1
|
Sun X, Chen X, Wu B, Zhou L, Chen Y, Zheng S, Wang S, Liu Z. Clam Genome and Transcriptomes Provide Insights into Molecular Basis of Morphological Novelties and Adaptations in Mollusks. BIOLOGY 2024; 13:870. [PMID: 39596825 PMCID: PMC11592408 DOI: 10.3390/biology13110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Bivalve mollusks, comprising animals enclosed in two shell valves, are well-adapted to benthic life in many intertidal zones. Clams have evolved the buried lifestyle, which depends on their unique soft tissue structure and their wedge-shaped muscular foot and long extendible siphons. However, molecular mechanisms of adaptative phenotype evolution remain largely unknown. In the present study, we obtain the high-quality chromosome-level genome of Manila clam R. philippinarum, an economically important marine bivalve in many coastal areas. The genome is constructed by the Hi-C assisted assembly, which yields 19 chromosomes with a total of 1.17 Gb and BUSCO integrity of 92.23%. The de novo assembled genome has a contig N50 length of 307.7 kb and scaffold N50 of 59.5 Mb. Gene family expansion analysis reveals that a total of 24 single-copy gene families have undergone the significant expansion or contraction, including E3 ubiquitin ligase and dynein heavy chain. The significant expansion of transposable elements has been also identified, including long terminal repeats (LTR) and non-LTR retrotransposons. The comparative transcriptomics among different clam tissues reveals that extracellular matrix (ECM) receptors and neuroactive ligand receptors may play the important roles in tissue structural support and neurotransmission during their infaunal life. These findings of gene family expansion and tissue-specific expression may reflect the unique soft tissue structure of clams, suggesting the evolution of lineage-specific morphological novelties. The high-quality genome and transcriptome data of R. philippinarum will not only facilitate the genetic studies on clams but will also provide valuable information on morphological novelties in mollusks.
Collapse
Affiliation(s)
- Xiujun Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Xi Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Biao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Liqing Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Yancui Chen
- Zhangzhou Aquatic Technology Promotion Station, Zhangzhou 363000, China;
| | - Sichen Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Songlin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhihong Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| |
Collapse
|
2
|
Arriagada G, Quezada J, Merino-Veliz N, Avilés F, Tapia-Cammas D, Gomez J, Curotto D, Valdes JA, Oyarzún PA, Gallardo-Escárate C, Metzger MJ, Alvarez M. Identification and expression analysis of two steamer-like retrotransposons in the Chilean blue mussel (Mytilus chilensis). Biol Res 2024; 57:17. [PMID: 38664786 PMCID: PMC11046912 DOI: 10.1186/s40659-024-00498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Disseminated neoplasia (DN) is a proliferative cell disorder of the circulatory system of bivalve mollusks. The disease is transmitted between individuals and can also be induced by external chemical agents such as bromodeoxyuridine. In Mya arenaria, we have cloned and characterized an LTR-retrotransposon named Steamer. Steamer mRNA levels and gene copy number correlates with DN and can be used as a marker of the disease. So far, the only mollusk where a retrotransposon expression relates to DN is Mya arenaria. On the other hand, it has been reported that the Chilean blue mussel Mytilus chilensis can also suffers DN. Our aim was to identify retrotransposons in Mytilus chilensis and to study their expression levels in the context of disseminated neoplasia. RESULTS Here we show that 7.1% of individuals collected in August 2018, from two farming areas, presents morphological characteristics described in DN. Using Steamer sequence to interrogate the transcriptome of M. chilensis we found two putative retrotransposons, named Steamer-like elements (MchSLEs). MchSLEs are present in the genome of M. chilensis and MchSLE1 is indeed an LTR-retrotransposon. Neither expression, nor copy number of the reported MchSLEs correlate with DN status but both are expressed at different levels among individual animals. We also report that in cultured M. chilensis haemocytes MchSLEs1 expression can be induced by bromodeoxyuridine. CONCLUSIONS We conclude that SLEs present in Mytilus chilensis are differentially expressed among individuals and do not correlate with disseminated neoplasia. Treatment of haemocytes with a stressor like bromodeoxyuridine induces expression of MchSLE1 suggesting that in Mytilus chilensis environmental stressors can induce activation of LTR-retrotransposon.
Collapse
Affiliation(s)
- Gloria Arriagada
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Johan Quezada
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Nicolas Merino-Veliz
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Fernando Avilés
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Diana Tapia-Cammas
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jorge Gomez
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Daniela Curotto
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Juan A Valdes
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | - Pablo A Oyarzún
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Quintay, Chile
| | | | | | - Marco Alvarez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
3
|
Hassan NT, Galbraith JD, Adelson DL. Multiple horizontal transfer events of a DNA transposon into turtles, fishes, and a frog. Mob DNA 2024; 15:7. [PMID: 38605364 PMCID: PMC11008031 DOI: 10.1186/s13100-024-00318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Horizontal transfer of transposable elements (HTT) has been reported across many species and the impact of such events on genome structure and function has been well described. However, few studies have focused on reptilian genomes, especially HTT events in Testudines (turtles). Here, as a consequence of investigating the repetitive content of Malaclemys terrapin terrapin (Diamondback turtle) we found a high similarity DNA transposon, annotated in RepBase as hAT-6_XT, shared between other turtle species, ray-finned fishes, and a frog. hAT-6_XT was notably absent in reptilian taxa closely related to turtles, such as crocodiles and birds. Successful invasion of DNA transposons into new genomes requires the conservation of specific residues in the encoded transposase, and through structural analysis, these residues were identified indicating some retention of functional transposition activity. We document six recent independent HTT events of a DNA transposon in turtles, which are known to have a low genomic evolutionary rate and ancient repeats.
Collapse
Affiliation(s)
- Nozhat T Hassan
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - James D Galbraith
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - David L Adelson
- School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
4
|
Fernández-García L, Ahumada-Marchant C, Lobos-Ávila P, Brauer B, Bustos FJ, Arriagada G. The Mytilus chilensis Steamer-like Element-1 Retrotransposon Antisense mRNA Harbors an Internal Ribosome Entry Site That Is Modulated by hnRNPK. Viruses 2024; 16:403. [PMID: 38543768 PMCID: PMC10974842 DOI: 10.3390/v16030403] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 05/23/2024] Open
Abstract
LTR-retrotransposons are transposable elements characterized by the presence of long terminal repeats (LTRs) directly flanking an internal coding region. They share genome organization and replication strategies with retroviruses. Steamer-like Element-1 (MchSLE-1) is an LTR-retrotransposon identified in the genome of the Chilean blue mussel Mytilus chilensis. MchSLE-1 is transcribed; however, whether its RNA is also translated and the mechanism underlying such translation remain to be elucidated. Here, we characterize the MchSLE-1 translation mechanism. We found that the MchSLE-1 5' and 3'LTRs command transcription of sense and antisense RNAs, respectively. Using luciferase reporters commanded by the untranslated regions (UTRs) of MchSLE-1, we found that in vitro 5'UTR sense is unable to initiate translation, whereas the antisense 5'UTR initiates translation even when the eIF4E-eIF4G interaction was disrupted, suggesting the presence of an internal ribosomal entry site (IRES). The antisense 5'UTR IRES activity was tested using bicistronic reporters. The antisense 5'UTR has IRES activity only when the mRNA is transcribed in the nucleus, suggesting that nuclear RNA-binding proteins are required to modulate its activity. Indeed, heterogeneous nuclear ribonucleoprotein K (hnRNPK) was identified as an IRES trans-acting factor (ITAF) of the MchSLE-1 IRES. To our knowledge, this is the first report describing an IRES in an antisense mRNA derived from a mussel LTR-retrotransposon.
Collapse
Affiliation(s)
| | | | | | | | | | - Gloria Arriagada
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 83700071, Chile; (L.F.-G.); (C.A.-M.); (P.L.-Á.); (B.B.); (F.J.B.)
| |
Collapse
|
5
|
Drozdov A, Lebedev E, Adonin L. Comparative Analysis of Bivalve and Sea Urchin Genetics and Development: Investigating the Dichotomy in Bilateria. Int J Mol Sci 2023; 24:17163. [PMID: 38138992 PMCID: PMC10742642 DOI: 10.3390/ijms242417163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
This comprehensive review presents a comparative analysis of early embryogenesis in Protostomia and Deuterostomia, the first of which exhibit a mosaic pattern of development, where cells are fated deterministically, while Deuterostomia display a regulatory pattern of development, where the fate of cells is indeterminate. Despite these fundamental differences, there are common transcriptional mechanisms that underline their evolutionary linkages, particularly in the field of functional genomics. By elucidating both conserved and unique regulatory strategies, this review provides essential insights into the comparative embryology and developmental dynamics of these groups. The objective of this review is to clarify the shared and distinctive characteristics of transcriptional regulatory mechanisms. This will contribute to the extensive areas of functional genomics, evolutionary biology and developmental biology, and possibly lay the foundation for future research and discussion on this seminal topic.
Collapse
Affiliation(s)
- Anatoliy Drozdov
- Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Egor Lebedev
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia;
| | - Leonid Adonin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia;
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
6
|
Xu Y, Tang Y, Feng W, Yang Y, Cui Z. Comparative Analysis of Transposable Elements Reveals the Diversity of Transposable Elements in Decapoda and Their Effects on Genomic Evolution. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1136-1146. [PMID: 37923816 DOI: 10.1007/s10126-023-10265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Transposable elements (TEs) are mobile genetic elements that exist in the host genome and exert considerable influence on the evolution of the host genome. Since crustaceans, including decapoda, are considered ideal models for studying the relationship between adaptive evolution and TEs, TEs were identified and classified in the genomes of eight decapoda species and one diplostraca species (as the outgroup) using two strategies, namely homology-based annotation and de novo annotation. The statistics and classification of TEs showed that their proportion in the genome and their taxonomic composition in decapoda were different. Moreover, correlation analysis and transcriptome data demonstrated that there were more PIF-Harbinger TEs in the genomes of Eriocheir sinensis and Scylla paramamosain, and the expression patterns of PIF-Harbingers were significantly altered under air exposure stress conditions. These results signaled that PIF-Harbingers expanded in the genome of E. sinensis and S. paramamosain and might be related to their air exposure tolerance levels. Meanwhile, sequence alignment revealed that some Jockey-like sequences (JLSs) with high similarity to specific regions of the White spot syndrome virus (WSSV) genome existed in all eight decapod species. At the same time, phylogenetic comparison exposed that the phylogenetic tree constructed by JLSs was not in agreement with that of the species tree, and the distribution of each branch was significantly different. The abovementioned results signaled that these WSSV-specific JLSs might transfer horizontally and contribute to the emergence of WSSV. This study accumulated data for expanding research on TEs in decapod species and also provided new insights and future direction for the breeding of stress-resistant and disease-resistant crab breeds.
Collapse
Affiliation(s)
- Yuanfeng Xu
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yongkai Tang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wenrong Feng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China.
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
7
|
Shi S, Puzakov MV, Puzakova LV, Ulupova YN, Xiang K, Wang B, Gao B, Song C. Hiker, a new family of DNA transposons encoding transposases with DD35E motifs, displays a distinct phylogenetic relationship with most known DNA transposon families of IS630-Tc1-mariner (ITm). Mol Phylogenet Evol 2023; 188:107906. [PMID: 37586577 DOI: 10.1016/j.ympev.2023.107906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
DNA transposons play a crucial role in determining the size and structure of eukaryotic genomes. In this study, a new family of IS630-Tc1-mariner (ITm) DNA transposons, named Hiker (HK), was identified. HK is characterized by a DD35E catalytic domain and is distinct from all previously known families of the ITm group. Phylogenetic analyses showed that DD35E/Hiker forms a monophyletic clade with DD34E/Gambol, indicating that they may represent a separate superfamily of ITm. A total of 178 Hiker species were identified, with 170 found mainly in Actinopterygii, one in Chondrichthyes, six in Anura and one in Mollusca. Gambol (GM), on the other hand, are found in invertebrates, with 18 in Arthropoda and one in Platyhelminthes. Hiker transposons have a total length ranging from 2.14 to 3.67 kb and contain a single open reading frame that encodes a protein of approximately 370 amino acids (range 311-413 aa). They are flanked by short terminal inverted repeats (TIRs) of 16-30 base pairs and two base pair (TA) target-site duplications. In contrast, most transposons of the Gambol family have a total length of 1.35-5.96 kb, encode a transposase protein of approximately 350 amino acids (range 306-374 aa), and are flanked by TIRs that range from 32 to 1097 bp in length. Both Hiker and Gambol transposases have several conserved motifs, including helix-turn-helix (HTH) motifs and a DDE domain. Our study observed multiple amplification waves and repeated horizontal transfer (HT) events of HK transposons in vertebrate genomes, indicating their role in diversifying and shaping the genomes of Actinopterygii, Chondrichthyes, and Anura. Conversely, GM transposons showed few Horizontal transfer events. According to cell-based transposition assays, most HK transposons are likely inactive due to the truncated DNA binding domains of their transposases. We present an updated classification of the ITm group based on these findings, which will enhance the understanding of both the evolution of ITm transposons and that of their hosts.
Collapse
Affiliation(s)
- Shasha Shi
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mikhail V Puzakov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Lenninsky ave, 38 119991, Moscow, Russia
| | - Ludmila V Puzakova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Lenninsky ave, 38 119991, Moscow, Russia
| | - Yulia N Ulupova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Lenninsky ave, 38 119991, Moscow, Russia
| | - Kuilin Xiang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Binqing Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
8
|
Fourreau CJL, Kise H, Santander MD, Pirro S, Maronna MM, Poliseno A, Santos ME, Reimer JD. Genome sizes and repeatome evolution in zoantharians (Cnidaria: Hexacorallia: Zoantharia). PeerJ 2023; 11:e16188. [PMID: 37868064 PMCID: PMC10586311 DOI: 10.7717/peerj.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
Across eukaryotes, large variations of genome sizes have been observed even between closely related species. Transposable elements as part of the repeated DNA have been proposed and confirmed as one of the most important contributors to genome size variation. However, the evolutionary implications of genome size variation and transposable element dynamics are not well understood. Together with phenotypic traits, they are commonly referred to as the "C-value enigma". The order Zoantharia are benthic cnidarians found from intertidal zones to the deep sea, and some species are particularly abundant in coral reefs. Despite their high ecological relevance, zoantharians have yet to be largely studied from the genomic point of view. This study aims at investigating the role of the repeatome (total content of repeated elements) in genome size variations across the order Zoantharia. To this end, whole-genomes of 32 zoantharian species representing five families were sequenced. Genome sizes were estimated and the abundances of different repeat classes were assessed. In addition, the repeat overlap between species was assessed by a sequence clustering method. The genome sizes in the dataset varied up to 2.4 fold magnitude. Significant correlations between genome size, repeated DNA content and transposable elements, respectively (Pearson's correlation test R2 = 0.47, p = 0.0016; R2 = 0.22, p = 0.05) were found, suggesting their involvement in the dynamics of genome expansion and reduction. In all species, long interspersed nuclear elements and DNA transposons were the most abundant identified elements. These transposable elements also appeared to have had a recent expansion event. This was in contrast to the comparative clustering analysis which revealed species-specific patterns of satellite elements' amplification. In summary, the genome sizes of zoantharians likely result from the complex dynamics of repeated elements. Finally, the majority of repeated elements (up to 70%) could not be annotated to a known repeat class, highlighting the need to further investigate non-model cnidarian genomes. More research is needed to understand how repeated DNA dynamics relate to zoantharian evolution and their biology.
Collapse
Affiliation(s)
- Chloé Julie Loïs Fourreau
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Hiroki Kise
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- AIST Tsukuba Central, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Mylena Daiana Santander
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Stacy Pirro
- Iridian Genomes, Bethesda, United States of America
| | - Maximiliano M. Maronna
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Faculdade de Ciências, Universidade Estadual Paulista (UNESP), Bauru, Brazil
| | - Angelo Poliseno
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Maria E.A. Santos
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Okinawa Institute of Science and Technology, Onna, Okinawa, Japan
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, United States of America
| |
Collapse
|
9
|
Martelossi J, Nicolini F, Subacchi S, Pasquale D, Ghiselli F, Luchetti A. Multiple and diversified transposon lineages contribute to early and recent bivalve genome evolution. BMC Biol 2023; 21:145. [PMID: 37365567 DOI: 10.1186/s12915-023-01632-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Transposable elements (TEs) can represent one of the major sources of genomic variation across eukaryotes, providing novel raw materials for species diversification and innovation. While considerable effort has been made to study their evolutionary dynamics across multiple animal clades, molluscs represent a substantially understudied phylum. Here, we take advantage of the recent increase in mollusc genomic resources and adopt an automated TE annotation pipeline combined with a phylogenetic tree-based classification, as well as extensive manual curation efforts, to characterize TE repertories across 27 bivalve genomes with a particular emphasis on DDE/D class II elements, long interspersed nuclear elements (LINEs), and their evolutionary dynamics. RESULTS We found class I elements as highly dominant in bivalve genomes, with LINE elements, despite less represented in terms of copy number per genome, being the most common retroposon group covering up to 10% of their genome. We mined 86,488 reverse transcriptases (RVT) containing LINE coming from 12 clades distributed across all known superfamilies and 14,275 class II DDE/D-containing transposons coming from 16 distinct superfamilies. We uncovered a previously underestimated rich and diverse bivalve ancestral transposon complement that could be traced back to their most recent common ancestor that lived ~ 500 Mya. Moreover, we identified multiple instances of lineage-specific emergence and loss of different LINEs and DDE/D lineages with the interesting cases of CR1- Zenon, Proto2, RTE-X, and Academ elements that underwent a bivalve-specific amplification likely associated with their diversification. Finally, we found that this LINE diversity is maintained in extant species by an equally diverse set of long-living and potentially active elements, as suggested by their evolutionary history and transcription profiles in both male and female gonads. CONCLUSIONS We found that bivalves host an exceptional diversity of transposons compared to other molluscs. Their LINE complement could mainly follow a "stealth drivers" model of evolution where multiple and diversified families are able to survive and co-exist for a long period of time in the host genome, potentially shaping both recent and early phases of bivalve genome evolution and diversification. Overall, we provide not only the first comparative study of TE evolutionary dynamics in a large but understudied phylum such as Mollusca, but also a reference library for ORF-containing class II DDE/D and LINE elements, which represents an important genomic resource for their identification and characterization in novel genomes.
Collapse
Affiliation(s)
- Jacopo Martelossi
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Filippo Nicolini
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
- Fano Marine Center, Department of Biological, Geological and Environmental Sciences, University of Bologna, Viale Adriatico 1/N, 61032, Fano, Italy
| | - Simone Subacchi
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Daniela Pasquale
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| | - Andrea Luchetti
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
10
|
Orozco-Arias S, Dupeyron M, Gutiérrez-Duque D, Tabares-Soto R, Guyot R. High nucleotide similarity of three Copia lineage LTR retrotransposons among plant genomes. Genome 2023; 66:51-61. [PMID: 36623262 DOI: 10.1139/gen-2022-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transposable elements (TEs) are mobile elements found in the majority of eukaryotic genomes. TEs deeply impact the structure and evolution of chromosomes and can induce mutations affecting coding genes. In plants, the major group of TEs is long terminal repeat retrotransposons (LTR-RTs). They are classified into superfamilies (Gypsy, Copia) and subclassified into lineages. Horizontal transfer (HT), defined as the nonsexual transmission of genetic material between species, is a process allowing LTR-RTs to invade a new genome. Although this phenomenon was considered rare, recent studies demonstrate numerous transfers of LTR-RTs. This study aims to determine which LTR-RT lineages are shared with high similarity among 69 plant genomes. We identified and classified 88 450 LTR-RTs and determined 143 cases of high similarities between pairs of genomes. Most of them involved three Copia lineages (Oryco/Ivana, Retrofit/Ale, and Tork/Tar/Ikeros). A detailed analysis of three cases of high similarities involving Tork/Tar/Ikeros group shows an uneven distribution in the phylogeny of the elements and incongruence with between phylogenetic trees topologies, indicating they could be originated from HTs. Overall, our results suggest that LTR-RT Copia lineages share outstanding similarity between distant species and may likely be involved in HT mechanisms more frequent than initially estimated.
Collapse
Affiliation(s)
- Simon Orozco-Arias
- Department of Computer Sciences, Universidad Autónoma de Manizales, Colombia.,Department of Systems and Informatics, Universidad de Caldas, Colombia
| | - Mathilde Dupeyron
- Institut de Recherche pour le Développement, IRD, CIRAD, Université de Montpellier, France
| | | | - Reinel Tabares-Soto
- Department of Systems and Informatics, Universidad de Caldas, Colombia.,Department of Electronics and Automatization, Universidad Autónoma de Manizales, Colombia
| | - Romain Guyot
- Institut de Recherche pour le Développement, IRD, CIRAD, Université de Montpellier, France.,Department of Electronics and Automatization, Universidad Autónoma de Manizales, Colombia
| |
Collapse
|
11
|
Boutet I, Alves Monteiro HJ, Baudry L, Takeuchi T, Bonnivard E, Billoud B, Farhat S, Gonzales‐Araya R, Salaun B, Andersen AC, Toullec J, Lallier FH, Flot J, Guiglielmoni N, Guo X, Li C, Allam B, Pales‐Espinosa E, Hemmer‐Hansen J, Moreau P, Marbouty M, Koszul R, Tanguy A. Chromosomal assembly of the flat oyster ( Ostrea edulis L.) genome as a new genetic resource for aquaculture. Evol Appl 2022; 15:1730-1748. [PMID: 36426129 PMCID: PMC9679248 DOI: 10.1111/eva.13462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022] Open
Abstract
The European flat oyster (Ostrea edulis L.) is a native bivalve of the European coasts. Harvest of this species has declined during the last decades because of the appearance of two parasites that have led to the collapse of the stocks and the loss of the natural oyster beds. O. edulis has been the subject of numerous studies in population genetics and on the detection of the parasites Bonamia ostreae and Marteilia refringens. These studies investigated immune responses to these parasites at the molecular and cellular levels. Several genetic improvement programs have been initiated especially for parasite resistance. Within the framework of a European project (PERLE 2) that aims to produce genetic lines of O. edulis with hardiness traits (growth, survival, resistance) for the purpose of repopulating natural oyster beds in Brittany and reviving the culture of this species in the foreshore, obtaining a reference genome becomes essential as done recently in many bivalve species of aquaculture interest. Here, we present a chromosome-level genome assembly and annotation for the European flat oyster, generated by combining PacBio, Illumina, 10X linked, and Hi-C sequencing. The finished assembly is 887.2 Mb with a scaffold-N50 of 97.1 Mb scaffolded on the expected 10 pseudochromosomes. Annotation of the genome revealed the presence of 35,962 protein-coding genes. We analyzed in detail the transposable element (TE) diversity in the flat oyster genome, highlighted some specificities in tRNA and miRNA composition, and provided the first insight into the molecular response of O. edulis to M. refringens. This genome provides a reference for genomic studies on O. edulis to better understand its basic physiology and as a useful resource for genetic breeding in support of aquaculture and natural reef restoration.
Collapse
Affiliation(s)
- Isabelle Boutet
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | | | - Lyam Baudry
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Takeshi Takeuchi
- Marine Genomics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Eric Bonnivard
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Bernard Billoud
- Sorbonne Université, CNRSUMR 8227, Station Biologique de RoscoffRoscoffFrance
| | - Sarah Farhat
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | | | - Benoit Salaun
- Centre Régional de la Conchyliculture Bretagne NordMorlaixFrance
| | - Ann C. Andersen
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Jean‐Yves Toullec
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - François H. Lallier
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Jean‐François Flot
- Evolutionary Biology and EcologyUniversité Libre de BruxellesBrusselsBelgium
| | - Nadège Guiglielmoni
- Evolutionary Biology and EcologyUniversité Libre de BruxellesBrusselsBelgium
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal SciencesRutgers UniversityPort NorrisNew JerseyUSA
| | - Cui Li
- Department of Marine Organism Taxonomy and Phylogeny, Institute of OceanologyChinese Academy of SciencesQingdaoChina
| | - Bassem Allam
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | - Emmanuelle Pales‐Espinosa
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | - Jakob Hemmer‐Hansen
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Pierrick Moreau
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Martial Marbouty
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Romain Koszul
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Arnaud Tanguy
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| |
Collapse
|
12
|
Ní Leathlobhair M, Lenski RE. Population genetics of clonally transmissible cancers. Nat Ecol Evol 2022; 6:1077-1089. [PMID: 35879542 DOI: 10.1038/s41559-022-01790-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
Populations of cancer cells are subject to the same core evolutionary processes as asexually reproducing, unicellular organisms. Transmissible cancers are particularly striking examples of these processes. These unusual cancers are clonal lineages that can spread through populations via physical transfer of living cancer cells from one host individual to another, and they have achieved long-term success in the colonization of at least eight different host species. Population genetic theory provides a useful framework for understanding the shift from a multicellular sexual animal into a unicellular asexual clone and its long-term effects on the genomes of these cancers. In this Review, we consider recent findings from transmissible cancer research with the goals of developing an evolutionarily informed perspective on transmissible cancers, examining possible implications for their long-term fate and identifying areas for future research on these exceptional lineages.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland.
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
13
|
Michnowska A, Hart SFM, Smolarz K, Hallmann A, Metzger MJ. Horizontal transmission of disseminated neoplasia in the widespread clam
Macoma balthica
from the Southern Baltic Sea. Mol Ecol 2022; 31:3128-3136. [DOI: 10.1111/mec.16464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Alicja Michnowska
- Department of Marine Ecosystems Functioning Institute of Oceanography Faculty of Oceanography and Geography University of Gdańsk Piłsudskiego 46 81‐378 Gdynia
| | - Samuel F. M. Hart
- Pacific Northwest Research Institute 720 Broadway Seattle WA 98122 USA
- Molecular and Cellular Biology Program University of Washington 1959 NE Pacific Street, HSB T‐466 Seattle WA 98195 USA
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning Institute of Oceanography Faculty of Oceanography and Geography University of Gdańsk Piłsudskiego 46 81‐378 Gdynia
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry Medical University of Gdańsk Dębinki 1 80‐211 Gdańsk
| | - Michael J. Metzger
- Pacific Northwest Research Institute 720 Broadway Seattle WA 98122 USA
- Molecular and Cellular Biology Program University of Washington 1959 NE Pacific Street, HSB T‐466 Seattle WA 98195 USA
| |
Collapse
|
14
|
Farhat S, Bonnivard E, Pales Espinosa E, Tanguy A, Boutet I, Guiglielmoni N, Flot JF, Allam B. Comparative analysis of the Mercenaria mercenaria genome provides insights into the diversity of transposable elements and immune molecules in bivalve mollusks. BMC Genomics 2022; 23:192. [PMID: 35260071 PMCID: PMC8905726 DOI: 10.1186/s12864-021-08262-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The hard clam Mercenaria mercenaria is a major marine resource along the Atlantic coasts of North America and has been introduced to other continents for resource restoration or aquaculture activities. Significant mortality events have been reported in the species throughout its native range as a result of diseases (microbial infections, leukemia) and acute environmental stress. In this context, the characterization of the hard clam genome can provide highly needed resources to enable basic (e.g., oncogenesis and cancer transmission, adaptation biology) and applied (clam stock enhancement, genomic selection) sciences. RESULTS Using a combination of long and short-read sequencing technologies, a 1.86 Gb chromosome-level assembly of the clam genome was generated. The assembly was scaffolded into 19 chromosomes, with an N50 of 83 Mb. Genome annotation yielded 34,728 predicted protein-coding genes, markedly more than the few other members of the Venerida sequenced so far, with coding regions representing only 2% of the assembly. Indeed, more than half of the genome is composed of repeated elements, including transposable elements. Major chromosome rearrangements were detected between this assembly and another recent assembly derived from a genetically segregated clam stock. Comparative analysis of the clam genome allowed the identification of a marked diversification in immune-related proteins, particularly extensive tandem duplications and expansions in tumor necrosis factors (TNFs) and C1q domain-containing proteins, some of which were previously shown to play a role in clam interactions with infectious microbes. The study also generated a comparative repertoire highlighting the diversity and, in some instances, the specificity of LTR-retrotransposons elements, particularly Steamer elements in bivalves. CONCLUSIONS The diversity of immune molecules in M. mercenaria may allow this species to cope with varying and complex microbial and environmental landscapes. The repertoire of transposable elements identified in this study, particularly Steamer elements, should be a prime target for the investigation of cancer cell development and transmission among bivalve mollusks.
Collapse
Affiliation(s)
- Sarah Farhat
- Marine Animal Disease Laboratory, School of Marine and Atmospheric Sciences, 100 Nicolls Road, Stony Brook University, Stony Brook, NY, 11794-5000, USA
| | - Eric Bonnivard
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29688, Roscoff, France
| | - Emmanuelle Pales Espinosa
- Marine Animal Disease Laboratory, School of Marine and Atmospheric Sciences, 100 Nicolls Road, Stony Brook University, Stony Brook, NY, 11794-5000, USA
| | - Arnaud Tanguy
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29688, Roscoff, France
| | - Isabelle Boutet
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29688, Roscoff, France
| | - Nadège Guiglielmoni
- Université libre de Bruxelles (ULB), Evolutionary Biology & Ecology, Avenue F.D. Roosevelt 50, B-1050, Brussels, Belgium
| | - Jean-François Flot
- Université libre de Bruxelles (ULB), Evolutionary Biology & Ecology, Avenue F.D. Roosevelt 50, B-1050, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels - (IB)2, B-1050, Brussels, Belgium
| | - Bassem Allam
- Marine Animal Disease Laboratory, School of Marine and Atmospheric Sciences, 100 Nicolls Road, Stony Brook University, Stony Brook, NY, 11794-5000, USA.
| |
Collapse
|
15
|
McCartney MA, Auch B, Kono T, Mallez S, Zhang Y, Obille A, Becker A, Abrahante JE, Garbe J, Badalamenti JP, Herman A, Mangelson H, Liachko I, Sullivan S, Sone ED, Koren S, Silverstein KAT, Beckman KB, Gohl DM. The genome of the zebra mussel, Dreissena polymorpha: a resource for comparative genomics, invasion genetics, and biocontrol. G3 (BETHESDA, MD.) 2022; 12:6460334. [PMID: 34897429 PMCID: PMC9210306 DOI: 10.1093/g3journal/jkab423] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
The zebra mussel, Dreissena polymorpha, continues to spread from its native range in Eurasia to Europe and North America, causing billions of dollars in damage and dramatically altering invaded aquatic ecosystems. Despite these impacts, there are few genomic resources for Dreissena or related bivalves. Although the D. polymorpha genome is highly repetitive, we have used a combination of long-read sequencing and Hi-C-based scaffolding to generate a high-quality chromosome-scale genome assembly. Through comparative analysis and transcriptomics experiments, we have gained insights into processes that likely control the invasive success of zebra mussels, including shell formation, synthesis of byssal threads, and thermal tolerance. We identified multiple intact steamer-like elements, a retrotransposon that has been linked to transmissible cancer in marine clams. We also found that D. polymorpha have an unusual 67 kb mitochondrial genome containing numerous tandem repeats, making it the largest observed in Eumetazoa. Together these findings create a rich resource for invasive species research and control efforts.
Collapse
Affiliation(s)
- Michael A McCartney
- Department of Fisheries, Wildlife and Conservation Biology, Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA
| | - Benjamin Auch
- University of Minnesota Genomics Center, Minneapolis, MN 55455, USA
| | - Thomas Kono
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sophie Mallez
- Department of Fisheries, Wildlife and Conservation Biology, Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN 55108, USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angelico Obille
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Aaron Becker
- University of Minnesota Genomics Center, Minneapolis, MN 55455, USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, Minneapolis, MN 55455, USA
| | - John Garbe
- University of Minnesota Genomics Center, Minneapolis, MN 55455, USA
| | | | - Adam Herman
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | - Eli D Sone
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.,Department of Materials Science & Engineering, University of Toronto, Toronto, ON M5S 3E4 Canada.,Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Kevin A T Silverstein
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Daryl M Gohl
- University of Minnesota Genomics Center, Minneapolis, MN 55455, USA.,Department of Genetics, Cell Biology, and Developmental Biology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
16
|
Moura Gama J, Ludwig A, Gazolla CB, Guizelini D, Recco-Pimentel SM, Bruschi DP. A genomic survey of LINE elements in Pipidae aquatic frogs shed light on Rex-elements evolution in these genomes. Mol Phylogenet Evol 2022; 168:107393. [PMID: 35051593 DOI: 10.1016/j.ympev.2022.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/09/2021] [Accepted: 12/25/2021] [Indexed: 11/19/2022]
Abstract
The transposable elements (TE) represent a large portion of anuran genomes that act as components of genetic diversification. The LINE order of retrotransposons is among the most representative and diverse TEs and is poorly investigated in anurans. Here we explored the LINE diversity with an emphasis on the elements generically called Rex in Pipidae species, more specifically, in the genomes ofXenopus tropicalis, used as a model genome in the study of anurans,the allotetraploid sister species Xenopus laevis and theAmerican species Pipa carvalhoi. We were able to identify a great diversity of LINEs from five clades, Rex1, L2, CR1, L1 and Tx1, in these three species, and the RTE clade was lost in X. tropicalis. It is clear that elements classified as Rex are distributed in distinct clades. The evolutionary pattern of Rex1 elements denote a complex evolution with independent losses of families and some horizontal transfer events between fishes and amphibians which were supported not only by the phylogenetic inconsistencies but also by the very low Ks values found for the TE sequences. The data obtained here update the knowledge of the LINEs diversity in X. laevis and represent the first study of TEs in P. carvalhoi.
Collapse
Affiliation(s)
- Joana Moura Gama
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil; Laboratório de Citogenética evolutiva e Conservação Animal (LabCeca), Departamento de Genética, Universidade Federal do Paraná (UFPR), Brazil
| | - Adriana Ludwig
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde (LaCTAS), Instituto Carlos Chagas, Fiocruz-PR, Brazil.
| | - Camilla Borges Gazolla
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil; Laboratório de Citogenética evolutiva e Conservação Animal (LabCeca), Departamento de Genética, Universidade Federal do Paraná (UFPR), Brazil
| | - Dieval Guizelini
- Programa de Pós-Graduação em Bioinformática, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Daniel Pacheco Bruschi
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil; Laboratório de Citogenética evolutiva e Conservação Animal (LabCeca), Departamento de Genética, Universidade Federal do Paraná (UFPR), Brazil.
| |
Collapse
|
17
|
Ní Leathlobhair M, Yetsko K, Farrell JA, Iaria C, Marino G, Duffy DJ, Murchison EP. Genotype data not consistent with clonal transmission of sea turtle fibropapillomatosis or goldfish schwannoma. Wellcome Open Res 2021; 6:219. [PMID: 34622016 PMCID: PMC8459624 DOI: 10.12688/wellcomeopenres.17073.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/07/2023] Open
Abstract
Recent discoveries of transmissible cancers in multiple bivalve species suggest that direct transmission of cancer cells within species may be more common than previously thought, particularly in aquatic environments. Fibropapillomatosis occurs with high prevalence in green sea turtles ( Chelonia mydas) and the geographic range of disease has increased since fibropapillomatosis was first reported in this species. Widespread incidence of schwannomas, benign tumours of Schwann cell origin, reported in aquarium-bred goldfish (Carassius auratus), suggest an infectious aetiology. We investigated the hypothesis that cancers in these species arise by clonal transmission of cancer cells. Through analysis of polymorphic microsatellite alleles, we demonstrate concordance of host and tumour genotypes in diseased animals. These results imply that the tumours examined arose from independent oncogenic transformation of host tissue and were not clonally transmitted. Further, failure to experimentally transmit goldfish schwannoma via water exposure or inoculation suggest that this disease is unlikely to have an infectious aetiology.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, UK
- Big Data Institute, University of Oxford, Oxford, UK
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Kelsey Yetsko
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, Florida, 32080, USA
| | - Jessica A. Farrell
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, Florida, 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| | - Carmelo Iaria
- Centre of Experimental Fish Pathology of Sicily (CISS), Viale Giovanni Palatucci, University of Messina, 98168, Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno d'Alcontres, n 31, University of Messina, 98166, Messina, Italy
| | - Gabriele Marino
- Department of Veterinary Sciences, Viale Giovanni Palatucci, University of Messina, 98168, Messina, Italy
| | - David J. Duffy
- The Whitney Laboratory for Marine Bioscience, Sea Turtle Hospital, University of Florida, St. Augustine, Florida, 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| | - Elizabeth P. Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Aroh O, Halanych KM. Genome-wide characterization of LTR retrotransposons in the non-model deep-sea annelid Lamellibrachia luymesi. BMC Genomics 2021; 22:466. [PMID: 34157969 PMCID: PMC8220671 DOI: 10.1186/s12864-021-07749-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background Long Terminal Repeat retrotransposons (LTR retrotransposons) are mobile genetic elements composed of a few genes between terminal repeats and, in some cases, can comprise over half of a genome’s content. Available data on LTR retrotransposons have facilitated comparative studies and provided insight on genome evolution. However, data are biased to model systems and marine organisms, including annelids, have been underrepresented in transposable elements studies. Here, we focus on genome of Lamellibrachia luymesi, a vestimentiferan tubeworm from deep-sea hydrocarbon seeps, to gain knowledge of LTR retrotransposons in a deep-sea annelid. Results We characterized LTR retrotransposons present in the genome of L. luymesi using bioinformatic approaches and found that intact LTR retrotransposons makes up about 0.1% of L. luymesi genome. Previous characterization of the genome has shown that this tubeworm hosts several known LTR-retrotransposons. Here we describe and classify LTR retrotransposons in L. luymesi as within the Gypsy, Copia and Bel-pao superfamilies. Although, many elements fell within already recognized families (e.g., Mag, CSRN1), others formed clades distinct from previously recognized families within these superfamilies. However, approximately 19% (41) of recovered elements could not be classified. Gypsy elements were the most abundant while only 2 Copia and 2 Bel-pao elements were present. In addition, analysis of insertion times indicated that several LTR-retrotransposons were recently transposed into the genome of L. luymesi, these elements had identical LTR’s raising possibility of recent or ongoing retrotransposon activity. Conclusions Our analysis contributes to knowledge on diversity of LTR-retrotransposons in marine settings and also serves as an important step to assist our understanding of the potential role of retroelements in marine organisms. We find that many LTR retrotransposons, which have been inserted in the last few million years, are similar to those found in terrestrial model species. However, several new groups of LTR retrotransposons were discovered suggesting that the representation of LTR retrotransposons may be different in marine settings. Further study would improve understanding of the diversity of retrotransposons across animal groups and environments. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07749-1.
Collapse
Affiliation(s)
- Oluchi Aroh
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, College of Science and Mathematics, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, USA.
| | - Kenneth M Halanych
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, College of Science and Mathematics, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, USA
| |
Collapse
|
19
|
Zhang YY, Chen Y, Wei X, Cui J. Viromes in marine ecosystems reveal remarkable invertebrate RNA virus diversity. SCIENCE CHINA-LIFE SCIENCES 2021; 65:426-437. [PMID: 34156600 DOI: 10.1007/s11427-020-1936-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
Little is known about ocean viromes and the ecological drivers of the evolution of aquatic RNA viruses. This study employed a meta-transcriptomic approach to characterize the viromes of 58 marine invertebrate species across three seas. This revealed the presence of 315 newly identified RNA viruses in nine viral families or orders (Durnavirales, Totiviridae, Bunyavirales, Hantaviridae, Picornavirales, Flaviviridae, Hepelivirales, Solemoviridae, and Tombusviridae), with most of them being sufficiently divergent to the already documented viruses. Notably, this study revealed three marine invertebrate hantaviruses that are rooted to vertebrate hantaviruses, further supporting that hantaviruses may have a marine origin. We have also found evidence for possible host sharing and switch events during virus evolution. Overall, we have revealed the hidden diversity of marine invertebrate RNA viruses.
Collapse
Affiliation(s)
- Yu-Yi Zhang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yicong Chen
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoman Wei
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China. .,Laboatory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
20
|
Kaur G, Iyer LM, Burroughs AM, Aravind L. Bacterial death and TRADD-N domains help define novel apoptosis and immunity mechanisms shared by prokaryotes and metazoans. eLife 2021; 10:70394. [PMID: 34061031 PMCID: PMC8195603 DOI: 10.7554/elife.70394] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Several homologous domains are shared by eukaryotic immunity and programmed cell-death systems and poorly understood bacterial proteins. Recent studies show these to be components of a network of highly regulated systems connecting apoptotic processes to counter-invader immunity, in prokaryotes with a multicellular habit. However, the provenance of key adaptor domains, namely those of the Death-like and TRADD-N superfamilies, a quintessential feature of metazoan apoptotic systems, remained murky. Here, we use sensitive sequence analysis and comparative genomics methods to identify unambiguous bacterial homologs of the Death-like and TRADD-N superfamilies. We show the former to have arisen as part of a radiation of effector-associated α-helical adaptor domains that likely mediate homotypic interactions bringing together diverse effector and signaling domains in predicted bacterial apoptosis- and counter-invader systems. Similarly, we show that the TRADD-N domain defines a key, widespread signaling bridge that links effector deployment to invader-sensing in multicellular bacterial and metazoan counter-invader systems. TRADD-N domains are expanded in aggregating marine invertebrates and point to distinctive diversifying immune strategies probably directed both at RNA and retroviruses and cellular pathogens that might infect such communities. These TRADD-N and Death-like domains helped identify several new bacterial and metazoan counter-invader systems featuring underappreciated, common functional principles: the use of intracellular invader-sensing lectin-like (NPCBM and FGS), transcription elongation GreA/B-C, glycosyltransferase-4 family, inactive NTPase (serving as nucleic acid receptors), and invader-sensing GTPase switch domains. Finally, these findings point to the possibility of multicellular bacteria-stem metazoan symbiosis in the emergence of the immune/apoptotic systems of the latter.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| |
Collapse
|
21
|
Geoghegan P, O'Brien J, Walker CW, Heagy M, Böttger SA. Long-Term Trends in the Occurrence of Disseminated Neoplasia in a Population of Mya arenaria (Softshell Clam) from a New Hampshire Estuary. Northeast Nat (Steuben) 2021. [DOI: 10.1656/045.028.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Paul Geoghegan
- Normandeau Associates, Inc., 25 Nashua Road, Bedford, NH 03110
| | - Jamie O'Brien
- Normandeau Associates, Inc., 25 Nashua Road, Bedford, NH 03110
| | - Charles W. Walker
- Department of Molecular, Cellular and Biomedical Sciences, The University of New Hampshire, 46 College Road, Durham, NH 03824
| | - MacKenzie Heagy
- Department of Biology, West Chester University, Department of Biology, 750 S. Church Street, West Chester, PA 19383
| | - S. Anne Böttger
- Department of Biology, West Chester University, Department of Biology, 750 S. Church Street, West Chester, PA 19383
| |
Collapse
|
22
|
Hill-Spanik KM, Sams C, Connors VA, Bricker T, de Buron I. Molecular data reshape our understanding of the life cycles of three digeneans (Monorchiidae and Gymnophallidae) infecting the bivalve, Donax variabilis: it's just a facultative host! ACTA ACUST UNITED AC 2021; 28:34. [PMID: 33835020 PMCID: PMC8034251 DOI: 10.1051/parasite/2021027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/11/2021] [Indexed: 11/15/2022]
Abstract
The coquina, Donax variabilis, is a known intermediate host of monorchiid and gymnophallid digeneans. Limited morphological criteria for the host and the digeneans' larval stages have caused confusion in records. Herein, identities of coquinas from the United States (US) Atlantic coast were verified molecularly. We demonstrate that the current GenBank sequences for D. variabilis are erroneous, with the US sequence referring to D. fossor. Two cercariae and three metacercariae previously described in the Gulf of Mexico and one new cercaria were identified morphologically and molecularly, with only metacercariae occurring in both hosts. On the Southeast Atlantic coast, D. variabilis' role is limited to being a facultative second intermediate host, and D. fossor, an older species, acts as both first and second intermediate hosts. Sequencing demonstrated 100% similarities between larval stages for each of the three digeneans. Sporocysts, single tail cercariae, and metacercariae in the incurrent siphon had sequences identical to those of monorchiid Lasiotocus trachinoti, for which we provide the complete life cycle. Adults are not known for the other two digeneans, and sequences from their larval stages were not identical to any in GenBank. Large sporocysts, cercariae (Cercaria choanura), and metacercariae in the coquinas' foot were identified as Lasiotocus choanura (Hopkins, 1958) n. comb. Small sporocysts, furcocercous cercariae, and metacercariae in the mantle were identified as gymnophallid Parvatrema cf. donacis. We clarify records wherein authors recognized the three digenean species but confused their life stages, and probably the hosts, as D. variabilis is sympatric with cryptic D. texasianus in the Gulf of Mexico.
Collapse
Affiliation(s)
- Kristina M Hill-Spanik
- Department of Biology, 205 Fort Johnson Road, College of Charleston, Charleston, 29412 SC, USA
| | - Claudia Sams
- Department of Biology, 205 Fort Johnson Road, College of Charleston, Charleston, 29412 SC, USA
| | - Vincent A Connors
- Department of Biology, Division of Natural Sciences, University of South Carolina Upstate, 1800 University Way, Spartanburg, 29303 SC, USA
| | - Tessa Bricker
- Department of Biology, 205 Fort Johnson Road, College of Charleston, Charleston, 29412 SC, USA
| | - Isaure de Buron
- Department of Biology, 205 Fort Johnson Road, College of Charleston, Charleston, 29412 SC, USA
| |
Collapse
|
23
|
A Survey of Transposon Landscapes in the Putative Ancient Asexual Ostracod Darwinula stevensoni. Genes (Basel) 2021; 12:genes12030401. [PMID: 33799706 PMCID: PMC7998251 DOI: 10.3390/genes12030401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 11/17/2022] Open
Abstract
How asexual reproduction shapes transposable element (TE) content and diversity in eukaryotic genomes remains debated. We performed an initial survey of TE load and diversity in the putative ancient asexual ostracod Darwinula stevensoni. We examined long contiguous stretches of DNA in clones from a genomic fosmid library, totaling about 2.5 Mb, and supplemented these data with results on TE abundance and diversity from an Illumina draft genome. In contrast to other TE studies in putatively ancient asexuals, which revealed relatively low TE content, we found that at least 19% of the fosmid dataset and 26% of the genome assembly corresponded to known transposons. We observed a high diversity of transposon families, including LINE, gypsy, PLE, mariner/Tc, hAT, CMC, Sola2, Ginger, Merlin, Harbinger, MITEs and helitrons, with the prevalence of DNA transposons. The predominantly low levels of sequence diversity indicate that many TEs are or have recently been active. In the fosmid data, no correlation was found between telomeric repeats and non-LTR retrotransposons, which are present near telomeres in other taxa. Most TEs in the fosmid data were located outside of introns and almost none were found in exons. We also report an N-terminal Myb/SANT-like DNA-binding domain in site-specific R4/Dong non-LTR retrotransposons. Although initial results on transposable loads need to be verified with high quality draft genomes, this study provides important first insights into TE dynamics in putative ancient asexual ostracods.
Collapse
|
24
|
de Melo ES, Wallau GL. Mosquito genomes are frequently invaded by transposable elements through horizontal transfer. PLoS Genet 2020; 16:e1008946. [PMID: 33253164 PMCID: PMC7728395 DOI: 10.1371/journal.pgen.1008946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/10/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that parasitize basically all eukaryotic species genomes. Due to their complexity, an in-depth TE characterization is only available for a handful of model organisms. In the present study, we performed a de novo and homology-based characterization of TEs in the genomes of 24 mosquito species and investigated their mode of inheritance. More than 40% of the genome of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus is composed of TEs, while it varied substantially among Anopheles species (0.13%-19.55%). Class I TEs are the most abundant among mosquitoes and at least 24 TE superfamilies were found. Interestingly, TEs have been extensively exchanged by horizontal transfer (172 TE families of 16 different superfamilies) among mosquitoes in the last 30 million years. Horizontally transferred TEs represents around 7% of the genome in Aedes species and a small fraction in Anopheles genomes. Most of these horizontally transferred TEs are from the three ubiquitous LTR superfamilies: Gypsy, Bel-Pao and Copia. Searching more than 32,000 genomes, we also uncovered transfers between mosquitoes and two different Phyla-Cnidaria and Nematoda-and two subphyla-Chelicerata and Crustacea, identifying a vector, the worm Wuchereria bancrofti, that enabled the horizontal spread of a Tc1-mariner element among various Anopheles species. These data also allowed us to reconstruct the horizontal transfer network of this TE involving more than 40 species. In summary, our results suggest that TEs are frequently exchanged by horizontal transfers among mosquitoes, influencing mosquito's genome size and variability.
Collapse
Affiliation(s)
- Elverson Soares de Melo
- Department of Entomology, Aggeu Magalhães Institute–Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Gabriel Luz Wallau
- Department of Entomology, Aggeu Magalhães Institute–Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| |
Collapse
|
25
|
Galbraith JD, Ludington AJ, Suh A, Sanders KL, Adelson DL. New Environment, New Invaders-Repeated Horizontal Transfer of LINEs to Sea Snakes. Genome Biol Evol 2020; 12:2370-2383. [PMID: 33022046 PMCID: PMC7846101 DOI: 10.1093/gbe/evaa208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Although numerous studies have found horizontal transposon transfer (HTT) to be widespread across metazoans, few have focused on HTT in marine ecosystems. To investigate potential recent HTTs into marine species, we searched for novel repetitive elements in sea snakes, a group of elapids which transitioned to a marine habitat at most 18 Ma. Our analysis uncovered repeated HTTs into sea snakes following their marine transition. The seven subfamilies of horizontally transferred LINE retrotransposons we identified in the olive sea snake (Aipysurus laevis) are transcribed, and hence are likely still active and expanding across the genome. A search of 600 metazoan genomes found all seven were absent from other amniotes, including terrestrial elapids, with the most similar LINEs present in fish and marine invertebrates. The one exception was a similar LINE found in sea kraits, a lineage of amphibious elapids which independently transitioned to a marine environment 25 Ma. Our finding of repeated horizontal transfer events into marine snakes greatly expands past findings that the marine environment promotes the transfer of transposons. Transposons are drivers of evolution as sources of genomic sequence and hence genomic novelty. We identified 13 candidate genes for HTT-induced adaptive change based on internal or neighboring HTT LINE insertions. One of these, ADCY4, is of particular interest as a part of the KEGG adaptation pathway “Circadian Entrainment.” This provides evidence of the ecological interactions between species influencing evolution of metazoans not only through specific selection pressures, but also by contributing novel genomic material.
Collapse
Affiliation(s)
| | | | - Alexander Suh
- Department of Ecology and Genetics-Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden.,Department of Organismal Biology-Systematic Biology, Evolutionary Biology Centre, Uppsala University, Sweden.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Kate L Sanders
- School of Biological Sciences, University of Adelaide, Australia
| | - David L Adelson
- School of Biological Sciences, University of Adelaide, Australia
| |
Collapse
|
26
|
Šatović E, Luchetti A, Pasantes JJ, García-Souto D, Cedilak A, Mantovani B, Plohl M. Terminal-Repeat Retrotransposons in Miniature (TRIMs) in bivalves. Sci Rep 2019; 9:19962. [PMID: 31882746 PMCID: PMC6934838 DOI: 10.1038/s41598-019-56502-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Terminal repeat retrotransposons in miniature (TRIMs) are small non-autonomous LTR retrotransposons consisting of two terminal direct repeats surrounding a short internal domain. The detection and characterization of these elements has been mainly limited to plants. Here we present the first finding of a TRIM element in bivalves, and among the first known in the kingdom Animalia. Class Bivalvia has high ecological and commercial importance in marine ecosystems and aquaculture, and, in recent years, an increasing number of genomic studies has addressed to these organisms. We have identified biv-TRIM in several bivalve species: Donax trunculus, Ruditapes decussatus, R. philippinarum, Venerupis corrugata, Polititapes rhomboides, Venus verrucosa, Dosinia exoleta, Glycymeris glycymeris, Cerastoderma edule, Magallana gigas, Mytilus galloprovincialis. biv-TRIM has several characteristics typical for this group of elements, exhibiting different variations. In addition to canonically structured elements, solo-TDRs and tandem repeats were detected. The presence of this element in the genome of each species is <1%. The phylogenetic analysis showed a complex clustering pattern of biv-TRIM elements, and indicates the involvement of horizontal transfer in the spreading of this element.
Collapse
Affiliation(s)
- Eva Šatović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Andrea Luchetti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Juan J Pasantes
- Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, Vigo, Spain
| | - Daniel García-Souto
- Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, Vigo, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Andrea Cedilak
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Barbara Mantovani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
27
|
Guliaev AS, Semyenova SK. MGERT: a pipeline to retrieve coding sequences of mobile genetic elements from genome assemblies. Mob DNA 2019; 10:21. [PMID: 31114637 PMCID: PMC6515669 DOI: 10.1186/s13100-019-0163-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
Background Genomes of eukaryotes are inhabited by myriads of mobile genetic elements (MGEs) – transposons and retrotransposons - which play a great role in genome plasticity and evolution. A lot of computational tools were developed to annotate them either in genomic assemblies or raw reads using de novo or homology-based approaches. But there has been no pipeline enabling users to get coding and flanking sequences of MGEs suitable for a downstream analysis from genome assemblies. Results We developed a new pipeline, MGERT (Mobile Genetic Elements Retrieving Tool), that automates all the steps necessary to obtain protein-coding sequences of mobile genetic elements from genomic assemblies even if no previous knowledge on MGE content of a particular genome is available. Conclusions Using MGERT, researchers can easily find MGEs, their coding and flanking sequences in the genome of interest. Thus, this pipeline helps researchers to focus on the biological analysis of MGEs rather than excessive scripting and pipelining. Electronic supplementary material The online version of this article (10.1186/s13100-019-0163-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrei S Guliaev
- Laboratory of Genome Organization, Institute of Gene Biology of the Russian Academy of Sciences, Vavilov Str., 34/5, Moscow, 119334 Russia
| | - Seraphima K Semyenova
- Laboratory of Genome Organization, Institute of Gene Biology of the Russian Academy of Sciences, Vavilov Str., 34/5, Moscow, 119334 Russia
| |
Collapse
|
28
|
Rode NO, Estoup A, Bourguet D, Courtier-Orgogozo V, Débarre F. Population management using gene drive: molecular design, models of spread dynamics and assessment of ecological risks. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01165-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvák Z, Levin HL, Macfarlan TS, Mager DL, Feschotte C. Ten things you should know about transposable elements. Genome Biol 2018; 19:199. [PMID: 30454069 PMCID: PMC6240941 DOI: 10.1186/s13059-018-1577-z] [Citation(s) in RCA: 762] [Impact Index Per Article: 108.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs) are major components of eukaryotic genomes. However, the extent of their impact on genome evolution, function, and disease remain a matter of intense interrogation. The rise of genomics and large-scale functional assays has shed new light on the multi-faceted activities of TEs and implies that they should no longer be marginalized. Here, we introduce the fundamental properties of TEs and their complex interactions with their cellular environment, which are crucial to understanding their impact and manifold consequences for organismal biology. While we draw examples primarily from mammalian systems, the core concepts outlined here are relevant to a broad range of organisms.
Collapse
Affiliation(s)
- Guillaume Bourque
- Department of Human Genetics, McGill University, Montréal, Québec, H3A 0G1, Canada.
- Canadian Center for Computational Genomics, McGill University, Montréal, Québec, H3A 0G1, Canada.
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Molly Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Michaël Imbeault
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Henry L Levin
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Dixie L Mager
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of BC, Vancouver, BC, V5Z1L3, Canada
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
30
|
Thomas-Bulle C, Piednoël M, Donnart T, Filée J, Jollivet D, Bonnivard É. Mollusc genomes reveal variability in patterns of LTR-retrotransposons dynamics. BMC Genomics 2018; 19:821. [PMID: 30442098 PMCID: PMC6238403 DOI: 10.1186/s12864-018-5200-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/25/2018] [Indexed: 01/06/2023] Open
Abstract
Background The three superfamilies of Long Terminal Repeat (LTR) retrotransposons are a widespread kind of transposable element and a major factor in eukaryotic genome evolution. In metazoans, recent studies suggested that Copia LTR-retrotransposons display specific dynamic compared to the more abundant and diverse Gypsy elements. Indeed, Copia elements show a relative scarcity and the prevalence of only a few clades in specific hosts. Thus, BEL/Pao seems to be the second most abundant superfamily. However, the generality of these assumptions remains to be assessed. Therefore, we carried out the first large-scale comparative genomic analysis of LTR-retrotransposons in molluscs. The aim of this study was to analyse the diversity, copy numbers, genomic proportions and distribution of LTR-retrotransposons in a large host phylum. Results We compare nine genomes of molluscs and further added LTR-retrotransposons sequences detected in databases for 47 additional species. We identified 1709 families, which enabled us to define 31 clades. We show that clade richness was highly dependent on the considered superfamily. We found only three Copia clades, including GalEa and Hydra which appear to be widely distributed and highly dominant as they account for 96% of the characterised Copia elements. Among the seven BEL/Pao clades identified, Sparrow and Surcouf are characterised for the first time. We find no BEL or Pao elements, but the rare clades Dan and Flow are present in molluscs. Finally, we characterised 21 Gypsy clades, only five of which had been previously described, the C-clade being the most abundant one. Even if they are found in the same number of host species, Copia elements are clearly less abundant than BEL/Pao elements in copy number or genomic proportions, while Gypsy elements are always the most abundant ones whatever the parameter considered. Conclusions Our analysis confirms the contrasting dynamics of Copia and Gypsy elements in metazoans and indicates that BEL/Pao represents the second most abundant superfamily, probably reflecting an intermediate dynamic. Altogether, the data obtained in several taxa highly suggest that these patterns can be generalised for most metazoans. Finally, we highlight the importance of using database information in complement of genome analyses when analyzing transposable element diversity. Electronic supplementary material The online version of this article (10.1186/s12864-018-5200-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camille Thomas-Bulle
- Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire Evolution Paris Seine, F-75005, Paris, France. .,Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier CS90074, 29688, Roscoff, France.
| | - Mathieu Piednoël
- Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire Evolution Paris Seine, F-75005, Paris, France
| | - Tifenn Donnart
- Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire Evolution Paris Seine, F-75005, Paris, France
| | - Jonathan Filée
- Laboratoire Evolution, Génomes, Comportement, Ecologie; CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Didier Jollivet
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier CS90074, 29688, Roscoff, France
| | - Éric Bonnivard
- Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire Evolution Paris Seine, F-75005, Paris, France
| |
Collapse
|
31
|
Zhang QY, Gui JF. Diversity, evolutionary contribution and ecological roles of aquatic viruses. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1486-1502. [DOI: 10.1007/s11427-018-9414-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/26/2018] [Indexed: 01/21/2023]
|