1
|
Vitry S, Mendia C, Maudoux A, El-Amraoui A. Advancing precision ear medicine: leveraging animal models for disease insights and therapeutic innovations. Mamm Genome 2025:10.1007/s00335-025-10126-y. [PMID: 40263131 DOI: 10.1007/s00335-025-10126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Gene therapy offers significant promise for treating inner ear disorders, but its clinical translation requires robust preclinical validation, often reliant on animal models. This review examines the role of these models in advancing gene therapeutics for inherited inner ear disorders, focusing on successes, challenges, and treatment solutions. By providing a precise understanding of disease mechanisms, these models offer a versatile preclinical platform that is essential for assessing and validating therapies. Successful gene supplementation and editing have shown potential in restoring hearing and balance functions and preventing their decline. However, challenges such as limitations in gene delivery methods, surgical access, immune responses, and discrepancies in disease manifestation between animal models and humans hinder clinical translation. Current efforts are dedicated to developing innovative strategies aimed at enhancing the efficiency of gene delivery, overcoming physical barriers such as the blood-labyrinth barrier, improving target specificity, and maximizing therapeutic efficacy while minimizing adverse immune responses. Diverse gene supplementation and editing strategies, along with evolving technologies, hold promise for maximizing therapeutic outcomes using disease relevant models. The future of inner ear gene therapeutics will hinge on personalized therapies and team science fueling interdisciplinary collaborations among researchers, clinicians, companies, and regulatory agencies to expedite the translation from bench to bedside and unlock the immense potential of precision medicine in the inner ear.
Collapse
Affiliation(s)
- Sandrine Vitry
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France.
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Paris, France.
| | - Clara Mendia
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France
- Collège Doctoral, Sorbonne Université, 75005, Paris, France
| | - Audrey Maudoux
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France
- Otolaryngology Department, Assistance Publique des Hôpitaux de Paris, Robert Debré University Hospital-APHP, Paris, France
| | - Aziz El-Amraoui
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France.
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Paris, France.
| |
Collapse
|
2
|
Iranfar S, Cornille M, Roldan MS, Plion B, Lecomte MJ, Safieddine S, Lahlou G. Cell tropism of adeno-associated viruses within the mouse inner ear in vivo: from embryonic to adult stages. Sci Rep 2025; 15:13479. [PMID: 40251388 PMCID: PMC12008179 DOI: 10.1038/s41598-025-98007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
Adeno-associated virus (AAV)-based gene therapy is emerging as a promising treatment for deafness and vestibular deficits, due to the variety of available serotypes that offer a large range of cell targeting capabilities. Nevertheless, the tropism of these AAV serotypes for sensory inner ear cells varies greatly as the cochlea matures, presenting a significant burden for successful preclinical trials. Therefore, identifying serotypes with strong tropism for cochlear and vestibular hair cells during key stages of development in mouse inner ear, the most widely used preclinical model, is essential for advancing clinical applications. We conducted a comparative analysis of the cellular tropism and hair-cell transduction rates of four AAV serotypes in the cochlea and vestibular organs during maturation. We used AAV2, AAV8, AAV9-PHP.eB, and Anc80L65 at the embryonic, neonatal, and adult stages. Our results indicate that the cell transduction rate of these four serotypes varies with age. Notably outer hair cells were mostly targeted during the embryonic stage, inner hair cells were primarily transduced principally at the mature stage, and vestibular hair cells were the most permissive at the neonatal stage. These results provide new insights for preclinical gene therapy studies for the inner ear with potential implications for therapeutic outcomes.
Collapse
Affiliation(s)
- Sepideh Iranfar
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, 63 Rue de Charenton, Paris, 75012, France
- Ecole Doctorale Physiologie, Physiopathologie et Thérapeutique, Sorbonne Université, Paris, France
| | - Maxence Cornille
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, 63 Rue de Charenton, Paris, 75012, France
| | - Mauricio Saenz Roldan
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, 63 Rue de Charenton, Paris, 75012, France
- Ecole Doctorale Physiologie, Physiopathologie et Thérapeutique, Sorbonne Université, Paris, France
| | - Baptiste Plion
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, 63 Rue de Charenton, Paris, 75012, France
| | - Marie-José Lecomte
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, 63 Rue de Charenton, Paris, 75012, France
| | - Saaid Safieddine
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, 63 Rue de Charenton, Paris, 75012, France.
- Centre National de la Recherche Scientifique, Paris, 75016, France.
| | - Ghizlene Lahlou
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, 63 Rue de Charenton, Paris, 75012, France
- Département d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, GHU Pitié-Salpêtrière, APHP Sorbonne Université, Paris, 75013, France
- Centre de Références Maladies Rares «Surdités génétiques», GHU Pitié-Salpêtrière, APHP, Sorbonne Université, Paris, 75013, France
| |
Collapse
|
3
|
Gadenstaetter AJ, Krumpoeck PE, Landegger LD. Inner Ear Gene Therapy: An Overview from Bench to Bedside. Mol Diagn Ther 2025; 29:161-181. [PMID: 39625555 PMCID: PMC11861411 DOI: 10.1007/s40291-024-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 02/26/2025]
Abstract
Hearing loss represents a highly prevalent and debilitating sensory disorder affecting roughly one in five people worldwide. In a majority of patients with congenital hearing loss, genetic mutations cause the disease. Up until recently, therapeutic options for individuals with hearing loss were limited to hearing aids and different types of auditory implants. However, after numerous years of intensive basic and translational research, gene therapy strategies are now being investigated in clinical trials. First results show significant hearing improvement in treated patients, highlighting gene therapy's role as a promising treatment for certain forms of genetic hearing loss. In this article, we provide an overview of genetic hearing loss and inner ear gene therapy research including relevant strategies that have been established in animal models and will likely be investigated in human patients soon. Furthermore, we summarize and contextualize the novel findings of recently completed and ongoing clinical trials, and discuss future hurdles needed to be overcome to allow for a broad and safe clinical application of inner ear gene therapy.
Collapse
Affiliation(s)
- Anselm Joseph Gadenstaetter
- Christian Doppler Laboratory for Inner Ear Research, Department of Otolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Paul Emmerich Krumpoeck
- Christian Doppler Laboratory for Inner Ear Research, Department of Otolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Lukas David Landegger
- Christian Doppler Laboratory for Inner Ear Research, Department of Otolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria.
- Department of Otolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria.
- Department of Otolaryngology, Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
4
|
Carlson RJ, Taiber S, Rubinstein JT. Gene Therapy for Hearing Loss: Which Genes Next? Otol Neurotol 2025; 46:239-247. [PMID: 39951658 DOI: 10.1097/mao.0000000000004423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
INTRODUCTION Hearing loss is the most common sensory deficit in humans, and roughly half of childhood-onset sensorineural hearing loss is genetic. Advances in gene therapy techniques have led to the first clinical trials for OTOF-associated hearing loss DFNB9. Therapies for other hearing loss genes are in various stages of development, and therefore a comprehensive evaluation of potential candidate genes can help to prioritize and guide these efforts. METHODS A list of 93 nonsyndromic hearing loss genes with consensus support was generated. Critical factors for evaluation were identified as gene size, timing of cochlear degradation, cell type(s) of primary expression, availability of mouse models and efficacy of adeno-associated virus experiments in those mice, and human hearing loss severity, onset, and prevalence. Each factor was addressed with gene-specific PubMed searches for applicable studies. RESULTS Each gene was evaluated according to the above factors, with favorable results indicating the most promising candidates for gene therapy. Genes that satisfied all the above conditions included TMPRSS3, PCDH15, and TMC1. Other genes, such as LOXHD1 and MYO6, had not yet had gene replacement attempts in a mouse model but otherwise satisfied all conditions and were likewise identified as promising candidates. CONCLUSION Based on this analysis, hearing loss genes vary widely in terms of their favorability for treatment by gene therapy approaches. Targeting development efforts to promising candidates will ensure the highest likelihood of clinical success. Several genes were identified as appealing next targets, signaling an increasing role of gene therapies in hearing loss care moving forward.
Collapse
Affiliation(s)
- Ryan J Carlson
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, Washington, USA
| | - Shahar Taiber
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jay T Rubinstein
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Fu Z, Zhao L, Guo Y, Yang J. Gene therapy for hereditary hearing loss. Hear Res 2025; 455:109151. [PMID: 39616957 DOI: 10.1016/j.heares.2024.109151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 12/28/2024]
Abstract
Gene therapy is a technique by which exogenous genetic material is introduced into target cells to treat or prevent diseases caused by genetic mutations. Hearing loss is the most common sensory disorder. Genetic factors contribute to approximately 50 % of all cases of profound hearing loss, and more than 150 independent genes have been reported as associated with hearing loss. Recent advances in CRISPR/Cas based gene-editing tools have facilitated the development of gene therapies for hereditary hearing loss (HHL). Viral delivery vectors, and especially adeno-associated virus (AAV) vectors, have been demonstrated as safe and efficient carriers for the delivery of transgenes into inner ear cells in animal models. More importantly, AAV-mediated gene therapy can restore hearing in some children with hereditary deafness. However, there are many different types of HHL that need to be identified and evaluated to determine appropriate gene therapy options. In the present review, we summarize recent animal model-based advances in gene therapy for HHL, as well as gene therapy strategies, gene-editing tools, delivery vectors, and administration routes. We also discuss the strengths and limitations of different gene therapy methods and describe future challenges for the eventual clinical application of gene therapy for HHL.
Collapse
Affiliation(s)
- Zeming Fu
- Department of Otolaryngology- Head and Neck Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130022, China
| | - Liping Zhao
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130022, China
| | - Yingyuan Guo
- Department of Otolaryngology- Head and Neck Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130022, China
| | - Jingpu Yang
- Department of Otolaryngology- Head and Neck Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130022, China.
| |
Collapse
|
6
|
Qi J, Fu X, Zhang L, Tan F, Li N, Sun Q, Hu X, He Z, Xia M, Chai R. Current AAV-mediated gene therapy in sensorineural hearing loss. FUNDAMENTAL RESEARCH 2025; 5:192-202. [PMID: 40166123 PMCID: PMC11955060 DOI: 10.1016/j.fmre.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The number of patients with hearing loss is on the rise due to congenital abnormalities, degenerative changes in old age, and acquired injuries such as virus or ototoxic drug-induced diseases. Hearing loss is a refractory and disabling disease that has serious negative effects on quality of life. The pathology of hearing loss in the inner ear is characterized by varying degrees of damage to the cochlear sensory epithelium cells (such as hair cells and supporting cells), stria vascularis (including marginal, intermediate and basal cells) and spiral ganglion neurons. Regeneration or direct repair of damaged cells in the inner ear is an effective way to treat sensorineural deafness. It is currently possible to regenerate hair cells to treat sensorineural hearing loss by FX-322, a small molecule drug in clinical trials. With the development of genetic engineering technology, gene therapy has brought a promising treatment strategy for many previously intractable diseases. Gene therapy has been regarded as a promising method in the treatment and rehabilitation of sensorineural hearing loss, and recombinant adeno-associated virus gene therapy has been widely used in fundamental research into hearing loss treatments. At present, gene therapy for hearing loss is transitioning from feasibility studies to explorations of its safety and its therapeutic potential. The present article reviews the concepts, strategies, and applications of gene therapy mediated by recombinant adeno-associated viruses in the field of hearing loss treatment.
Collapse
Affiliation(s)
- Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory of Hearing and Balance Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, China
| | - Xiaolong Fu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Liyan Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Nianci Li
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Qiuhan Sun
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Xiaojie Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Southeast University Shenzhen Research Institute, Shenzhen 518063, China
| |
Collapse
|
7
|
Li W, Xu B, Huang Y, Wang X, Yu D. Rodent models in sensorineural hearing loss research: A comprehensive review. Life Sci 2024; 358:123156. [PMID: 39442868 DOI: 10.1016/j.lfs.2024.123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Sensorineural hearing loss (SNHL) constitutes a major global health challenge, affecting millions of individuals and substantially impairing social integration and quality of life. The complexity of the auditory system and the multifaceted nature of SNHL necessitate advanced methodologies to understand its etiology, progression, and potential therapeutic interventions. This review provides a comprehensive overview of the current animal models used in SNHL research, focusing on their selection based on specific characteristics and their contributions to elucidating pathophysiological mechanisms and evaluating novel treatment strategies. It discusses the most commonly used rodent models in hearing research, including mice, rats, guinea pigs, Mongolian gerbils, and chinchillas. Through a comparative analysis, this review underscores the importance of selecting models that align with specific research objectives in SNHL studies, discussing the advantages and limitations of each model. By advocating for a multidisciplinary approach that leverages the strengths of various animal models with technological advancements, this review aims to facilitate significant advancements in the prevention, diagnosis, and treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
8
|
Zhang L, Tan F, Qi J, Lu Y, Wang X, Yang X, Chen X, Zhang X, Fan J, Zhou Y, Peng L, Li N, Xu L, Yang S, Chai R. AAV-mediated Gene Therapy for Hereditary Deafness: Progress and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402166. [PMID: 39556694 DOI: 10.1002/advs.202402166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/19/2024] [Indexed: 11/20/2024]
Abstract
Hereditary deafness is the most prevalent sensory deficit disorder, with over 100 identified deafness-related genes. Clinical treatment options are currently limited to external devices like hearing aids and cochlear implants. Gene therapy has shown promising results in various genetic disorders and has emerged as a potential treatment for hereditary deafness. It has successfully restored hearing function in >20 types of genetic deafness model mice and can almost completely cure patients with hereditary autosomal recessvie deafness 9 (DFNB9) caused by the OTOFERLIN (OTOF) mutation, thus serving as a translational paradigm for gene therapy for other forms of genetic deafness. However, due to the complexity of the inner ear structure, the diverse nature of deafness genes, and variations in transduction efficiency among different types of inner ear cells targeted by adeno-associated virus (AAV), precision gene therapy approaches are required for different genetic forms of deafness. This review provides a comprehensive overview of gene therapy for hereditary deafness, including preclinical studies and recent research advancements in this field as well as challenges associated with AAV-mediated gene therapy.
Collapse
Affiliation(s)
- Liyan Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- State Key Laboratory of Hearing and Balance Science, Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yicheng Lu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiaohan Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xuehan Yang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiangyan Chen
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xinru Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jinyi Fan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yinyi Zhou
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Li Peng
- Otovia Therapeutics Inc., Suzhou, 215101, China
| | - Nianci Li
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250022, China
| | - Shiming Yang
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- State Key Laboratory of Hearing and Balance Science, Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- University of Electronic Science and Technology of China, Chengdu, 610072, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| |
Collapse
|
9
|
Kim J, Maldonado J, Pan DW, Quiñones PM, Zenteno S, Oghalai JS, Ricci AJ. Semicircular canal drug delivery safely targets the inner ear perilymphatic space. JCI Insight 2024; 9:e173052. [PMID: 39513368 PMCID: PMC11601569 DOI: 10.1172/jci.insight.173052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/12/2024] [Indexed: 11/15/2024] Open
Abstract
Effective, reproducible, and safe delivery of therapeutics into the inner ear is required for the prevention and treatment of hearing loss. A commonly used delivery method is via the posterior semicircular canal (PSCC); however, its specific targeting within the cochlea remains unclear, impacting precision and reproducibility. To assess safety and target specificity, we conducted in vivo recordings of the pharmacological manipulations delivered through the PSCC. Measurements of auditory brainstem response (ABR), vibrometry, and vestibular behavioral and sensory-evoked potential (VsEP) revealed preserved hearing and vestibular functions after artificial perilymph injections. Injection of curare, a mechanoelectrical transducer (MET) channel blocker that affects hearing when in the endolymph, had no effect on ABR or VsEP thresholds. Conversely, injection of CNQX, an AMPA receptor blocker, or lidocaine, a Na+ channel blocker, which affects hearing when in the perilymph, significantly increased both thresholds, indicating that PSCC injections selectively target the perilymphatic space. In vivo tracking of gold nanoparticles confirmed their exclusive distribution in the perilymph during PSCC injection, supporting the pharmacological finding. Together, PSCC injection is a safe method for inner ear delivery, specifically targeting the perilymphatic space. Our findings will allow for precise delivery of therapeutics within the inner ear for therapeutic and research purposes.
Collapse
Affiliation(s)
- Jinkyung Kim
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Jesus Maldonado
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Dorothy W. Pan
- Caruso Department of Otolaryngology – Head and Neck Surgery, University of Southern California, Los Angeles, California, USA
| | - Patricia M. Quiñones
- Caruso Department of Otolaryngology – Head and Neck Surgery, University of Southern California, Los Angeles, California, USA
| | - Samantha Zenteno
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - John S. Oghalai
- Caruso Department of Otolaryngology – Head and Neck Surgery, University of Southern California, Los Angeles, California, USA
| | - Anthony J. Ricci
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
10
|
Kong C, Yin G, Wang X, Sun Y. In Utero Gene Therapy and its Application in Genetic Hearing Loss. Adv Biol (Weinh) 2024; 8:e2400193. [PMID: 39007241 DOI: 10.1002/adbi.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Indexed: 07/16/2024]
Abstract
For monogenic genetic diseases, in utero gene therapy (IUGT) shows the potential for early prevention against irreversible and lethal pathological changes. Moreover, animal models have also demonstrated the effectiveness of IUGT in the treatment of coagulation disorders, hemoglobinopathies, neurogenetic disorders, and metabolic and pulmonary diseases. For major alpha thalassemia and severe osteogenesis imperfecta, in utero stem cell transplantation has entered the phase I clinical trial stage. Within the realm of the inner ear, genetic hearing loss significantly hampers speech, cognitive, and intellectual development in children. Nowadays, gene therapies offer substantial promise for deafness, with the success of clinical trials in autosomal recessive deafness 9 using AAV-OTOF gene therapy. However, the majority of genetic mutations that cause deafness affect the development of cochlear structures before the birth of fetuses. Thus, gene therapy before alterations in cochlear structure leading to hearing loss has promising applications. In this review, addressing advances in various fields of IUGT, the progress, and application of IUGT in the treatment of genetic hearing loss are focused, in particular its implementation methods and unique advantages.
Collapse
Affiliation(s)
- Chenyang Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ge Yin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
11
|
Mendia C, Peineau T, Zamani M, Felgerolle C, Yahiaoui N, Christophersen N, Papal S, Maudoux A, Maroofian R, Patni P, Nouaille S, Bowl MR, Delmaghani S, Galehdari H, Vona B, Dulon D, Vitry S, El-Amraoui A. Clarin-2 gene supplementation durably preserves hearing in a model of progressive hearing loss. Mol Ther 2024; 32:800-817. [PMID: 38243601 PMCID: PMC10928142 DOI: 10.1016/j.ymthe.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
Hearing loss is a major health concern affecting millions of people worldwide with currently limited treatment options. In clarin-2-deficient Clrn2-/- mice, used here as a model of progressive hearing loss, we report synaptic auditory abnormalities in addition to the previously demonstrated defects of hair bundle structure and mechanoelectrical transduction. We sought an in-depth evaluation of viral-mediated gene delivery as a therapy for these hearing-impaired mice. Supplementation with either the murine Clrn2 or human CLRN2 genes preserved normal hearing in treated Clrn2-/- mice. Conversely, mutated forms of CLRN2, identified in patients with post-lingual moderate to severe hearing loss, failed to prevent hearing loss. The ectopic expression of clarin-2 successfully prevented the loss of stereocilia, maintained normal mechanoelectrical transduction, preserved inner hair cell synaptic function, and ensured near-normal hearing thresholds over time. Maximal hearing preservation was observed when Clrn2 was delivered prior to the loss of transducing stereocilia. Our findings demonstrate that gene therapy is effective for the treatment of post-lingual hearing impairment and age-related deafness associated with CLRN2 patient mutations.
Collapse
Affiliation(s)
- Clara Mendia
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Thibault Peineau
- Institut de l'Audition and Université de Bordeaux, Laboratoire de Neurophysiologie de la Synapse Auditive, Bordeaux Neurocampus, 33076 Bordeaux, France
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Chloé Felgerolle
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France
| | - Nawal Yahiaoui
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France
| | - Nele Christophersen
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany; Institute of Human Genetics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Samantha Papal
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France
| | - Audrey Maudoux
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, WC1E 6BT London, UK
| | - Pranav Patni
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France
| | - Sylvie Nouaille
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France
| | - Michael R Bowl
- UCL Ear Institute, University College London, 332 Gray's Inn Road, WC1X 8EE London, UK
| | - Sedigheh Delmaghani
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Barbara Vona
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany; Institute of Human Genetics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Didier Dulon
- Institut de l'Audition and Université de Bordeaux, Laboratoire de Neurophysiologie de la Synapse Auditive, Bordeaux Neurocampus, 33076 Bordeaux, France
| | - Sandrine Vitry
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France.
| | - Aziz El-Amraoui
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l'Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton, 75012 Paris, France.
| |
Collapse
|
12
|
Tavazzani E, Spaiardi P, Contini D, Sancini G, Russo G, Masetto S. Precision medicine: a new era for inner ear diseases. Front Pharmacol 2024; 15:1328460. [PMID: 38327988 PMCID: PMC10848152 DOI: 10.3389/fphar.2024.1328460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
The inner ear is the organ responsible for hearing and balance. Inner ear dysfunction can be the result of infection, trauma, ototoxic drugs, genetic mutation or predisposition. Often, like for Ménière disease, the cause is unknown. Due to the complex access to the inner ear as a fluid-filled cavity within the temporal bone of the skull, effective diagnosis of inner ear pathologies and targeted drug delivery pose significant challenges. Samples of inner ear fluids can only be collected during surgery because the available procedures damage the tiny and fragile structures of the inner ear. Concerning drug administration, the final dose, kinetics, and targets cannot be controlled. Overcoming these limitations is crucial for successful inner ear precision medicine. Recently, notable advancements in microneedle technologies offer the potential for safe sampling of inner ear fluids and local treatment. Ultrasharp microneedles can reach the inner ear fluids with minimal damage to the organ, collect μl amounts of perilymph, and deliver therapeutic agents in loco. This review highlights the potential of ultrasharp microneedles, combined with nano vectors and gene therapy, to effectively treat inner ear diseases of different etiology on an individual basis. Though further research is necessary to translate these innovative approaches into clinical practice, these technologies may represent a true breakthrough in the clinical approach to inner ear diseases, ushering in a new era of personalized medicine.
Collapse
Affiliation(s)
- Elisa Tavazzani
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- ICS-Maugeri IRCCS, Pavia, Italy
| | - Paolo Spaiardi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
| | - Donatella Contini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Giulio Sancini
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Nanomedicine Center, Neuroscience Center, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giancarlo Russo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Sergio Masetto
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
13
|
Li L, Shen T, Liu S, Qi J, Zhao Y. Advancements and future prospects of adeno-associated virus-mediated gene therapy for sensorineural hearing loss. Front Neurosci 2024; 18:1272786. [PMID: 38327848 PMCID: PMC10847333 DOI: 10.3389/fnins.2024.1272786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Sensorineural hearing loss (SNHL), a highly prevalent sensory impairment, results from a multifaceted interaction of genetic and environmental factors. As we continually gain insights into the molecular basis of auditory development and the growing compendium of deafness genes identified, research on gene therapy for SNHL has significantly deepened. Adeno-associated virus (AAV), considered a relatively secure vector for gene therapy in clinical trials, can deliver various transgenes based on gene therapy strategies such as gene replacement, gene silencing, gene editing, or gene addition to alleviate diverse types of SNHL. This review delved into the preclinical advances in AAV-based gene therapy for SNHL, spanning hereditary and acquired types. Particular focus is placed on the dual-AAV construction method and its application, the vector delivery route of mouse inner ear models (local, systemic, fetal, and cerebrospinal fluid administration), and the significant considerations in transforming from AAV-based animal model inner ear gene therapy to clinical implementation.
Collapse
Affiliation(s)
- Linke Li
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Shen
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shixi Liu
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jieyu Qi
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yu Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Cuzzuol BR, Apolonio JS, da Silva Júnior RT, de Carvalho LS, Santos LKDS, Malheiro LH, Silva Luz M, Calmon MS, Crivellaro HDL, Lemos FFB, Freire de Melo F. Usher syndrome: Genetic diagnosis and current therapeutic approaches. World J Otorhinolaryngol 2024; 11:1-17. [DOI: 10.5319/wjo.v11.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024] Open
Abstract
Usher Syndrome (USH) is the most common deaf-blind syndrome, affecting approximately 1 in 6000 people in the deaf population. This genetic condition is characterized by a combination of hearing loss (HL), retinitis pigmentosa, and, in some cases, vestibular areflexia. Among the subtypes of USH, USH type 1 is considered the most severe form, presenting profound bilateral congenital deafness, vestibular areflexia, and early onset RP. USH type 2 is the most common form, exhibiting congenital moderate to severe HL for low frequencies and severe to profound HL for high frequencies. Conversely, type 3 is the rarest, initially manifesting mild symptoms during childhood that become more prominent in the first decades of life. The dual impact of USH on both visual and auditory senses significantly impairs patients’ quality of life, restricting their daily activities and interactions with society. To date, 9 genes have been confirmed so far for USH: MYO7A, USH1C, CDH23, PCDH15, USH1G, USH2A, ADGRV1, WHRN and CLRN1. These genes are inherited in an autosomal recessive manner and encode proteins expressed in the inner ear and retina, leading to functional loss. Although non-genetic methods can assist in patient triage and disease extension evaluation, genetic and molecular tests play a pivotal role in providing genetic counseling, enabling appropriate gene therapy, and facilitating timely cochlear implantation (CI). The CRISPR/Cas9 system and viral-based gene replacement therapy have recently emerged as highly promising techniques for treating USH. Regarding drug therapy, PTC-124 and Nb54 have been identified as promising drug interventions for genetic HL in USH. Simultaneously, CI has proven to be critical in the restoration of hearing. This review aims to summarize the genetic and molecular diagnosis of USH and highlight the importance of early diagnosis in guiding appropriate treatment strategies and improving patient prognosis.
Collapse
Affiliation(s)
- Beatriz Rocha Cuzzuol
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Lorena Sousa de Carvalho
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Kauany de Sá Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luciano Hasimoto Malheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Henrique de Lima Crivellaro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
15
|
Micaletti F, Escoffre JM, Kerneis S, Bouakaz A, Galvin JJ, Boullaud L, Bakhos D. Microbubble-assisted ultrasound for inner ear drug delivery. Adv Drug Deliv Rev 2024; 204:115145. [PMID: 38042259 DOI: 10.1016/j.addr.2023.115145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Treating pathologies of the inner ear is a major challenge. To date, a wide range of procedures exists for administering therapeutic agents to the inner ear, with varying degrees of success. The key is to deliver therapeutics in a way that is minimally invasive, effective, long-lasting, and without adverse effects on vestibular and cochlear function. Microbubble-assisted ultrasound ("sonoporation") is a promising new modality that can be adapted to the inner ear. Combining ultrasound technology with microbubbles in the middle ear can increase the permeability of the round window, enabling therapeutic agents to be delivered safely and effectively to the inner ear in a targeted manner. As such, sonoporation is a promising new approach to treat hearing loss and vertigo. This review summarizes all studies on the delivery of therapeutic molecules to the inner ear using sonoporation.
Collapse
Affiliation(s)
- Fabrice Micaletti
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
| | | | - Sandrine Kerneis
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - John J Galvin
- Faculty of medicine, Université de Tours, 10 boulevard Tonnellé, 37044 Tours, France; House Institute Foundation, 2100 W 3rd Street, Suite 111, Los Angeles, CA 90057, USA
| | - Luc Boullaud
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - David Bakhos
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France; UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; Faculty of medicine, Université de Tours, 10 boulevard Tonnellé, 37044 Tours, France; House Institute Foundation, 2100 W 3rd Street, Suite 111, Los Angeles, CA 90057, USA
| |
Collapse
|
16
|
Lye J, Delaney DS, Leith FK, Sardesai VS, McLenachan S, Chen FK, Atlas MD, Wong EYM. Recent Therapeutic Progress and Future Perspectives for the Treatment of Hearing Loss. Biomedicines 2023; 11:3347. [PMID: 38137568 PMCID: PMC10741758 DOI: 10.3390/biomedicines11123347] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Up to 1.5 billion people worldwide suffer from various forms of hearing loss, with an additional 1.1 billion people at risk from various insults such as increased consumption of recreational noise-emitting devices and ageing. The most common type of hearing impairment is sensorineural hearing loss caused by the degeneration or malfunction of cochlear hair cells or spiral ganglion nerves in the inner ear. There is currently no cure for hearing loss. However, emerging frontier technologies such as gene, drug or cell-based therapies offer hope for an effective cure. In this review, we discuss the current therapeutic progress for the treatment of hearing loss. We describe and evaluate the major therapeutic approaches being applied to hearing loss and summarize the key trials and studies.
Collapse
Affiliation(s)
- Joey Lye
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Derek S. Delaney
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Fiona K. Leith
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Varda S. Sardesai
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
| | - Samuel McLenachan
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia; (S.M.); (F.K.C.)
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Fred K. Chen
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia; (S.M.); (F.K.C.)
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, WA 6009, Australia
- Vitroretinal Surgery, Royal Perth Hospital, Perth, WA 6000, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Marcus D. Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Elaine Y. M. Wong
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
17
|
Hahn R, Avraham KB. Gene Therapy for Inherited Hearing Loss: Updates and Remaining Challenges. Audiol Res 2023; 13:952-966. [PMID: 38131808 PMCID: PMC10740825 DOI: 10.3390/audiolres13060083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Hearing loss stands as the most prevalent sensory deficit among humans, posing a significant global health challenge. Projections indicate that by 2050, approximately 10% of the world's population will grapple with disabling hearing impairment. While approximately half of congenital hearing loss cases have a genetic etiology, traditional interventions such as hearing aids and cochlear implants do not completely restore normal hearing. The absence of biological treatment has prompted significant efforts in recent years, with a strong focus on gene therapy to address hereditary hearing loss. Although several studies have exhibited promising recovery from common forms of genetic deafness in mouse models, existing challenges must be overcome to make gene therapy applicable in the near future. Herein, we summarize the primary gene therapy strategies employed over past years, provide an overview of the recent achievements in preclinical studies for genetic hearing loss, and outline the current key obstacles to cochlear gene therapy.
Collapse
Affiliation(s)
| | - Karen B. Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Hearing loss is the most common sensory deficit and in young children sensorineural hearing loss is most frequently genetic in etiology. Hearing aids and cochlear implant do not restore normal hearing. There is significant research and commercial interest in directly addressing the root cause of hearing loss through gene therapies. This article provides an overview of major barriers to cochlear gene therapy and recent advances in preclinical development of precision treatments of genetic deafness. RECENT FINDINGS Several investigators have recently described successful gene therapies in many common forms of genetic hearing loss in animal models. Elegant strategies that do not target a specific pathogenic variant, such as mini gene replacement and mutation-agnostic RNA interference (RNAi) with engineered replacement, facilitate translation of these findings to development of human therapeutics. Clinical trials for human gene therapies are in active recruitment. SUMMARY Gene therapies for hearing loss are expected to enter clinical trials in the immediate future. To provide referral for appropriate trials and counseling regarding benefits of genetic hearing loss evaluation, specialists serving children with hearing loss such as pediatricians, geneticists, genetic counselors, and otolaryngologists should be acquainted with ongoing developments in precision therapies.
Collapse
Affiliation(s)
- Miles J. Klimara
- Molecular Otolaryngology & Renal Research Laboratories, Department of Otolaryngology – Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Richard J.H. Smith
- Molecular Otolaryngology & Renal Research Laboratories, Department of Otolaryngology – Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
19
|
Petit C, Bonnet C, Safieddine S. Deafness: from genetic architecture to gene therapy. Nat Rev Genet 2023; 24:665-686. [PMID: 37173518 DOI: 10.1038/s41576-023-00597-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/15/2023]
Abstract
Progress in deciphering the genetic architecture of human sensorineural hearing impairment (SNHI) or loss, and multidisciplinary studies of mouse models, have led to the elucidation of the molecular mechanisms underlying auditory system function, primarily in the cochlea, the mammalian hearing organ. These studies have provided unparalleled insights into the pathophysiological processes involved in SNHI, paving the way for the development of inner-ear gene therapy based on gene replacement, gene augmentation or gene editing. The application of these approaches in preclinical studies over the past decade has highlighted key translational opportunities and challenges for achieving effective, safe and sustained inner-ear gene therapy to prevent or cure monogenic forms of SNHI and associated balance disorders.
Collapse
Affiliation(s)
- Christine Petit
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France.
- Collège de France, F-75005, Paris, France.
| | - Crystel Bonnet
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France
| | - Saaïd Safieddine
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France
- Centre National de la Recherche Scientifique, F-75016, Paris, France
| |
Collapse
|
20
|
Aaron KA, Pekrun K, Atkinson PJ, Billings SE, Abitbol JM, Lee IA, Eltawil Y, Chen YS, Dong W, Nelson RF, Kay MA, Cheng AG. Selection of viral capsids and promoters affects the efficacy of rescue of Tmprss3-deficient cochlea. Mol Ther Methods Clin Dev 2023; 30:413-428. [PMID: 37663645 PMCID: PMC10471831 DOI: 10.1016/j.omtm.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
Adeno-associated virus (AAV)-mediated gene transfer has shown promise in rescuing mouse models of genetic hearing loss, but how viral capsid and promoter selection affects efficacy is poorly characterized. Here, we tested combinations of AAVs and promoters to deliver Tmprss3, mutations in which are associated with hearing loss in humans. Tmprss3tm1/tm1 mice display severe cochlear hair cell degeneration, loss of auditory brainstem responses, and delayed loss of spiral ganglion neurons. Under the ubiquitous CAG promoter and AAV-KP1 capsid, Tmprss3 overexpression caused striking cytotoxicity in vitro and in vivo and failed to rescue degeneration or dysfunction of the Tmprss3tm1/tm1 cochlea. Reducing the dosage or using AAV-DJ-CAG-Tmprss3 diminished cytotoxicity without rescue of the Tmprss3tm1/tm1 cochlea. Finally, the combination of AAV-KP1 capsid and the EF1α promoter prevented cytotoxicity and reduced hair cell degeneration, loss of spiral ganglion neurons, and improved hearing thresholds in Tmprss3tm1/tm1 mice. Together, our study illustrates toxicity of exogenous genes and factors governing rescue efficiency, and suggests that cochlear gene therapy likely requires precisely targeted transgene expression.
Collapse
Affiliation(s)
- Ksenia A. Aaron
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Head and Neck Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Katja Pekrun
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrick J. Atkinson
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sara E. Billings
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julia M. Abitbol
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ina A. Lee
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yasmin Eltawil
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuan-Siao Chen
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wuxing Dong
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rick F. Nelson
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark A. Kay
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Du W, Ergin V, Loeb C, Huang M, Silver S, Armstrong AM, Huang Z, Gurumurthy CB, Staecker H, Liu X, Chen ZY. Rescue of auditory function by a single administration of AAV-TMPRSS3 gene therapy in aged mice of human recessive deafness DFNB8. Mol Ther 2023; 31:2796-2810. [PMID: 37244253 PMCID: PMC10491991 DOI: 10.1016/j.ymthe.2023.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/29/2023] Open
Abstract
Patients with mutations in the TMPRSS3 gene suffer from recessive deafness DFNB8/DFNB10. For these patients, cochlear implantation is the only treatment option. Poor cochlear implantation outcomes are seen in some patients. To develop biological treatment for TMPRSS3 patients, we generated a knockin mouse model with a frequent human DFNB8 TMPRSS3 mutation. The Tmprss3A306T/A306T homozygous mice display delayed onset progressive hearing loss similar to human DFNB8 patients. Using AAV2 as a vector to carry a human TMPRSS3 gene, AAV2-hTMPRSS3 injection in the adult knockin mouse inner ear results in TMPRSS3 expression in the hair cells and the spiral ganglion neurons. A single AAV2-hTMPRSS3 injection in Tmprss3A306T/A306T mice of an average age of 18.5 months leads to sustained rescue of the auditory function to a level similar to wild-type mice. AAV2-hTMPRSS3 delivery rescues the hair cells and the spiral ganglions neurons. This study demonstrates successful gene therapy in an aged mouse model of human genetic deafness. It lays the foundation to develop AAV2-hTMPRSS3 gene therapy to treat DFNB8 patients, as a standalone therapy or in combination with cochlear implantation.
Collapse
Affiliation(s)
- Wan Du
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Volkan Ergin
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Corena Loeb
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Mingqian Huang
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Stewart Silver
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Ariel Miura Armstrong
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Zaohua Huang
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Hinrich Staecker
- Kansas University Center for Hearing and Balance Disorders, Kansas City, KS 66160, USA
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA.
| |
Collapse
|
22
|
Amariutei AE, Jeng JY, Safieddine S, Marcotti W. Recent advances and future challenges in gene therapy for hearing loss. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230644. [PMID: 37325593 PMCID: PMC10265000 DOI: 10.1098/rsos.230644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Hearing loss is the most common sensory deficit experienced by humans and represents one of the largest chronic health conditions worldwide. It is expected that around 10% of the world's population will be affected by disabling hearing impairment by 2050. Hereditary hearing loss accounts for most of the known forms of congenital deafness, and over 25% of adult-onset or progressive hearing loss. Despite the identification of well over 130 genes associated with deafness, there is currently no curative treatment for inherited deafness. Recently, several pre-clinical studies in mice that exhibit key features of human deafness have shown promising hearing recovery through gene therapy involving the replacement of the defective gene with a functional one. Although the potential application of this therapeutic approach to humans is closer than ever, substantial further challenges need to be overcome, including testing the safety and longevity of the treatment, identifying critical therapeutic time windows and improving the efficiency of the treatment. Herein, we provide an overview of the recent advances in gene therapy and highlight the current hurdles that the scientific community need to overcome to ensure a safe and secure implementation of this therapeutic approach in clinical trials.
Collapse
Affiliation(s)
- Ana E. Amariutei
- School of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Jing-Yi Jeng
- School of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Saaid Safieddine
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012 Paris, France
| | - Walter Marcotti
- School of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
23
|
Jiang L, Wang D, He Y, Shu Y. Advances in gene therapy hold promise for treating hereditary hearing loss. Mol Ther 2023; 31:934-950. [PMID: 36755494 PMCID: PMC10124073 DOI: 10.1016/j.ymthe.2023.02.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Gene therapy focuses on genetic modification to produce therapeutic effects or treat diseases by repairing or reconstructing genetic material, thus being expected to be the most promising therapeutic strategy for genetic disorders. Due to the growing attention to hearing impairment, an increasing amount of research is attempting to utilize gene therapy for hereditary hearing loss (HHL), an important monogenic disease and the most common type of congenital deafness. Several gene therapy clinical trials for HHL have recently been approved, and, additionally, CRISPR-Cas tools have been attempted for HHL treatment. Therefore, in order to further advance the development of inner ear gene therapy and promote its broad application in other forms of genetic disease, it is imperative to review the progress of gene therapy for HHL. Herein, we address three main gene therapy strategies (gene replacement, gene suppression, and gene editing), summarizing the strategy that is most appropriate for particular monogenic diseases based on different pathogenic mechanisms, and then focusing on their successful applications for HHL in preclinical trials. Finally, we elaborate on the challenges and outlooks of gene therapy for HHL.
Collapse
Affiliation(s)
- Luoying Jiang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Daqi Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yingzi He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China.
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
24
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
25
|
Du W, Ergin V, Loeb C, Huang M, Silver S, Armstrong AM, Huang Z, Gurumurthy CB, Staecker H, Liu X, Chen ZY. Rescue of Auditory Function by a Single Administration of AAV- TMPRSS3 Gene Therapy in Aged Mice of Human Recessive Deafness DFNB8. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530035. [PMID: 36865298 PMCID: PMC9980176 DOI: 10.1101/2023.02.25.530035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Patients with mutations in the TMPRSS3 gene suffer from recessive deafness DFNB8/DFNB10 for whom cochlear implantation is the only treatment option. Poor cochlear implantation outcomes are seen in some patients. To develop biological treatment for TMPRSS3 patients, we generated a knock-in mouse model with a frequent human DFNB8 TMPRSS3 mutation. The Tmprss3 A306T/A306T homozygous mice display delayed onset progressive hearing loss similar to human DFNB8 patients. Using AAV2 as a vector to carry a human TMPRSS3 gene, AAV2-h TMPRSS3 injection in the adult knock-in mouse inner ears results in TMPRSS3 expression in the hair cells and the spiral ganglion neurons. A single AAV2-h TMPRSS3 injection in aged Tmprss3 A306T/A306T mice leads to sustained rescue of the auditory function, to a level similar to the wildtype mice. AAV2-h TMPRSS3 delivery rescues the hair cells and the spiral ganglions. This is the first study to demonstrate successful gene therapy in an aged mouse model of human genetic deafness. This study lays the foundation to develop AAV2-h TMPRSS3 gene therapy to treat DFNB8 patients, as a standalone therapy or in combination with cochlear implantation.
Collapse
|
26
|
Lahlou G, Calvet C, Giorgi M, Lecomte MJ, Safieddine S. Towards the Clinical Application of Gene Therapy for Genetic Inner Ear Diseases. J Clin Med 2023; 12:1046. [PMID: 36769694 PMCID: PMC9918244 DOI: 10.3390/jcm12031046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Hearing loss, the most common human sensory defect worldwide, is a major public health problem. About 70% of congenital forms and 25% of adult-onset forms of deafness are of genetic origin. In total, 136 deafness genes have already been identified and there are thought to be several hundred more awaiting identification. However, there is currently no cure for sensorineural deafness. In recent years, translational research studies have shown gene therapy to be effective against inherited inner ear diseases, and the application of this technology to humans is now within reach. We provide here a comprehensive and practical overview of current advances in gene therapy for inherited deafness, with and without an associated vestibular defect. We focus on the different gene therapy approaches, considering their prospects, including the viral vector used, and the delivery route. We also discuss the clinical application of the various strategies, their strengths, weaknesses, and the challenges to be overcome.
Collapse
Affiliation(s)
- Ghizlene Lahlou
- Institut Pasteur/Institut de l’Audition, Technologie et Thérapie Génique de la Surdité, Sorbonne Université, INSERM, 75012 Paris, France
- Département d’Oto-Rhino-Laryngologie, Unité Fonctionnelle Implants Auditifs, Groupe Hospitalo-Universitaire Pitié-Salpêtrière, APHP Sorbonne Université, 75013 Paris, France
| | - Charlotte Calvet
- Institut Pasteur/Institut de l’Audition, Technologie et Thérapie Génique de la Surdité, Sorbonne Université, INSERM, 75012 Paris, France
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, CH-8057 Zurich, Switzerland
| | - Marie Giorgi
- Institut Pasteur/Institut de l’Audition, Technologie et Thérapie Génique de la Surdité, Sorbonne Université, INSERM, 75012 Paris, France
| | - Marie-José Lecomte
- Institut Pasteur/Institut de l’Audition, Technologie et Thérapie Génique de la Surdité, Sorbonne Université, INSERM, 75012 Paris, France
| | - Saaid Safieddine
- Institut Pasteur/Institut de l’Audition, Technologie et Thérapie Génique de la Surdité, Sorbonne Université, INSERM, 75012 Paris, France
- Centre National de la Recherche Scientifique, 75016 Paris, France
| |
Collapse
|
27
|
Lu YC, Tsai YH, Chan YH, Hu CJ, Huang CY, Xiao R, Hsu CJ, Vandenberghe LH, Wu CC, Cheng YF. Gene therapy with a synthetic adeno-associated viral vector improves audiovestibular phenotypes in Pjvk-mutant mice. JCI Insight 2022; 7:e152941. [PMID: 36278489 PMCID: PMC9714786 DOI: 10.1172/jci.insight.152941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/02/2022] [Indexed: 11/16/2023] Open
Abstract
Recessive PJVK mutations that cause a deficiency of pejvakin, a protein expressed in both sensory hair cells and first-order neurons of the inner ear, are an important cause of hereditary hearing impairment. Patients with PJVK mutations garner limited benefits from cochlear implantation; thus, alternative biological therapies may be required to address this clinical difficulty. The synthetic adeno-associated viral vector Anc80L65, with its wide tropism and high transduction efficiency in various inner ear cells, may provide a solution. We delivered the PJVK transgene to the inner ear of Pjvk mutant mice using the synthetic Anc80L65 vector. We observed robust exogenous pejvakin expression in the hair cells and neurons of the cochlea and vestibular organs. Subsequent morphologic and audiologic studies demonstrated significant restoration of spiral ganglion neuron density and hair cells in the cochlea, along with partial recovery of sensorineural hearing impairment. In addition, we observed a recovery of vestibular ganglion neurons and balance function to WT levels. Our study demonstrates the utility of Anc80L65-mediated gene delivery in Pjvk mutant mice and provides insights into the potential of gene therapy for PJVK-related inner ear deficits.
Collapse
Affiliation(s)
- Ying-Chang Lu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Hsiu Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Huei Chan
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Chin-Ju Hu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Program in Speech and Hearing Biosciences and Technology, Harvard Medical School, Boston, Massachusetts, USA
| | - Chun-Ying Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ru Xiao
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Luk H. Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Otolaryngology–Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
28
|
Cui C, Wang D, Huang B, Wang F, Chen Y, Lv J, Zhang L, Han L, Liu D, Chen ZY, Li GL, Li H, Shu Y. Precise detection of CRISPR-Cas9 editing in hair cells in the treatment of autosomal dominant hearing loss. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:400-412. [PMID: 36035752 PMCID: PMC9386031 DOI: 10.1016/j.omtn.2022.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/15/2022] [Indexed: 04/08/2023]
Abstract
Gene therapy would benefit from the effective editing of targeted cells with CRISPR-Cas9 tools. However, it is difficult to precisely assess the editing performance in vivo because the tissues contain many non-targeted cells, which is one of the major barriers to clinical translation. Here, in the Atoh1-GFP;Kcnq4 +/G229D mice, recapitulating a novel mutation we identified in a hereditary hearing loss pedigree, the high-efficiency editing of CRISPR-Cas9 in hair cells (34.10% on average) was precisely detected by sorting out labeled cells compared with only 1.45% efficiency in the whole cochlear tissue. After injection of the developed AAV_SaCas9-KKH_sgRNA agents, the Kcnq4 +/G229D mice showed significantly lower auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) thresholds, shorter ABR wave I latencies, higher ABR wave I amplitudes, increased number of surviving outer hair cells (OHCs), and more hyperpolarized resting membrane potentials of OHCs. These findings provide an innovative approach to accurately assess the underestimated editing efficiency of CRISPR-Cas9 in vivo and offer a promising strategy for the treatment of KCNQ4-related deafness.
Collapse
Affiliation(s)
- Chong Cui
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Daqi Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Bowei Huang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Fang Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Yuxin Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Jun Lv
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Luping Zhang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital, Nantong University, Nantong 226006, China
| | - Lei Han
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Dong Liu
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114, USA
| | - Geng-Lin Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Huawei Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- Corresponding author Yilai Shu, ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China.
| |
Collapse
|
29
|
Isgrig K, Ishibashi Y, Lee HJ, Zhu J, Grati M, Bennett J, Griffith AJ, Roux I, Chien WW. AAV8BP2 and AAV8 transduce the mammalian cochlear lateral wall and endolymphatic sac with high efficiency. Mol Ther Methods Clin Dev 2022; 26:371-383. [PMID: 36034771 PMCID: PMC9386391 DOI: 10.1016/j.omtm.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022]
Abstract
Inner ear gene therapy using adeno-associated viruses (AAVs) has been successfully applied to several mouse models of hereditary hearing loss to improve their auditory function. While most inner ear gene therapy studies have focused on the mechanosensory hair cells and supporting cells in the organ of Corti, the cochlear lateral wall and the endolymphatic sac have not garnered much attention. The cochlear lateral wall and the endolymphatic sac play critical roles in inner ear ionic and fluid homeostasis. Mutations in genes expressed in the cochlear lateral wall and the endolymphatic sac are present in a large percentage of patients with hereditary hearing loss. In this study, we examine the transduction patterns and efficiencies of conventional (AAV2 and AAV8) and synthetic (AAV2.7m8, AAV8BP2, and Anc80L65) AAVs in the mouse inner ear. We found that AAV8BP2 and AAV8 are capable of transducing the marginal cells and intermediate cells in the stria vascularis. These two AAVs can also transduce the epithelial cells of the endolymphatic sac. Our data suggest that AAV8BP2 and AAV8 are highly useful viral vectors for gene therapy studies targeting the cochlear lateral wall and the endolymphatic sac.
Collapse
Affiliation(s)
- Kevin Isgrig
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Yasuko Ishibashi
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Hyun Jae Lee
- Otolaryngology Branch, NIDCD, National Institutes of Health, Bethesda, MD, USA
| | - Jianliang Zhu
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Mhamed Grati
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrew J. Griffith
- Otolaryngology Branch, NIDCD, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology, University of Tennessee College of Medicine, Memphis, TN, USA
| | - Isabelle Roux
- Otolaryngology Branch, NIDCD, National Institutes of Health, Bethesda, MD, USA
| | - Wade W. Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Abstract
Current estimates suggest that nearly half a billion people worldwide are affected by hearing loss. Because of the major psychological, social, economic, and health ramifications, considerable efforts have been invested in identifying the genes and molecular pathways involved in hearing loss, whether genetic or environmental, to promote prevention, improve rehabilitation, and develop therapeutics. Genomic sequencing technologies have led to the discovery of genes associated with hearing loss. Studies of the transcriptome and epigenome of the inner ear have characterized key regulators and pathways involved in the development of the inner ear and have paved the way for their use in regenerative medicine. In parallel, the immense preclinical success of using viral vectors for gene delivery in animal models of hearing loss has motivated the industry to work on translating such approaches into the clinic. Here, we review the recent advances in the genomics of auditory function and dysfunction, from patient diagnostics to epigenetics and gene therapy.
Collapse
Affiliation(s)
- Shahar Taiber
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; ,
| | - Kathleen Gwilliam
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
| | - Ronna Hertzano
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; ,
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
31
|
Liu L, Zou L, Li K, Hou H, Hu Q, Liu S, Li J, Song C, Chen J, Wang S, Wang Y, Li C, Du H, Li JL, Chen F, Xu Z, Sun W, Sun Q, Xiong W. Template-independent genome editing in the Pcdh15 av-3j mouse, a model of human DFNB23 nonsyndromic deafness. Cell Rep 2022; 40:111061. [PMID: 35830793 DOI: 10.1016/j.celrep.2022.111061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 04/15/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022] Open
Abstract
Although frameshift mutations lead to 22% of inherited Mendelian disorders in humans, there is no efficient in vivo gene therapy strategy available to date, particularly in nondividing cells. Here, we show that nonhomologous end-joining (NHEJ)-mediated nonrandom editing profiles compensate the frameshift mutation in the Pcdh15 gene and restore the lost mechanotransduction function in postmitotic hair cells of Pcdh15av-3J mice, an animal model of human nonsyndromic deafness DFNB23. Identified by an ex vivo evaluation system in cultured cochlear explants, the selected guide RNA restores reading frame in approximately 50% of indel products and recovers mechanotransduction in more than 70% of targeted hair cells. In vivo treatment shows that half of the animals gain improvements in auditory responses, and balance function is restored in the majority of injected mutant mice. These results demonstrate that NHEJ-mediated reading-frame restoration is a simple and efficient strategy in postmitotic systems.
Collapse
Affiliation(s)
- Lian Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Linzhi Zou
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Kuan Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hanqing Hou
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Qun Hu
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Shuang Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Jie Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Chenmeng Song
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Jiaofeng Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Shufeng Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Yangzhen Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Changri Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Haibo Du
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jun-Liszt Li
- Chinese Institute for Brain Research, Beijing 102206, China; Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhigang Xu
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing 102206, China; School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Qianwen Sun
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xiong
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
32
|
Zaw K, Carvalho LS, Aung-Htut MT, Fletcher S, Wilton SD, Chen FK, McLenachan S. Pathogenesis and Treatment of Usher Syndrome Type IIA. Asia Pac J Ophthalmol (Phila) 2022; 11:369-379. [PMID: 36041150 DOI: 10.1097/apo.0000000000000546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022] Open
Abstract
Usher syndrome (USH) is the most common form of deaf-blindness, with an estimated prevalence of 4.4 to 16.6 per 100,000 people worldwide. The most common form of USH is type IIA (USH2A), which is caused by homozygous or compound heterozygous mutations in the USH2A gene and accounts for around half of all USH cases. USH2A patients show moderate to severe hearing loss from birth, with diagnosis of retinitis pigmentosa in the second decade of life and variable vestibular involvement. Although hearing aids or cochlear implants can provide some mitigation of hearing deficits, there are currently no treatments aimed at preventing or restoring vision loss in USH2A patients. In this review, we first provide an overview of the molecular biology of the USH2A gene and its protein isoforms, which include a transmembrane protein (TM usherin) and an extracellular protein (EC usherin). The role of these proteins in the inner ear and retina and their impact on the pathogenesis of USH2A is discussed. We review animal cell-derived and patient cell-derived models currently used in USH2A research and conclude with an overview of potential treatment strategies currently in preclinical development and clinical trials.
Collapse
Affiliation(s)
- Khine Zaw
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Livia S Carvalho
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - May T Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Fred K Chen
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Samuel McLenachan
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
33
|
Efficient Viral Transduction in Fetal and Adult Human Inner Ear Explants with AAV9-PHP.B Vectors. Biomolecules 2022; 12:biom12060816. [PMID: 35740941 PMCID: PMC9221426 DOI: 10.3390/biom12060816] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have shown the recovery of auditory function in mouse models of genetic hearing loss following AAV gene therapy, yet translation to the clinic has not yet been demonstrated. One limitation has been the lack of human inner ear cell lines or tissues for validating viral gene therapies. Cultured human inner ear tissue could help confirm viral tropism and efficacy for driving exogenous gene expression in targeted cell types, establish promoter efficacy and perhaps selectivity for targeted cells, confirm the expression of therapeutic constructs and the subcellular localization of therapeutic proteins, and address the potential cellular toxicity of vectors or exogenous constructs. To begin to address these questions, we developed an explant culture method using native human inner ear tissue excised at either fetal or adult stages. Inner ear sensory epithelia were cultured for four days and exposed to vectors encoding enhanced green fluorescent protein (eGFP). We focused on the synthetic AAV9-PHP.B capsid, which has been demonstrated to be efficient for driving eGFP expression in the sensory hair cells of mouse and non-human primate inner ears. We report that AAV9-PHP.B also drives eGFP expression in fetal cochlear hair cells and in fetal and adult vestibular hair cells in explants of human inner ear sensory epithelia, which suggests that both the experimental paradigm and the viral capsid may be valuable for translation to clinical application.
Collapse
|
34
|
Lee MP, Waldhaus J. In vitro and in vivo models: What have we learnt about inner ear regeneration and treatment for hearing loss? Mol Cell Neurosci 2022; 120:103736. [PMID: 35577314 PMCID: PMC9551661 DOI: 10.1016/j.mcn.2022.103736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 01/07/2023] Open
Abstract
The sensory cells of the inner ear, called hair cells, do not regenerate spontaneously and therefore, hair cell loss and subsequent hearing loss are permanent in humans. Conversely, functional hair cell regeneration can be observed in non-mammalian vertebrate species like birds and fish. Also, during postnatal development in mice, limited regenerative capacity and the potential to isolate stem cells were reported. Together, these findings spurred the interest of current research aiming to investigate the endogenous regenerative potential in mammals. In this review, we summarize current in vitro based approaches and briefly introduce different in vivo model organisms utilized to study hair cell regeneration. Furthermore, we present an overview of the findings that were made synergistically using both, the in vitro and in vivo based tools.
Collapse
Affiliation(s)
- Mary P Lee
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joerg Waldhaus
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
35
|
Maudoux A, Vitry S, El-Amraoui A. Vestibular Deficits in Deafness: Clinical Presentation, Animal Modeling, and Treatment Solutions. Front Neurol 2022; 13:816534. [PMID: 35444606 PMCID: PMC9013928 DOI: 10.3389/fneur.2022.816534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The inner ear is responsible for both hearing and balance. These functions are dependent on the correct functioning of mechanosensitive hair cells, which convert sound- and motion-induced stimuli into electrical signals conveyed to the brain. During evolution of the inner ear, the major changes occurred in the hearing organ, whereas the structure of the vestibular organs remained constant in all vertebrates over the same period. Vestibular deficits are highly prevalent in humans, due to multiple intersecting causes: genetics, environmental factors, ototoxic drugs, infections and aging. Studies of deafness genes associated with balance deficits and their corresponding animal models have shed light on the development and function of these two sensory systems. Bilateral vestibular deficits often impair individual postural control, gaze stabilization, locomotion and spatial orientation. The resulting dizziness, vertigo, and/or falls (frequent in elderly populations) greatly affect patient quality of life. In the absence of treatment, prosthetic devices, such as vestibular implants, providing information about the direction, amplitude and velocity of body movements, are being developed and have given promising results in animal models and humans. Novel methods and techniques have led to major progress in gene therapies targeting the inner ear (gene supplementation and gene editing), 3D inner ear organoids and reprograming protocols for generating hair cell-like cells. These rapid advances in multiscale approaches covering basic research, clinical diagnostics and therapies are fostering interdisciplinary research to develop personalized treatments for vestibular disorders.
Collapse
Affiliation(s)
- Audrey Maudoux
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
- Center for Balance Evaluation in Children (EFEE), Otolaryngology Department, Assistance Publique des Hôpitaux de Paris, Robert-Debré University Hospital, Paris, France
| | - Sandrine Vitry
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| |
Collapse
|
36
|
Michalski N, Petit C. Central auditory deficits associated with genetic forms of peripheral deafness. Hum Genet 2022; 141:335-345. [PMID: 34435241 PMCID: PMC9034985 DOI: 10.1007/s00439-021-02339-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/09/2021] [Indexed: 01/11/2023]
Abstract
Since the 1990s, the study of inherited hearing disorders, mostly those detected at birth, in the prelingual period or in young adults, has led to the identification of their causal genes. The genes responsible for more than 140 isolated (non-syndromic) and about 400 syndromic forms of deafness have already been discovered. Studies of mouse models of these monogenic forms of deafness have provided considerable insight into the molecular mechanisms of hearing, particularly those involved in the development and/or physiology of the auditory sensory organ, the cochlea. In parallel, studies of these models have also made it possible to decipher the pathophysiological mechanisms underlying hearing impairment. This has led a number of laboratories to investigate the potential of gene therapy for curing these forms of deafness. Proof-of-concept has now been obtained for the treatment of several forms of deafness in mouse models, paving the way for clinical trials of cochlear gene therapy in patients in the near future. Nevertheless, peripheral deafness may also be associated with central auditory dysfunctions and may extend well beyond the auditory system itself, as a consequence of alterations to the encoded sensory inputs or involvement of the causal deafness genes in the development and/or functioning of central auditory circuits. Investigating the diversity, causes and underlying mechanisms of these central dysfunctions, the ways in which they could impede the expected benefits of hearing restoration by peripheral gene therapy, and determining how these problems could be remedied is becoming a research field in its own right. Here, we provide an overview of the current knowledge about the central deficits associated with genetic forms of deafness.
Collapse
Affiliation(s)
- Nicolas Michalski
- Institut de l'Audition, Institut Pasteur, INSERM, 75012, Paris, France.
| | - Christine Petit
- Institut de l'Audition, Institut Pasteur, INSERM, 75012, Paris, France.
| |
Collapse
|
37
|
The genetic and phenotypic landscapes of Usher syndrome: from disease mechanisms to a new classification. Hum Genet 2022; 141:709-735. [PMID: 35353227 PMCID: PMC9034986 DOI: 10.1007/s00439-022-02448-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Usher syndrome (USH) is the most common cause of deaf–blindness in humans, with a prevalence of about 1/10,000 (~ 400,000 people worldwide). Cochlear implants are currently used to reduce the burden of hearing loss in severe-to-profoundly deaf patients, but many promising treatments including gene, cell, and drug therapies to restore the native function of the inner ear and retinal sensory cells are under investigation. The traditional clinical classification of Usher syndrome defines three major subtypes—USH1, 2 and 3—according to hearing loss severity and onset, the presence or absence of vestibular dysfunction, and age at onset of retinitis pigmentosa. Pathogenic variants of nine USH genes have been initially reported: MYO7A, USH1C, PCDH15, CDH23, and USH1G for USH1, USH2A, ADGRV1, and WHRN for USH2, and CLRN1 for USH3. Based on the co-occurrence of hearing and vision deficits, the list of USH genes has been extended to few other genes, but with limited supporting information. A consensus on combined criteria for Usher syndrome is crucial for the development of accurate diagnosis and to improve patient management. In recent years, a wealth of information has been obtained concerning the properties of the Usher proteins, related molecular networks, potential genotype–phenotype correlations, and the pathogenic mechanisms underlying the impairment or loss of hearing, balance and vision. The advent of precision medicine calls for a clear and more precise diagnosis of Usher syndrome, exploiting all the existing data to develop a combined clinical/genetic/network/functional classification for Usher syndrome.
Collapse
|
38
|
Xue Y, Hu X, Wang D, Li D, Li Y, Wang F, Huang M, Gu X, Xu Z, Zhou J, Wang J, Chai R, Shen J, Chen ZY, Li GL, Yang H, Li H, Zuo E, Shu Y. Gene editing in a Myo6 semi-dominant mouse model rescues auditory function. Mol Ther 2022; 30:105-118. [PMID: 34174443 PMCID: PMC8753286 DOI: 10.1016/j.ymthe.2021.06.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023] Open
Abstract
Myosin VI(MYO6) is an unconventional myosin that is vital for auditory and vestibular function. Pathogenic variants in the human MYO6 gene cause autosomal-dominant or -recessive forms of hearing loss. Effective treatments for Myo6 mutation causing hearing loss are limited. We studied whether adeno-associated virus (AAV)-PHP.eB vector-mediated in vivo delivery of Staphylococcus aureus Cas9 (SaCas9-KKH)-single-guide RNA (sgRNA) complexes could ameliorate hearing loss in a Myo6WT/C442Y mouse model that recapitulated the phenotypes of human patients. The in vivo editing efficiency of the AAV-SaCas9-KKH-Myo6-g2 system on Myo6C442Y is 4.05% on average in Myo6WT/C442Y mice, which was ∼17-fold greater than editing efficiency of Myo6WT alleles. Rescue of auditory function was observed up to 5 months post AAV-SaCas9-KKH-Myo6-g2 injection in Myo6WT/C442Y mice. Meanwhile, shorter latencies of auditory brainstem response (ABR) wave I, lower distortion product otoacoustic emission (DPOAE) thresholds, increased cell survival rates, more regular hair bundle morphology, and recovery of inward calcium levels were also observed in the AAV-SaCas9-KKH-Myo6-g2-treated ears compared to untreated ears. These findings provide further reference for in vivo genome editing as a therapeutic treatment for various semi-dominant forms of hearing loss and other semi-dominant diseases.
Collapse
Affiliation(s)
- Yuanyuan Xue
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Xinde Hu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daqi Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Di Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning 530005, China
| | - Yige Li
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Fang Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Mingqian Huang
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Xi Gu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Zhijiao Xu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Jinan Zhou
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Jinghan Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, Shanghai 200032, China
| | - Jun Shen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Center for Hereditary Deafness, Boston, MA 02115, USA
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Geng-Lin Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Hui Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huawei Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China.
| |
Collapse
|
39
|
Abd El-Hamid BN, Khalil IA, Harashima H. Viral Gene Delivery. THE ADME ENCYCLOPEDIA 2022:1183-1192. [DOI: 10.1007/978-3-030-84860-6_117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
40
|
Botto C, Dalkara D, El-Amraoui A. Progress in Gene Editing Tools and Their Potential for Correcting Mutations Underlying Hearing and Vision Loss. Front Genome Ed 2021; 3:737632. [PMID: 34778871 PMCID: PMC8581640 DOI: 10.3389/fgeed.2021.737632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Blindness and deafness are the most frequent sensory disorders in humans. Whatever their cause - genetic, environmental, or due to toxic agents, or aging - the deterioration of these senses is often linked to irreversible damage to the light-sensing photoreceptor cells (blindness) and/or the mechanosensitive hair cells (deafness). Efforts are increasingly focused on preventing disease progression by correcting or replacing the blindness and deafness-causal pathogenic alleles. In recent years, gene replacement therapies for rare monogenic disorders of the retina have given positive results, leading to the marketing of the first gene therapy product for a form of childhood hereditary blindness. Promising results, with a partial restoration of auditory function, have also been reported in preclinical models of human deafness. Silencing approaches, including antisense oligonucleotides, adeno-associated virus (AAV)-mediated microRNA delivery, and genome-editing approaches have also been applied to various genetic forms of blindness and deafness The discovery of new DNA- and RNA-based CRISPR/Cas nucleases, and the new generations of base, prime, and RNA editors offers new possibilities for directly repairing point mutations and therapeutically restoring gene function. Thanks to easy access and immune-privilege status of self-contained compartments, the eye and the ear continue to be at the forefront of developing therapies for genetic diseases. Here, we review the ongoing applications and achievements of this new class of emerging therapeutics in the sensory organs of vision and hearing, highlighting the challenges ahead and the solutions to be overcome for their successful therapeutic application in vivo.
Collapse
Affiliation(s)
- Catherine Botto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| |
Collapse
|
41
|
Dinculescu A, Link BA, Saperstein DA. Retinal Gene Therapy for Usher Syndrome: Current Developments, Challenges, and Perspectives. Int Ophthalmol Clin 2021; 61:109-124. [PMID: 34584048 PMCID: PMC8478317 DOI: 10.1097/iio.0000000000000378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Peusner KD, Bell NM, Hirsch JC, Beraneck M, Popratiloff A. Understanding the Pathophysiology of Congenital Vestibular Disorders: Current Challenges and Future Directions. Front Neurol 2021; 12:708395. [PMID: 34589045 PMCID: PMC8475631 DOI: 10.3389/fneur.2021.708395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
In congenital vestibular disorders (CVDs), children develop an abnormal inner ear before birth and face postnatal challenges to maintain posture, balance, walking, eye-hand coordination, eye tracking, or reading. Only limited information on inner ear pathology is acquired from clinical imaging of the temporal bone or studying histological slides of the temporal bone. A more comprehensive and precise assessment and determination of the underlying mechanisms necessitate analyses of the disorders at the cellular level, which can be achieved using animal models. Two main criteria for a suitable animal model are first, a pathology that mirrors the human disorder, and second, a reproducible experimental outcome leading to statistical power. With over 40 genes that affect inner ear development, the phenotypic abnormalities resulting from congenital vestibular disorders (CVDs) are highly variable. Nonetheless, there is a large subset of CVDs that form a common phenotype of a sac-like inner ear with the semicircular canals missing or dysplastic, and discrete abnormalities in the vestibular sensory organs. We have focused the review on this subset, but to advance research on CVDs we have added other CVDs not forming a sac-like inner ear. We have included examples of animal models used to study these CVDs. Presently, little is known about the central pathology resulting from CVDs at the cellular level in the central vestibular neural network, except for preliminary studies on a chick model that show significant loss of second-order, vestibular reflex projection neurons.
Collapse
Affiliation(s)
- Kenna D Peusner
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Nina M Bell
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - June C Hirsch
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Mathieu Beraneck
- Université de Paris, Integrative Neuroscience and Cognition Center, CNRS UMR 8002, Paris, France
| | - Anastas Popratiloff
- The George Washington University Nanofabrication and Imaging Center, Washington, DC, United States
| |
Collapse
|
43
|
Zhu J, Choi JW, Ishibashi Y, Isgrig K, Grati M, Bennett J, Chien W. Refining surgical techniques for efficient posterior semicircular canal gene delivery in the adult mammalian inner ear with minimal hearing loss. Sci Rep 2021; 11:18856. [PMID: 34552193 PMCID: PMC8458342 DOI: 10.1038/s41598-021-98412-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
Hearing loss is a common disability affecting the world's population today. While several studies have shown that inner ear gene therapy can be successfully applied to mouse models of hereditary hearing loss to improve hearing, most of these studies rely on inner ear gene delivery in the neonatal age, when mouse inner ear has not fully developed. However, the human inner ear is fully developed at birth. Therefore, in order for inner ear gene therapy to be successfully applied in patients with hearing loss, one must demonstrate that gene delivery can be safely and reliably performed in the mature mammalian inner ear. In this study, we examine the steps involved in posterior semicircular canal gene delivery in the adult mouse inner ear. We find that the duration of perilymphatic leakage and injection rate have a significant effect on the post-surgical hearing outcome. Our results show that although AAV2.7m8 has a lower hair cell transduction rate in adult mice compared to neonatal mice at equivalent viral load, AAV2.7m8 is capable of transducing the adult mouse inner and outer hair cells with high efficiency in a dose-dependent manner.
Collapse
Affiliation(s)
- Jianliang Zhu
- Inner Ear Gene Therapy Program, National Institute On Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Jin Woong Choi
- Inner Ear Gene Therapy Program, National Institute On Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University, College of Medicine, Daejeon, South Korea
| | - Yasuko Ishibashi
- Inner Ear Gene Therapy Program, National Institute On Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Kevin Isgrig
- Inner Ear Gene Therapy Program, National Institute On Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Mhamed Grati
- Inner Ear Gene Therapy Program, National Institute On Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wade Chien
- Inner Ear Gene Therapy Program, National Institute On Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA.
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
44
|
Verdoodt D, Peeleman N, Van Camp G, Van Rompaey V, Ponsaerts P. Transduction Efficiency and Immunogenicity of Viral Vectors for Cochlear Gene Therapy: A Systematic Review of Preclinical Animal Studies. Front Cell Neurosci 2021; 15:728610. [PMID: 34526880 PMCID: PMC8435788 DOI: 10.3389/fncel.2021.728610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Hearing impairment is the most frequent sensory deficit, affecting 466 million people worldwide and has been listed by the World Health Organization (WHO) as one of the priority diseases for research into therapeutic interventions to address public health needs. Inner ear gene therapy is a promising approach to restore sensorineural hearing loss, for which several gene therapy applications have been studied and reported in preclinical animal studies. Objective: To perform a systematic review on preclinical studies reporting cochlear gene therapy, with a specific focus on transduction efficiency. Methods: An initial PubMed search was performed on April 1st 2021 using the PRISMA methodology. Preclinical in vivo studies reporting primary data regarding transduction efficiency of gene therapy targeting the inner ear were included in this report. Results: Thirty-six studies were included in this review. Transduction of various cell types in the inner ear can be achieved, according to the viral vector used. However, there is significant variability in the applied vector delivery systems, including promoter, viral vector titer, etc. Conclusion: Although gene therapy presents a promising approach to treat sensorineural hearing loss in preclinical studies, the heterogeneity of methodologies impedes the identification of the most promising tools for future use in inner ear therapies.
Collapse
Affiliation(s)
- Dorien Verdoodt
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Noa Peeleman
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Guy Van Camp
- Department of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
45
|
Key Signaling Pathways Regulate the Development and Survival of Auditory Hair Cells. Neural Plast 2021; 2021:5522717. [PMID: 34194486 PMCID: PMC8214483 DOI: 10.1155/2021/5522717] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/01/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023] Open
Abstract
The loss of auditory sensory hair cells (HCs) is the most common cause of sensorineural hearing loss (SNHL). As the main sound transmission structure in the cochlea, it is necessary to maintain the normal shape and survival of HCs. In this review, we described and summarized the signaling pathways that regulate the development and survival of auditory HCs in SNHL. The role of the mitogen-activated protein kinase (MAPK), phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Notch/Wnt/Atoh1, calcium channels, and oxidative stress/reactive oxygen species (ROS) signaling pathways are the most relevant. The molecular interactions of these signaling pathways play an important role in the survival of HCs, which may provide a theoretical basis and possible therapeutic interventions for the treatment of hearing loss.
Collapse
|
46
|
de Joya EM, Colbert BM, Tang PC, Lam BL, Yang J, Blanton SH, Dykxhoorn DM, Liu X. Usher Syndrome in the Inner Ear: Etiologies and Advances in Gene Therapy. Int J Mol Sci 2021; 22:3910. [PMID: 33920085 PMCID: PMC8068832 DOI: 10.3390/ijms22083910] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is the most common sensory disorder with ~466 million people worldwide affected, representing about 5% of the population. A substantial portion of hearing loss is genetic. Hearing loss can either be non-syndromic, if hearing loss is the only clinical manifestation, or syndromic, if the hearing loss is accompanied by a collage of other clinical manifestations. Usher syndrome is a syndromic form of genetic hearing loss that is accompanied by impaired vision associated with retinitis pigmentosa and, in many cases, vestibular dysfunction. It is the most common cause of deaf-blindness. Currently cochlear implantation or hearing aids are the only treatments for Usher-related hearing loss. However, gene therapy has shown promise in treating Usher-related retinitis pigmentosa. Here we review how the etiologies of Usher-related hearing loss make it a good candidate for gene therapy and discuss how various forms of gene therapy could be applied to Usher-related hearing loss.
Collapse
Affiliation(s)
- Evan M. de Joya
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Brett M. Colbert
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Pei-Ciao Tang
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
| | - Byron L. Lam
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA;
| | - Jun Yang
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA;
| | - Susan H. Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Derek M. Dykxhoorn
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
47
|
Nourbakhsh A, Colbert BM, Nisenbaum E, El-Amraoui A, Dykxhoorn DM, Koehler KR, Chen ZY, Liu XZ. Stem Cells and Gene Therapy in Progressive Hearing Loss: the State of the Art. J Assoc Res Otolaryngol 2021; 22:95-105. [PMID: 33507440 PMCID: PMC7943682 DOI: 10.1007/s10162-020-00781-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Progressive non-syndromic sensorineural hearing loss (PNSHL) is the most common cause of sensory impairment, affecting more than a third of individuals over the age of 65. PNSHL includes noise-induced hearing loss (NIHL) and inherited forms of deafness, among which is delayed-onset autosomal dominant hearing loss (AD PNSHL). PNSHL is a prime candidate for genetic therapies due to the fact that PNSHL has been studied extensively, and there is a potentially wide window between identification of the disorder and the onset of hearing loss. Several gene therapy strategies exist that show potential for targeting PNSHL, including viral and non-viral approaches, and gene editing versus gene-modulating approaches. To fully explore the potential of these therapy strategies, a faithful in vitro model of the human inner ear is needed. Such models may come from induced pluripotent stem cells (iPSCs). The development of new treatment modalities by combining iPSC modeling with novel and innovative gene therapy approaches will pave the way for future applications leading to improved quality of life for many affected individuals and their families.
Collapse
Affiliation(s)
- Aida Nourbakhsh
- Department of Otolaryngology–Head and Neck Surgery, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL 33136 USA
| | - Brett M. Colbert
- Department of Otolaryngology–Head and Neck Surgery, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL 33136 USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Eric Nisenbaum
- Department of Otolaryngology–Head and Neck Surgery, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL 33136 USA
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Institut Pasteur, INSERM-UMRS1120, Sorbonne Université, 25 rue du Dr. Roux, 75015 Paris, France
| | - Derek M. Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Karl Russell Koehler
- Department of Otolaryngology-Head and Neck Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Zheng-yi Chen
- Department of Otology and Laryngology, Harvard Medical School and Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 USA
| | - Xue Z. Liu
- Department of Otolaryngology–Head and Neck Surgery, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL 33136 USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| |
Collapse
|
48
|
Gu X, Wang D, Xu Z, Wang J, Guo L, Chai R, Li G, Shu Y, Li H. Prevention of acquired sensorineural hearing loss in mice by in vivo Htra2 gene editing. Genome Biol 2021; 22:86. [PMID: 33752742 PMCID: PMC7983387 DOI: 10.1186/s13059-021-02311-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/08/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Aging, noise, infection, and ototoxic drugs are the major causes of human acquired sensorineural hearing loss, but treatment options are limited. CRISPR/Cas9 technology has tremendous potential to become a new therapeutic modality for acquired non-inherited sensorineural hearing loss. Here, we develop CRISPR/Cas9 strategies to prevent aminoglycoside-induced deafness, a common type of acquired non-inherited sensorineural hearing loss, via disrupting the Htra2 gene in the inner ear which is involved in apoptosis but has not been investigated in cochlear hair cell protection. RESULTS The results indicate that adeno-associated virus (AAV)-mediated delivery of CRISPR/SpCas9 system ameliorates neomycin-induced apoptosis, promotes hair cell survival, and significantly improves hearing function in neomycin-treated mice. The protective effect of the AAV-CRISPR/Cas9 system in vivo is sustained up to 8 weeks after neomycin exposure. For more efficient delivery of the whole CRISPR/Cas9 system, we also explore the AAV-CRISPR/SaCas9 system to prevent neomycin-induced deafness. The in vivo editing efficiency of the SaCas9 system is 1.73% on average. We observed significant improvement in auditory brainstem response thresholds in the injected ears compared with the non-injected ears. At 4 weeks after neomycin exposure, the protective effect of the AAV-CRISPR/SaCas9 system is still obvious, with the improvement in auditory brainstem response threshold up to 50 dB at 8 kHz. CONCLUSIONS These findings demonstrate the safe and effective prevention of aminoglycoside-induced deafness via Htra2 gene editing and support further development of the CRISPR/Cas9 technology in the treatment of non-inherited hearing loss as well as other non-inherited diseases.
Collapse
Affiliation(s)
- Xi Gu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- Department of Otolaryngology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Daqi Wang
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Zhijiao Xu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Jinghan Wang
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Luo Guo
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096 China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
| | - Genglin Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Yilai Shu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Huawei Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032 China
| |
Collapse
|
49
|
Crane R, Conley SM, Al-Ubaidi MR, Naash MI. Gene Therapy to the Retina and the Cochlea. Front Neurosci 2021; 15:652215. [PMID: 33815052 PMCID: PMC8010260 DOI: 10.3389/fnins.2021.652215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Vision and hearing disorders comprise the most common sensory disorders found in people. Many forms of vision and hearing loss are inherited and current treatments only provide patients with temporary or partial relief. As a result, developing genetic therapies for any of the several hundred known causative genes underlying inherited retinal and cochlear disorders has been of great interest. Recent exciting advances in gene therapy have shown promise for the clinical treatment of inherited retinal diseases, and while clinical gene therapies for cochlear disease are not yet available, research in the last several years has resulted in significant advancement in preclinical development for gene delivery to the cochlea. Furthermore, the development of somatic targeted genome editing using CRISPR/Cas9 has brought new possibilities for the treatment of dominant or gain-of-function disease. Here we discuss the current state of gene therapy for inherited diseases of the retina and cochlea with an eye toward areas that still need additional development.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Muayyad R. Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Muna I. Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
50
|
Bankoti K, Generotti C, Hwa T, Wang L, O'Malley BW, Li D. Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:209-236. [PMID: 33850952 PMCID: PMC8010215 DOI: 10.1016/j.omtm.2021.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is growing attention and effort focused on treating the root cause of sensorineural hearing loss rather than managing associated secondary characteristic features. With recent substantial advances in understanding sensorineural hearing-loss mechanisms, gene delivery has emerged as a promising strategy for the biological treatment of hearing loss associated with genetic dysfunction. There are several successful and promising proof-of-principle examples of transgene deliveries in animal models; however, there remains substantial further progress to be made in these avenues before realizing their clinical application in humans. Herein, we review different aspects of development, ongoing preclinical studies, and challenges to the clinical transition of transgene delivery of the inner ear toward the restoration of lost auditory and vestibular function.
Collapse
Affiliation(s)
- Kamakshi Bankoti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Generotti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiffany Hwa
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lili Wang
- Department of Medicine, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bert W O'Malley
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daqing Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|