1
|
Owino BO, Yanase R, Marron AO, Moreira-Leite F, Vaughan S, Sunter JD. Discovery of a novel flagellar filament system underpinning Leishmania adhesion to surfaces. Curr Biol 2025:S0960-9822(25)00561-5. [PMID: 40398412 DOI: 10.1016/j.cub.2025.04.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/23/2025]
Abstract
Adhesion to surfaces is a common strategy employed across biology, especially by pathogens. Within their sand fly vector, Leishmania parasites undergo multiple developmental stages, including the understudied haptomonad form, which adheres to the sand fly stomodeal valve via a highly modified flagellum. This adhesion, likely critical for efficient transmission, is mediated by a complex adhesion plaque from which filaments in the modified flagellum extend toward the cell body and likely connect to the flagellum attachment zone (FAZ), a cytoskeletal structure important for cell morphogenesis. However, the role of the FAZ in adhesion and its relationship with the kinetoplastid-insect adhesion proteins (KIAPs) and the filamentous structures of the plaque itself remain unclear. Here, to examine the role of the FAZ in adhesion, we generated FAZ2, FAZ5, and FAZ34 deletion mutants. Deletion of any of these FAZ proteins impaired parasite adhesion in vitro. Furthermore, we identified a novel and distinct set of extra-axonemal flagellar filaments important for adhesion and demonstrated that KIAP2 is an essential component of these filaments. Our findings underscore the importance of a robust connection from the cell body to the adhesion plaque for stable Leishmania adhesion via the highly modified flagellum.
Collapse
Affiliation(s)
- Barrack O Owino
- Oxford Brookes University, Department of Biological and Medical Sciences, Gipsy Lane, Oxford OX3 0BP, UK
| | - Ryuji Yanase
- Oxford Brookes University, Department of Biological and Medical Sciences, Gipsy Lane, Oxford OX3 0BP, UK
| | - Alan O Marron
- Oxford Brookes University, Department of Biological and Medical Sciences, Gipsy Lane, Oxford OX3 0BP, UK
| | - Flavia Moreira-Leite
- Oxford Brookes University, Department of Biological and Medical Sciences, Gipsy Lane, Oxford OX3 0BP, UK
| | - Sue Vaughan
- Oxford Brookes University, Department of Biological and Medical Sciences, Gipsy Lane, Oxford OX3 0BP, UK
| | - Jack D Sunter
- Oxford Brookes University, Department of Biological and Medical Sciences, Gipsy Lane, Oxford OX3 0BP, UK.
| |
Collapse
|
2
|
Kostygov AY, Skýpalová K, Kraeva N, Kalita E, McLeod C, Yurchenko V, Field MC, Lukeš J, Butenko A. Comprehensive analysis of the Kinetoplastea intron landscape reveals a novel intron-containing gene and the first exclusively trans-splicing eukaryote. BMC Biol 2024; 22:281. [PMID: 39627879 PMCID: PMC11613528 DOI: 10.1186/s12915-024-02080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND In trypanosomatids, a group of unicellular eukaryotes that includes numerous important human parasites, cis-splicing has been previously reported for only two genes: a poly(A) polymerase and an RNA helicase. Conversely, trans-splicing, which involves the attachment of a spliced leader sequence, is observed for nearly every protein-coding transcript. So far, our understanding of splicing in this protistan group has stemmed from the analysis of only a few medically relevant species. In this study, we used an extensive dataset encompassing all described trypanosomatid genera to investigate the distribution of intron-containing genes and the evolution of splice sites. RESULTS We identified a new conserved intron-containing gene encoding an RNA-binding protein that is universally present in Kinetoplastea. We show that Perkinsela sp., a kinetoplastid endosymbiont of Amoebozoa, represents the first eukaryote completely devoid of cis-splicing, yet still preserving trans-splicing. We also provided evidence for reverse transcriptase-mediated intron loss in Kinetoplastea, extensive conservation of 5' splice sites, and the presence of non-coding RNAs within a subset of retained trypanosomatid introns. CONCLUSIONS All three intron-containing genes identified in Kinetoplastea encode RNA-interacting proteins, with a potential to fine-tune the expression of multiple genes, thus challenging the perception of cis-splicing in these protists as a mere evolutionary relic. We suggest that there is a selective pressure to retain cis-splicing in trypanosomatids and that this is likely associated with overall control of mRNA processing. Our study provides new insights into the evolution of introns and, consequently, the regulation of gene expression in eukaryotes.
Collapse
Affiliation(s)
- Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Karolína Skýpalová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Natalia Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Elora Kalita
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Cameron McLeod
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic.
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic.
| |
Collapse
|
3
|
Butterfield ER, Obado SO, Scutts SR, Zhang W, Chait BT, Rout MP, Field MC. A lineage-specific protein network at the trypanosome nuclear envelope. Nucleus 2024; 15:2310452. [PMID: 38605598 PMCID: PMC11018031 DOI: 10.1080/19491034.2024.2310452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 04/13/2024] Open
Abstract
The nuclear envelope (NE) separates translation and transcription and is the location of multiple functions, including chromatin organization and nucleocytoplasmic transport. The molecular basis for many of these functions have diverged between eukaryotic lineages. Trypanosoma brucei, a member of the early branching eukaryotic lineage Discoba, highlights many of these, including a distinct lamina and kinetochore composition. Here, we describe a cohort of proteins interacting with both the lamina and NPC, which we term lamina-associated proteins (LAPs). LAPs represent a diverse group of proteins, including two candidate NPC-anchoring pore membrane proteins (POMs) with architecture conserved with S. cerevisiae and H. sapiens, and additional peripheral components of the NPC. While many of the LAPs are Kinetoplastid specific, we also identified broadly conserved proteins, indicating an amalgam of divergence and conservation within the trypanosome NE proteome, highlighting the diversity of nuclear biology across the eukaryotes, increasing our understanding of eukaryotic and NPC evolution.
Collapse
Affiliation(s)
| | - Samson O. Obado
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Simon R. Scutts
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, UK
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| |
Collapse
|
4
|
Denecke S, Malfara MF, Hodges KR, Holmes NA, Williams AR, Gallagher-Teske JH, Pascarella JM, Daniels AM, Sterk GJ, Leurs R, Ruthel G, Hoang R, Povelones ML, Povelones M. Adhesion of Crithidia fasciculata promotes a rapid change in developmental fate driven by cAMP signaling. mSphere 2024; 9:e0061724. [PMID: 39315810 PMCID: PMC11520290 DOI: 10.1128/msphere.00617-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Trypanosomatids are single-celled parasites responsible for human and animal disease. Typically, colonization of an insect host is required for transmission. Stable attachment of parasites to insect tissues via their single flagellum coincides with differentiation and morphological changes. Although attachment is a conserved stage in trypanosomatid life cycles, the molecular mechanisms are not well understood. To study this process, we elaborate upon an in vitro model in which the swimming form of the trypanosomatid Crithidia fasciculata rapidly differentiates following adhesion to artificial substrates. Live imaging of cells transitioning from swimming to attached shows parasites undergoing a defined sequence of events, including an initial adhesion near the base of the flagellum immediately followed by flagellar shortening, cell rounding, and the formation of a hemidesmosome-like attachment plaque between the tip of the shortened flagellum and the substrate. Quantitative proteomics of swimming versus attached parasites suggests differential regulation of cyclic adenosine monophosphate (cAMP)-based signaling proteins. We have localized two of these proteins to the flagellum of swimming C. fasciculata; however, both are absent from the shortened flagellum of attached cells. Pharmacological inhibition of cAMP phosphodiesterases increased cAMP levels in the cell and prevented attachment. Further, treatment with inhibitor did not affect the growth rate of either swimming or established attached cells, indicating that its effect is limited to a critical window during the early stages of adhesion. These data suggest that cAMP signaling is required for attachment of C. fasciculata and that flagellar signaling domains may be reorganized during differentiation and attachment.IMPORTANCETrypanosomatid parasites cause significant disease burden worldwide and require insect vectors for transmission. In the insect, parasites attach to tissues, sometimes dividing as attached cells or producing motile, infectious forms. The significance and cellular mechanisms of attachment are relatively unexplored. Here, we exploit a model trypanosomatid that attaches robustly to artificial surfaces to better understand this process. This attachment recapitulates that observed in vivo and can be used to define the stages and morphological features of attachment as well as conditions that impact attachment efficiency. We have identified proteins that are enriched in either swimming or attached parasites, supporting a role for the cyclic AMP signaling pathway in the transition from swimming to attached. As this pathway has already been implicated in environmental sensing and developmental transitions in trypanosomatids, our data provide new insights into activities required for parasite survival in their insect hosts.
Collapse
Affiliation(s)
- Shane Denecke
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Kelly R. Hodges
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | - Nikki A. Holmes
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | - Andre R. Williams
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | | | | | - Abigail M. Daniels
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Geert Jan Sterk
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan HZ, Amsterdam, the Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan HZ, Amsterdam, the Netherlands
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel Hoang
- Department of Biology, Haverford College, Haverford, Pennsylvania, USA
| | - Megan L. Povelones
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | - Michael Povelones
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Bieber BV, Lockett SG, Glasser SK, St Clair FA, Portillo NO, Adler LS, Povelones ML. Genetic modification of the bee parasite Crithidia bombi for improved visualization and protein localization. Exp Parasitol 2024; 262:108789. [PMID: 38762201 DOI: 10.1016/j.exppara.2024.108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Crithidia bombi is a trypanosomatid parasite that infects several species of bumble bees (Bombus spp.), by adhering to their intestinal tract. Crithidia bombi infection impairs learning and reduces survival of workers and the fitness of overwintering queens. Although there is extensive research on the ecology of this host-pathogen system, we understand far less about the mechanisms that mediate internal infection dynamics. Crithidia bombi infects hosts by attaching to the hindgut via the flagellum, and one previous study found that a nectar secondary compound removed the flagellum, preventing attachment. However, approaches that allow more detailed observation of parasite attachment and growth would allow us to better understand factors mediating this host-pathogen relationship. We established techniques for genetic manipulation and visualization of cultured C. bombi. Using constructs established for Crithidia fasciculata, we successfully generated C. bombi cells expressing ectopic fluorescent transgenes using two different selectable markers. To our knowledge, this is the first genetic modification of this species. We also introduced constructs that label the mitochondrion and nucleus of the parasite, showing that subcellular targeting signals can function across parasite species to highlight specific organelles. Finally, we visualized fluorescently tagged parasites in vitro in both their swimming and attached forms, and in vivo in bumble bee (Bombus impatiens) hosts. Expanding our cell and molecular toolkit for C. bombi will help us better understand how factors such as host diet, immune system, and physiology mediate outcomes of infection by these common parasites.
Collapse
Affiliation(s)
| | - Sarah G Lockett
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| | - Sonja K Glasser
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Faith A St Clair
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| | - Neida O Portillo
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Lynn S Adler
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Megan L Povelones
- Department of Biology, Villanova University, Villanova, PA, 19085, USA.
| |
Collapse
|
6
|
Carreira de Paula J, García Olmedo P, Gómez-Moracho T, Buendía-Abad M, Higes M, Martín-Hernández R, Osuna A, de Pablos LM. Promastigote EPS secretion and haptomonad biofilm formation as evolutionary adaptations of trypanosomatid parasites for colonizing honeybee hosts. NPJ Biofilms Microbiomes 2024; 10:27. [PMID: 38514634 PMCID: PMC10957890 DOI: 10.1038/s41522-024-00492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Bees are major pollinators involved in the maintenance of all terrestrial ecosystems. Biotic and abiotic factors placing these insects at risk is a research priority for ecological and agricultural sustainability. Parasites are one of the key players of this global decline and the study of their mechanisms of action is essential to control honeybee colony losses. Trypanosomatid parasites and particularly the Lotmaria passim are widely spread in honeybees, however their lifestyle is poorly understood. In this work, we show how these parasites are able to differentiate into a new parasitic lifestyle: the trypanosomatid biofilms. Using different microscopic techniques, we demonstrated that the secretion of Extracellular Polymeric Substances by free-swimming unicellular promastigote forms is a prerequisite for the generation and adherence of multicellular biofilms to solid surfaces in vitro and in vivo. Moreover, compared to human-infective trypanosomatid parasites our study shows how trypanosomatid parasites of honeybees increases their resistance and thus resilience to drastic changes in environmental conditions such as ultralow temperatures and hypoosmotic shock, which would explain their success thriving within or outside their hosts. These results set up the basis for the understanding of the success of this group of parasites in nature and to unveil the impact of such pathogens in honeybees, a keystones species in most terrestrial ecosystems.
Collapse
Affiliation(s)
- Jéssica Carreira de Paula
- Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada, Spain
- Institute of Biotechnology, University of Granada, Granada, Spain
| | - Pedro García Olmedo
- Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada, Spain
- Institute of Biotechnology, University of Granada, Granada, Spain
| | - Tamara Gómez-Moracho
- Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada, Spain
- Institute of Biotechnology, University of Granada, Granada, Spain
| | - María Buendía-Abad
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF - Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología, Fundación Parque Científico y Tecnológico de Castilla-La Mancha, 02006, Albacete, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF - Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología, Fundación Parque Científico y Tecnológico de Castilla-La Mancha, 02006, Albacete, Spain
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF - Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología, Fundación Parque Científico y Tecnológico de Castilla-La Mancha, 02006, Albacete, Spain
| | - Antonio Osuna
- Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada, Spain
- Institute of Biotechnology, University of Granada, Granada, Spain
| | - Luis Miguel de Pablos
- Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada, Spain.
- Institute of Biotechnology, University of Granada, Granada, Spain.
| |
Collapse
|
7
|
Chmelová Ľ, Záhonová K, Albanaz ATS, Hrebenyk L, Horváth A, Yurchenko V, Škodová-Sveráková I. Distribution and Functional Analysis of Isocitrate Dehydrogenases across Kinetoplastids. Genome Biol Evol 2024; 16:evae042. [PMID: 38447055 PMCID: PMC10946238 DOI: 10.1093/gbe/evae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
Isocitrate dehydrogenase is an enzyme converting isocitrate to α-ketoglutarate in the canonical tricarboxylic acid (TCA) cycle. There are three different types of isocitrate dehydrogenase documented in eukaryotes. Our study points out the complex evolutionary history of isocitrate dehydrogenases across kinetoplastids, where the common ancestor of Trypanosomatidae and Bodonidae was equipped with two isoforms of the isocitrate dehydrogenase enzyme: the NADP+-dependent isocitrate dehydrogenase 1 with possibly dual localization in the cytosol and mitochondrion and NADP+-dependent mitochondrial isocitrate dehydrogenase 2. In the extant trypanosomatids, isocitrate dehydrogenase 1 is present only in a few species suggesting that it was lost upon separation of Trypanosoma spp. and replaced by the mainly NADP+-dependent cytosolic isocitrate dehydrogenase 3 of bacterial origin in all the derived lineages. In this study, we experimentally demonstrate that the omnipresent isocitrate dehydrogenase 2 has a dual localization in both mitochondrion and cytosol in at least four species that possess only this isoform. The apparent lack of the NAD+-dependent isocitrate dehydrogenase activity in trypanosomatid mitochondrion provides further support to the existence of the noncanonical TCA cycle across trypanosomatids and the bidirectional activity of isocitrate dehydrogenase 3 when operating with NADP+ cofactor instead of NAD+. This observation can be extended to all 17 species analyzed in this study, except for Leishmania mexicana, which showed only low isocitrate dehydrogenase activity in the cytosol. The variability in isocitrate oxidation capacity among species may reflect the distinct metabolic strategies and needs for reduced cofactors in particular environments.
Collapse
Affiliation(s)
- Ľubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Amanda T S Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Liudmyla Hrebenyk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
8
|
Stijlemans B, De Baetselier P, Van Molle I, Lecordier L, Hendrickx E, Romão E, Vincke C, Baetens W, Schoonooghe S, Hassanzadeh-Ghassabeh G, Korf H, Wallays M, Pinto Torres JE, Perez-Morga D, Brys L, Campetella O, Leguizamón MS, Claes M, Hendrickx S, Mabille D, Caljon G, Remaut H, Roelants K, Magez S, Van Ginderachter JA, De Trez C. Q586B2 is a crucial virulence factor during the early stages of Trypanosoma brucei infection that is conserved amongst trypanosomatids. Nat Commun 2024; 15:1779. [PMID: 38413606 PMCID: PMC10899635 DOI: 10.1038/s41467-024-46067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024] Open
Abstract
Human African trypanosomiasis or sleeping sickness, caused by the protozoan parasite Trypanosoma brucei, is characterized by the manipulation of the host's immune response to ensure parasite invasion and persistence. Uncovering key molecules that support parasite establishment is a prerequisite to interfere with this process. We identified Q586B2 as a T. brucei protein that induces IL-10 in myeloid cells, which promotes parasite infection invasiveness. Q586B2 is expressed during all T. brucei life stages and is conserved in all Trypanosomatidae. Deleting the Q586B2-encoding Tb927.6.4140 gene in T. brucei results in a decreased peak parasitemia and prolonged survival, without affecting parasite fitness in vitro, yet promoting short stumpy differentiation in vivo. Accordingly, neutralization of Q586B2 with newly generated nanobodies could hamper myeloid-derived IL-10 production and reduce parasitemia. In addition, immunization with Q586B2 delays mortality upon a challenge with various trypanosomes, including Trypanosoma cruzi. Collectively, we uncovered a conserved protein playing an important regulatory role in Trypanosomatid infection establishment.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium.
| | - Patrick De Baetselier
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Inge Van Molle
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Laurence Lecordier
- Biology of Membrane Transport Laboratory, Université Libre de Bruxelles, Gosselies, Belgium
| | - Erika Hendrickx
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Ema Romão
- VIB Nanobody Core, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cécile Vincke
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Wendy Baetens
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | | | | | - Hannelie Korf
- Laboratory of Hepatology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Marie Wallays
- Laboratory of Hepatology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Joar E Pinto Torres
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Perez-Morga
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Lea Brys
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - María S Leguizamón
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - Mathieu Claes
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Magez
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Jo A Van Ginderachter
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Carl De Trez
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
9
|
Ossowski MS, Gallardo JP, Niborski LL, Rodríguez-Durán J, Lapadula WJ, Juri Ayub M, Chadi R, Hernandez Y, Fernandez ML, Potenza M, Gómez KA. Characterization of Novel Trypanosoma cruzi-Specific Antigen with Potential Use in the Diagnosis of Chagas Disease. Int J Mol Sci 2024; 25:1202. [PMID: 38256275 PMCID: PMC10816184 DOI: 10.3390/ijms25021202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Chagas disease is caused by the parasite Trypanosoma cruzi. In humans, it evolves into a chronic disease, eventually resulting in cardiac, digestive, and/or neurological disorders. In the present study, we characterized a novel T. cruzi antigen named Tc323 (TcCLB.504087.20), recognized by a single-chain monoclonal antibody (scFv 6B6) isolated from the B cells of patients with cardiomyopathy related to chronic Chagas disease. Tc323, a ~323 kDa protein, is an uncharacterized protein showing putative quinoprotein alcohol dehydrogenase-like domains. A computational molecular docking study revealed that the scFv 6B6 binds to an internal domain of Tc323. Immunofluorescence microscopy and Western Blot showed that Tc323 is expressed in the main developmental forms of T. cruzi, localized intracellularly and exhibiting a membrane-associated pattern. According to phylogenetic analysis, Tc323 is highly conserved throughout evolution in all the lineages of T. cruzi so far identified, but it is absent in Leishmania spp. and Trypanosoma brucei. Most interestingly, only plasma samples from patients infected with T. cruzi and those with mixed infection with Leishmania spp. reacted against Tc323. Collectively, our findings demonstrate that Tc323 is a promising candidate for the differential serodiagnosis of chronic Chagas disease in areas where T. cruzi and Leishmania spp. infections coexist.
Collapse
Affiliation(s)
- Micaela S. Ossowski
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Juan Pablo Gallardo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Leticia L. Niborski
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Jessica Rodríguez-Durán
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Walter J. Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina; (W.J.L.); (M.J.A.)
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina; (W.J.L.); (M.J.A.)
| | - Raúl Chadi
- Hospital General de Agudos “Dr. Ignacio Pirovano”, Buenos Aires 1430, Argentina;
| | - Yolanda Hernandez
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Buenos Aires 1063, Argentina; (Y.H.); (M.L.F.)
| | - Marisa L. Fernandez
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Buenos Aires 1063, Argentina; (Y.H.); (M.L.F.)
| | - Mariana Potenza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Karina A. Gómez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| |
Collapse
|
10
|
Povelones ML, Holmes NA, Povelones M. A sticky situation: When trypanosomatids attach to insect tissues. PLoS Pathog 2023; 19:e1011854. [PMID: 38128049 PMCID: PMC10734937 DOI: 10.1371/journal.ppat.1011854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Transmission of trypanosomatids to their mammalian hosts requires a complex series of developmental transitions in their insect vectors, including stable attachment to an insect tissue. While there are many ultrastructural descriptions of attached cells, we know little about the signaling events and molecular mechanisms involved in this process. Each trypanosomatid species attaches to a specific tissue in the insect at a particular stage of its life cycle. Attachment is mediated by the flagellum, which is modified to accommodate a filament-rich plaque within an expanded region of the flagellar membrane. Attachment immediately precedes differentiation to the mammal-infectious stage and in some cases a direct mechanistic link has been demonstrated. In this review, we summarize the current state of knowledge of trypanosomatid attachment in insects, including structure, function, signaling, candidate molecules, and changes in gene expression. We also highlight remaining questions about this process and how the field is poised to address them through modern approaches.
Collapse
Affiliation(s)
- Megan L. Povelones
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Nikki A. Holmes
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Michael Povelones
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
11
|
Campbell PC, de Graffenried CL. Morphogenesis in Trypanosoma cruzi epimastigotes proceeds via a highly asymmetric cell division. PLoS Negl Trop Dis 2023; 17:e0011731. [PMID: 37917723 PMCID: PMC10656021 DOI: 10.1371/journal.pntd.0011731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/17/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Trypanosoma cruzi is a protist parasite that is the causative agent of Chagas disease, a neglected tropical disease endemic to the Americas. T. cruzi cells are highly polarized and undergo morphological changes as they cycle within their insect and mammalian hosts. Work on related trypanosomatids has described cell division mechanisms in several life-cycle stages and identified a set of essential morphogenic proteins that serve as markers for key events during trypanosomatid division. Here, we use Cas9-based tagging of morphogenic genes, live-cell imaging, and expansion microscopy to study the cell division mechanism of the insect-resident epimastigote form of T. cruzi, which represents an understudied trypanosomatid morphotype. We find that T. cruzi epimastigote cell division is highly asymmetric, producing one daughter cell that is significantly smaller than the other. Daughter cell division rates differ by 4.9 h, which may be a consequence of this size disparity. Many of the morphogenic proteins identified in T. brucei have altered localization patterns in T. cruzi epimastigotes, which may reflect fundamental differences in the cell division mechanism of this life cycle stage, which widens and shortens the cell body to accommodate the duplicated organelles and cleavage furrow rather than elongating the cell body along the long axis of the cell, as is the case in life-cycle stages that have been studied in T. brucei. This work provides a foundation for further investigations of T. cruzi cell division and shows that subtle differences in trypanosomatid cell morphology can alter how these parasites divide.
Collapse
Affiliation(s)
- Paul C. Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Christopher L. de Graffenried
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
12
|
Albanaz ATS, Carrington M, Frolov AO, Ganyukova AI, Gerasimov ES, Kostygov AY, Lukeš J, Malysheva MN, Votýpka J, Zakharova A, Záhonová K, Zimmer SL, Yurchenko V, Butenko A. Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of Trypanosomatidae. BMC Genomics 2023; 24:471. [PMID: 37605127 PMCID: PMC10441713 DOI: 10.1186/s12864-023-09591-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Protists of the family Trypanosomatidae (phylum Euglenozoa) have gained notoriety as parasites affecting humans, domestic animals, and agricultural plants. However, the true extent of the group's diversity spreads far beyond the medically and veterinary relevant species. We address several knowledge gaps in trypanosomatid research by undertaking sequencing, assembly, and analysis of genomes from previously overlooked representatives of this protistan group. RESULTS We assembled genomes for twenty-one trypanosomatid species, with a primary focus on insect parasites and Trypanosoma spp. parasitizing non-human hosts. The assemblies exhibit sizes consistent with previously sequenced trypanosomatid genomes, ranging from approximately 18 Mb for Obscuromonas modryi to 35 Mb for Crithidia brevicula and Zelonia costaricensis. Despite being the smallest, the genome of O. modryi has the highest content of repetitive elements, contributing nearly half of its total size. Conversely, the highest proportion of unique DNA is found in the genomes of Wallacemonas spp., with repeats accounting for less than 8% of the assembly length. The majority of examined species exhibit varying degrees of aneuploidy, with trisomy being the most frequently observed condition after disomy. CONCLUSIONS The genome of Obscuromonas modryi represents a very unusual, if not unique, example of evolution driven by two antidromous forces: i) increasing dependence on the host leading to genomic shrinkage and ii) expansion of repeats causing genome enlargement. The observed variation in somy within and between trypanosomatid genera suggests that these flagellates are largely predisposed to aneuploidy and, apparently, exploit it to gain a fitness advantage. High heterogeneity in the genome size, repeat content, and variation in chromosome copy numbers in the newly-sequenced species highlight the remarkable genome plasticity exhibited by trypanosomatid flagellates. These new genome assemblies are a robust foundation for future research on the genetic basis of life cycle changes and adaptation to different hosts in the family Trypanosomatidae.
Collapse
Affiliation(s)
- Amanda T S Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Alexander O Frolov
- Zoological Institute of the Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | - Anna I Ganyukova
- Zoological Institute of the Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | - Evgeny S Gerasimov
- Faculty of Biology, M. V. Lomonosov Moscow State University, 119991, Moscow, Russia
- Martsinovsky Institute of Medical Parasitology, Sechenov University, 119435, Moscow, Russia
| | - Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - Marina N Malysheva
- Zoological Institute of the Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | - Jan Votýpka
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic
| | - Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, T6G 2G3, Canada
| | - Sara L Zimmer
- Duluth Campus, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic.
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic.
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic.
- Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
13
|
Campbell PC, de Graffenried CL. Morphogenesis in Trypanosoma cruzi epimastigotes proceeds via a highly asymmetric cell division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542100. [PMID: 37293088 PMCID: PMC10245916 DOI: 10.1101/2023.05.24.542100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trypanosoma cruzi is a protist parasite that is the causative agent of Chagas' disease, a neglected tropical disease endemic to the Americas. T. cruzi cells are highly polarized and undergo morphological changes as they cycle within their insect and mammalian hosts. Work on related trypanosomatids has described cell division mechanisms in several life-cycle stages and identified a set of essential morphogenic proteins that serve as markers for key events during trypanosomatid division. Here, we use Cas9-based tagging of morphogenic genes, live-cell imaging, and expansion microscopy to study the cell division mechanism of the insect-resident epimastigote form of T. cruzi, which represents an understudied trypanosomatid morphotype. We find that T. cruzi epimastigote cell division is highly asymmetric, producing one daughter cell that is significantly smaller than the other. Daughter cell division rates differ by 4.9 h, which may be a consequence of this size disparity. Many of the morphogenic proteins identified in T. brucei have altered localization patterns in T. cruzi epimastigoes, which may reflect fundamental differences in the cell division mechanism of this life cycle stage, which widens and shortens the cell body to accommodate the duplicated organelles and cleavage furrow rather than elongating the cell body along the long axis of the cell, as is the case in life-cycle stages that have been studied in T. brucei. This work provides a foundation for further investigations of T. cruzi cell division and shows that subtle differences in trypansomatid cell morphology can alter how these parasites divide.
Collapse
Affiliation(s)
- Paul C. Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | | |
Collapse
|
14
|
Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat Microbiol 2023; 8:533-547. [PMID: 36804636 PMCID: PMC9981465 DOI: 10.1038/s41564-022-01295-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/21/2022] [Indexed: 02/22/2023]
Abstract
Trypanosoma brucei is a model trypanosomatid, an important group of human, animal and plant unicellular parasites. Understanding their complex cell architecture and life cycle is challenging because, as with most eukaryotic microbes, ~50% of genome-encoded proteins have completely unknown functions. Here, using fluorescence microscopy and cell lines expressing endogenously tagged proteins, we mapped the subcellular localization of 89% of the T. brucei proteome, a resource we call TrypTag. We provide clues to function and define lineage-specific organelle adaptations for parasitism, mapping the ultraconserved cellular architecture of eukaryotes, including the first comprehensive 'cartographic' analysis of the eukaryotic flagellum, which is vital for morphogenesis and pathology. To demonstrate the power of this resource, we identify novel organelle subdomains and changes in molecular composition through the cell cycle. TrypTag is a transformative resource, important for hypothesis generation for both eukaryotic evolutionary molecular cell biology and fundamental parasite cell biology.
Collapse
|
15
|
Shanmugasundram A, Starns D, Böhme U, Amos B, Wilkinson PA, Harb OS, Warrenfeltz S, Kissinger JC, McDowell MA, Roos DS, Crouch K, Jones AR. TriTrypDB: An integrated functional genomics resource for kinetoplastida. PLoS Negl Trop Dis 2023; 17:e0011058. [PMID: 36656904 PMCID: PMC9888696 DOI: 10.1371/journal.pntd.0011058] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/31/2023] [Accepted: 12/23/2022] [Indexed: 01/20/2023] Open
Abstract
Parasitic diseases caused by kinetoplastid parasites are a burden to public health throughout tropical and subtropical regions of the world. TriTrypDB (https://tritrypdb.org) is a free online resource for data mining of genomic and functional data from these kinetoplastid parasites and is part of the VEuPathDB Bioinformatics Resource Center (https://veupathdb.org). As of release 59, TriTrypDB hosts 83 kinetoplastid genomes, nine of which, including Trypanosoma brucei brucei TREU927, Trypanosoma cruzi CL Brener and Leishmania major Friedlin, undergo manual curation by integrating information from scientific publications, high-throughput assays and user submitted comments. TriTrypDB also integrates transcriptomic, proteomic, epigenomic, population-level and isolate data, functional information from genome-wide RNAi knock-down and fluorescent tagging, and results from automated bioinformatics analysis pipelines. TriTrypDB offers a user-friendly web interface embedded with a genome browser, search strategy system and bioinformatics tools to support custom in silico experiments that leverage integrated data. A Galaxy workspace enables users to analyze their private data (e.g., RNA-sequencing, variant calling, etc.) and explore their results privately in the context of publicly available information in the database. The recent addition of an annotation platform based on Apollo enables users to provide both functional and structural changes that will appear as 'community annotations' immediately and, pending curatorial review, will be integrated into the official genome annotation.
Collapse
Affiliation(s)
- Achchuthan Shanmugasundram
- Department of Biochemistry and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, United Kingdom
| | - David Starns
- Department of Biochemistry and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, United Kingdom
| | - Ulrike Böhme
- Department of Biochemistry and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, United Kingdom
| | - Beatrice Amos
- Department of Biochemistry and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, United Kingdom
| | - Paul A. Wilkinson
- Department of Biochemistry and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, United Kingdom
| | - Omar S. Harb
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Susanne Warrenfeltz
- Center for Tropical & Emerging Global Diseases, Department of Genetics, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Jessica C. Kissinger
- Center for Tropical & Emerging Global Diseases, Department of Genetics, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Mary Ann McDowell
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - David S. Roos
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kathryn Crouch
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Andrew R. Jones
- Department of Biochemistry and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
16
|
Etheridge RD. Protozoan phagotrophy from predators to parasites: An overview of the enigmatic cytostome-cytopharynx complex of Trypanosoma cruzi. J Eukaryot Microbiol 2022; 69:e12896. [PMID: 35175673 PMCID: PMC11110969 DOI: 10.1111/jeu.12896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Eating is fundamental and from this basic principle, living organisms have evolved innumerable strategies to capture energy and nutrients from their environment. As part of the world's aquatic ecosystems, the expansive family of heterotrophic protozoans uses self-generated currents to funnel prokaryotic prey into an ancient, yet highly enigmatic, oral apparatus known as the cytostome-cytopharynx complex prior to digestion. Despite its near ubiquitous presence in protozoans, little is known mechanistically about how this feeding organelle functions. Intriguingly, one class of these flagellated phagotrophic predators known as the kinetoplastids gave rise to a lineage of obligate parasitic protozoa, the trypanosomatids, that can infect a wide variety of organisms ranging from plants to humans. One parasitic species of humans, Trypanosoma cruzi, has retained this ancestral organelle much like its free-living relatives and continues to use it as its primary mode of endocytosis. In this review, we will highlight foundational observations made regarding the cytostome-cytopharynx complex and examine some of the most pressing questions regarding the mechanistic basis for its function. We propose that T. cruzi has the potential to serve as an excellent model system to dissect the enigmatic process of protozoal phagotrophy and thus enhance our overall understanding of fundamental eukaryotic biology.
Collapse
Affiliation(s)
- Ronald Drew Etheridge
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia, USA
| |
Collapse
|
17
|
Benz C, Müller N, Kaltenbrunner S, Váchová H, Vancová M, Lukeš J, Varga V, Hashimi H. Kinetoplastid-specific X2-family kinesins interact with a kinesin-like pleckstrin homology domain protein that localizes to the trypanosomal microtubule quartet. Mol Microbiol 2022; 118:155-174. [PMID: 35766104 DOI: 10.1111/mmi.14958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
Kinesins are motor proteins found in all eukaryotic lineages that move along microtubules to mediate cellular processes such as mitosis and intracellular transport. In trypanosomatids, the kinesin superfamily has undergone a prominent expansion, resulting in one of the most diverse kinesin repertoires that includes the two kinetoplastid-restricted families X1 and X2. Here, we characterize in Trypanosoma brucei TbKifX2A, an orphaned X2 kinesin. TbKifX2A tightly interacts with TbPH1, a kinesin-like protein with a likely inactive motor domain, a rarely reported occurrence. Both TbKifX2A and TbPH1 localize to the microtubule quartet (MtQ), a characteristic but poorly understood cytoskeletal structure that wraps around the flagellar pocket as it extends to the cell body anterior. The proximal proteome of TbPH1 revealed two other interacting proteins, the flagellar pocket protein FP45 and intriguingly another X2 kinesin, TbKifX2C. Simultaneous ablation of TbKifX2A/TbPH1 results in the depletion of FP45 and TbKifX2C and also an expansion of the flagellar pocket, among other morphological defects. TbKifX2A is the first motor protein to be localized to the MtQ. The observation that TbKifX2C also associates with the MtQ suggests that the X2 kinesin family may have co-evolved with the MtQ, both kinetoplastid-specific traits.
Collapse
Affiliation(s)
- Corinna Benz
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czechia
| | - Nora Müller
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Sabine Kaltenbrunner
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia.,Johannes Kepler University, Medical Faculty, Linz, Austria
| | - Hana Váchová
- Laboratory of Cell Motility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Marie Vancová
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Vladimír Varga
- Laboratory of Cell Motility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
18
|
Buendía-Abad M, García-Palencia P, de Pablos LM, Martín-Hernández R, Higes M. The Haptomonad Stage of Crithidia acanthocephali in Apis mellifera Hindgut. Vet Sci 2022; 9:vetsci9060298. [PMID: 35737350 PMCID: PMC9229786 DOI: 10.3390/vetsci9060298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Crithidia acanthocephali is a trypanosomatid species that was initially described in the digestive tract of Hemiptera. However, this parasite was recently detected in honey bee colonies in Spain, raising the question as to whether bees can act as true hosts for this species. To address this issue, worker bees were experimentally infected with choanomastigotes from the early stationary growth phase and after 12 days, their hindgut was extracted for analysis by light microscopy and TEM. Although no cellular lesions were observed in the honey bee’s tissue, trypanosomatids had differentiated and adopted a haptomonad morphology, transforming their flagella into an attachment pad. This structure allows the protozoa to remain attached to the gut walls via hemidesmosomes-such as junctions. The impact of this species on honey bee health, as well as the pathogenic mechanisms involved, remains unknown. Nevertheless, these results suggest that insect trypanosomatids may have a broader range of hosts than initially thought.
Collapse
Affiliation(s)
- María Buendía-Abad
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF—Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain;
- Correspondence: (M.B.-A.); (M.H.)
| | - Pilar García-Palencia
- Departamento de Medicina Veterinaria y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28001 Madrid, Spain;
| | - Luis Miguel de Pablos
- Grupo de Bioquímica y Parasitología Molecular CTS-183, Departamento de Parasitología, Universidad de Granada, 18001 Granada, Spain;
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF—Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain;
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (Increcyt-Feder), Fundación Parque Científico y Tecnológico de Castilla-La Mancha, 02001 Albacete, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF—Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain;
- Correspondence: (M.B.-A.); (M.H.)
| |
Collapse
|
19
|
de Castro Neto AL, da Silveira JF, Mortara RA. Role of Virulence Factors of Trypanosomatids in the Insect Vector and Putative Genetic Events Involved in Surface Protein Diversity. Front Cell Infect Microbiol 2022; 12:807172. [PMID: 35573777 PMCID: PMC9097677 DOI: 10.3389/fcimb.2022.807172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Trypanosomatids are flagellate protozoans that can infect several invertebrate and vertebrate hosts, including insects and humans. The three most studied species are the human pathogens Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. which are the causative agents of Human African Trypanosomiasis (HAT), Chagas disease and different clinical forms of leishmaniasis, respectively. These parasites possess complex dixenous life cycles, with zoonotic and anthroponotic stages, and are transmitted by hematophagous insects. To colonize this myriad of hosts, they developed mechanisms, mediated by virulence factors, to infect, propagate and survive in different environments. In insects, surface proteins play roles in parasite attachment and survival in the insect gut, whilst in the mammalian host, the parasites have a whole group of proteins and mechanisms that aid them invading the host cells and evading its immune system components. Many studies have been done on the impact of these molecules in the vertebrate host, however it is also essential to notice the importance of these virulence factors in the insect vector during the parasite life cycle. When inside the insect, the parasites, like in humans, also need to survive defense mechanisms components that can inhibit parasite colonization or survival, e.g., midgut peritrophic membrane barrier, digestive enzymes, evasion of excretion alongside the digested blood meal, anatomic structures and physiological mechanisms of the anterior gut. This protection inside the insect is often implemented by the same group of virulence factors that perform roles of immune evasion in the mammalian host with just a few exceptions, in which a specific protein is expressed specifically for the insect vector form of the parasite. This review aims to discuss the roles of the virulence molecules in the insect vectors, showing the differences and similarities of modes of action of the same group of molecules in insect and humans, exclusive insect molecules and discuss possible genetic events that may have generated this protein diversity.
Collapse
|
20
|
Attias M, Vidal JC, Takata CSA, Campaner M, Camargo EP, Teixeira MMG, De Souza W. Remarkable kinetoplast, cytostome-cytopharynx complex, and storage-related structures as dissected by three-dimensional reconstruction of Trypanosoma sp. 858 isolated from a toad (Amphibia: Anura). Micron 2021; 152:103180. [PMID: 34798356 DOI: 10.1016/j.micron.2021.103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022]
Abstract
In Brazil, the Trypanosoma sp. 858 was isolated from a toad (Anura: Bufonidae: Rhinella ictericus) and successfully maintained in cultures. We previously demonstrated that this trypanosome is different but tightly clustered phylogenetically with other trypanosomes from anurans. In this study, we addressed the ultrastructural features of cultured epimastigotes of this new trypanosome. Our results showed very long and thin free motile forms exhibiting a long flagellum and remarkable large and loose K-DNA network. In addition, the anterior portion contained many acidocalcisomes and a well-developed spongiome tubules-contractile vacuole system. One of the main morphological features of this anuran trypanosome was the presence of a complex cytostome-cytopharynx with a specialized membrane coating at the entrance, which is often hidden by the flagellum. Other conspicuous features are the presence of lipid-like droplets, lamellar membrane limited inclusions, and one very large reservosome, all at the posterior portion of the cell body. This new trypanosome may constitute an excellent model for organelles studies related to endocytosis and lipid storage, as demonstrated herein using scanning and transmission electron microscopy and three-dimensional models obtained by either electron microscopy tomography or dual-beam slice and view series.
Collapse
Affiliation(s)
- Márcia Attias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens-INBEB, and Centro Nacional de Biologia Estrutural e Bioimagem-CENABIO, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ21941-902, Brazil.
| | - Juliana C Vidal
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Carmem S A Takata
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Marta Campaner
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Erney P Camargo
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Marta M G Teixeira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Wanderley De Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens-INBEB, and Centro Nacional de Biologia Estrutural e Bioimagem-CENABIO, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ21941-902, Brazil
| |
Collapse
|
21
|
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done? Pathogens 2021; 10:pathogens10091124. [PMID: 34578156 PMCID: PMC8472099 DOI: 10.3390/pathogens10091124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Trypanosomatids are easy to cultivate and they are (in many cases) amenable to genetic manipulation. Genome sequencing has become a standard tool routinely used in the study of these flagellates. In this review, we summarize the current state of the field and our vision of what needs to be done in order to achieve a more comprehensive picture of trypanosomatid evolution. This will also help to illuminate the lineage-specific proteins and pathways, which can be used as potential targets in treating diseases caused by these parasites.
Collapse
|
22
|
Buendía-Abad M, García-Palencia P, de Pablos LM, Alunda JM, Osuna A, Martín-Hernández R, Higes M. First description of Lotmaria passim and Crithidia mellificae haptomonad stages in the honeybee hindgut. Int J Parasitol 2021; 52:65-75. [PMID: 34416272 DOI: 10.1016/j.ijpara.2021.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022]
Abstract
The remodelling of flagella into attachment structures is a common and important event in the trypanosomatid life cycle. Lotmaria passim and Crithidia mellificae can parasitize Apis mellifera, and as a result they might have a significant impact on honeybee health. However, there are details of their life cycle and the mechanisms underlying their pathogenicity in this host that remain unclear. Here we show that both L. passim promastigotes and C. mellificae choanomastigotes differentiate into haptomonad stages covering the ileum and rectum of honeybees. These haptomonad cells remain attached to the host surface via zonular hemidesmosome-like structures, as revealed by transmission electron microscopy. This work describes for the first known time the haptomonad morphotype of these species and their hemidesmosome-like attachments in A. mellifera, a key trait used by other trypanosomatid species to proliferate in the insect host hindgut.
Collapse
Affiliation(s)
- María Buendía-Abad
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF - Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain.
| | - Pilar García-Palencia
- Departamento de Medicina Veterinaria y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Miguel de Pablos
- Departamento de Parasitología, Grupo de Bioquímica y Parasitología Molecular CTS-183, Universidad de Granada, Granada, Spain
| | - José María Alunda
- Departamento de Sanidad Animal, Grupo ICPVet, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Osuna
- Departamento de Parasitología, Grupo de Bioquímica y Parasitología Molecular CTS-183, Universidad de Granada, Granada, Spain
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF - Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain; Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla - La Mancha, Albacete, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF - Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| |
Collapse
|
23
|
Borges AR, Engstler M, Wolf M. 18S rRNA gene sequence-structure phylogeny of the Trypanosomatida (Kinetoplastea, Euglenozoa) with special reference to Trypanosoma. Eur J Protistol 2021; 81:125824. [PMID: 34352687 DOI: 10.1016/j.ejop.2021.125824] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/08/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
Parasites of the order Trypanosomatida are known due to their medical relevance. Despite the progress made in the past decades on understanding the evolution of this group of organisms, there are still many open questions that require robust phylogenetic markers to increase the resolution of trees. Using two known 18S rRNA gene template structures (from Trypanosoma cruzi Chagas, 1909 and Trypanosoma brucei Plimmer and Bradford, 1899), individual 18S rRNA gene secondary structures were predicted by homology modeling. Sequences and their secondary structures, automatically encoded by a 12-letter alphabet (each nucleotide with its three structural states, paired left, paired right, unpaired), were simultaneously aligned. Sequence-structure trees were generated by neighbor joining and/or maximum likelihood. The reconstructed trees allowed us to discuss not only the big picture of trypanosomatid phylogeny but also a comprehensive sampling of trypanosomes evaluated in the context of trypanosomatid diversity. The robust support (bootstrap > 75) for well-known clades and critical branches suggests that the simultaneous use of 18S rRNA sequence and secondary structure data can reconstruct robust phylogenetic trees and can be used by the trypanosomatid research community for future analysis.
Collapse
Affiliation(s)
- Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Matthias Wolf
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
24
|
Corrales RM, Vaselek S, Neish R, Berry L, Brunet CD, Crobu L, Kuk N, Mateos-Langerak J, Robinson DR, Volf P, Mottram JC, Sterkers Y, Bastien P. The kinesin of the flagellum attachment zone in Leishmania is required for cell morphogenesis, cell division and virulence in the mammalian host. PLoS Pathog 2021; 17:e1009666. [PMID: 34143858 PMCID: PMC8244899 DOI: 10.1371/journal.ppat.1009666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/30/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022] Open
Abstract
Leishmania parasites possess a unique and complex cytoskeletal structure termed flagellum attachment zone (FAZ) connecting the base of the flagellum to one side of the flagellar pocket (FP), an invagination of the cell body membrane and the sole site for endocytosis and exocytosis. This structure is involved in FP architecture and cell morphogenesis, but its precise role and molecular composition remain enigmatic. Here, we characterized Leishmania FAZ7, the only known FAZ protein containing a kinesin motor domain, and part of a clade of trypanosomatid-specific kinesins with unknown functions. The two paralogs of FAZ7, FAZ7A and FAZ7B, display different localizations and functions. FAZ7A localizes at the basal body, while FAZ7B localizes at the distal part of the FP, where the FAZ structure is present in Leishmania. While null mutants of FAZ7A displayed normal growth rates, the deletion of FAZ7B impaired cell growth in both promastigotes and amastigotes of Leishmania. The kinesin activity is crucial for its function. Deletion of FAZ7B resulted in altered cell division, cell morphogenesis (including flagellum length), and FP structure and function. Furthermore, knocking out FAZ7B induced a mis-localization of two of the FAZ proteins, and disrupted the molecular organization of the FP collar, affecting the localization of its components. Loss of the kinesin FAZ7B has important consequences in the insect vector and mammalian host by reducing proliferation in the sand fly and pathogenicity in mice. Our findings reveal the pivotal role of the only FAZ kinesin as part of the factors important for a successful life cycle of Leishmania. Leishmania are flagellated trypanosomatid parasites causing worldwide human and animal diseases. As ’divergent eukaryotes’, their biology presents unique features and structures, of which the specific functions constitute potential drug targets. Among others, they possess a unique cytoskeletal structure termed the flagellum attachment zone (FAZ) attaching the base of their flagellum to one side of the flagellar pocket (FP), which is the sole site for endocytosis and exocytosis. The FP together with other unique flagellum-associated structures are crucial for parasite survival, but the functioning of this whole remains largely enigmatic. Leishmania also possess an expanded repertoire of kinesins (>55), including two trypanosomatid-specific families. Here, we show that the deletion of the sole kinesin among FAZ proteins disrupts cell morphogenesis, FP organisation and cell division. Furthermore, the ability to proliferate in the insect vector and mammalian host is reduced in parasites lacking the kinesin FAZ7B. This study helps elucidate the factors contributing to the successful lifecycle and pathogenicity of the parasite. It also highlights the functional diversification of motor proteins during evolution.
Collapse
Affiliation(s)
- Rosa Milagros Corrales
- Research Unit “MiVEGEC”, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier, France
- * E-mail: (RMC); (PB)
| | - Slavica Vaselek
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Rachel Neish
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Laurence Berry
- Research Unit “LPHI” (Laboratory of Pathogen Host Interactions), University of Montpellier, CNRS, Montpellier, France
| | - Camille D. Brunet
- Research Unit “MiVEGEC”, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier, France
| | - Lucien Crobu
- Research Unit “MiVEGEC”, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier, France
| | - Nada Kuk
- Research Unit “MiVEGEC”, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier, France
| | | | - Derrick R. Robinson
- Research Unit “Fundamental Microbiology and Pathogenicity”, “Protist Parasite Cytoskeleton (ProParaCyto)”, University of Bordeaux, UMR 5234, CNRS, Bordeaux, France
| | - Petr Volf
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Jeremy C. Mottram
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Yvon Sterkers
- Research Unit “MiVEGEC”, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier, France
| | - Patrick Bastien
- Research Unit “MiVEGEC”, University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, Montpellier, France
- * E-mail: (RMC); (PB)
| |
Collapse
|
25
|
Halliday C, de Castro-Neto A, Alcantara CL, Cunha-E-Silva NL, Vaughan S, Sunter JD. Trypanosomatid Flagellar Pocket from Structure to Function. Trends Parasitol 2021; 37:317-329. [PMID: 33308952 DOI: 10.1016/j.pt.2020.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
The trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are flagellate eukaryotic parasites that cause serious diseases in humans and animals. These parasites have cell shapes defined by a subpellicular microtubule array and all share a number of important cellular features. One of these is the flagellar pocket, an invagination of the cell membrane around the proximal end of the flagellum, which is an important organelle for endo/exocytosis. The flagellar pocket plays a crucial role in parasite pathogenicity and persistence in the host and has a great influence on cell morphogenesis and cell division. Here, we compare the morphology and function of the flagellar pockets between different trypanosomatids, with their life cycles and ecological niches likely influencing these differences.
Collapse
Affiliation(s)
- Clare Halliday
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Artur de Castro-Neto
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Carolina L Alcantara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Narcisa L Cunha-E-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
26
|
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 2021; 11:200407. [PMID: 33715388 PMCID: PMC8061765 DOI: 10.1098/rsob.200407] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.
Collapse
Affiliation(s)
- Alexei Y. Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jan Votýpka
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daria Tashyreva
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
27
|
Maruyama SR, Rogerio LA, Freitas PD, Teixeira MMG, Ribeiro JMC. Total Ortholog Median Matrix as an alternative unsupervised approach for phylogenomics based on evolutionary distance between protein coding genes. Sci Rep 2021; 11:3791. [PMID: 33589693 PMCID: PMC7884790 DOI: 10.1038/s41598-021-81926-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/05/2021] [Indexed: 11/09/2022] Open
Abstract
The increasing number of available genomic data allowed the development of phylogenomic analytical tools. Current methods compile information from single gene phylogenies, whether based on topologies or multiple sequence alignments. Generally, phylogenomic analyses elect gene families or genomic regions to construct phylogenomic trees. Here, we presented an alternative approach for Phylogenomics, named TOMM (Total Ortholog Median Matrix), to construct a representative phylogram composed by amino acid distance measures of all pairwise ortholog protein sequence pairs from desired species inside a group of organisms. The procedure is divided two main steps, (1) ortholog detection and (2) creation of a matrix with the median amino acid distance measures of all pairwise orthologous sequences. We tested this approach within three different group of organisms: Kinetoplastida protozoa, hematophagous Diptera vectors and Primates. Our approach was robust and efficacious to reconstruct the phylogenetic relationships for the three groups. Moreover, novel branch topologies could be achieved, providing insights about some phylogenetic relationships between some taxa.
Collapse
Affiliation(s)
- Sandra Regina Maruyama
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.
| | - Luana Aparecida Rogerio
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Patricia Domingues Freitas
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | | | - José Marcos Chaves Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway rm 2E32, Rockville, MD, 20852, USA.
| |
Collapse
|
28
|
Kostygov AY, Frolov AO, Malysheva MN, Ganyukova AI, Chistyakova LV, Tashyreva D, Tesařová M, Spodareva VV, Režnarová J, Macedo DH, Butenko A, d'Avila-Levy CM, Lukeš J, Yurchenko V. Vickermania gen. nov., trypanosomatids that use two joined flagella to resist midgut peristaltic flow within the fly host. BMC Biol 2020; 18:187. [PMID: 33267865 PMCID: PMC7712620 DOI: 10.1186/s12915-020-00916-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023] Open
Abstract
Background The family Trypanosomatidae encompasses parasitic flagellates, some of which cause serious vector-transmitted diseases of humans and domestic animals. However, insect-restricted parasites represent the ancestral and most diverse group within the family. They display a range of unusual features and their study can provide insights into the biology of human pathogens. Here we describe Vickermania, a new genus of fly midgut-dwelling parasites that bear two flagella in contrast to other trypanosomatids, which are unambiguously uniflagellate. Results Vickermania has an odd cell cycle, in which shortly after the division the uniflagellate cell starts growing a new flagellum attached to the old one and preserves their contact until the late cytokinesis. The flagella connect to each other throughout their whole length and carry a peculiar seizing structure with a paddle-like apex and two lateral extensions at their tip. In contrast to typical trypanosomatids, which attach to the insect host’s intestinal wall, Vickermania is separated from it by a continuous peritrophic membrane and resides freely in the fly midgut lumen. Conclusions We propose that Vickermania developed a survival strategy that relies on constant movement preventing discharge from the host gut due to intestinal peristalsis. Since these parasites cannot attach to the midgut wall, they were forced to shorten the period of impaired motility when two separate flagella in dividing cells interfere with each other. The connection between the flagella ensures their coordinate movement until the separation of the daughter cells. We propose that Trypanosoma brucei, a severe human pathogen, during its development in the tsetse fly midgut faces the same conditions and follows the same strategy as Vickermania by employing an analogous adaptation, the flagellar connector.
Collapse
Affiliation(s)
- Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czechia. .,Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia.
| | - Alexander O Frolov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Marina N Malysheva
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Anna I Ganyukova
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | | | - Daria Tashyreva
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czechia
| | - Martina Tesařová
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czechia
| | - Viktoria V Spodareva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czechia.,Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Jana Režnarová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czechia
| | - Diego H Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czechia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czechia.,Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czechia
| | | | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czechia.,Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice, Czechia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czechia.,Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, 119435, Russia
| |
Collapse
|
29
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Kemmerling U, Cáceres AJ, Michels PA, Concepción JL, Quiñones W. Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biol 2020; 10:200302. [PMID: 33234025 PMCID: PMC7729029 DOI: 10.1098/rsob.200302] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phosphoglycerate kinase (PGK) is a glycolytic enzyme that is well conserved among the three domains of life. PGK is usually a monomeric enzyme of about 45 kDa that catalyses one of the two ATP-producing reactions in the glycolytic pathway, through the conversion of 1,3-bisphosphoglycerate (1,3BPGA) to 3-phosphoglycerate (3PGA). It also participates in gluconeogenesis, catalysing the opposite reaction to produce 1,3BPGA and ADP. Like most other glycolytic enzymes, PGK has also been catalogued as a moonlighting protein, due to its involvement in different functions not associated with energy metabolism, which include pathogenesis, interaction with nucleic acids, tumorigenesis progression, cell death and viral replication. In this review, we have highlighted the overall aspects of this enzyme, such as its structure, reaction kinetics, activity regulation and possible moonlighting functions in different protistan organisms, especially both free-living and parasitic Kinetoplastea. Our analysis of the genomes of different kinetoplastids revealed the presence of open-reading frames (ORFs) for multiple PGK isoforms in several species. Some of these ORFs code for unusually large PGKs. The products appear to contain additional structural domains fused to the PGK domain. A striking aspect is that some of these PGK isoforms are predicted to be catalytically inactive enzymes or ‘dead’ enzymes. The roles of PGKs in kinetoplastid parasites are analysed, and the apparent significance of the PGK gene duplication that gave rise to the different isoforms and their expression in Trypanosoma cruzi is discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile 8380453, Santigo de Chile
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Paul A Michels
- Centre for Immunity, Infection and Evolution, The King's Buildings, Edinburgh EH9 3FL, UK.,Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| |
Collapse
|
30
|
Butenko A, Hammond M, Field MC, Ginger ML, Yurchenko V, Lukeš J. Reductionist Pathways for Parasitism in Euglenozoans? Expanded Datasets Provide New Insights. Trends Parasitol 2020; 37:100-116. [PMID: 33127331 DOI: 10.1016/j.pt.2020.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
The unicellular trypanosomatids belong to the phylum Euglenozoa and all known species are obligate parasites. Distinct lineages infect plants, invertebrates, and vertebrates, including humans. Genome data for marine diplonemids, together with freshwater euglenids and free-living kinetoplastids, the closest known nonparasitic relatives to trypanosomatids, recently became available. Robust phylogenetic reconstructions across Euglenozoa are now possible and place the results of parasite-focused studies into an evolutionary context. Here we discuss recent advances in identifying the factors shaping the evolution of Euglenozoa, focusing on ancestral features generally considered parasite-specific. Remarkably, most of these predate the transition(s) to parasitism, suggesting that the presence of certain preconditions makes a significant lifestyle change more likely.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Michael Hammond
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Mark C Field
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael L Ginger
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Vyacheslav Yurchenko
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
31
|
Avelar GST, Gonçalves LO, Guimarães FG, Guimarães PAS, do Nascimento Rocha LG, Carvalho MGR, de Melo Resende D, Ruiz JC. Diversity and genome mapping assessment of disordered and functional domains in trypanosomatids. J Proteomics 2020; 227:103919. [PMID: 32721629 DOI: 10.1016/j.jprot.2020.103919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/27/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
The proteins that have structural disorder exemplify a class of proteins which is part of a new frontier in structural biology that demands a new understanding of the paradigm of structure/function correlations. In order to address the location, relative distances and the functional/structural correlation between disordered and conserved domains, consensus disordered predictions were mapped together with CDD domains in Leishmania braziliensis M2904, Leishmania infantum JPCM5, Trypanosoma cruzi CL-Brener Esmeraldo-like, Trypanosoma cruzi Dm28c, Trypanosoma cruzi Sylvio X10, Blechomonas ayalai B08-376 and Paratrypanosoma confusum CUL13 predicted proteomes. Our results depicts the role of protein disorder in key aspects of parasites biology highlighting: a) statistical significant association between genome structural location of protein disordered consensus stretches and functional domains; b) that disordered protein stretches appear in greater percentage at upstream or downstream position of the predicted domain; c) a possible role of structural disorder in several gene expression, control points that includes but are not limited to: i) protein folding; ii) protein transport and degradation; and iii) protein modification. In addition, for values of protein with disorder content greater than 40%, a small percentage of protein binding sites in IDPs/IDRs, a higher hypothetical protein annotation frequency was observed than expected by chance and trypanosomatid multigene families linked with virulence are rich in protein with disorder content. SIGNIFICANCE: T. cruzi and Leishmania spp are the etiological agents of Chagas disease and leishmaniasis, respectively. Currently, no vaccine or effective drug treatment is available against these neglected diseases and the knowledge about the post-transcriptional and post-translational mechanisms of these organisms, which are key for this scenario, remain scarce. This study depicts the potential impact of the proximity between protein structural disorder and functional domains in the post-transcriptional regulation of pathogenic versus human non-pathogenic trypanosomatids. Our results revealed a significant statistical relationship between the genome structural locations of these two variables and disordered regions appearing more frequently at upstream or downstream positions of the CDD locus domain. This flexibility feature would maintain structural accessibility of functional sites for post-translational modifications, shedding light into this important aspect of parasite biology. This hypothesis is corroborated by the functional enrichment analysis of disordered proteins subset that highlight the involvement of this class of proteins in protein folding, protein transport and degradation and protein modification. Furthermore, our results pointed out: a) the impact of protein disorder in the process of genome annotation (proteins tend to be annotated as hypothetical when the disorder content reaches ~40%); b) that trypanosomatid multigenic families linked with virulence have a key protein disorder content.
Collapse
Affiliation(s)
- Grace Santos Tavares Avelar
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Leilane Oliveira Gonçalves
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Frederico Gonçalves Guimarães
- Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Paul Anderson Souza Guimarães
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Luiz Gustavo do Nascimento Rocha
- Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | | | - Daniela de Melo Resende
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Jeronimo Conceição Ruiz
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.
| |
Collapse
|
32
|
The Functional Characterization of TcMyoF Implicates a Family of Cytostome-Cytopharynx Targeted Myosins as Integral to the Endocytic Machinery of Trypanosoma cruzi. mSphere 2020; 5:5/3/e00313-20. [PMID: 32554712 PMCID: PMC7300353 DOI: 10.1128/msphere.00313-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The parasite Trypanosoma cruzi is the etiological agent of Chagas disease and chronically infects upwards of 7 million people in the Americas. Current diagnostics and treatments remain grossly inadequate due, in part, to our general lack of understanding of this parasite’s basic biology. One aspect that has resisted detailed scrutiny is the mechanism employed by this parasite to extract nutrient resources from the radically different environments that it encounters as it transitions between its invertebrate and mammalian hosts. These parasites engulf food via a tubular invagination of its membrane, a strategy used by many protozoan species, but how this structure is formed or functions mechanistically remains a complete mystery. The significance of our research is in the identification of the mechanistic underpinnings of this feeding organelle that may bring to light new potential therapeutic targets to impede parasite feeding and thus halt the spread of this deadly human pathogen. Of the pathogenic trypanosomatids, Trypanosoma cruzi alone retains an ancient feeding apparatus known as the cytostome-cytopharynx complex (SPC) that it uses as its primary mode of endocytosis in a manner akin to its free-living kinetoplastid relatives who capture and eat bacterial prey via this endocytic organelle. In a recent report, we began the process of dissecting how this organelle functions by identifying the first SPC-specific proteins in T. cruzi. Here, we continued these studies and report on the identification of the first enzymatic component of the SPC, a previously identified orphan myosin motor (MyoF) specifically targeted to the SPC. We overexpressed MyoF as a dominant-negative mutant, resulting in parasites that, although viable, were completely deficient in measurable endocytosis in vitro. To our surprise, however, a full deletion of MyoF demonstrated only a decrease in the overall rate of endocytosis, potentially indicative of redundant myosin motors at work. Thereupon, we identified three additional orphan myosin motors, two of which (MyoB and MyoE) were targeted to the preoral ridge region adjacent to the cytostome entrance and another (MyoC) which was targeted to the cytopharynx tubular structure similar to that of MyoF. Additionally, we show that the C-terminal tails of each myosin are sufficient for targeting a fluorescent reporter to SPC subregions. This work highlights a potential mechanism used by the SPC to drive the inward flow of material for digestion and unveils a new level of overlapping complexity in this system with four distinct myosin isoforms targeted to this feeding structure. IMPORTANCE The parasite Trypanosoma cruzi is the etiological agent of Chagas disease and chronically infects upwards of 7 million people in the Americas. Current diagnostics and treatments remain grossly inadequate due, in part, to our general lack of understanding of this parasite’s basic biology. One aspect that has resisted detailed scrutiny is the mechanism employed by this parasite to extract nutrient resources from the radically different environments that it encounters as it transitions between its invertebrate and mammalian hosts. These parasites engulf food via a tubular invagination of its membrane, a strategy used by many protozoan species, but how this structure is formed or functions mechanistically remains a complete mystery. The significance of our research is in the identification of the mechanistic underpinnings of this feeding organelle that may bring to light new potential therapeutic targets to impede parasite feeding and thus halt the spread of this deadly human pathogen.
Collapse
|
33
|
Kaufer A, Stark D, Ellis J. A review of the systematics, species identification and diagnostics of the Trypanosomatidae using the maxicircle kinetoplast DNA: from past to present. Int J Parasitol 2020; 50:449-460. [PMID: 32333942 DOI: 10.1016/j.ijpara.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/25/2022]
Abstract
The Trypanosomatid family are a diverse and widespread group of protozoan parasites that belong to the higher order class Kinetoplastida. Containing predominantly monoxenous species (i.e. those having only a single host) that are confined to invertebrate hosts, this class is primarily known for its pathogenic dixenous species (i.e. those that have two hosts), serving as the aetiological agents of the important neglected tropical diseases including leishmaniasis, American trypanosomiasis (Chagas disease) and human African trypanosomiasis. Over the past few decades, a multitude of studies have investigated the diversity, classification and evolutionary history of the trypanosomatid family using different approaches and molecular targets. The mitochondrial-like DNA of the trypanosomatid parasites, also known as the kinetoplast, has emerged as a unique taxonomic and diagnostic target for exploring the evolution of this diverse group of parasitic eukaryotes. This review discusses recent advancements and important developments that have made a significant impact in the field of trypanosomatid systematics and diagnostics in recent years.
Collapse
Affiliation(s)
- Alexa Kaufer
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Damien Stark
- Department of Microbiology, St Vincent's Hospital Sydney, Darlinghurst, NSW 2010, Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
34
|
Butenko A, Opperdoes FR, Flegontova O, Horák A, Hampl V, Keeling P, Gawryluk RMR, Tikhonenkov D, Flegontov P, Lukeš J. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol 2020; 18:23. [PMID: 32122335 PMCID: PMC7052976 DOI: 10.1186/s12915-020-0754-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background The Euglenozoa are a protist group with an especially rich history of evolutionary diversity. They include diplonemids, representing arguably the most species-rich clade of marine planktonic eukaryotes; trypanosomatids, which are notorious parasites of medical and veterinary importance; and free-living euglenids. These different lifestyles, and particularly the transition from free-living to parasitic, likely require different metabolic capabilities. We carried out a comparative genomic analysis across euglenozoan diversity to see how changing repertoires of enzymes and structural features correspond to major changes in lifestyles. Results We find a gradual loss of genes encoding enzymes in the evolution of kinetoplastids, rather than a sudden decrease in metabolic capabilities corresponding to the origin of parasitism, while diplonemids and euglenids maintain more metabolic versatility. Distinctive characteristics of molecular machines such as kinetochores and the pre-replication complex that were previously considered specific to parasitic kinetoplastids were also identified in their free-living relatives. Therefore, we argue that they represent an ancestral rather than a derived state, as thought until the present. We also found evidence of ancient redundancy in systems such as NADPH-dependent thiol-redox. Only the genus Euglena possesses the combination of trypanothione-, glutathione-, and thioredoxin-based systems supposedly present in the euglenozoan common ancestor, while other representatives of the phylum have lost one or two of these systems. Lastly, we identified convergent losses of specific metabolic capabilities between free-living kinetoplastids and ciliates. Although this observation requires further examination, it suggests that certain eukaryotic lineages are predisposed to such convergent losses of key enzymes or whole pathways. Conclusions The loss of metabolic capabilities might not be associated with the switch to parasitic lifestyle in kinetoplastids, and the presence of a highly divergent (or unconventional) kinetochore machinery might not be restricted to this protist group. The data derived from the transcriptomes of free-living early branching prokinetoplastids suggests that the pre-replication complex of Trypanosomatidae is a highly divergent version of the conventional machinery. Our findings shed light on trends in the evolution of metabolism in protists in general and open multiple avenues for future research.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Fred R Opperdoes
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vladimír Hampl
- Faculty of Science, Charles University, Biocev, Vestec, Czech Republic
| | - Patrick Keeling
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | - Denis Tikhonenkov
- Department of Botany, University of British Columbia, Vancouver, Canada.,Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Present address: Department of Genetics, Harvard Medical School, Boston, USA.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
35
|
Chasen NM, Coppens I, Etheridge RD. Identification and Localization of the First Known Proteins of the Trypanosoma cruzi Cytostome Cytopharynx Endocytic Complex. Front Cell Infect Microbiol 2020; 9:445. [PMID: 32010635 PMCID: PMC6978632 DOI: 10.3389/fcimb.2019.00445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
The etiological agent of Chagas disease, Trypanosoma cruzi, is an obligate intracellular parasite that infects an estimated 7 million people in the Americas, with an at-risk population of 70 million. Despite its recognition as the highest impact parasitic infection of the Americas, Chagas disease continues to receive insufficient attention and resources in order to be effectively combatted. Unlike the other parasitic trypanosomatids that infect humans (Trypanosoma brucei and Leishmania spp.), T. cruzi retains an ancestral mode of phagotrophic feeding via an endocytic organelle known as the cytostome-cytopharynx complex (SPC). How this tubular invagination of the plasma membrane functions to bring in nutrients is poorly understood at a mechanistic level, partially due to a lack of knowledge of the protein machinery specifically targeted to this structure. Using a combination of CRISPR/Cas9 mediated endogenous tagging, fluorescently labeled overexpression constructs and endocytic assays, we have identified the first known SPC targeted protein (CP1). The CP1 labeled structure co-localizes with endocytosed protein and undergoes disassembly in infectious forms and reconstitution in replicative forms. Additionally, through the use of immunoprecipitation and mass spectrometry techniques, we have identified two additional CP1-associated proteins (CP2 and CP3) that also target to this endocytic organelle. Our localization studies using fluorescently tagged proteins and surface lectin staining have also allowed us, for the first time, to specifically define the location of the intriguing pre-oral ridge (POR) surface prominence at the SPC entrance through the use of super-resolution light microscopy. This work is a first glimpse into the proteome of the SPC and provides the tools for further characterization of this enigmatic endocytic organelle. A better understanding of how this deadly pathogen acquires nutrients from its host will potentially direct us toward new therapeutic targets to combat infection.
Collapse
Affiliation(s)
- Nathan Michael Chasen
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, United States
| | - Isabelle Coppens
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Ronald Drew Etheridge
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, United States
| |
Collapse
|
36
|
Frolov AO, Malysheva MN, Ganyukova AI, Spodareva VV, Králová J, Yurchenko V, Kostygov AY. If host is refractory, insistent parasite goes berserk: Trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus. PLoS One 2020; 15:e0227832. [PMID: 31945116 PMCID: PMC6964863 DOI: 10.1371/journal.pone.0227832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Here we characterized the development of the trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus using light and electron microscopy. This parasite has been previously reported to occur in the host hemolymph, which is rather typical for dixenous trypanosomatids transmitted to a plant or vertebrate with insect's saliva. In addition, C. marginatus has an unusual organization of the intestine, which makes it refractory to microbial infections: two impassable segments isolate the anterior midgut portion responsible for digestion and absorption from the posterior one containing symbiotic bacteria. Our results refuted the possibility of hemolymph infection, but revealed that the refractory nature of the host provokes very aggressive behavior of the parasite and makes its life cycle more complex, reminiscent of that in some dixenous trypanosomatids. In the pre-barrier midgut portion, the epimastigotes of B. raabei attach to the epithelium and multiply similarly to regular insect trypanosomatids. However, when facing the impassable constricted region, the parasites rampage and either fiercely break through the isolating segments or attack the intestinal epithelium in front of the barrier. The cells of the latter group pass to the basal lamina and accumulate there, causing degradation of the epitheliocytes and thus helping the epimastigotes of the former group to advance posteriorly. In the symbiont-containing post-barrier midgut segment, the parasites either attach to bacterial cells and produce cyst-like amastigotes (CLAs) or infect enterocytes. In the rectum, all epimastigotes attach either to the cuticular lining or to each other and form CLAs. We argue that in addition to the specialized life cycle B. raabei possesses functional cell enhancements important either for the successful passage through the intestinal barriers (enlarged rostrum and well-developed Golgi complex) or as food reserves (vacuoles in the posterior end).
Collapse
Affiliation(s)
- Alexander O. Frolov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Marina N. Malysheva
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna I. Ganyukova
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Viktoria V. Spodareva
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jana Králová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Alexei Y. Kostygov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- * E-mail:
| |
Collapse
|
37
|
Wang Z, Wheeler RJ, Sunter JD. Lysosome assembly and disassembly changes endocytosis rate through the Leishmania cell cycle. Microbiologyopen 2019; 9:e969. [PMID: 31743959 PMCID: PMC7002101 DOI: 10.1002/mbo3.969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/03/2023] Open
Abstract
The Leishmania lysosome has an atypical structure, consisting of an elongated vesicle‐filled tubule running along the anterior–posterior axis of the cell, which is termed the multivesicular tubule (MVT) lysosome. Alongside, the MVT lysosome is one or more microtubules, the lysosomal microtubule(s). Previous work indicated there were cell cycle‐related changes in MVT lysosome organization; however, these only provided snapshots and did not connect the changes in the lysosomal microtubule(s) or lysosomal function. Using mNeonGreen tagged cysteine peptidase A and SPEF1 as markers of the MVT lysosome and lysosomal microtubule(s), we examined the dynamics of these structures through the cell cycle. Both the MVT lysosome and lysosomal microtubule(s) elongated at the beginning of the cell cycle before plateauing and then disassembling in late G2 before cytokinesis. Moreover, the endocytic rate in cells where the MVT lysosome and lysosomal microtubule(s) had disassembled was extremely low. The dynamic nature of the MVT lysosome and lysosomal microtubule(s) parallels that of the Trypanosoma cruzi cytostome/cytopharynx, which also has a similar membrane tubule structure with associated microtubules. As the cytostome/cytopharynx is an ancestral feature of the kinetoplastids, this suggests that the Leishmania MVT lysosome and lysosomal microtubule(s) are a reduced cytostome/cytopharynx‐like feature.
Collapse
Affiliation(s)
- Ziyin Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Richard J Wheeler
- The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
38
|
Dóró É, Jacobs SH, Hammond FR, Schipper H, Pieters RP, Carrington M, Wiegertjes GF, Forlenza M. Visualizing trypanosomes in a vertebrate host reveals novel swimming behaviours, adaptations and attachment mechanisms. eLife 2019; 8:48388. [PMID: 31547905 PMCID: PMC6759355 DOI: 10.7554/elife.48388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/14/2019] [Indexed: 01/08/2023] Open
Abstract
Trypanosomes are important disease agents of humans, livestock and cold-blooded species, including fish. The cellular morphology of trypanosomes is central to their motility, adaptation to the host’s environments and pathogenesis. However, visualizing the behaviour of trypanosomes resident in a live vertebrate host has remained unexplored. In this study, we describe an infection model of zebrafish (Danio rerio) with Trypanosoma carassii. By combining high spatio-temporal resolution microscopy with the transparency of live zebrafish, we describe in detail the swimming behaviour of trypanosomes in blood and tissues of a vertebrate host. Besides the conventional tumbling and directional swimming, T. carassii can change direction through a ‘whip-like’ motion or by swimming backward. Further, the posterior end can act as an anchoring site in vivo. To our knowledge, this is the first report of a vertebrate infection model that allows detailed imaging of trypanosome swimming behaviour in vivo in a natural host environment. Trypanosomes are one-celled parasites that cause the disease trypanosomiasis, which is also known as sleeping sickness. Trypanosomiasis is transmitted to humans and animals by a type of fly, known as tse-tse, which is commonly found in sub-Saharan Africa. A bite from the tse-tse fly transfers the trypanosome cells into the host’s bloodstream, where they spread from the blood to the internal organs and brain. This leads to a long-term illness, which can sometimes result in a coma and eventually death. Once in the blood trypanosomes move around using a structure similar to an underwater propeller called the flagellum. How the trypanosomes move and behave in the blood determines how the infection will progress. Until now it has only been possible to observe trypanosomes in plastic dishes or in blood drawn from infected patients. However, neither of these settings mimic the conditions of the bloodstream, and it is currently impossible to look inside human hosts to watch how trypanosomes move. To overcome this hurdle, Doro et al. infected zebrafish with Trypanosoma carassii, a close relative of the sub-Saharan trypanosomes that specifically infects fish. Zebrafish are transparent when young, making it possible to observe the parasite in the blood and tissues of live fish using a microscope. Doro et al. noticed that Trypanosoma carassii cells adapt to different environments in the host by using different swimming techniques. For example, in small capillaries trypanosomes were dragged along with the blood flow, whilst in larger vessels, when blood flow was slow or there were fewer red blood cells, trypanosomes actively swam against the current. The parasites were also able to change direction by using their flagella in a ‘whip-like’ motion. Lastly, it was discovered that Trypanosoma carassii could rapidly attach to blood vessel walls using one end of its cell body, even when blood flow was strong. This behaviour may help the parasites escape from the bloodstream into the surrounding tissues, making the infection more dangerous. Studying how trypanosomes infect zebrafish at this high level of detail provides new insights into how these parasites move and behave inside a host. An important question that remains to be answered, is how exactly the trypanosomes leave the bloodstream. A better understanding of the whole infection process may hint at new ways of fighting these deadly infections in future.
Collapse
Affiliation(s)
- Éva Dóró
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Sem H Jacobs
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Ffion R Hammond
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Henk Schipper
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Remco Pm Pieters
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Geert F Wiegertjes
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands.,Department of Animal Sciences, Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Forlenza
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
39
|
Halliday C, Billington K, Wang Z, Madden R, Dean S, Sunter JD, Wheeler RJ. Cellular landmarks of Trypanosoma brucei and Leishmania mexicana. Mol Biochem Parasitol 2018; 230:24-36. [PMID: 30550896 PMCID: PMC6529878 DOI: 10.1016/j.molbiopara.2018.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 11/29/2022]
Abstract
Trypanosoma and Leishmania are single cell eukaryotic parasites. The cell organisation of these human pathogens is complex and highly structured. This describes an inventory of reliable reference markers for 32 cell structures. These light microscopy landmarks are a valuable resource for researchers.
The kinetoplastids Trypanosoma brucei and Leishmania mexicana are eukaryotes with a highly structured cellular organisation that is reproduced with great fidelity in each generation. The pattern of signal from a fluorescently tagged protein can define the specific structure/organelle that this protein localises to, and can be extremely informative in phenotype analysis in experimental perturbations, life cycle tracking, post-genomic assays and functional analysis of organelles. Using the vast coverage of protein subcellular localisations provided by the TrypTag project, an ongoing project to determine the localisation of every protein encoded in the T. brucei genome, we have generated an inventory of reliable reference organelle markers for both parasites that combines epifluorescence images with a detailed description of the key features of each localisation. We believe this will be a useful comparative resource that will enable researchers to quickly and accurately pinpoint the localisation of their proteins of interest and will provide cellular markers for many types of cell biology studies. We see this as another important step in the post-genomic era analyses of these parasites, in which ever expanding datasets generate numerous candidates to analyse. Adoption of these reference proteins by the community is likely to enhance research studies and enable better comparison of data.
Collapse
Affiliation(s)
- Clare Halliday
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK; Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Karen Billington
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Ziyin Wang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Ross Madden
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Samuel Dean
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Jack Daniel Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| | - Richard John Wheeler
- The Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK.
| |
Collapse
|
40
|
Grybchuk D, Kostygov AY, Macedo DH, Votýpka J, Lukeš J, Yurchenko V. RNA Viruses in Blechomonas (Trypanosomatidae) and Evolution of Leishmaniavirus. mBio 2018; 9:e01932-18. [PMID: 30327446 PMCID: PMC6191543 DOI: 10.1128/mbio.01932-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 01/25/2023] Open
Abstract
In this work, we analyzed viral prevalence in trypanosomatid parasites (Blechomonas spp.) infecting Siphonaptera and discovered nine species of viruses from three different groups (leishbunyaviruses, narnaviruses, and leishmaniaviruses). Most of the flagellate isolates bore two or three viral types (mixed infections). Although no new viral groups were documented in Blechomonas spp., our findings are important for the comprehension of viral evolution. The discovery of bunyaviruses in blechomonads was anticipated, since these viruses have envelopes facilitating their interspecific transmission and have already been found in various trypanosomatids and metatranscriptomes with trypanosomatid signatures. In this work, we also provided evidence that even representatives of the family Narnaviridae are capable of host switching and evidently have accomplished switches multiple times in the course of their evolution. The most unexpected finding was the presence of leishmaniaviruses, a group previously solely confined to the human pathogens Leishmania spp. From phylogenetic inferences and analyses of the life cycles of Leishmania and Blechomonas, we concluded that a common ancestor of leishmaniaviruses most likely infected Leishmania first and was acquired by Blechomonas by horizontal transfer. Our findings demonstrate that evolution of leishmaniaviruses is more complex than previously thought and includes occasional host switching.IMPORTANCE Flagellates belonging to the genus Leishmania are important human parasites. Some strains of different Leishmania species harbor viruses (leishmaniaviruses), which facilitate metastatic spread of the parasites, thus aggravating the disease. Up until now, these viruses were known to be hosted only by Leishmania Here, we analyzed viral distribution in Blechomonas, a related group of flagellates parasitizing fleas, and revealed that they also bear leishmaniaviruses. Our findings shed light on the entangled evolution of these viruses. In addition, we documented that Blechomonas can be also infected by leishbunyaviruses and narnaviruses, viral groups known from other insects' flagellates.
Collapse
Affiliation(s)
- Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Diego H Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budejovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| |
Collapse
|
41
|
Alcantara CDL, de Souza W, da Cunha E Silva NL. Tridimensional Electron Microscopy Analysis of the Early Endosomes and Endocytic Traffic in Trypanosoma cruzi Epimastigotes. Protist 2018; 169:887-910. [PMID: 30447618 DOI: 10.1016/j.protis.2018.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/25/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
Trypanosoma cruzi epimastigotes internalize macromolecules avidly by endocytosis. Previously, we identified a tubule-vesicular network likely to correspond to the early-endosomes. However, a detailed ultrastructural characterization of these endosomes was missing. Here, we combined endocytosis assays with ultrastructural data from high-resolution electron microscopy to produce a 3D analysis of epimastigote endosomes and their interactions with endocytic organelles. We showed that endocytic cargo was found in carrier vesicles budding from the cytopharynx. These vesicles appeared to fuse with a tubule-vesicular network of early endosomes identified by ultrastructural features including the presence of intermembrane invaginations and coated membrane sections. Within the posterior region of the cell, endosomes localized preferentially on the side nearest to the cytopharynx microtubules. At 4°C, cargo accumulated at a shortened cytopharynx, and subsequent temperature shift to 12°C led to slow cargo delivery to endosomes and, later, to reservosomes. Bridges between reservosomes and endosomes resemble heterotypic fusion. Reservosomes are excluded from the posterior end of the cell, with no preferential cargo delivery to reservosomes closer to the nucleus. Our 3D analysis indicates that epimastigotes accomplish high-speed endocytic traffic by cargo transfer to a bona fide early-endosome and then directly from endosomes to reservosomes, via multiple and simultaneous heterotypic fusion events.
Collapse
Affiliation(s)
- Carolina de Lima Alcantara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; Núcleo de Biologia Estrutural e Bioimagens (CENABIO) - Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens (INBEB), Rio de Janeiro 21941-902, RJ, Brazil.
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; Núcleo de Biologia Estrutural e Bioimagens (CENABIO) - Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens (INBEB), Rio de Janeiro 21941-902, RJ, Brazil
| | - Narcisa L da Cunha E Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; Núcleo de Biologia Estrutural e Bioimagens (CENABIO) - Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Biomagens (INBEB), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
42
|
Abstract
Thanks to modern molecular biology methods, our understanding of the impact of (endo)symbiotic bacteria on parasitic protists and helminths is growing fast. In this issue, 9 papers have been brought together that describe various facets of the relationships between these microorganisms, reveal their range and high frequency, as well as their capacity to create novel biological complexity. Comparative analyses of these host-endosymbiont interactions indicate that there may be no discrete types of relationships but rather a continuum ranging from a dispensable endosymbiont minimally integrated within the host cell to organelles, such as mitochondria and plastids that evolved into an indispensable, deeply integrated components of the cell. We hope that this series of studies on parasites and (endo)symbiotic bacteria will increase awareness about these relationships and their representation in microbial ecology models.
Collapse
|
43
|
Spodareva VV, Grybchuk-Ieremenko A, Losev A, Votýpka J, Lukeš J, Yurchenko V, Kostygov AY. Diversity and evolution of anuran trypanosomes: insights from the study of European species. Parasit Vectors 2018; 11:447. [PMID: 30071897 PMCID: PMC6090815 DOI: 10.1186/s13071-018-3023-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/18/2018] [Indexed: 11/18/2022] Open
Abstract
Background Amphibian trypanosomes were the first ever described trypanosomatids. Nevertheless, their taxonomy remains entangled because of pleomorphism and high prevalence of mixed infections. Despite the fact that the first species in this group were described in Europe, virtually none of the trypanosomes from European anurans was analyzed using modern molecular methods. Methods In this study, we explored the diversity and phylogeny of trypanosomes in true frogs from Europe using light microscopy and molecular methods. Results A comparison of observed morphotypes with previous descriptions allowed us to reliably identify three Trypanosoma spp., whereas the remaining two strains were considered to represent novel taxa. In all cases, more than one morphotype per blood sample was observed, indicating mixed infections. One hundred and thirty obtained 18S rRNA gene sequences were unambiguously subdivided into five groups, correspondent to the previously recognized or novel taxa of anuran trypanosomes. Conclusions In this work we studied European frog trypanosomes. Even with a relatively moderate number of isolates, we were able to find not only three well-known species, but also two apparently new ones. We revealed that previous assignments of multiple isolates from distant geographical localities to one species based on superficial resemblance were unjustified. Our work also demonstrated a high prevalence of mixed trypanosome infections in frogs and proposed a plausible scenario of evolution of the genus Trypanosoma.
Collapse
Affiliation(s)
- Viktoria V Spodareva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.,Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Alexander Losev
- Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Jan Votýpka
- Department of Parasitology, Faculty of Sciences, Charles University, Prague, Czechia.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czechia
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia. .,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czechia. .,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.
| |
Collapse
|
44
|
Venkatesh D, Zhang N, Zoltner M, del Pino RC, Field MC. Evolution of protein trafficking in kinetoplastid parasites: Complexity and pathogenesis. Traffic 2018; 19:803-812. [DOI: 10.1111/tra.12601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022]
Affiliation(s)
| | - Ning Zhang
- School of Life Sciences; University of Dundee; Dundee UK
| | - Martin Zoltner
- School of Life Sciences; University of Dundee; Dundee UK
| | | | - Mark C. Field
- School of Life Sciences; University of Dundee; Dundee UK
| |
Collapse
|
45
|
Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 2018; 146:1-27. [PMID: 29898792 DOI: 10.1017/s0031182018000951] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unicellular flagellates of the family Trypanosomatidae are obligatory parasites of invertebrates, vertebrates and plants. Dixenous species are aetiological agents of a number of diseases in humans, domestic animals and plants. Their monoxenous relatives are restricted to insects. Because of the high biological diversity, adaptability to dramatically different environmental conditions, and omnipresence, these protists have major impact on all biotic communities that still needs to be fully elucidated. In addition, as these organisms represent a highly divergent evolutionary lineage, they are strikingly different from the common 'model system' eukaryotes, such as some mammals, plants or fungi. A number of excellent reviews, published over the past decade, were dedicated to specialized topics from the areas of trypanosomatid molecular and cell biology, biochemistry, host-parasite relationships or other aspects of these fascinating organisms. However, there is a need for a more comprehensive review that summarizing recent advances in the studies of trypanosomatids in the last 30 years, a task, which we tried to accomplish with the current paper.
Collapse
|
46
|
Farming, slaving and enslavement: histories of endosymbioses during kinetoplastid evolution. Parasitology 2018; 145:1311-1323. [PMID: 29895336 DOI: 10.1017/s0031182018000781] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Parasitic trypanosomatids diverged from free-living kinetoplastid ancestors several hundred million years ago. These parasites are relatively well known, due in part to several unusual cell biological and molecular traits and in part to the significance of a few - pathogenic Leishmania and Trypanosoma species - as aetiological agents of serious neglected tropical diseases. However, the majority of trypanosomatid biodiversity is represented by osmotrophic monoxenous parasites of insects. In two lineages, novymonads and strigomonads, osmotrophic lifestyles are supported by cytoplasmic endosymbionts, providing hosts with macromolecular precursors and vitamins. Here we discuss the two independent origins of endosymbiosis within trypanosomatids and subsequently different evolutionary trajectories that see entrainment vs tolerance of symbiont cell divisions cycles within those of the host. With the potential to inform on the transition to obligate parasitism in the trypanosomatids, interest in the biology and ecology of free-living, phagotrophic kinetoplastids is beginning to enjoy a renaissance. Thus, we take the opportunity to additionally consider the wider relevance of endosymbiosis during kinetoplastid evolution, including the indulged lifestyle and reductive evolution of basal kinetoplastid Perkinsela.
Collapse
|
47
|
Trypanosomatids Are Much More than Just Trypanosomes: Clues from the Expanded Family Tree. Trends Parasitol 2018; 34:466-480. [PMID: 29605546 DOI: 10.1016/j.pt.2018.03.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/17/2018] [Accepted: 03/02/2018] [Indexed: 11/22/2022]
Abstract
Trypanosomes and leishmanias are widely known parasites of humans. However, they are just two out of several phylogenetic lineages that constitute the family Trypanosomatidae. Although dixeny - the ability to infect two hosts - is a derived trait of vertebrate-infecting parasites, the majority of trypanosomatids are monoxenous. Like their common ancestor, the monoxenous Trypanosomatidae are mostly parasites or commensals of insects. This review covers recent advances in the study of insect trypanosomatids, highlighting their diversity as well as genetic, morphological and biochemical complexity, which, until recently, was underappreciated. The investigation of insect trypanosomatids is providing an important foundation for understanding the origin and evolution of parasitism, including colonization of vertebrates and the appearance of human pathogens.
Collapse
|
48
|
Silva Pereira S, Jackson AP. UDP-glycosyltransferase genes in trypanosomatid genomes have diversified independently to meet the distinct developmental needs of parasite adaptations. BMC Evol Biol 2018; 18:31. [PMID: 29540192 PMCID: PMC5853035 DOI: 10.1186/s12862-018-1149-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Trypanosomatid parasites such as Trypanosoma spp. and Leishmania spp. are a major source of infectious disease in humans and domestic animals worldwide. Fundamental to the host-parasite interactions of these potent pathogens are their cell surfaces, which are highly decorated with glycosylated proteins and other macromolecules. Trypanosomatid genomes contain large multi-copy gene families encoding UDP-dependent glycosyltransferases (UGTs), the primary role of which is cell-surface decoration. Here we report a phylogenetic analysis of UGTs from diverse trypanosomatid genomes, the aim of which was to understand the origin and evolution of their diversity. RESULTS By combining phylogenetics with analyses of recombination, and selection, we compared UGT repertoire, genomic context and sequence evolution across 19 trypanosomatids. We identified a UGT lineage present in stercorarian trypanosomes and a free-living kinetoplastid Bodo saltans that likely represents the ancestral state of this gene family. The phylogeny of parasite-specific genes shows that UGTs repertoire in Leishmaniinae and salivarian trypanosomes has expanded independently and with distinct evolutionary dynamics. In the former, the ancestral UGT repertoire was organised in a tandem array from which sporadic transpositions to telomeric regions occurred, allowing expansion most likely through telomeric exchange. In the latter, the ancestral UGT repertoire was comprised of seven subtelomeric lineages, two of which have greatly expanded potentially by gene transposition between these dynamic regions of the genome. CONCLUSIONS The phylogeny of UGTs confirms that they represent a substantial parasite-specific innovation, which has diversified independently in the distinct trypanosomatid lineages. Nonetheless, developmental regulation has been a strong driver of UGTs diversification in both African trypanosomes and Leishmania.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park Ic2, 146 Brownlow Hill, Liverpool, L3 5RF, UK.
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park Ic2, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| |
Collapse
|