-pressure generation such as the preservation of X-ray coherence, as well as the sample, pressure and temperature stability, are discussed, and the feasibility of high-pressure XPCS is demonstrated through results obtained on metallic glasses.
Collapse
Affiliation(s)
- Antoine Cornet
- Institut Néel, Université Grenoble Alpes and Centre National de la Recherche Scientifique, 25 rue des Martyrs – BP 166, 38042 Grenoble, France
| | - Alberto Ronca
- Institut Néel, Université Grenoble Alpes and Centre National de la Recherche Scientifique, 25 rue des Martyrs – BP 166, 38042 Grenoble, France
| | - Jie Shen
- Institut Néel, Université Grenoble Alpes and Centre National de la Recherche Scientifique, 25 rue des Martyrs – BP 166, 38042 Grenoble, France
| | - Federico Zontone
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Yuriy Chushkin
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Marco Cammarata
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Gaston Garbarino
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | | | | | - Thierry Deschamps
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-6922 Villeurbanne, France
| | - Beatrice Ruta
- Institut Néel, Université Grenoble Alpes and Centre National de la Recherche Scientifique, 25 rue des Martyrs – BP 166, 38042 Grenoble, France
| |
Collapse
|
14
|
Weldon R, Wang F. Water Potential from Adaptive Force Matching for Ice and Liquid with Revised Dispersion Predicts Supercooled Liquid Anomalies in Good Agreement with Two Independent Experimental Fits. J Phys Chem B 2024; 128:3398-3407. [PMID: 38536126 PMCID: PMC11017247 DOI: 10.1021/acs.jpcb.3c06495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
A revised version of the Water potential from Adaptive force matching for Ice and Liquid (WAIL) was developed by using the previous data set for fitting the WAIL model but with a dispersion term calculated using symmetry adapted perturbation theory (SAPT). The model has no adjustable parameters and relies solely on fitting first-principles information. The new model, named revised WAIL (rWAIL), shows improved predictions of most properties of water when compared to the previously published WAIL model. The rWAIL model also compares favorably to other first-principles-derived water models, such as MB-Pol, at only a fraction of the computational cost. The rWAIL model is used to study the properties of supercooled water. The model shows evidence of a liquid-liquid phase transition (LLPT) in the supercooled regimes with the liquid-liquid critical point (LLCP) at 203 K and 90 MPa. This estimate is in good agreement with a recent polynomial fit to the experimental density of water. Also, the fit to the surface tension of supercooled water based on the rWAIL model shows excellent agreement with the corresponding fit to the experimental data. Consistent with previously published molecular dynamics and experimental data, the surface tension of water exhibits exponential growth in the supercooled regime, which is likely a result of the emergence of a low-density liquid form of water. The simulation thus unites two separate experimental fits with one first-principles-based model, lending strong evidence of an LLPT in real water.
Collapse
Affiliation(s)
- Raymond Weldon
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Feng Wang
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
15
|
Eltareb A, Lopez GE, Giovambattista N. A continuum of amorphous ices between low-density and high-density amorphous ice. Commun Chem 2024; 7:36. [PMID: 38378859 PMCID: PMC10879119 DOI: 10.1038/s42004-024-01117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Amorphous ices are usually classified as belonging to low-density or high-density amorphous ice (LDA and HDA) with densities ρLDA ≈ 0.94 g/cm3 and ρHDA ≈ 1.15-1.17 g/cm3. However, a recent experiment crushing hexagonal ice (ball-milling) produced a medium-density amorphous ice (MDA, ρMDA ≈ 1.06 g/cm3) adding complexity to our understanding of amorphous ice and the phase diagram of supercooled water. Motivated by the discovery of MDA, we perform computer simulations where amorphous ices are produced by isobaric cooling and isothermal compression/decompression. Our results show that, depending on the pressure employed, isobaric cooling can generate a continuum of amorphous ices with densities that expand in between those of LDA and HDA (briefly, intermediate amorphous ices, IA). In particular, the IA generated at P ≈ 125 MPa has a remarkably similar density and average structure as MDA, implying that MDA is not unique. Using the potential energy landscape formalism, we provide an intuitive qualitative understanding of the nature of LDA, HDA, and the IA generated at different pressures. In this view, LDA and HDA occupy specific and well-separated regions of the PEL; the IA prepared at P = 125 MPa is located in the intermediate region of the PEL that separates LDA and HDA.
Collapse
Affiliation(s)
- Ali Eltareb
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY, 11210, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Gustavo E Lopez
- Department of Chemistry, Lehman College of the City University of New York, Bronx, NY, 10468, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY, 11210, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
16
|
Finney JL. The structure of water: A historical perspective. J Chem Phys 2024; 160:060901. [PMID: 38341786 DOI: 10.1063/5.0182665] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/11/2024] [Indexed: 02/13/2024] Open
Abstract
Attempts to understand the molecular structure of water were first made well over a century ago. Looking back at the various attempts, it is illuminating to see how these were conditioned by the state of knowledge of chemistry and physics at the time and the experimental and theoretical tools then available. Progress in the intervening years has been facilitated by not only conceptual and theoretical advances in physics and chemistry but also the development of experimental techniques and instrumentation. Exploitation of powerful computational methods in interpreting what at first sight may seem impenetrable experimental data has led us to the consistent and detailed picture we have today of not only the structure of liquid water itself and how it changes with temperature and pressure but also its interactions with other molecules, in particular those relevant to water's role in important chemical and biological processes. Much remains to be done in the latter areas, but the experimental and computational techniques that now enable us to do what might reasonably be termed "liquid state crystallography" have opened the door to make possible further advances. Consequently, we now have the tools to explore further the role of water in those processes that underpin life itself-the very prospect that inspired Bernal to develop his ideas on the structure of liquids in general and of water in particular.
Collapse
Affiliation(s)
- John L Finney
- Department of Physics and Astronomy and London Centre for Nanotechnology, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
17
|
Chèvremont W, Zinn T, Narayanan T. Improvement of ultra-small-angle XPCS with the Extremely Brilliant Source. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:65-76. [PMID: 37933847 PMCID: PMC10833426 DOI: 10.1107/s1600577523008627] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/01/2023] [Indexed: 11/08/2023]
Abstract
Recent technical developments and the performance of the X-ray photon correlation spectroscopy (XPCS) method over the ultra-small-angle range with the Extremely Brilliant Source (EBS) at the ESRF are described. With higher monochromatic coherent photon flux (∼1012 photons s-1) provided by the EBS and the availability of a fast pixel array detector (EIGER 500K detector operating at 23000 frames s-1), XPCS has become more competitive for probing faster dynamics in relatively dilute suspensions. One of the goals of the present development is to increase the user-friendliness of the method. This is achieved by means of a Python-based graphical user interface that enables online visualization and analysis of the processed data. The improved performance of XPCS on the Time-Resolved Ultra-Small-Angle X-ray Scattering instrument (ID02 beamline) is demonstrated using dilute model colloidal suspensions in several different applications.
Collapse
Affiliation(s)
- William Chèvremont
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Thomas Zinn
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | | |
Collapse
|
18
|
Li H, Ladd-Parada M, Karina A, Dallari F, Reiser M, Perakis F, Striker NN, Sprung M, Westermeier F, Grübel G, Steffen W, Lehmkühler F, Amann-Winkel K. Intrinsic Dynamics of Amorphous Ice Revealed by a Heterodyne Signal in X-ray Photon Correlation Spectroscopy Experiments. J Phys Chem Lett 2023; 14:10999-11007. [PMID: 38039400 PMCID: PMC10726389 DOI: 10.1021/acs.jpclett.3c02470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/04/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Unraveling the mechanism of water's glass transition and the interconnection between amorphous ices and liquid water plays an important role in our overall understanding of water. X-ray photon correlation spectroscopy (XPCS) experiments were conducted to study the dynamics and the complex interplay between the hypothesized glass transition in high-density amorphous ice (HDA) and the subsequent transition to low-density amorphous ice (LDA). Our XPCS experiments demonstrate that a heterodyne signal appears in the correlation function. Such a signal is known to originate from the interplay of a static component and a dynamic component. Quantitative analysis was performed on this heterodyne signal to extract the intrinsic dynamics of amorphous ice during the HDA-LDA transition. An angular dependence indicates non-isotropic, heterogeneous dynamics in the sample. Using the Stokes-Einstein relation to extract diffusion coefficients, the data are consistent with the scenario of static LDA islands floating within a diffusive matrix of high-density liquid water.
Collapse
Affiliation(s)
- Hailong Li
- Max-Planck-Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Marjorie Ladd-Parada
- Department
of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, SE-10691 Stockholm, Sweden
- Department
of Chemistry, KTH Royal Institute of Technology, Roslagstullsbacken 21, 11421 Stockholm, Sweden
| | - Aigerim Karina
- Department
of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, SE-10691 Stockholm, Sweden
| | - Francesco Dallari
- Deutsches
Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Mario Reiser
- Department
of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, SE-10691 Stockholm, Sweden
| | - Fivos Perakis
- Department
of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, SE-10691 Stockholm, Sweden
| | - Nele N. Striker
- Deutsches
Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches
Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches
Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gerhard Grübel
- Deutsches
Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Hamburg
Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- European
X-ray Free-Electron Laser, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Werner Steffen
- Max-Planck-Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Felix Lehmkühler
- Deutsches
Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Hamburg
Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Katrin Amann-Winkel
- Max-Planck-Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, SE-10691 Stockholm, Sweden
- Institute
of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
19
|
Czajka T, Neuhaus C, Alfken J, Stammer M, Chushkin Y, Pontoni D, Hoffmann C, Milovanovic D, Salditt T. Lipid vesicle pools studied by passive X-ray microrheology. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:123. [PMID: 38060069 PMCID: PMC10703982 DOI: 10.1140/epje/s10189-023-00375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Vesicle pools can form by attractive interaction in a solution, mediated by proteins or divalent ions such as calcium. The pools, which are alternatively also denoted as vesicle clusters, form by liquid-liquid phase separation (LLPS) from an initially homogeneous solution. Due to the short range liquid-like order of vesicles in the pool or cluster, the vesicle-rich phase can also be regarded as a condensate, and one would like to better understand not only the structure of these systems, but also their dynamics. The diffusion of vesicles, in particular, is expected to change when vesicles are arrested in a pool. Here we investigate whether passive microrheology based on X-ray photon correlation spectroscopy (XPCS) is a suitable tool to study model systems of artificial lipid vesicles exhibiting LLPS, and more generally also other heterogeneous biomolecular fluids. We show that by adding highly scattering tracer particles to the solution, valuable information on the single vesicle as well as collective dynamics can be inferred. While the correlation functions reveal freely diffusing tracer particles in solutions at low CaCl[Formula: see text] concentrations, the relaxation rate [Formula: see text] shows a nonlinear dependence on [Formula: see text] at a higher concentration of around 8 mM CaCl[Formula: see text], characterised by two linear regimes with a broad cross-over. We explain this finding based on arrested diffusion in percolating vesicle clusters.
Collapse
Affiliation(s)
- Titus Czajka
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Charlotte Neuhaus
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Jette Alfken
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Moritz Stammer
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Yuriy Chushkin
- European Synchrotron Radiation Facility, 38043, Grenoble Cedex 9, France
| | - Diego Pontoni
- European Synchrotron Radiation Facility, 38043, Grenoble Cedex 9, France
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
20
|
Fransson T, Pettersson LGM. Calibrating TDDFT Calculations of the X-ray Emission Spectrum of Liquid Water: The Effects of Hartree-Fock Exchange. J Chem Theory Comput 2023; 19:7333-7342. [PMID: 37787584 PMCID: PMC10601479 DOI: 10.1021/acs.jctc.3c00728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 10/04/2023]
Abstract
The structure and dynamics of liquid water continue to be debated, with insight provided by, among others, X-ray emission spectroscopy (XES), which shows a split in the high-energy 1b1 feature. This split is yet to be reproduced by theory, and it remains unclear if these difficulties are related to inaccuracies in dynamics simulations, spectrum calculations, or both. We investigate the performance of different methods for calculating XES of liquid water, focusing on the ability of time-dependent density functional theory (TDDFT) to reproduce reference spectra obtained by high-level coupled cluster and algebraic-diagrammatic construction scheme calculations. A metric for evaluating the agreement between theoretical spectra termed the integrated absolute difference (IAD), which considers the integral of shifted difference spectra, is introduced and used to investigate the performance of different exchange-correlation functionals. We find that computed spectra of symmetric and asymmetric model water structures are strongly and differently influenced by the amount of Hartree-Fock exchange, with best agreement to reference spectra for ∼40-50%. Lower percentages tend to yield high density of contributing states, resulting in too broad features. The method introduced here is useful also for other spectrum calculations, in particular where the performance for ensembles of structures are evaluated.
Collapse
Affiliation(s)
- Thomas Fransson
- Department of Physics, AlbaNova
University Center, Stockholm University, 109 61 Stockholm, Sweden
| | - Lars G. M. Pettersson
- Department of Physics, AlbaNova
University Center, Stockholm University, 109 61 Stockholm, Sweden
| |
Collapse
|
21
|
Radić D, Peterlechner M, Spangenberg K, Posselt M, Bracht H. Challenges of Electron Correlation Microscopy on Amorphous Silicon and Amorphous Germanium. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1579-1594. [PMID: 37632736 DOI: 10.1093/micmic/ozad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/17/2023] [Accepted: 08/06/2023] [Indexed: 08/28/2023]
Abstract
Electron correlation microscopy experiments were conducted on amorphous germanium (a-Ge) and amorphous silicon (a-Si) with the goal to study self-diffusion. For this purpose, a series of tilted dark-field images were acquired during in situ heating of the samples in a transmission electron microscope. These experiments show that the measurements are greatly affected by artefacts. Contamination, crystallization, electron beam-induced sputtering, and macroscopic bending of the samples pose major obstacles to the measurements. Other, more subtle experimental artefacts could occur in addition to these which makes interpretations regarding the structural dynamics nearly impossible. The data were nonetheless evaluated to see if some useful information could be extracted. One such result is that the distribution of the characteristic times τKWW, which were obtained from stretched exponential fits to the intensity autocorrelation data, is spatially heterogeneous. This spatial heterogeneity is assumed to be caused by a potential nonergodicity of the materials, the artefacts or an inhomogeneous amorphous structure. Further data processing shows that the characteristic times τKWW are moreover temperature independent, especially for the a-Ge data. It is concluded that the structural rearrangements over time are primarily electron beam-driven and that diffusive dynamics are too slow to be measured at the chosen, experimentally accessible annealing temperatures.
Collapse
Affiliation(s)
- Dražen Radić
- Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, Münster, 48149 North Rhine-Westphalia, Germany
| | - Martin Peterlechner
- Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, Münster, 48149 North Rhine-Westphalia, Germany
| | - Katharina Spangenberg
- Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, Münster, 48149 North Rhine-Westphalia, Germany
| | - Matthias Posselt
- Ion Induced Nanostructures, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328 Saxony, Germany
| | - Hartmut Bracht
- Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, Münster, 48149 North Rhine-Westphalia, Germany
| |
Collapse
|
22
|
Zhang X, Lou H, Ruta B, Chushkin Y, Zontone F, Li S, Xu D, Liang T, Zeng Z, Mao HK, Zeng Q. Pressure-induced nonmonotonic cross-over of steady relaxation dynamics in a metallic glass. Proc Natl Acad Sci U S A 2023; 120:e2302281120. [PMID: 37276419 PMCID: PMC10268294 DOI: 10.1073/pnas.2302281120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/14/2023] [Indexed: 06/07/2023] Open
Abstract
Relaxation dynamics, as a key to understand glass formation and glassy properties, remains an elusive and challenging issue in condensed matter physics. In this work, in situ high-pressure synchrotron high-energy X-ray photon correlation spectroscopy has been developed to probe the atomic-scale relaxation dynamics of a cerium-based metallic glass during compression. Although the sample density continuously increases, the collective atomic motion initially slows down as generally expected and then counterintuitively accelerates with further compression (density increase), showing an unusual nonmonotonic pressure-induced steady relaxation dynamics cross-over at ~3 GPa. Furthermore, by combining in situ high-pressure synchrotron X-ray diffraction, the relaxation dynamics anomaly is evidenced to closely correlate with the dramatic changes in local atomic structures during compression, rather than monotonically scaling with either sample density or overall stress level. These findings could provide insight into relaxation dynamics and their relationship with local atomic structures of glasses.
Collapse
Affiliation(s)
- Xin Zhang
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
| | - Hongbo Lou
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
| | - Beatrice Ruta
- Université Lyon, Université Claude Bernard Lyon 1, Centre national de la recherche scientifique, Institut Lumière Matière, Campus LyonTech–La Doua, LyonF-69622, France
| | - Yuriy Chushkin
- European Synchrotron Radiation Facility-The European Synchrotron, GrenobleCS 40220, 38043, France
| | - Federico Zontone
- European Synchrotron Radiation Facility-The European Synchrotron, GrenobleCS 40220, 38043, France
| | - Shubin Li
- Université Lyon, Université Claude Bernard Lyon 1, Centre national de la recherche scientifique, Institut Lumière Matière, Campus LyonTech–La Doua, LyonF-69622, France
| | - Dazhe Xu
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
| | - Tao Liang
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
| | - Zhidan Zeng
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
| | - Ho-kwang Mao
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
- Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments, Shanghai Advanced Research in Physical Sciences, Shanghai201203, China
| | - Qiaoshi Zeng
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
- Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments, Shanghai Advanced Research in Physical Sciences, Shanghai201203, China
| |
Collapse
|
23
|
Bin M, Reiser M, Filianina M, Berkowicz S, Das S, Timmermann S, Roseker W, Bauer R, Öström J, Karina A, Amann-Winkel K, Ladd-Parada M, Westermeier F, Sprung M, Möller J, Lehmkühler F, Gutt C, Perakis F. Coherent X-ray Scattering Reveals Nanoscale Fluctuations in Hydrated Proteins. J Phys Chem B 2023. [PMID: 37209106 DOI: 10.1021/acs.jpcb.3c02492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hydrated proteins undergo a transition in the deeply supercooled regime, which is attributed to rapid changes in hydration water and protein structural dynamics. Here, we investigate the nanoscale stress-relaxation in hydrated lysozyme proteins stimulated and probed by X-ray Photon Correlation Spectroscopy (XPCS). This approach allows us to access the nanoscale dynamics in the deeply supercooled regime (T = 180 K), which is typically not accessible through equilibrium methods. The observed stimulated dynamic response is attributed to collective stress-relaxation as the system transitions from a jammed granular state to an elastically driven regime. The relaxation time constants exhibit Arrhenius temperature dependence upon cooling with a minimum in the Kohlrausch-Williams-Watts exponent at T = 227 K. The observed minimum is attributed to an increase in dynamical heterogeneity, which coincides with enhanced fluctuations observed in the two-time correlation functions and a maximum in the dynamic susceptibility quantified by the normalized variance χT. The amplification of fluctuations is consistent with previous studies of hydrated proteins, which indicate the key role of density and enthalpy fluctuations in hydration water. Our study provides new insights into X-ray stimulated stress-relaxation and the underlying mechanisms behind spatiotemporal fluctuations in biological granular materials.
Collapse
Affiliation(s)
- Maddalena Bin
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Mario Reiser
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Mariia Filianina
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Sharon Berkowicz
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Sudipta Das
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Sonja Timmermann
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Wojciech Roseker
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Robert Bauer
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
- Freiberg Water Research Center, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Jonatan Öström
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Aigerim Karina
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Physics, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Marjorie Ladd-Parada
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Johannes Möller
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
24
|
Kringle L, Kay BD, Kimmel GA. Dynamic Heterogeneity and Kovacs' Memory Effects in Supercooled Water. J Phys Chem B 2023; 127:3919-3930. [PMID: 37097190 DOI: 10.1021/acs.jpcb.3c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Understanding the properties of supercooled water is important for developing a comprehensive theory for liquid water and amorphous ices. Because of rapid crystallization for deeply supercooled water, experiments on it are typically carried out under conditions in which the temperature and/or pressure are rapidly changing. As a result, information on the structural relaxation kinetics of supercooled water as it approaches (metastable) equilibrium is useful for interpreting results obtained in this experimentally challenging region of phase space. We used infrared spectroscopy and the fast time resolution obtained by transiently heating nanoscale water films to investigate relaxation kinetics (aging) in supercooled water. When the structural relaxation of the water films was followed using a temperature jump protocol analogous to the classic experiments of Kovacs, similar memory effects were observed. In particular, after suitable aging at one temperature, water's structure displayed an extremum versus the number of heat pulses upon changing to a second temperature before eventually relaxing to a steady-state structure characteristic of that temperature. A random double well model based on the idea of dynamic heterogeneity in supercooled water accounts for the observations.
Collapse
Affiliation(s)
- Loni Kringle
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Bruce D Kay
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Greg A Kimmel
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
25
|
de Oliveira PMC, de Souza JIR, da Silva JAB, Longo RL. Temperature Dependence of Hydrogen Bond Networks of Liquid Water: Thermodynamic Properties and Structural Heterogeneity from Topological Descriptors. J Phys Chem B 2023; 127:2250-2257. [PMID: 36877152 DOI: 10.1021/acs.jpcb.2c08873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Topological analyses of hydrogen bond networks were performed based on the complex network and island statistics of liquid water at different temperatures. The influence of temperature on the liquid water structures and the topological properties of the hydrogen bond networks was investigated by Metropolis Monte Carlo simulations with the TIP4P/2005 potential model. The bilinear behavior of the second peak in the radial distribution function with the temperature was properly reproduced by these simulations. The average connectivity also displayed a bilinear behavior consistent with being a local descriptor. The semiglobal average path length (or geodesic distance) descriptor showed an unprecedented trimodal distribution, whose areas were dependent on the temperature. Considering equilibrium between these three sets of networks, standard enthalpy and entropy of equilibrium were determined for the first time, providing new insights into the structural heterogeneities of liquid water with interesting perspectives for modeling these quantitative properties of hydrogen bond networks.
Collapse
Affiliation(s)
- Paulo M C de Oliveira
- Núcleo Interdisciplinar de Ciências Exatas e da Natureza, Campus do Agreste. Universidade Federal de Pernambuco, 55.014-900 Caruaru, Pernambuco, Brazil
| | - Jéssica I R de Souza
- Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil
| | - Juliana A B da Silva
- Núcleo Interdisciplinar de Ciências Exatas e da Natureza, Campus do Agreste. Universidade Federal de Pernambuco, 55.014-900 Caruaru, Pernambuco, Brazil.,Programa de Pós-Graduação em Química, Universidade Federal Rural de Pernambuco, 52.171-900 Recife, Pernambuco, Brazil
| | - Ricardo L Longo
- Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil.,Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50740-540 Recife, Pernambuco, Brazil
| |
Collapse
|
26
|
Rosu-Finsen A, Davies MB, Amon A, Wu H, Sella A, Michaelides A, Salzmann CG. Medium-density amorphous ice. Science 2023; 379:474-478. [PMID: 36730416 DOI: 10.1126/science.abq2105] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/29/2022] [Indexed: 02/04/2023]
Abstract
Amorphous ices govern a range of cosmological processes and are potentially key materials for explaining the anomalies of liquid water. A substantial density gap between low-density and high-density amorphous ice with liquid water in the middle is a cornerstone of our current understanding of water. However, we show that ball milling "ordinary" ice Ih at low temperature gives a structurally distinct medium-density amorphous ice (MDA) within this density gap. These results raise the possibility that MDA is the true glassy state of liquid water or alternatively a heavily sheared crystalline state. Notably, the compression of MDA at low temperature leads to a sharp increase of its recrystallization enthalpy, highlighting that H2O can be a high-energy geophysical material.
Collapse
Affiliation(s)
| | - Michael B Davies
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Alfred Amon
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Han Wu
- Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Andrea Sella
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Angelos Michaelides
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | |
Collapse
|
27
|
Takahashi O, Pettersson LGM. Dynamical and interference effects in X-ray emission spectroscopy of H-bonded water – origin of the split lone-pair peaks. Mol Phys 2023. [DOI: 10.1080/00268976.2023.2170686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Osamu Takahashi
- Basic Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | - Lars G. M. Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm, Sweden
| |
Collapse
|
28
|
Amann-Winkel K, Kim KH, Giovambattista N, Ladd-Parada M, Späh A, Perakis F, Pathak H, Yang C, Eklund T, Lane TJ, You S, Jeong S, Lee JH, Eom I, Kim M, Park J, Chun SH, Poole PH, Nilsson A. Liquid-liquid phase separation in supercooled water from ultrafast heating of low-density amorphous ice. Nat Commun 2023; 14:442. [PMID: 36707522 PMCID: PMC9883474 DOI: 10.1038/s41467-023-36091-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Recent experiments continue to find evidence for a liquid-liquid phase transition (LLPT) in supercooled water, which would unify our understanding of the anomalous properties of liquid water and amorphous ice. These experiments are challenging because the proposed LLPT occurs under extreme metastable conditions where the liquid freezes to a crystal on a very short time scale. Here, we analyze models for the LLPT to show that coexistence of distinct high-density and low-density liquid phases may be observed by subjecting low-density amorphous (LDA) ice to ultrafast heating. We then describe experiments in which we heat LDA ice to near the predicted critical point of the LLPT by an ultrafast infrared laser pulse, following which we measure the structure factor using femtosecond x-ray laser pulses. Consistent with our predictions, we observe a LLPT occurring on a time scale < 100 ns and widely separated from ice formation, which begins at times >1 μs.
Collapse
Affiliation(s)
- Katrin Amann-Winkel
- grid.10548.380000 0004 1936 9377Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden ,grid.419547.a0000 0001 1010 1663Max Planck Institute for Polymer Research and Johannes Gutenberg University, 55128 Mainz, Germany
| | - Kyung Hwan Kim
- grid.49100.3c0000 0001 0742 4007Department of Chemistry, POSTECH, Pohang, 37673 Republic of Korea
| | - Nicolas Giovambattista
- grid.183006.c0000 0001 0671 7844Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY 11210 USA ,grid.253482.a0000 0001 0170 7903The Graduate Center of the City University of New York, New York, NY 10016 USA
| | - Marjorie Ladd-Parada
- grid.10548.380000 0004 1936 9377Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden ,grid.411313.50000 0004 0512 3288Present Address: Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden
| | - Alexander Späh
- grid.10548.380000 0004 1936 9377Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fivos Perakis
- grid.10548.380000 0004 1936 9377Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Harshad Pathak
- grid.10548.380000 0004 1936 9377Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Cheolhee Yang
- grid.49100.3c0000 0001 0742 4007Department of Chemistry, POSTECH, Pohang, 37673 Republic of Korea
| | - Tobias Eklund
- grid.10548.380000 0004 1936 9377Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Thomas J. Lane
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 USA
| | - Seonju You
- grid.49100.3c0000 0001 0742 4007Department of Chemistry, POSTECH, Pohang, 37673 Republic of Korea
| | - Sangmin Jeong
- grid.49100.3c0000 0001 0742 4007Department of Chemistry, POSTECH, Pohang, 37673 Republic of Korea
| | - Jae Hyuk Lee
- grid.49100.3c0000 0001 0742 4007Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Intae Eom
- grid.49100.3c0000 0001 0742 4007Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Minseok Kim
- grid.49100.3c0000 0001 0742 4007Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Jaeku Park
- grid.49100.3c0000 0001 0742 4007Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Sae Hwan Chun
- grid.49100.3c0000 0001 0742 4007Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Peter H. Poole
- grid.264060.60000 0004 1936 7363Department of Physics, St. Francis Xavier University, Antigonish, NS B2G2W5 Canada
| | - Anders Nilsson
- grid.10548.380000 0004 1936 9377Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
29
|
Jo W, Stern S, Westermeier F, Rysov R, Riepp M, Schmehr J, Lange J, Becker J, Sprung M, Laurus T, Graafsma H, Lokteva I, Grübel G, Roseker W. Single and multi-pulse based X-ray photon correlation spectroscopy. OPTICS EXPRESS 2023; 31:3315-3324. [PMID: 36785327 DOI: 10.1364/oe.477774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
The ability of pulsed nature of synchrotron radiation opens up the possibility of studying microsecond dynamics in complex materials via speckle-based techniques. Here, we present the study of measuring the dynamics of a colloidal system by combining single and multiple X-ray pulses of a storage ring. In addition, we apply speckle correlation techniques at various pulse patterns to collect correlation functions from nanoseconds to milliseconds. The obtained sample dynamics from all correlation techniques at different pulse patterns are in very good agreement with the expected dynamics of Brownian motions of silica nanoparticles in water. Our study will pave the way for future pulsed X-ray investigations at various synchrotron X-ray sources using individual X-ray pulse patterns.
Collapse
|
30
|
Jedrecy A, Saitta AM, Pietrucci F. Free energy calculations and unbiased molecular dynamics targeting the liquid-liquid transition in water no man's land. J Chem Phys 2023; 158:014502. [PMID: 36610960 DOI: 10.1063/5.0120789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The existence of a first-order phase transition between a low-density liquid (LDL) and a high-density liquid (HDL) form of supercooled water has been a central and highly debated issue of physics and chemistry for the last three decades. We present a computational study that allows us to determine the free-energy landscapes of supercooled water over a wide range of pressure and temperature conditions using the TIP4P/2005 force field. Our approach combines topology-based structural transformation coordinates, state-of-the-art free-energy calculation methods, and extensive unbiased molecular dynamics. All our diverse simulations cannot detect any barrier within the investigated timescales and system size, for a discontinuous transition between the LDL and HDL forms throughout the so-called "no man's land," until the onset of the solid, non-diffusive amorphous forms.
Collapse
Affiliation(s)
- Alexandre Jedrecy
- Insitut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, CNRS, MNHN, UMR 7590, Paris, France
| | - A Marco Saitta
- Insitut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, CNRS, MNHN, UMR 7590, Paris, France
| | - Fabio Pietrucci
- Insitut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, CNRS, MNHN, UMR 7590, Paris, France
| |
Collapse
|
31
|
Sacchi M, Tamtögl A. Water adsorption and dynamics on graphene and other 2D materials: Computational and experimental advances. ADVANCES IN PHYSICS: X 2022; 8:2134051. [PMID: 36816858 PMCID: PMC7614201 DOI: 10.1080/23746149.2022.2134051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/18/2023] Open
Abstract
The interaction of water and surfaces, at molecular level, is of critical importance for understanding processes such as corrosion, friction, catalysis and mass transport. The significant literature on interactions with single crystal metal surfaces should not obscure unknowns in the unique behaviour of ice and the complex relationships between adsorption, diffusion and long-range inter-molecular interactions. Even less is known about the atomic-scale behaviour of water on novel, non-metallic interfaces, in particular on graphene and other 2D materials. In this manuscript, we review recent progress in the characterisation of water adsorption on 2D materials, with a focus on the nano-material graphene and graphitic nanostructures; materials which are of paramount importance for separation technologies, electrochemistry and catalysis, to name a few. The adsorption of water on graphene has also become one of the benchmark systems for modern computational methods, in particular dispersion-corrected density functional theory (DFT). We then review recent experimental and theoretical advances in studying the single-molecular motion of water at surfaces, with a special emphasis on scattering approaches as they allow an unparalleled window of observation to water surface motion, including diffusion, vibration and self-assembly.
Collapse
Affiliation(s)
- M. Sacchi
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, UK
| | - A. Tamtögl
- Institute of Experimental Physics, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
32
|
Ladd-Parada M, Li H, Karina A, Kim KH, Perakis F, Reiser M, Dallari F, Striker N, Sprung M, Westermeier F, Grübel G, Nilsson A, Lehmkühler F, Amann-Winkel K. Using coherent X-rays to follow dynamics in amorphous ices. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:1314-1323. [PMID: 36561555 PMCID: PMC9648632 DOI: 10.1039/d2ea00052k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/23/2022] [Indexed: 12/25/2022]
Abstract
Amorphous solid water plays an important role in our overall understanding of water's phase diagram. X-ray scattering is an important tool for characterising the different states of water, and modern storage ring and XFEL facilities have opened up new pathways to simultaneously study structure and dynamics. Here, X-ray photon correlation spectroscopy (XPCS) was used to study the dynamics of high-density amorphous (HDA) ice upon heating. We follow the structural transition from HDA to low-density amorphous (LDA) ice, by using wide-angle X-ray scattering (WAXS), for different heating rates. We used a new type of sample preparation, which allowed us to study μm-sized ice layers rather than powdered bulk samples. The study focuses on the non-equilibrium dynamics during fast heating, spontaneous transformation and crystallization. Performing the XPCS study at ultra-small angle (USAXS) geometry allows us to characterize the transition dynamics at length scales ranging from 60 nm-800 nm. For the HDA-LDA transition we observe a clear separation in three dynamical regimes, which show different dynamical crossovers at different length scales. The crystallization from LDA, instead, is observed to appear homogenously throughout the studied length scales.
Collapse
Affiliation(s)
- Marjorie Ladd-Parada
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden
| | - Hailong Li
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden,Max-Planck-Institute for Polymer ResearchAckermannweg 1055128 MainzGermany
| | - Aigerim Karina
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden
| | - Kyung Hwan Kim
- Department of ChemistryPOSTECHPohang 37673Republic of Korea
| | - Fivos Perakis
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden
| | - Mario Reiser
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden
| | - Francesco Dallari
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607 HamburgGermany
| | - Nele Striker
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607 HamburgGermany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607 HamburgGermany
| | | | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607 HamburgGermany,Hamburg Centre for Ultrafast ImagingLuruper Chaussee 14922761 HamburgGermany
| | - Anders Nilsson
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607 HamburgGermany,Hamburg Centre for Ultrafast ImagingLuruper Chaussee 14922761 HamburgGermany
| | - Katrin Amann-Winkel
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden,Max-Planck-Institute for Polymer ResearchAckermannweg 1055128 MainzGermany,Institute of Physics, Johannes Gutenberg University MainzStaudingerweg 755128 MainzGermany
| |
Collapse
|
33
|
Russo CJ, Dickerson JL, Naydenova K. Cryomicroscopy in situ: what is the smallest molecule that can be directly identified without labels in a cell? Faraday Discuss 2022; 240:277-302. [PMID: 35913392 PMCID: PMC9642008 DOI: 10.1039/d2fd00076h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 01/09/2023]
Abstract
Electron cryomicroscopy (cryoEM) has made great strides in the last decade, such that the atomic structure of most biological macromolecules can, at least in principle, be determined. Major technological advances - in electron imaging hardware, data analysis software, and cryogenic specimen preparation technology - continue at pace and contribute to the exponential growth in the number of atomic structures determined by cryoEM. It is now conceivable that within the next decade we will have structures for hundreds of thousands of unique protein and nucleic acid molecular complexes. But the answers to many important questions in biology would become obvious if we could identify these structures precisely inside cells with quantifiable error. In the context of an abundance of known structures, it is appropriate to consider the current state of electron cryomicroscopy for frozen specimens prepared directly from cells, and try to answer to the question of the title, both now and in the foreseeable future.
Collapse
Affiliation(s)
- Christopher J Russo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Joshua L Dickerson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Katerina Naydenova
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
34
|
Tsochantaris E, Muthachikavil AV, Peng B, Liang X, Kontogeorgis GM. Multiple insights call for revision of modern thermodynamic models to account for structural fluctuations in water. AIChE J 2022; 68:e17891. [PMID: 36591369 PMCID: PMC9787682 DOI: 10.1002/aic.17891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023]
Abstract
Modern thermodynamic models incorporate the concept of association (hydrogen bonding) and they can describe very satisfactorily many properties of water containing mixtures. They have not been successful in representing water's anomalous properties and this work provides a possible explanation. We have analyzed and interpreted recent experimental data, molecular simulation results, and two-state theory approaches and compared against the predictions from thermodynamic models. We show that the dominance of the tetrahedral structure implemented in modern thermodynamic models may be the reason for their failure for describing water systems. While this study does not prove the two-state theories for water, it indicates that a high level of tetrahedral structure of water is not in agreement with water's anomalous properties when used in thermodynamic models.
Collapse
Affiliation(s)
- Evangelos Tsochantaris
- Department of Chemical and Biochemical Engineering, Center for Energy Resources EngineeringTechnical University of DenmarkLyngbyDenmark
| | - Aswin V. Muthachikavil
- Department of Chemical and Biochemical Engineering, Center for Energy Resources EngineeringTechnical University of DenmarkLyngbyDenmark
| | - Baoliang Peng
- Research Institute of Petroleum Exploration & Development (RIPED), PetroChinaBeijingChina
| | - Xiaodong Liang
- Department of Chemical and Biochemical Engineering, Center for Energy Resources EngineeringTechnical University of DenmarkLyngbyDenmark
| | - Georgios M. Kontogeorgis
- Department of Chemical and Biochemical Engineering, Center for Energy Resources EngineeringTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
35
|
Karina A, Eklund T, Tonauer CM, Li H, Loerting T, Amann-Winkel K. Infrared Spectroscopy on Equilibrated High-Density Amorphous Ice. J Phys Chem Lett 2022; 13:7965-7971. [PMID: 35981100 PMCID: PMC9442797 DOI: 10.1021/acs.jpclett.2c02074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/10/2022] [Indexed: 05/27/2023]
Abstract
High-density (HDA) and low-density amorphous ices (LDA) are believed to be counterparts of the high- and low-density liquid phases of water, respectively. In order to better understand how the vibrational modes change during the transition between the two solid states, we present infrared spectroscopy measurements, following the change of the decoupled OD-stretch (vOD) (∼2460 cm-1) and OH-combinational mode (vOH + v2, vOH + 2vR) (∼5000 cm-1). We observe a redshift from HDA to LDA, accompanied with a drastic decrease of the bandwidth. The hydrogen bonds are stronger in LDA, which is caused by a change in the coordination number and number of water molecules interstitial between the first and second hydration shell. The unusually broad uncoupled OD band also clearly distinguishes HDA from other crystalline high-pressure phases, while the shape and position of the in situ prepared LDA are comparable to those of vapor-deposited amorphous ice.
Collapse
Affiliation(s)
- Aigerim Karina
- Department
of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Tobias Eklund
- Department
of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- Institute
of Physics, Johannes Gutenberg University
Mainz, 55128 Mainz, Germany
| | - Christina M. Tonauer
- Institute
of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Hailong Li
- Max-Planck-Institute
for Polymer Research, 55128 Mainz, Germany
| | - Thomas Loerting
- Institute
of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Katrin Amann-Winkel
- Department
of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- Institute
of Physics, Johannes Gutenberg University
Mainz, 55128 Mainz, Germany
- Max-Planck-Institute
for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
36
|
Bachler J, Giebelmann J, Amann-Winkel K, Loerting T. Pressure-annealed high-density amorphous ice made from vitrified water droplets: A systematic calorimetry study on water's second glass transition. J Chem Phys 2022; 157:064502. [DOI: 10.1063/5.0100571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In previous work, water's second glass transition was investigated based on an amorphous sample made from crystalline ice (Amann-Winkel et al., Proc. Natl. Acad. Sci. U.S.A. 110 (44) 17720-17725). In the present work, we investigate water's second glass transition based on the genuine glassy state of high-density water as prepared from micron-sized liquid water droplets, avoiding crystallinity at all stages. All the calorimetric features of water's second glass transition observed in the previous work are also observed here on the genuine glassy samples. This suggests that the glass transition indeed thermodynamically links amorphous ices continuously with deeply supercooled water. We proceed to extend the earlier study by investigating the effect of preparation history on the calorimetric glass transition temperature. The best samples prepared here feature both a lower glass transition temperature Tg,2 and a higher polyamorphic transition temperature Tons, thereby extending the range of thermal stability in which the deeply supercooled liquid can be observed by about 4 K. Just before the polyamorphic transition, we observe a spike-like increase of heat capacity that we interpret in terms of nucleation of low-density water. Without this spike, the width of water's second glass transition is 15 K, and the Δcp amounts to 3{plus minus}1 J K-1 mol-1, making the case for HDL being a strong liquid. We suggest that samples annealed at 1.9 GPa to 175 K and decompressed at 140 K to {greater than or equal to}0.10 GPa are free from such nuclei and represent the most ideal HDA glasses.
Collapse
Affiliation(s)
- Johannes Bachler
- University of Innsbruck Institute of Physical Chemistry, Austria
| | | | | | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Austria
| |
Collapse
|
37
|
Chu M, Li J, Zhang Q, Jiang Z, Dufresne EM, Sandy A, Narayanan S, Schwarz N. pyXPCSviewer: an open-source interactive tool for X-ray photon correlation spectroscopy visualization and analysis. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1122-1129. [PMID: 35787580 PMCID: PMC9255579 DOI: 10.1107/s1600577522004830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
pyXPCSviewer, a Python-based graphical user interface that is deployed at beamline 8-ID-I of the Advanced Photon Source for interactive visualization of XPCS results, is introduced. pyXPCSviewer parses rich X-ray photon correlation spectroscopy (XPCS) results into independent PyQt widgets that are both interactive and easy to maintain. pyXPCSviewer is open-source and is open to customization by the XPCS community for ingestion of diversified data structures and inclusion of novel XPCS techniques, both of which are growing demands particularly with the dawn of near-diffraction-limited synchrotron sources and their dedicated XPCS beamlines.
Collapse
Affiliation(s)
- Miaoqi Chu
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Jeffrey Li
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Qingteng Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Zhang Jiang
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Eric M. Dufresne
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Alec Sandy
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Suresh Narayanan
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Nicholas Schwarz
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| |
Collapse
|
38
|
Kinnibrugh T, Fister T. Structure of Sulfuric Acid Solutions Using Pair Distribution Function Analysis. J Phys Chem B 2022; 126:3099-3106. [PMID: 35435687 DOI: 10.1021/acs.jpcb.2c00523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solvation and mesoscale ordering of sulfuric acid and other strong acid solutions leads to suppressed freezing points and strong rheological changes with varying concentration. While the solid-state structures are well-understood, studies focused on the evolving solvation structure in the solution phase have probed a limited concentration range (∼1-6 M). This study applies a total scattering approach in both the wide-angle X-ray scattering (WAXS) and pair distribution function (PDF) regimes to elucidate the evolving solvation structure over its full range of acid concentration (0-18 M). The emergence of a prepeak in the WAXS regime at intermediate concentrations indicates a transition from noninteracting sulfate molecules in the dilute limit to sterically limited sulfates at concentrations near its deep eutectic point. Fits to the PDF data quantify this trend, showing a transition from octahedrally hydrated sulfates up to 6-7 M concentrations, followed by gradual dehydration, and eventually reaching a solution structure similar to that of water-in-salt electrolyte systems at high acid concentrations.
Collapse
Affiliation(s)
- Tiffany Kinnibrugh
- X-ray Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
| | - Tim Fister
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
39
|
Sheyfer D, Servis MJ, Zhang Q, Lal J, Loeffler T, Dufresne EM, Sandy AR, Narayanan S, Sankaranarayanan SKRS, Szczygiel R, Maj P, Soderholm L, Antonio MR, Stephenson GB. Advancing Chemical Separations: Unraveling the Structure and Dynamics of Phase Splitting in Liquid-Liquid Extraction. J Phys Chem B 2022; 126:2420-2429. [PMID: 35315675 DOI: 10.1021/acs.jpcb.1c09996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid-liquid extraction (LLE), the go-to process for a variety of chemical separations, is limited by spontaneous organic phase splitting upon sufficient solute loading, called third phase formation. In this study we explore the applicability of critical phenomena theory to gain insight into this deleterious phase behavior with the goal of improving separations efficiency and minimizing waste. A series of samples representative of rare earth purification were constructed to include each of one light and one heavy lanthanide (cerium and lutetium) paired with one of two common malonamide extractants (DMDOHEMA and DMDBTDMA). The resulting postextraction organic phases are chemically complex and often form rich hierarchical structures whose statics and dynamics near the critical point were probed herein with small-angle X-ray scattering and high-speed X-ray photon correlation spectroscopy. Despite their different extraction behaviors, all samples show remarkably similar critical behavior with exponents well described by classical critical point theory consistent with the 3D Ising model, where the critical behavior is characterized by fluctuations with a single diverging length scale. This unexpected result indicates a significant reduction in relevant chemical parameters at the critical point, indicating that the underlying behavior of phase transitions in LLE rely on far fewer variables than are generally assumed. The obtained scalar order parameter is attributed to the extractant fraction of the extractant/diluent mixture, revealing that other solution components and their respective concentrations simply shift the critical temperature but do not affect the nature of the critical fluctuations. These findings point to an opportunity to drastically simplify studies of liquid-liquid phase separation and phase diagram development in general while providing insights into LLE process improvement.
Collapse
Affiliation(s)
- D Sheyfer
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Michael J Servis
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Qingteng Zhang
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - J Lal
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - T Loeffler
- Nanoscale Science and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - E M Dufresne
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - A R Sandy
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - S Narayanan
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Subramanian K R S Sankaranarayanan
- Nanoscale Science and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607,United States
| | - R Szczygiel
- AGH University of Science and Technology, Krakow 30-059, Poland
| | - P Maj
- AGH University of Science and Technology, Krakow 30-059, Poland
| | - L Soderholm
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Mark R Antonio
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - G B Stephenson
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
40
|
Muthachikavil AV, Kontogeorgis GM, Liang X, Lei Q, Peng B. Structural characteristics of low-density environments in liquid water. Phys Rev E 2022; 105:034604. [PMID: 35428046 DOI: 10.1103/physreve.105.034604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The existence of two structural forms in liquid water has been a point of discussion for a long time. A phase transition between these two forms of liquid water has been proposed based on evidence from molecular simulations, and experiments have also been very recently able to track the proposed transition of the low-density liquid form to the high-density liquid form. We propose to use the average angle an oxygen atom makes with its neighbors to describe the structural environment of a water molecule. The distribution of this order parameter is observed to have two peaks with one peak at ∼109.5^{∘}, corresponding to the internal angle of a regular tetrahedron, indicating tetrahedral arrangement. The other peak corresponds to an environment with a tighter arrangement of neighboring molecules. The distribution of O-O-O angles is decomposed into two skewed distributions to estimate the fractions of the two liquid forms in water. A good similarity is observed between the temperature and pressure trends of fractions of locally favored tetrahedral structure (LFTS) form estimated using the new order parameter and the reports in the literature, over a range of temperatures and pressures. We also compare the structural environments indicated by different order parameters and find that the order parameter proposed in this paper captures the structure of first solvation shell of the LFTS accurately.
Collapse
Affiliation(s)
- Aswin V Muthachikavil
- Department of Chemical and Biochemical Engineering, Center for Energy Resources Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Georgios M Kontogeorgis
- Department of Chemical and Biochemical Engineering, Center for Energy Resources Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Xiaodong Liang
- Department of Chemical and Biochemical Engineering, Center for Energy Resources Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Qun Lei
- Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
| | - Baoliang Peng
- Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
| |
Collapse
|
41
|
Jo W, Rysov R, Westermeier F, Walther M, Müller L, Philippi-Kobs A, Riepp M, Marotzke S, Lokteva I, Sprung M, Grübel G, Roseker W. Demonstration of 3D photon correlation spectroscopy in the hard X-ray regime. OPTICS LETTERS 2022; 47:293-296. [PMID: 35030590 DOI: 10.1364/ol.444190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Three-dimensional photon correlation spectroscopy (3D PCS) is a well-known technique developed to suppress multiple scattering contributions in correlation functions, which are inevitably involved when an optical laser is employed to investigate dynamics in a turbid system. Here, we demonstrate a proof-of-principle study of 3D PCS in the hard X-ray regime. We employ an X-ray optical cross-correlator to measure the dynamics of silica colloidal nanoparticles dispersed in polypropylene glycol. The obtained cross correlation functions show very good agreement with auto-correlation measurements. This demonstration provides the foundation for X-ray speckle-based studies of very densely packed soft matter systems.
Collapse
|
42
|
Li H, Karina A, Ladd-Parada M, Späh A, Perakis F, Benmore C, Amann-Winkel K. Long-Range Structures of Amorphous Solid Water. J Phys Chem B 2021; 125:13320-13328. [PMID: 34846876 PMCID: PMC8667042 DOI: 10.1021/acs.jpcb.1c06899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
High-energy X-ray
diffraction (XRD) and Fourier transform infrared
spectroscopy (FTIR) of amorphous solid water (ASW) were studied during
vapor deposition and the heating process. From the diffraction patterns,
the oxygen–oxygen pair distribution functions (PDFs) were calculated
up to the eighth coordination shell and an r = 23 Å. The PDF of ASW obtained both during vapor deposition
at 80 K as well as the subsequent heating are consistent with that
of low-density amorphous ice. The formation and temperature-induced
collapse of micropores were observed in the XRD data and in the FTIR
measurements, more specifically, in the OH stretch and the dangling
mode. Above 140 K, ASW crystallizes into a stacking disordered ice,
Isd. It is observed that the fourth, fifth, and sixth peaks
in the PDF, corresponding to structural arrangements between 8 and
12 Å, are the most sensitive to the onset of crystallization.
Collapse
Affiliation(s)
- Hailong Li
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Aigerim Karina
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Marjorie Ladd-Parada
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Alexander Späh
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Chris Benmore
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| |
Collapse
|
43
|
Gallo P, Bachler J, Bove LE, Böhmer R, Camisasca G, Coronas LE, Corti HR, de Almeida Ribeiro I, de Koning M, Franzese G, Fuentes-Landete V, Gainaru C, Loerting T, de Oca JMM, Poole PH, Rovere M, Sciortino F, Tonauer CM, Appignanesi GA. Advances in the study of supercooled water. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:143. [PMID: 34825973 DOI: 10.1140/epje/s10189-021-00139-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
In this review, we report recent progress in the field of supercooled water. Due to its uniqueness, water presents numerous anomalies with respect to most simple liquids, showing polyamorphism both in the liquid and in the glassy state. We first describe the thermodynamic scenarios hypothesized for the supercooled region and in particular among them the liquid-liquid critical point scenario that has so far received more experimental evidence. We then review the most recent structural indicators, the two-state model picture of water, and the importance of cooperative effects related to the fact that water is a hydrogen-bonded network liquid. We show throughout the review that water's peculiar properties come into play also when water is in solution, confined, and close to biological molecules. Concerning dynamics, upon mild supercooling water behaves as a fragile glass former following the mode coupling theory, and it turns into a strong glass former upon further cooling. Connections between the slow dynamics and the thermodynamics are discussed. The translational relaxation times of density fluctuations show in fact the fragile-to-strong crossover connected to the thermodynamics arising from the existence of two liquids. When considering also rotations, additional crossovers come to play. Mobility-viscosity decoupling is also discussed in supercooled water and aqueous solutions. Finally, the polyamorphism of glassy water is considered through experimental and simulation results both in bulk and in salty aqueous solutions. Grains and grain boundaries are also discussed.
Collapse
Affiliation(s)
- Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy.
| | - Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Livia E Bove
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005, Paris, France
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Luis E Coronas
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Horacio R Corti
- Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Ingrid de Almeida Ribeiro
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
| | - Maurice de Koning
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
- Center for Computing in Engineering & Sciences, Universidade Estadual de Campinas, UNICAMP, 13083-861, Campinas, São Paulo, Brazil
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Violeta Fuentes-Landete
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | | | - Peter H Poole
- Department of Physics, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Francesco Sciortino
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Christina M Tonauer
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| |
Collapse
|
44
|
Berkowicz S, Perakis F. Exploring the validity of the Stokes-Einstein relation in supercooled water using nanomolecular probes. Phys Chem Chem Phys 2021; 23:25490-25499. [PMID: 34494639 DOI: 10.1039/d1cp02866a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The breakdown of Stokes-Einstein relation in liquid water is one of the many anomalies that take place upon cooling and indicates the decoupling of diffusion and viscosity. It is hypothesized that these anomalies manifest due to the appearance of nanometer-scale spatial fluctuations, which become increasingly pronounced in the supercooled regime. Here, we explore the validity of the Stokes-Einstein relation in supercooled water using nanomolecular probes. We capture the diffusive dynamics of the probes using dynamic light scattering and target dynamics at different length scales by varying the probe size, from ≈100 nm silica spheres to molecular-sized polyhydroxylated fullerenes (≈1 nm). We find that all the studied probes, independent of size, display similar diffusive dynamics with an Arrhenius activation energy of ≈23 kJ mol-1. Analysis of the diffusion coefficient further indicates that the probes, independent of their size, experience similar dynamic environment, which coincides with the macroscopic viscosity, while single water molecules effectively experience a comparatively lower viscosity. Finally, we conclude that our results indicate that the Stokes-Einstein relation is preserved for diffusion of probes in supercooled water T ≥ 260 K with size as small as ≈1 nm.
Collapse
Affiliation(s)
- Sharon Berkowicz
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
45
|
Lin C, Tse JS. High-Pressure Nonequilibrium Dynamics on Second-to-Microsecond Time Scales: Application of Time-Resolved X-ray Diffraction and Dynamic Compression in Ice. J Phys Chem Lett 2021; 12:8024-8038. [PMID: 34402625 DOI: 10.1021/acs.jpclett.1c01623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The study of nonequilibrium transition dynamics on structural transformation from the second to microsecond regime, a time scale between static and shock compression, is an emerging field of high-pressure research. There are ample opportunities to uncover novel physical phenomena within this time regime. Herein, we briefly review the development and application of a dynamic compression technique based on a diamond anvil cell (DAC) and time-resolved X-ray diffraction (TRXRD) for the study of time-, pressure-, and temperature-dependent structural dynamics. Applications of the techniques are illustrated with our recent investigations on the mechanisms of the interconversions between different high-pressure ice polymorphs. These examples demonstrate that a combination of dynamic compression and TRXRD is a versatile approach capable of providing information on the kinetics and thermodynamic nature associated with structural transformations. Future improvement of rapid compression and TRXRD techniques and potentially interesting research topics in this area are suggested.
Collapse
Affiliation(s)
- Chuanlong Lin
- Center for High-Pressure Science and Technology Advanced Research, Beijing 100094, P.R. China
| | - John S Tse
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| |
Collapse
|
46
|
Ahmed M, Blum M, Crumlin EJ, Geissler PL, Head-Gordon T, Limmer DT, Mandadapu KK, Saykally RJ, Wilson KR. Molecular Properties and Chemical Transformations Near Interfaces. J Phys Chem B 2021; 125:9037-9051. [PMID: 34365795 DOI: 10.1021/acs.jpcb.1c03756] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The properties of bulk water and aqueous solutions are known to change in the vicinity of an interface and/or in a confined environment, including the thermodynamics of ion selectivity at interfaces, transition states and pathways of chemical reactions, and nucleation events and phase growth. Here we describe joint progress in identifying unifying concepts about how air, liquid, and solid interfaces can alter molecular properties and chemical reactivity compared to bulk water and multicomponent solutions. We also discuss progress made in interfacial chemistry through advancements in new theory, molecular simulation, and experiments.
Collapse
Affiliation(s)
- Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Monika Blum
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ethan J Crumlin
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Phillip L Geissler
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David T Limmer
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kranthi K Mandadapu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Richard J Saykally
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
47
|
Ragulskaya A, Begam N, Girelli A, Rahmann H, Reiser M, Westermeier F, Sprung M, Zhang F, Gutt C, Schreiber F. Interplay between Kinetics and Dynamics of Liquid-Liquid Phase Separation in a Protein Solution Revealed by Coherent X-ray Spectroscopy. J Phys Chem Lett 2021; 12:7085-7090. [PMID: 34292744 DOI: 10.1021/acs.jpclett.1c01940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microscopic dynamics of complex fluids in the early stage of spinodal decomposition (SD) is strongly intertwined with the kinetics of structural evolution, which makes a quantitative characterization challenging. In this work, we use X-ray photon correlation spectroscopy to study the dynamics and kinetics of a protein solution undergoing liquid-liquid phase separation (LLPS). We demonstrate that in the early stage of SD, the kinetics relaxation is up to 40 times slower than the dynamics and thus can be decoupled. The microscopic dynamics can be well described by hyper-diffusive ballistic motions with a relaxation time exponentially growing with time in the early stage followed by a power-law increase with fluctuations. These experimental results are further supported by simulations based on the Cahn-Hilliard equation. The established framework is applicable to other condensed matter and biological systems undergoing phase transitions and may also inspire further theoretical work.
Collapse
Affiliation(s)
- Anastasia Ragulskaya
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Hendrik Rahmann
- Department Physik, Universität Siegen, Emmy-Noether-Campus, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Mario Reiser
- Department Physik, Universität Siegen, Emmy-Noether-Campus, Walter-Flex-Strasse 3, 57072 Siegen, Germany
- European X-ray Free-Electron Laser GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, Emmy-Noether-Campus, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
48
|
Cheng CH, Kamitani K, Masuda S, Uno K, Dechnarong N, Hoshino T, Kojio K, Takahara A. Dynamics of matrix-free nanocomposites consisting of block copolymer-grafted silica nanoparticles under elongation evaluated through X-ray photon correlation spectroscopy. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
From Femtoseconds to Hours—Measuring Dynamics over 18 Orders of Magnitude with Coherent X-rays. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136179] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
X-ray photon correlation spectroscopy (XPCS) enables the study of sample dynamics between micrometer and atomic length scales. As a coherent scattering technique, it benefits from the increased brilliance of the next-generation synchrotron radiation and Free-Electron Laser (FEL) sources. In this article, we will introduce the XPCS concepts and review the latest developments of XPCS with special attention on the extension of accessible time scales to sub-μs and the application of XPCS at FELs. Furthermore, we will discuss future opportunities of XPCS and the related technique X-ray speckle visibility spectroscopy (XSVS) at new X-ray sources. Due to its particular signal-to-noise ratio, the time scales accessible by XPCS scale with the square of the coherent flux, allowing to dramatically extend its applications. This will soon enable studies over more than 18 orders of magnitude in time by XPCS and XSVS.
Collapse
|
50
|
Manifestations of metastable criticality in the long-range structure of model water glasses. Nat Commun 2021; 12:3398. [PMID: 34099681 PMCID: PMC8185069 DOI: 10.1038/s41467-021-23639-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
Much attention has been devoted to water’s metastable phase behavior, including polyamorphism (multiple amorphous solid phases), and the hypothesized liquid-liquid transition and associated critical point. However, the possible relationship between these phenomena remains incompletely understood. Using molecular dynamics simulations of the realistic TIP4P/2005 model, we found a striking signature of the liquid-liquid critical point in the structure of water glasses, manifested as a pronounced increase in long-range density fluctuations at pressures proximate to the critical pressure. By contrast, these signatures were absent in glasses of two model systems that lack a critical point. We also characterized the departure from equilibrium upon vitrification via the non-equilibrium index; water-like systems exhibited a strong pressure dependence in this metric, whereas simple liquids did not. These results reflect a surprising relationship between the metastable equilibrium phenomenon of liquid-liquid criticality and the non-equilibrium structure of glassy water, with implications for our understanding of water phase behavior and glass physics. Our calculations suggest a possible experimental route to probing the existence of the liquid-liquid transition in water and other fluids. The subtle connections between water’s supercooled liquid and glassy states are difficult to characterize. Gartner et al. suggest with MD simulations that the long-range structure of glassy water may reflect signatures of water’s debated second critical point in the supercooled liquid.
Collapse
|