1
|
Kim T, Lim J, Jeong J, Ryu H. Wound Healing in Human Skin Equivalents Reconstructed with Biopolymers Under Fine-Dust Exposure. Polymers (Basel) 2025; 17:901. [PMID: 40219291 PMCID: PMC11991311 DOI: 10.3390/polym17070901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Airborne fine-dust pollution poses a significant threat to both respiratory and skin health; however, the skin's wound-healing process in response to such exposure remains underexplored. Therefore, this study examined the effect of fine-dust-model compounds, specifically polycyclic aromatic hydrocarbons (PM10-PAHs) and trace-metal-containing particles (PM10-Trace), on the wound-healing process using human skin equivalents reconstructed with collagen-based biomaterials and human skin cells. Our findings revealed that fine-dust exposure significantly delayed wound closure by 2-3 times compared with unexposed controls, impairing re-epithelialization. Live imaging of wound-healing dynamics revealed that trace-metal-containing particles had a more pronounced inhibitory effect than polycyclic aromatic hydrocarbons. Furthermore, fine-dust exposure elevated protease-activated receptor-1 (PAR1) expression by up to 161%, indicating significant physiological disruption. Additionally, fine-dust exposure triggered inflammation and oxidative stress, leading to structural and functional damage in the reconstructed skin. These results provide critical insights into how airborne pollutants disrupt skin repair mechanisms and highlight the need for targeted strategies to mitigate their harmful effects.
Collapse
Affiliation(s)
| | | | - Jaehyun Jeong
- Department of Chemical Engineering, Soongsil University, 369, Sangdo-Ro, Ronjak-Gu, Seoul 06978, Republic of Korea; (T.K.)
| | - Heewook Ryu
- Department of Chemical Engineering, Soongsil University, 369, Sangdo-Ro, Ronjak-Gu, Seoul 06978, Republic of Korea; (T.K.)
| |
Collapse
|
2
|
Chatterjee A, Paul S, Mukherjee T, Gupta S, Parashar D, Sahu B, Kumar U, Das K. Beyond coagulation: Coagulation protease factor VIIa in cytoprotective response. Int Immunopharmacol 2025; 150:114218. [PMID: 39955915 DOI: 10.1016/j.intimp.2025.114218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
Blood coagulation, the tightly regulated biological process prevents bleeding upon injury to the blood vessels. Vessel injury exposes the sub-endothelial tissue factor (TF) to the blood stream, thereby leading to the binding of coagulation protease, factor VII/activated VII with TF, and thus initiating the extrinsic pathway of blood coagulation. Apart from coagulation, FVIIa also promotes intracellular signaling via the activation of a unique class of G-protein-coupled receptor (GPCR) family protein, protease-activated receptor 1 (PAR1), thereby promoting anti-inflammation and endothelial barrier protection. Blood coagulation and inflammation are intrinsically connected, the activation of one process often leads to the activation of the other. The present review highlights the mechanisms by which FVIIa contributes to cytoprotective responses, either by direct action or through the release of extracellular vesicles (EVs) from vascular endothelium. FVIIa, due to its well-known ability to promote coagulation, is also used as a hemostatic agent in the treatment of several hyper bleeding disorders like hemophilia, thrombocytopenia etc. In addition to its hemostatic role, the topics discussed in the present review open a new therapeutic off-label effect of FVIIa, i.e., providing anti-inflammatory and vascular protective responses in several bleeding disorders and beyond.
Collapse
Affiliation(s)
- Akash Chatterjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, West Bengal, India
| | - Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, West Bengal, India
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Bhupender Sahu
- Centre for Molecular Biology, Central University of Jammu, Jammu 181143, Jammu and Kashmir, India
| | - Umesh Kumar
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad 201015, Uttar Pradesh, India.
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India.
| |
Collapse
|
3
|
Chen J, Zhou C, Fang W, Yin J, Shi J, Ge J, Shen L, Liu SM, Liu SJ. Identification of endothelial protein C receptor as a novel druggable agonistic target for reendothelialization promotion and thrombosis prevention of eluting stent. Bioact Mater 2024; 41:485-498. [PMID: 39210965 PMCID: PMC11359769 DOI: 10.1016/j.bioactmat.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024] Open
Abstract
The commercially available drug-eluting stent with limus (rapamycin, everolimus, etc.) or paclitaxel inhibits smooth muscle cell (SMC), reducing the in-stent restenosis, whereas damages endothelial cell (EC) and delays stent reendothelialization, increasing the risk of stent thrombosis (ST) and sudden cardiac death. Here we present a new strategy for promoting stent reendothelialization and preventing ST by exploring the application of precise molecular targets with EC specificity. Proteomics was used to investigate the molecular mechanism of EC injury caused by rapamycin. Endothelial protein C receptor (EPCR) was screened out as a crucial EC-specific effector. Limus and paclitaxel repressed the EPCR expression, while overexpression of EPCR protected EC from coating (eluting) drug-induced injury. Furthermore, the ligand activated protein C (APC), polypeptide TR47, and compound parmodulin 2, which activated the target EPCR, promoted EC functions and inhibited platelet or neutrophil adhesion, and enhanced rapamycin stent reendothelialization in the simulated stent environment and in vitro. In vivo, the APC/rapamycin-coating promoted reendothelialization rapidly and prevented ST more effectively than rapamycin-coating alone, in both traditional metal stents and biodegradable stents. Additionally, overexpression or activation of the target EPCR did not affect the cellular behavior of SMC or the inhibitory effect of rapamycin on SMC. In conclusion, EPCR is a promising therapeutical agonistic target for pro-reendothelialization and anti-thrombosis of eluting stent. Activation of EPCR protects against coating drugs-induced EC injury, inflammatory cell, or platelet adhesion onto the stent. The novel application formula for APC/rapamycin-combined eluting promotes stent reendothelialization and prevents ST.
Collapse
Affiliation(s)
- Jing Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, PR China
- Department of Cardiology, The First Affliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510000, PR China
| | - Changyi Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Weilun Fang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, PR China
| | - Jiasheng Yin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Jian Shi
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, PR China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
- Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Shi-Ming Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, PR China
- Department of Cardiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, PR China
| | - Shao-Jun Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, PR China
| |
Collapse
|
4
|
Cline H, Wei Z, Groeneveld DJ, Hix JML, Xu X, Flick MJ, Palumbo JS, Poole LG, Dockendorff C, Griffin JH, Luyendyk JP. Hepatocyte-independent PAR1-biased signaling controls liver pathology in experimental obesity. J Thromb Haemost 2024; 22:3191-3198. [PMID: 39122189 PMCID: PMC11513232 DOI: 10.1016/j.jtha.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Protease-activated receptor-1 (PAR1) has emerged as an important link between coagulation and the complications of obesity including metabolic dysfunction-associated steatotic liver disease (MASLD). PAR1 is expressed by various cells and cleaved by different proteases to generate unique tethered agonists that activate distinct signaling pathways. Mice expressing PAR1 with an R41Q mutation have disabled canonical thrombin-mediated signaling, whereas R46Q mice express PAR1 resistant to noncanonical signaling by activated protein C. METHODS Mice with whole body and hepatocyte-selective PAR1 deficiency as well as PAR1 R41Q and R46Q mice were fed a high-fat diet (HFD) to induce MASLD. RESULTS HFD-fed R41Q mice displayed reduced hepatic steatosis and liver/body weight ratio. In contrast, HFD-fed R46Q mice displayed increased relative liver weight and hepatic steatosis alongside increased serum alanine aminotransferase activity. Surprisingly, despite the distinct impact of PAR1 mutations on steatosis, selective deletion of PAR1 in hepatocytes had no impact. To evaluate a viable PAR1-targeted approach, mice with HFD-induced obesity were treated with the allosteric PAR1 modulator NRD-21, which inhibits canonical PAR1 inflammatory signaling but promotes PAR1 protective, noncanonical anti-inflammatory signaling. NRD-21 treatment reduced plasma tumor necrosis factor-alpha, serum alanine aminotransferase activity, hepatic steatosis, and insulin resistance (Homeostatic Model Assessment for Insulin Resistance) but increased plasma active glucagon-like peptide-1. CONCLUSION The results suggest that nonhepatocellular canonical PAR1 cleavage drives MASLD in obese mice and provide translational proof-of-concept that selective pharmacologic modulation of PAR1 yields multiple metabolic benefits in experimental obesity.
Collapse
Affiliation(s)
- Holly Cline
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Zimu Wei
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Dafna J Groeneveld
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Jeremy M L Hix
- Department of Radiology and Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, USA
| | - Xiao Xu
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph S Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lauren G Poole
- Department of Pharmacology, Rutgers University, Piscataway, New Jersey, USA
| | | | - John H Griffin
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
5
|
Ghosh LD, Mathur T, Tronolone JJ, Chuong A, Rangel K, Corvigno S, Sood AK, Jain A. Angiogenesis-Enabled Human Ovarian Tumor Microenvironment-Chip Evaluates Pathophysiology of Platelets in Microcirculation. Adv Healthc Mater 2024; 13:e2304263. [PMID: 38553940 PMCID: PMC11281868 DOI: 10.1002/adhm.202304263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The tumor microenvironment (TME) promotes angiogenesis for its growth through the recruitment of multiple cells and signaling mechanisms. For example, TME actively recruits and activates platelets from the microcirculation to facilitate metastasis, but platelets may simultaneously also support tumor angiogenesis. Here, to model this complex pathophysiology within the TME that involves a signaling triad of cancer cells, sprouting endothelial cells, and platelets, an angiogenesis-enabled tumor microenvironment chip (aTME-Chip) is presented. This platform recapitulates the convergence of physiology of angiogenesis and platelet function within the ovarian TME and describes the contribution of platelets in promoting angiogenesis within an ovarian TME. By including three distinct human ovarian cancer cell-types, the aTME-Chip quantitatively reveals the following outcomes-first, introduction of platelets significantly increases angiogenesis; second, the temporal dynamics of angiogenic signaling is dependent on cancer cell type; and finally, tumor-educated platelets either activated exogenously by cancer cells or derived clinically from a cancer patient accelerate tumor angiogenesis. Further, analysis of effluents available from aTME-Chip validate functional outcomes by revealing changes in cytokine expression and several angiogenic and metastatic signaling pathways due to platelets. Collectively, this tumor microphysiological system may be deployed to derive antiangiogenic targets combined with antiplatelet treatments to arrest cancer metastasis.
Collapse
Affiliation(s)
- Lopamudra D. Ghosh
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Tanmay Mathur
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - James J Tronolone
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Ashley Chuong
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Kelly Rangel
- Department of Gynecologic Oncology and Reproductive Medicine, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Sara Corvigno
- Department of Gynecologic Oncology and Reproductive Medicine, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, USA
- Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, Texas, USA
| |
Collapse
|
6
|
Johri N, Matreja PS, Agarwal S, Nagar P, Kumar D, Maurya A. Unraveling the Molecular Mechanisms of Activated Protein C (APC) in Mitigating Reperfusion Injury and Cardiac Ischemia: a Promising Avenue for Novel Therapeutic Interventions. J Cardiovasc Transl Res 2024; 17:345-355. [PMID: 37851312 DOI: 10.1007/s12265-023-10445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Ischemic heart disease, which results from plaque formation in the coronary arteries, hinders the flow of oxygenated blood to the heart, leading to ischemia. Reperfusion injury remains a significant challenge for researchers, and the mechanisms underlying myocardial ischemia-reperfusion injury (MIRI) are not entirely understood. The review directs future research into potential targets in clinical treatment based on our present understanding of the pathophysiological mechanisms of MIRI. The study provides insights into the mechanisms underlying MIRI and offers direction for future research in this area. The use of targeted therapies may hold promise in improving cardiac function in the elderly and minimizing the adverse effects of revascularization therapies. The purpose of this review is to analyze the role of activated protein C (APC) in the pathogenesis of ischemic heart disease, heart failure, and myocardial ischemia-reperfusion injury, and discuss the potential of APC-based therapeutics.
Collapse
Affiliation(s)
- Nishant Johri
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India.
- School of Health & Psychological Sciences, City, University of London, London, United Kingdom.
| | - Prithpal S Matreja
- Department of Pharmacology, Teerthanker Mahaveer Medical College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Shalabh Agarwal
- Department of Cardiology, Teerthanker Mahaveer Hospital & Research Centre, Moradabad, Uttar Pradesh, India
| | - Priya Nagar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Deepanshu Kumar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Aditya Maurya
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| |
Collapse
|
7
|
O'Donnell JS, Fleming H, Noone D, Preston RJS. Unraveling coagulation factor-mediated cellular signaling. J Thromb Haemost 2023; 21:3342-3353. [PMID: 37391097 DOI: 10.1016/j.jtha.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
Blood coagulation is initiated in response to blood vessel injury or proinflammatory stimuli, which activate coagulation factors to coordinate complex biochemical and cellular responses necessary for clot formation. In addition to these critical physiologic functions, plasma protein factors activated during coagulation mediate a spectrum of signaling responses via receptor-binding interactions on different cell types. In this review, we describe examples and mechanisms of coagulation factor signaling. We detail the molecular basis for cell signaling mediated by coagulation factor proteases via the protease-activated receptor family, considering new insights into the role of protease-specific cleavage sites, cofactor and coreceptor interactions, and distinct signaling intermediate interactions in shaping protease-activated receptor signaling diversity. Moreover, we discuss examples of how injury-dependent conformational activation of other coagulation proteins, such as fibrin(ogen) and von Willebrand factor, decrypts their signaling potential, unlocking their capacity to contribute to aberrant proinflammatory signaling. Finally, we consider the role of coagulation factor signaling in disease development and the status of pharmacologic approaches to either attenuate or enhance coagulation factor signaling for therapeutic benefit, emphasizing new approaches to inhibit deleterious coagulation factor signaling without impacting hemostatic activity.
Collapse
Affiliation(s)
- James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland, Crumlin, Dublin, Ireland. https://twitter.com/profJSOdonnell
| | - Harry Fleming
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland. https://www.twitter.com/PrestonLab_RCSI
| | - David Noone
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland. https://www.twitter.com/PrestonLab_RCSI
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland, Crumlin, Dublin, Ireland.
| |
Collapse
|
8
|
Sim MMS, Shiferawe S, Wood JP. Novel strategies in antithrombotic therapy: targeting thrombosis while preserving hemostasis. Front Cardiovasc Med 2023; 10:1272971. [PMID: 37937289 PMCID: PMC10626538 DOI: 10.3389/fcvm.2023.1272971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Antithrombotic therapy is a delicate balance between the benefits of preventing a thrombotic event and the risks of inducing a major bleed. Traditional approaches have included antiplatelet and anticoagulant medications, require careful dosing and monitoring, and all carry some risk of bleeding. In recent years, several new targets have been identified, both in the platelet and coagulation systems, which may mitigate this bleeding risk. In this review, we briefly describe the current state of antithrombotic therapy, and then present a detailed discussion of the new generation of drugs that are being developed to target more safely existing or newly identified pathways, alongside the strategies to reverse direct oral anticoagulants, showcasing the breadth of approaches. Combined, these exciting advances in antithrombotic therapy bring us closer than we have ever been to the "holy grail" of the field, a treatment that separates the hemostatic and thrombotic systems, preventing clots without any concurrent bleeding risk.
Collapse
Affiliation(s)
- Martha M. S. Sim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
| | - Semekidus Shiferawe
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
| | - Jeremy P. Wood
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
- Division of Cardiovascular Medicine Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
9
|
Wang Z, Fang C, Yao M, Wu D, Chen M, Guo T, Mo J. Research progress of NF-κB signaling pathway and thrombosis. Front Immunol 2023; 14:1257988. [PMID: 37841272 PMCID: PMC10570553 DOI: 10.3389/fimmu.2023.1257988] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Venous thromboembolism is a very common and costly health problem. Deep-vein thrombosis (DVT) can cause permanent damage to the venous system and lead to swelling, ulceration, gangrene, and other symptoms in the affected limb. In addition, more than half of the embolus of pulmonary embolism comes from venous thrombosis, which is the most serious cause of death, second only to ischemic heart disease and stroke patients. It can be seen that deep-vein thrombosis has become a serious disease affecting human health. In recent years, with the deepening of research, inflammatory response is considered to be an important pathway to trigger venous thromboembolism, in which the transcription factor NF-κB is the central medium of inflammation, and the NF-κB signaling pathway can regulate the pro-inflammatory and coagulation response. Thus, to explore the mechanism and make use of it may provide new solutions for the prevention and treatment of thrombosis.
Collapse
Affiliation(s)
- Zilong Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chucun Fang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Mengting Yao
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dongwen Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Maga Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianting Guo
- Department of Orthopedics, Ganzhou City Hospital, Ganzhou, Jiangxi, China
| | - Jianwen Mo
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| |
Collapse
|
10
|
Yang M, Chiu J, Scartelli C, Ponzar N, Patel S, Patel A, Ferreira RB, Keyes RF, Carroll KS, Pozzi N, Hogg PJ, Smith BC, Flaumenhaft R. Sulfenylation links oxidative stress to protein disulfide isomerase oxidase activity and thrombus formation. J Thromb Haemost 2023; 21:2137-2150. [PMID: 37037379 PMCID: PMC10657653 DOI: 10.1016/j.jtha.2023.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Oxidative stress contributes to thrombosis in atherosclerosis, inflammation, infection, aging, and malignancy. Oxidant-induced cysteine modifications, including sulfenylation, can act as a redox-sensitive switch that controls protein function. Protein disulfide isomerase (PDI) is a prothrombotic enzyme with exquisitely redox-sensitive active-site cysteines. OBJECTIVES We hypothesized that PDI is sulfenylated during oxidative stress, contributing to the prothrombotic potential of PDI. METHODS Biochemical and enzymatic assays using purified proteins, platelet and endothelial cell assays, and in vivo murine thrombosis studies were used to evaluate the role of oxidative stress in PDI sulfenylation and prothrombotic activity. RESULTS PDI exposure to oxidants resulted in the loss of PDI reductase activity and simultaneously promoted sulfenylated PDI generation. Following exposure to oxidants, sulfenylated PDI spontaneously converted to disulfided PDI. PDI oxidized in this manner was able to transfer disulfides to protein substrates. Inhibition of sulfenylation impaired disulfide formation by oxidants, indicating that sulfenylation is an intermediate during PDI oxidation. Agonist-induced activation of platelets and endothelium resulted in the release of sulfenylated PDI. PDI was also sulfenylated by oxidized low-density lipoprotein (oxLDL). In an in vivo model of thrombus formation, oxLDL markedly promoted platelet accumulation following an arteriolar injury. PDI oxidoreductase inhibition blocked oxLDL-mediated augmentation of thrombosis. CONCLUSION PDI sulfenylation is a critical posttranslational modification that is an intermediate during disulfide PDI formation in the setting of oxidative stress. Oxidants generated by vascular cells during activation promote PDI sulfenylation, and interference with PDI during oxidative stress impairs thrombus formation.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| | - Joyce Chiu
- The Centenary Institute and University of Sydney, Sydney, New South Wales, Australia
| | - Christina Scartelli
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Nathan Ponzar
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Sachin Patel
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Anika Patel
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Renan B Ferreira
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, Florida, USA
| | - Robert F Keyes
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kate S Carroll
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, Florida, USA
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Philip J Hogg
- The Centenary Institute and University of Sydney, Sydney, New South Wales, Australia
| | - Brian C Smith
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
11
|
Ramadas N, Sparkenbaugh EM. The APC-EPCR-PAR1 axis in sickle cell disease. Front Med (Lausanne) 2023; 10:1141020. [PMID: 37497271 PMCID: PMC10366386 DOI: 10.3389/fmed.2023.1141020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Sickle Cell Disease (SCD) is a group of inherited hemoglobinopathies. Sickle cell anemia (SCA) is caused by a homozygous mutation in the β-globin generating sickle hemoglobin (HbS). Deoxygenation leads to pathologic polymerization of HbS and sickling of erythrocytes. The two predominant pathologies of SCD are hemolytic anemia and vaso-occlusive episodes (VOE), along with sequelae of complications including acute chest syndrome, hepatopathy, nephropathy, pulmonary hypertension, venous thromboembolism, and stroke. SCD is associated with endothelial activation due to the release of danger-associated molecular patterns (DAMPs) such as heme, recurrent ischemia-reperfusion injury, and chronic thrombin generation and inflammation. Endothelial cell activation is mediated, in part, by thrombin-dependent activation of protease-activated receptor 1 (PAR1), a G protein coupled receptor that plays a role in platelet activation, endothelial permeability, inflammation, and cytotoxicity. PAR1 can also be activated by activated protein C (APC), which promotes endothelial barrier protection and cytoprotective signaling. Notably, the APC system is dysregulated in SCD. This mini-review will discuss activation of PAR1 by APC and thrombin, the APC-EPCR-PAR1 axis, and their potential roles in SCD.
Collapse
Affiliation(s)
- Nirupama Ramadas
- Department of Medicine, Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Erica M. Sparkenbaugh
- Department of Medicine, Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
12
|
Pan CC, Maeso-Díaz R, Lewis TR, Xiang K, Tan L, Liang Y, Wang L, Yang F, Yin T, Wang C, Du K, Huang D, Oh SH, Wang E, Lim BJW, Chong M, Alexander PB, Yao X, Arshavsky VY, Li QJ, Diehl AM, Wang XF. Antagonizing the irreversible thrombomodulin-initiated proteolytic signaling alleviates age-related liver fibrosis via senescent cell killing. Cell Res 2023; 33:516-532. [PMID: 37169907 PMCID: PMC10313785 DOI: 10.1038/s41422-023-00820-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Cellular senescence is a stress-induced, stable cell cycle arrest phenotype which generates a pro-inflammatory microenvironment, leading to chronic inflammation and age-associated diseases. Determining the fundamental molecular pathways driving senescence instead of apoptosis could enable the identification of senolytic agents to restore tissue homeostasis. Here, we identify thrombomodulin (THBD) signaling as a key molecular determinant of the senescent cell fate. Although normally restricted to endothelial cells, THBD is rapidly upregulated and maintained throughout all phases of the senescence program in aged mammalian tissues and in senescent cell models. Mechanistically, THBD activates a proteolytic feed-forward signaling pathway by stabilizing a multi-protein complex in early endosomes, thus forming a molecular basis for the irreversibility of the senescence program and ensuring senescent cell viability. Therapeutically, THBD signaling depletion or inhibition using vorapaxar, an FDA-approved drug, effectively ablates senescent cells and restores tissue homeostasis in liver fibrosis models. Collectively, these results uncover proteolytic THBD signaling as a conserved pro-survival pathway essential for senescent cell viability, thus providing a pharmacologically exploitable senolytic target for senescence-associated diseases.
Collapse
Affiliation(s)
- Christopher C Pan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Raquel Maeso-Díaz
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Tylor R Lewis
- Division of Ophthalmology, Department of Medicine, Duke University, Durham, NC, USA
| | - Kun Xiang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Lianmei Tan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Yaosi Liang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Fengrui Yang
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Calvin Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Kuo Du
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - De Huang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Seh Hoon Oh
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Ergang Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | | | - Mengyang Chong
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Peter B Alexander
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Xuebiao Yao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Vadim Y Arshavsky
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
- Division of Ophthalmology, Department of Medicine, Duke University, Durham, NC, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University, Durham, NC, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
13
|
Künze G, Isermann B. Targeting biased signaling by PAR1: function and molecular mechanism of parmodulins. Blood 2023; 141:2675-2684. [PMID: 36952648 PMCID: PMC10646804 DOI: 10.1182/blood.2023019775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023] Open
Abstract
The G protein-coupled receptor (GPCR) protease-activated receptor 1 (PAR1) is a therapeutic target that was originally pursued with the aim of restricting platelet activation and the burden of cardiovascular diseases. In clinical studies, the use of orthosteric PAR1 inhibitors was associated with an increased risk of hemorrhage, including intracranial hemorrhage. Because (1) PAR1 is expressed by various cell types, including endothelial cells, (2) conveys in mice a physiological indispensable function for vascular development during embryogenesis, and (3) is subject to biased signaling dependent on the activating proteases, orthosteric PAR1 inhibition may be associated with unwanted side effects. Alternatively, the protease-activated protein C (aPC) and its variants can promote valuable anti-inflammatory signaling via PAR1. Most recently, small molecule allosteric modulators of PAR1 signaling, called parmodulins, have been developed. Parmodulins inhibit coagulation and platelet activation yet maintain cytoprotective effects typically provoked by PAR1 signaling upon the activation by aPC. In this study, we review the discovery of parmodulins and their preclinical data, summarize the current knowledge about their mode of action, and compare the structural interaction of parmodulin and PAR1 with that of other intracellularly binding allosteric GPCR modulators. Thus, we highlight the pharmaceutical potential and challenges associated with the future development of parmodulins.
Collapse
Affiliation(s)
- Georg Künze
- Institute for Drug Discovery, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| |
Collapse
|
14
|
Zhang X, Lee MD, Buckley C, Hollenberg MD, Wilson C, McCarron JG. Endothelial PAR2 activation evokes resistance artery relaxation. J Cell Physiol 2023; 238:776-789. [PMID: 36791026 PMCID: PMC10952239 DOI: 10.1002/jcp.30973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Protease-activated receptor-1 & -2 (PAR1 and PAR2) are expressed widely in cardiovascular tissues including endothelial and smooth muscle cells. PAR1 and PAR2 may regulate blood pressure via changes in vascular contraction or relaxation mediated by endothelial Ca2+ signaling, but the mechanisms are incompletely understood. By using single-cell Ca2+ imaging across hundreds of endothelial cells in intact blood vessels, we explored PAR-mediated regulation of blood vessel function using PAR1 and PAR2 activators. We show that PAR2 activation evoked multicellular Ca2+ waves that propagated across the endothelium. The PAR2-evoked Ca2+ waves were temporally distinct from those generated by muscarinic receptor activation. PAR2 activated distinct clusters of endothelial cells, and these cells were different from those activated by muscarinic receptor stimulation. These results indicate that distinct cell clusters facilitate spatial segregation of endothelial signal processing. We also demonstrate that PAR2 is a phospholipase C-coupled receptor that evokes Ca2+ release from the IP3 -sensitive store in endothelial cells. A physiological consequence of this PAR2 signaling system is endothelium-dependent relaxation. Conversely, PAR1 activation did not trigger endothelial cell Ca2+ signaling nor relax or contract mesenteric arteries. Neither did PAR1 activators alter the response to PAR2 or muscarinic receptor activation. Collectively, these results suggest that endothelial PAR2 but not PAR1 evokes mesenteric artery relaxation by evoking IP3 -mediated Ca2+ release from the internal store. Sensing mediated by PAR2 receptors is distributed to spatially separated clusters of endothelial cells.
Collapse
Affiliation(s)
- Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - Matthew D. Lee
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - Morley D. Hollenberg
- Department of Physiology and Pharmacology and Department of MedicineUniversity of Calgary Cumming School of MedicineCalgaryAlbertaCanada
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - John G. McCarron
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| |
Collapse
|
15
|
Novel approaches to antiplatelet therapy. Biochem Pharmacol 2022; 206:115297. [DOI: 10.1016/j.bcp.2022.115297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/20/2022]
|
16
|
De Simone I, Baaten CCFMJ, Jandrot-Perrus M, Gibbins JM, ten Cate H, Heemskerk JWM, Jones CI, van der Meijden PEJ. Coagulation Factor XIIIa and Activated Protein C Activate Platelets via GPVI and PAR1. Int J Mol Sci 2022; 23:ijms231810203. [PMID: 36142125 PMCID: PMC9499330 DOI: 10.3390/ijms231810203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Platelet and coagulation activation are highly reciprocal processes driven by multi-molecular interactions. Activated platelets secrete several coagulation factors and expose phosphatidylserine, which supports the activation of coagulation factor proteins. On the other hand, the coagulation cascade generates known ligands for platelet receptors, such as thrombin and fibrin. Coagulation factor (F)Xa, (F)XIIIa and activated protein C (APC) can also bind to platelets, but the functional consequences are unclear. Here, we investigated the effects of the activated (anti)coagulation factors on platelets, other than thrombin. Multicolor flow cytometry and aggregation experiments revealed that the ‘supernatant of (hirudin-treated) coagulated plasma’ (SCP) enhanced CRP-XL-induced platelet responses, i.e., integrin αIIbβ3 activation, P-selectin exposure and aggregate formation. We demonstrated that FXIIIa in combination with APC enhanced platelet activation in solution, and separately immobilized FXIIIa and APC resulted in platelet spreading. Platelet activation by FXIIIa was inhibited by molecular blockade of glycoprotein VI (GPVI) or Syk kinase. In contrast, platelet spreading on immobilized APC was inhibited by PAR1 blockade. Immobilized, but not soluble, FXIIIa and APC also enhanced in vitro adhesion and aggregation under flow. In conclusion, in coagulation, factors other than thrombin or fibrin can induce platelet activation via GPVI and PAR receptors.
Collapse
Affiliation(s)
- Ilaria De Simone
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
- School of Biological Sciences, Institute for Metabolic and Cardiovascular Research, University of Reading, Reading RG6 6AS, UK
| | - Constance C. F. M. J. Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Martine Jandrot-Perrus
- UMR_S1148, Laboratory for Vascular Translational Science, INSERM, University Paris Cité, F-75018 Paris, France
| | - Jonathan M. Gibbins
- School of Biological Sciences, Institute for Metabolic and Cardiovascular Research, University of Reading, Reading RG6 6AS, UK
| | - Hugo ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
- Synapse Research Institute, 6217 KD Maastricht, The Netherlands
| | - Chris I. Jones
- School of Biological Sciences, Institute for Metabolic and Cardiovascular Research, University of Reading, Reading RG6 6AS, UK
- Correspondence: (C.I.J.); (P.E.J.v.d.M.); Tel.: +44-(0)-118-378-7047 (C.I.J.); +31-43-388-1684 (P.E.J.v.d.M.)
| | - Paola E. J. van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Correspondence: (C.I.J.); (P.E.J.v.d.M.); Tel.: +44-(0)-118-378-7047 (C.I.J.); +31-43-388-1684 (P.E.J.v.d.M.)
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW To provide an overview of the state-of-the-art in protein C (PC) pathway research. RECENT FINDINGS The PC pathway is crucial for maintaining hemostasis to prevent venous thromboembolism. This is evident from genetic mutations that result in impaired PC pathway activity and contribute to increased venous thromboembolism risk in affected individuals. In addition to its anticoagulant role, activated PC (APC) also mediates a complex, pleiotropic role in the maintenance of vascular cell health, which it achieves via anti-inflammatory and antiapoptotic cell signaling on endothelial cells. Emerging data have demonstrated that cell signaling by APC, mediated by multiple receptor interactions on different cell types, also confers cytoprotective and anti-inflammatory benefits. Defects in both arms of the PC pathway are associated with increased susceptibility to thrombo-inflammatory disease in various preclinical thrombotic, proinflammatory and neurological disease models. Moreover, recent studies have identified attenuation of anticoagulant PC pathway activity as an exciting therapeutic opportunity to promote hemostasis in patients with inherited or acquired bleeding disorders. SUMMARY In this review, we provide an overview of some recent developments in our understanding of the PC pathways.
Collapse
Affiliation(s)
- Gemma Leon
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Crumlin, Dublin 12, Ireland
| | - Aisling M Rehill
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Crumlin, Dublin 12, Ireland
| |
Collapse
|
18
|
Al-Dabet MM, Shahzad K, Elwakiel A, Sulaj A, Kopf S, Bock F, Gadi I, Zimmermann S, Rana R, Krishnan S, Gupta D, Manoharan J, Fatima S, Nazir S, Schwab C, Baber R, Scholz M, Geffers R, Mertens PR, Nawroth PP, Griffin JH, Keller M, Dockendorff C, Kohli S, Isermann B. Reversal of the renal hyperglycemic memory in diabetic kidney disease by targeting sustained tubular p21 expression. Nat Commun 2022; 13:5062. [PMID: 36030260 PMCID: PMC9420151 DOI: 10.1038/s41467-022-32477-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 07/29/2022] [Indexed: 02/07/2023] Open
Abstract
A major obstacle in diabetes is the metabolic or hyperglycemic memory, which lacks specific therapies. Here we show that glucose-mediated changes in gene expression largely persist in diabetic kidney disease (DKD) despite reversing hyperglycemia. The senescence-associated cyclin-dependent kinase inhibitor p21 (Cdkn1a) was the top hit among genes persistently induced by hyperglycemia and was associated with induction of the p53-p21 pathway. Persistent p21 induction was confirmed in various animal models, human samples and in vitro models. Tubular and urinary p21-levels were associated with DKD severity and remained elevated despite improved blood glucose levels in humans. Mechanistically, sustained tubular p21 expression in DKD is linked to demethylation of its promoter and reduced DNMT1 expression. Two disease resolving agents, protease activated protein C (3K3A-aPC) and parmodulin-2, reversed sustained tubular p21 expression, tubular senescence, and DKD. Thus, p21-dependent tubular senescence is a pathway contributing to the hyperglycemic memory, which can be therapeutically targeted. Persistent diabetic complications despite controlled blood glucose levels, known as hyperglycemic memory, remain a poorly understood phenomenon in diabetic kidney disease. Here the authors identify senescence-associated gene p21 as a regulator of hyperglycemic memory, the suppression of which improves hyperglycemic memory and renal function.
Collapse
Affiliation(s)
- Moh'd Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.,Department of Medical Laboratories, Faculty of Health Sciences, American University of Madaba (AUM), Amman, Jordan
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.,Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Alba Sulaj
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Stefan Kopf
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Fabian Bock
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ihsan Gadi
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Shruthi Krishnan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Sumra Nazir
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Constantin Schwab
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.,Leipzig Medical Biobank, Leipzig University, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Rene Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter P Nawroth
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Maria Keller
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.,Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.
| |
Collapse
|
19
|
Hypercoagulability Impairs Plaque Stability in Diabetes-Induced Atherosclerosis. Nutrients 2022; 14:nu14101991. [PMID: 35631132 PMCID: PMC9143009 DOI: 10.3390/nu14101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetes mellitus, which is largely driven by nutritional and behavioral factors, is characterized by accelerated atherosclerosis with impaired plaque stability. Atherosclerosis and associated complications are the major cause of mortality in diabetic patients. Efficient therapeutic concepts for diabetes-associated atherosclerosis are lacking. Atherosclerosis among diabetic patients is associated with reduced endothelial thrombomodulin (TM) expression and impaired activated protein C (aPC) generation. Here, we demonstrate that atherosclerotic plaque stability is reduced in hyperglycemic mice expressing dysfunctional TM (TMPro/Pro mice), which have a pro-coagulant phenotype due to impaired thrombin inhibition and markedly reduced aPC generation. The vessel lumen and plaque size of atherosclerotic lesions in the truncus brachiocephalic were decreased in diabetic TMPro/Pro ApoE-/- mice compared to diabetic ApoE-/- mice. While lipid accumulation in lesions of diabetic TMPro/Pro ApoE-/- mice was lower than that in diabetic ApoE-/- mice, morphometric analyses revealed more prominent signs of instable plaques, such as a larger necrotic core area and decreased fibrous cap thickness in diabetic TMPro/Pro ApoE-/- mice. Congruently, more macrophages and fewer smooth muscle cells were observed within lesions of diabetic TMPro/Pro ApoE-/- mice. Thus, impaired TM function reduces plaque stability, a characteristic of hyperglycemia-associated plaques, thus suggesting the crucial role of impaired TM function in mediating diabetes-associated atherosclerosis.
Collapse
|
20
|
Francis LRA, Millington-Burgess SL, Rahman T, Harper MT. Q94 is not a selective modulator of proteinase-activated receptor 1 (PAR1) in platelets. Platelets 2022; 33:1090-1095. [PMID: 35417662 DOI: 10.1080/09537104.2022.2026911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Thrombin is a potent platelet activator, acting through proteinase-activated receptors -1 and -4 (PAR1 and PAR4). Of these, PAR-1 is activated more rapidly and by lower thrombin concentrations. Consequently, PAR-1 has been extensively investigated as a target for anti-platelet drugs to prevent myocardial infarction. Q94 has been reported to act as an allosteric modulator of PAR1, potently and selectively inhibiting PAR1-Gαq coupling in multiple cell lines, but its effects on human platelet activation have not been previously studied. Platelet Ca2+ signaling, integrin αIIbβ3 activation and α-granule secretion were monitored following stimulation by a PAR1-activating peptide (PAR1-AP). Although Q94 inhibited these responses, its potency was low compared to other PAR1 antagonists. In addition, αIIbβ3 activation and α-granule secretion in response to other platelet activators were also inhibited with similar potency. Finally, in endothelial cells, Q94 did not inhibit PAR1-dependent Ca2+ signaling. Our data suggest that Q94 may have PAR1-independent off-target effects in platelets, precluding its use as a selective PAR1 allosteric modulator.
Collapse
Affiliation(s)
- Luc R A Francis
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Revollo L, Merrill-Skoloff G, De Ceunynck K, Dilks JR, Guo S, Bordoli MR, Peters CG, Noetzli L, Ionescu A, Rosen V, Italiano JE, Whitman M, Flaumenhaft R. The secreted tyrosine kinase VLK is essential for normal platelet activation and thrombus formation. Blood 2022; 139:104-117. [PMID: 34329392 PMCID: PMC8718620 DOI: 10.1182/blood.2020010342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/22/2021] [Indexed: 01/09/2023] Open
Abstract
Tyrosine phosphorylation of extracellular proteins is observed in cell cultures and in vivo, but little is known about the functional roles of tyrosine phosphorylation of extracellular proteins. Vertebrate lonesome kinase (VLK) is a broadly expressed secretory pathway tyrosine kinase present in platelet α-granules. It is released from platelets upon activation and phosphorylates substrates extracellularly. Its role in platelet function, however, has not been previously studied. In human platelets, we identified phosphorylated tyrosines mapped to luminal or extracellular domains of transmembrane and secreted proteins implicated in the regulation of platelet activation. To determine the role of VLK in extracellular tyrosine phosphorylation and platelet function, we generated mice with a megakaryocyte/platelet-specific deficiency of VLK. Platelets from these mice are normal in abundance and morphology but have significant changes in function both in vitro and in vivo. Resting and thrombin-stimulated VLK-deficient platelets exhibit a significant decrease in several tyrosine phosphobands. Results of functional testing of VLK-deficient platelets show decreased protease-activated receptor 4-mediated and collagen-mediated platelet aggregation but normal responses to adenosine 5'-diphosphate. Dense granule and α-granule release are reduced in these platelets. Furthermore, VLK-deficient platelets exhibit decreased protease-activated receptor 4-mediated Akt (S473) and Erk1/2 (T202/Y204) phosphorylation, indicating altered proximal signaling. In vivo, mice lacking VLK in megakaryocytes/platelets display strongly reduced platelet accumulation and fibrin formation after laser-induced injury of cremaster arterioles compared with control mice but with normal bleeding times. These studies show that the secretory pathway tyrosine kinase VLK is critical for stimulus-dependent platelet activation and thrombus formation, providing the first evidence that a secreted protein kinase is required for normal platelet function.
Collapse
Affiliation(s)
- Leila Revollo
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA
| | - Glenn Merrill-Skoloff
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Karen De Ceunynck
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - James R Dilks
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Shihui Guo
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Mattia R Bordoli
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA
| | - Christian G Peters
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Leila Noetzli
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA; and
| | | | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA
| | - Joseph E Italiano
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA; and
| | - Malcolm Whitman
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
22
|
Abstract
Tyrosine phosphorylation of extracellular proteins is observed in cell cultures and in vivo, but little is known about the functional roles of tyrosine phosphorylation of extracellular proteins. Vertebrate lonesome kinase (VLK) is a broadly expressed secretory pathway tyrosine kinase present in platelet α-granules. It is released from platelets upon activation and phosphorylates substrates extracellularly. Its role in platelet function, however, has not been previously studied. In human platelets, we identified phosphorylated tyrosines mapped to luminal or extracellular domains of transmembrane and secreted proteins implicated in the regulation of platelet activation. To determine the role of VLK in extracellular tyrosine phosphorylation and platelet function, we generated mice with a megakaryocyte/platelet-specific deficiency of VLK. Platelets from these mice are normal in abundance and morphology but have significant changes in function both in vitro and in vivo. Resting and thrombin-stimulated VLK-deficient platelets exhibit a significant decrease in several tyrosine phosphobands. Results of functional testing of VLK-deficient platelets show decreased protease-activated receptor 4-mediated and collagen-mediated platelet aggregation but normal responses to adenosine 5'-diphosphate. Dense granule and α-granule release are reduced in these platelets. Furthermore, VLK-deficient platelets exhibit decreased protease-activated receptor 4-mediated Akt (S473) and Erk1/2 (T202/Y204) phosphorylation, indicating altered proximal signaling. In vivo, mice lacking VLK in megakaryocytes/platelets display strongly reduced platelet accumulation and fibrin formation after laser-induced injury of cremaster arterioles compared with control mice but with normal bleeding times. These studies show that the secretory pathway tyrosine kinase VLK is critical for stimulus-dependent platelet activation and thrombus formation, providing the first evidence that a secreted protein kinase is required for normal platelet function.
Collapse
|
23
|
Xu R, Yu J, Song S, Sun D, Xiu L, Xu J, Zhao J, Liu X, Ji Q, Yue X. Long non-coding RNA ncRuPAR regulates gastric cancer cell proliferation and apoptosis via phosphoinositide 3-kinase/protein kinase B signaling. Int J Med Sci 2022; 19:1835-1846. [PMID: 36438913 PMCID: PMC9682512 DOI: 10.7150/ijms.76664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
Objective: To determine the effect and mechanism of the long non-coding RNA (lncRNA) ncRuPAR (non-protein coding RNA, upstream of coagulation factor II thrombin receptor [F2R]/protease-activated receptor-1 [PAR-1]) in human gastric cancer. Methods: HGC-27-ncRuPAR overexpression and MGC-803-ncRuPAR-RNAi knockdown gastric cancer cell lines were established. We assessed the effect of ncRuPAR on cell proliferation, apoptosis, migration, and invasion using Cell Counting Kit 8, flow cytometry, scratch and transwell assays, respectively. Differentially expressed genes in HGC-27-ncRuPAR overexpression and HGC-27-empty vector cell lines were identified using Affymetrix GeneChip microarray analysis. Ingenuity Pathway Analysis (IPA) of the microarray results was subsequently conducted to identify ncRuPAR-enriched pathways, followed by validation using real time-quantitative PCR (RT-qPCR). As one of the top enriched pathways, phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was further examined by western blotting to determine its role in ncRuPAR-mediated regulation of gastric cancer pathogenesis. Results: ncRuPAR inhibited human gastric cancer cell proliferation and induced G1/S phase arrest and apoptosis, but did not affect migration or invasion in vitro. Overexpression of ncRuPAR in vitro was found to inhibit its known target PAR-1, as well as PI3K/Akt signaling. The downstream targets of PI3K/Akt, cyclin D1 was downregulated, but there was no change in expression level of B-cell lymphoma 2 (Bcl-2). Conclusions: We showed that lncRNA-ncRuPAR could inhibit tumor cell proliferation and promote apoptosis of human gastric cancer cells, potentially by inhibiting PAR-1, PI3K/Akt signaling, and cyclin D1. The results suggest a potential role for lncRNAs as key regulatory hubs in GC progression.
Collapse
Affiliation(s)
- Renjie Xu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jiahui Yu
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China
| | - Shangjin Song
- Strategic Support Force Xingcheng Special Duty Sanatorium, Xingcheng 125100, Liaoning Province, China
| | - Dazhi Sun
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Lijuan Xiu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jinyu Xu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jing Zhao
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xuan Liu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Qing Ji
- Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
24
|
Berkowitz S, Chapman J, Dori A, Gofrit SG, Maggio N, Shavit-Stein E. Complement and Coagulation System Crosstalk in Synaptic and Neural Conduction in the Central and Peripheral Nervous Systems. Biomedicines 2021; 9:biomedicines9121950. [PMID: 34944766 PMCID: PMC8698364 DOI: 10.3390/biomedicines9121950] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Complement and coagulation are both key systems that defend the body from harm. They share multiple features and are similarly activated. They each play individual roles in the systemic circulation in physiology and pathophysiology, with significant crosstalk between them. Components from both systems are mapped to important structures in the central nervous system (CNS) and peripheral nervous system (PNS). Complement and coagulation participate in critical functions in neuronal development and synaptic plasticity. During pathophysiological states, complement and coagulation factors are upregulated and can modulate synaptic transmission and neuronal conduction. This review summarizes the current evidence regarding the roles of the complement system and the coagulation cascade in the CNS and PNS. Possible crosstalk between the two systems regarding neuroinflammatory-related effects on synaptic transmission and neuronal conduction is explored. Novel treatment based on the modulation of crosstalk between complement and coagulation may perhaps help to alleviate neuroinflammatory effects in diseased states of the CNS and PNS.
Collapse
Affiliation(s)
- Shani Berkowitz
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5266202, Israel; (S.B.); (J.C.); (A.D.); (S.G.G.); (N.M.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Joab Chapman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5266202, Israel; (S.B.); (J.C.); (A.D.); (S.G.G.); (N.M.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Dori
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5266202, Israel; (S.B.); (J.C.); (A.D.); (S.G.G.); (N.M.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan 6997801, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5266202, Israel; (S.B.); (J.C.); (A.D.); (S.G.G.); (N.M.)
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5266202, Israel; (S.B.); (J.C.); (A.D.); (S.G.G.); (N.M.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 5266202, Israel; (S.B.); (J.C.); (A.D.); (S.G.G.); (N.M.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-50-921-0400
| |
Collapse
|
25
|
Molinar-Inglis O, Birch CA, Nicholas D, Orduña-Castillo L, Cisneros-Aguirre M, Patwardhan A, Chen B, Grimsey NJ, Coronel LJ, Lin H, Gomez Menzies PK, Lawson MA, Patel HH, Trejo J. aPC/PAR1 confers endothelial anti-apoptotic activity via a discrete, β-arrestin-2-mediated SphK1-S1PR1-Akt signaling axis. Proc Natl Acad Sci U S A 2021; 118:e2106623118. [PMID: 34873055 PMCID: PMC8670512 DOI: 10.1073/pnas.2106623118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction is associated with vascular disease and results in disruption of endothelial barrier function and increased sensitivity to apoptosis. Currently, there are limited treatments for improving endothelial dysfunction. Activated protein C (aPC), a promising therapeutic, signals via protease-activated receptor-1 (PAR1) and mediates several cytoprotective responses, including endothelial barrier stabilization and anti-apoptotic responses. We showed that aPC-activated PAR1 signals preferentially via β-arrestin-2 (β-arr2) and dishevelled-2 (Dvl2) scaffolds rather than G proteins to promote Rac1 activation and barrier protection. However, the signaling pathways utilized by aPC/PAR1 to mediate anti-apoptotic activities are not known. aPC/PAR1 cytoprotective responses also require coreceptors; however, it is not clear how coreceptors impact different aPC/PAR1 signaling pathways to drive distinct cytoprotective responses. Here, we define a β-arr2-mediated sphingosine kinase-1 (SphK1)-sphingosine-1-phosphate receptor-1 (S1PR1)-Akt signaling axis that confers aPC/PAR1-mediated protection against cell death. Using human cultured endothelial cells, we found that endogenous PAR1 and S1PR1 coexist in caveolin-1 (Cav1)-rich microdomains and that S1PR1 coassociation with Cav1 is increased by aPC activation of PAR1. Our study further shows that aPC stimulates β-arr2-dependent SphK1 activation independent of Dvl2 and is required for transactivation of S1PR1-Akt signaling and protection against cell death. While aPC/PAR1-induced, extracellular signal-regulated kinase 1/2 (ERK1/2) activation is also dependent on β-arr2, neither SphK1 nor S1PR1 are integrated into the ERK1/2 pathway. Finally, aPC activation of PAR1-β-arr2-mediated protection against apoptosis is dependent on Cav1, the principal structural protein of endothelial caveolae. These studies reveal that different aPC/PAR1 cytoprotective responses are mediated by discrete, β-arr2-driven signaling pathways in caveolae.
Collapse
Affiliation(s)
- Olivia Molinar-Inglis
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Cierra A Birch
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Dequina Nicholas
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA 92697
| | - Lennis Orduña-Castillo
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Metztli Cisneros-Aguirre
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Anand Patwardhan
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Buxin Chen
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Neil J Grimsey
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
- Department of Pharmaceutical Sciences and Biomedical Sciences, School of Pharmacy, University of Georgia, Athens, GA 30682
| | - Luisa J Coronel
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Huilan Lin
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Patrick K Gomez Menzies
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Mark A Lawson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Hemal H Patel
- VA San Diego Health Care System, San Diego, CA 92161
- Department of Anesthesiology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
26
|
Festoff BW, Dockendorff C. The Evolving Concept of Neuro-Thromboinflammation for Neurodegenerative Disorders and Neurotrauma: A Rationale for PAR1-Targeting Therapies. Biomolecules 2021; 11:1558. [PMID: 34827556 PMCID: PMC8615608 DOI: 10.3390/biom11111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Interest in the role of coagulation and fibrinolysis in the nervous system was active in several laboratories dating back before cloning of the functional thrombin receptor in 1991. As one of those, our attention was initially on thrombin and plasminogen activators in synapse formation and elimination in the neuromuscular system, with orientation towards diseases such as amyotrophic lateral sclerosis (ALS) and how clotting and fibrinolytic pathways fit into its pathogenesis. This perspective is on neuro-thromboinflammation, emphasizing this emerging concept from studies and reports over more than three decades. It underscores how it may lead to novel therapeutic approaches to treat the ravages of neurotrauma and neurodegenerative diseases, with a focus on PAR1, ALS, and parmodulins.
Collapse
Affiliation(s)
- Barry W. Festoff
- PHLOGISTIX LLC, Department of Neurology, University of Kansas Medical School, Kansas City, MO 64108, USA
| | | |
Collapse
|
27
|
Li Q, Yang W, Zhao K, Sun X, Bao L. Thrombomodulin gene polymorphism and the occurrence and prognostic value of sepsis acute kidney injury. Medicine (Baltimore) 2021; 100:e26293. [PMID: 34190147 PMCID: PMC8257907 DOI: 10.1097/md.0000000000026293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/20/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT To investigate the relationship between thrombomodulin (THBD) gene single nucleotide polymorphisms (SNPs) and susceptibility to sepsis and the occurrence and prognosis of acute kidney injury (AKI) in sepsis patients.The genotypes of THBD gene rs1962, rs3176123, and rs1042580 in 178 sepsis patients with AKI, 243 sepsis patients without AKI (No AKI), and 103 healthy controls were analyzed by direct sequencing. Enzyme-linked immunosorbent assay (ELISA) was used to detect the plasma THBD protein levels. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic value of plasma THBD levels in sepsis, AKI, and death of sepsis patients.The C allele carriers of THBD gene rs1962 were more likely to develop AKI and sepsis than the T allele carriers (OR = 1.61, 95% CI: 1.18-2.19, P < .01; OR = 2.16, 95% CI: 1.42-3.29, P < .01). The rs3176123 G allele was associated with an increased risk of AKI in sepsis patients (OR = 1.41, 95% CI: 1.06-1.88, P = .02), the G allele had a significant association with a higher risk of sepsis susceptibility (OR = 1.91, 95% CI: 1.33-2.75, P < .01). Sepsis patients of rs1042580 C allele had a lower risk of AKI than those of T allele (OR = 0.58, 95% CI: 0.37-0.91, P = .02), the C allele was related to a reduced risk of sepsis susceptibility (OR = 0.38, 95% CI: 0.26-0.55, P < .01). The THBD gene rs1962, rs3176123, and rs1042580 TGT haplotype was linked to higher risk of AKI in patients with sepsis (OR = 1.96, 95%CI: 1.14-3.38, P = .02). Sepsis patients with the THBD gene rs1962 TC + CC genotype had a higher risk of death than those with TT genotype (OR = 10.93, 95%CI: 5.05-26.96, P < .01), but there was no significant difference in the risk of death in sepsis patients with different genotypes at rs3176123 and rs1042580 (P > .05).The THBD gene rs1962, rs3176123, and rs1042580 SNPs are significantly associated with sepsis susceptibility and the risk of AKI. The rs1962 SNP is related to the risk of death in sepsis patients.
Collapse
Affiliation(s)
- Qin Li
- Department of Nephrology Ward, Zibo Central Hospital, Zhangdian, Zibo, Shandong
| | - Wenjuan Yang
- Department of Nephrology Ward, Zibo Central Hospital, Zhangdian, Zibo, Shandong
| | - Keming Zhao
- Department of Nephrology Ward, Zibo Central Hospital, Zhangdian, Zibo, Shandong
| | - Xifeng Sun
- Department of Nephrology Ward, Zibo Central Hospital, Zhangdian, Zibo, Shandong
| | - Liuqian Bao
- Department of Emergency Medicine Department, People's Hospital of Tiantai County, Tiantai County, Taizhou City, Zhejiang, China
| |
Collapse
|
28
|
Seo Y, Heo Y, Jo S, Park SH, Lee C, Chang J, Jeon DK, Kim TG, Han G, Namkung W. Novel positive allosteric modulator of protease-activated receptor 1 promotes skin wound healing in hairless mice. Br J Pharmacol 2021; 178:3414-3427. [PMID: 33837955 DOI: 10.1111/bph.15489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 02/04/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Protease-activated receptor 1 (PAR1) is a GPCR expressed in several skin cell types, including keratinocyte and dermal fibroblast. PAR1 activation plays a crucial role in the process of skin wound healing such as thrombosis, inflammation, proliferation and tissue repair. In the present study, we identified a novel positive allosteric modulator of PAR1, GB83, and investigated its effect on skin wound healing. EXPERIMENTAL APPROACH The enhancement of PAR1 activity by GB83 was measured using Fluo-4 calcium assay. In silico docking analysis of GB83 in PAR1 was performed using dock ligands method (CDOCKER) with CHARMm force field. Effects of GB83 on cell viability and gene expression were observed using MTS assay and quantitative real-time PCRs, respectively. SKH-1 hairless mice were used to investigate the wound healing effect of GB83. KEY RESULTS We demonstrated that GB83 did not activate PAR1 by itself but strongly enhanced PAR1 activation by thrombin and PAR1-activating peptide (AP). In silico docking analysis revealed that GB83 can bind to the PAR1 binding site of vorapaxar. GB83 significantly promoted PAR1-mediated cell viability and migration. In addition, the enhancement of PAR1 activity by GB83 strongly increased gene expression of TGF-β, fibronectin and type I collagen in vitro and promoted skin wound healing in vivo. CONCLUSION AND IMPLICATIONS Our results revealed that GB83 is the first positive allosteric modulator of PAR1 and it can be a useful pharmacological tool for studying PAR1 and a potential therapeutic agent for skin wound healing.
Collapse
Affiliation(s)
- Yohan Seo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.,Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul, Republic of Korea.,New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Yunkyung Heo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Sungwoo Jo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - So-Hyeon Park
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea
| | - Chulho Lee
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jiwon Chang
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Dong-Kyu Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Tae Gun Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Gyoonhee Han
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Wan Namkung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.,Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Lee DK, Nevo O. Tumor necrosis factor alpha expression is increased in maternal microvascular endothelial cells in preeclampsia. Hypertens Pregnancy 2021; 40:193-201. [PMID: 33979559 DOI: 10.1080/10641955.2021.1921794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective: The aim of this study was to explore the expression and effects of tumor necrosis factor alpha (TNFα) in maternal endothelial cells in preeclampsia (PE).Methods: Expression levels in primary microvascular endothelial cells (MVEC) isolated from patients with severe preeclampsia (PE) and normal pregnancies were determined by RT-qPCR with or without treatment of TNFα and inhibitors for downstream signaling.Results: PE MVEC exhibited increased basal TNFα expression. TNFα treatment increased TNFα, VCAM, and endocan expression in MVEC.Conclusion: TNFα expression is increased in PE MVEC and the treatment of these cells with exogenous TNFα modifies their gene expression.
Collapse
Affiliation(s)
- Dennis K Lee
- Department of Obstetrics and Gynecology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Ori Nevo
- Department of Obstetrics and Gynecology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Tronolone JJ, Lam J, Agrawal A, Sung K. Pumpless, modular, microphysiological systems enabling tunable perfusion for long-term cultivation of endothelialized lumens. Biomed Microdevices 2021; 23:25. [PMID: 33855605 DOI: 10.1007/s10544-021-00562-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2021] [Indexed: 12/28/2022]
Abstract
Given the increased recognition of the importance of physiologically relevant microenvironments when designing in vitro assays, microphysiological systems (MPS) that mimic the critical function and structure of tissues and organs have gained considerable attention as alternatives to traditional experimental models. Accordingly, the field is growing rapidly, and some promising MPS are being tested for use in pharmaceutical development and toxicological testing. However, most MPS are complex and require additional infrastructure, which limits their successful translation. Here, we present a pumpless, modular MPS consisting of 1) a resistance module that controls flow rate and 2) a physiologically relevant, three-dimensional blood vessel module. Flow is provided by an attached reservoir tank that feeds fluid into the resistance channel via hydrostatic pressure. The flow rate is controlled by the height of the media in the tank and the resistance channel's dimensions. The flow from the resistance module is streamed into the blood vessel module using a liquid bridge. We utilize optical coherence tomography (OCT) to measure fluid velocity at regions of interest. The endothelial cells cultured in the MPS remain viable for up to 14 days and demonstrate the functional characteristics of the human blood vessels verified by tight junction expression and diffusion assay. Our results show that a modular MPS can simulate a functional endothelium in vitro while simplifying the operation of the MPS. The simplicity of the system allows for modifications to incorporate other microenvironmental components and to build other organ-modeling systems easily.
Collapse
Affiliation(s)
- James J Tronolone
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993-0002, USA
| | - Johnny Lam
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993-0002, USA
| | - Anant Agrawal
- Divison of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kyung Sung
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993-0002, USA.
| |
Collapse
|
31
|
Chandrabalan A, Ramachandran R. Molecular mechanisms regulating Proteinase‐Activated Receptors (PARs). FEBS J 2021; 288:2697-2726. [DOI: 10.1111/febs.15829] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Arundhasa Chandrabalan
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry University of Western Ontario London Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry University of Western Ontario London Canada
| |
Collapse
|
32
|
Rovai ES, Alves T, Holzhausen M. Protease-activated receptor 1 as a potential therapeutic target for COVID-19. Exp Biol Med (Maywood) 2021; 246:688-694. [PMID: 33302737 PMCID: PMC7746952 DOI: 10.1177/1535370220978372] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory disease caused by a novel coronavirus (SARS-CoV-2) has spread all over the world, since its discovery in 2019, Wuhan, China. This disease is called COVID-19 and already killed over 1 million people worldwide. The clinical symptoms include fever, dry cough, dyspnea, headache, dizziness, generalized weakness, vomiting, and diarrhea. Unfortunately, so far, there is no validated vaccine, and its management consists mainly of supportive care. Venous thrombosis and pulmonary embolism are highly prevalent in patients suffering from severe COVID-19. In fact, a prothrombotic state seems to be present in most fatal cases of the disease. SARS-CoV-2 leads to the production of proinflammatory cytokines, causing immune-mediated tissue damage, disruption of the endothelial barrier, and uncontrolled thrombogenesis. Thrombin is the key regulator of coagulation and fibrin formation. In severe COVID-19, a dysfunctional of physiological anticoagulant mechanisms leads to a progressive increase of thrombin activity, which is associated with acute respiratory distress syndrome development and a poor prognosis. Protease-activated receptor type 1 (PAR1) is the main thrombin receptor and may represent an essential link between coagulation and inflammation in the pathophysiology of COVID-19. In this review, we discuss the potential role of PAR1 inhibition and regulation in COVID-19 treatment.
Collapse
Affiliation(s)
- Emanuel S. Rovai
- Department of Dentistry, University of Taubate, Taubate 12010-490, Brazil
| | - Tomaz Alves
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marinella Holzhausen
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
33
|
Cooke JP, Connor JH, Jain A. Acute and Chronic Cardiovascular Manifestations of COVID-19: Role for Endotheliopathy. Methodist Debakey Cardiovasc J 2021; 17:53-62. [PMID: 34992723 PMCID: PMC8680072 DOI: 10.14797/mdcvj.1044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/13/2021] [Indexed: 12/27/2022] Open
Abstract
SARS-CoV-2, the virus that causes coronavirus disease 19 (COVID-19), is associated with a bewildering array of cardiovascular manifestations, including myocardial infarction and stroke, myocarditis and heart failure, atrial and ventricular arrhythmias, venous thromboembolism, and microvascular disease. Accumulating evidence indicates that a profound disturbance of endothelial homeostasis contributes to these conditions. Furthermore, the pulmonary infiltration and edema, and later pulmonary fibrosis, in patients with COVID-19 is promoted by endothelial alterations including the expression of endothelial adhesion molecules and chemokines, increased intercellular permeability, and endothelial-to-mesenchyme transitions. The cognitive disturbance occurring in this disease may also be due in part to an impairment of the blood-brain barrier. Venous thrombosis and pulmonary thromboembolism are most likely associated with an endothelial defect caused by circulating inflammatory cytokines and/or direct endothelial invasion by the virus. Endothelial-targeted therapies such as statins, nitric oxide donors, and antioxidants may be useful therapeutic adjuncts in COVID-19 by restoring endothelial homeostasis.
Collapse
Affiliation(s)
- John P Cooke
- Houston Methodist Research Institute, Houston Methodist, Houston, TX, US
| | - John H Connor
- Boston University Medical Center and National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, US
| | - Abhishek Jain
- Texas A&M University, College Station, TX, US.,Texas A&M Health Science Center, Bryan, TX, US
| |
Collapse
|
34
|
Han X, Nieman MT, Kerlin BA. Protease-activated receptors: An illustrated review. Res Pract Thromb Haemost 2020; 5:17-26. [PMID: 33537526 PMCID: PMC7845062 DOI: 10.1002/rth2.12454] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 01/04/2023] Open
Abstract
Proteases are important regulators of cell behavior, survival, and apoptosis. They communicate to cells directly through a special class of G‐protein–coupled receptors known as protease‐activated receptors (PARs). N‐terminal PAR proteolysis unmasks a neo‐N‐terminus, which serves as a tethered ligand to activate PARs. Using this unique irreversible activation mechanism, PARs relay information across cell membranes. The year 2020 is the 30th year since discovery of the first member of this family, PAR1. In this illustrated review, we highlight achievements in the PAR field over the past 3 decades. Additionally, the known expression profiles of PARs in human tissues and across species are portrayed. We also illustrate the tethered ligand activation mechanism, which is unique to PARs, and PAR regulatory mechanisms. PAR1 was originally named “thrombin receptor” because thrombin was the first protease identified to activate PAR1. However, over the past 30 years, a growing number of proteases have been found to cleave PARs and trigger differential downstream signaling depending on cleavage site, cell type, and species. We exemplify the diversity of PAR1‐mediated signaling outcomes in platelets and endothelial cells as pertinent examples to the hemostasis, thrombosis, and vascular biology fields. Further, the termination and regulation of PAR signaling via endocytosis and currently available pharmacologic approaches are depicted. We conclude with portrayal of clinically translational aspects of PAR biology including pharmacologic manipulation and single‐nucleotide polymorphisms.
Collapse
Affiliation(s)
- Xu Han
- Department of Pharmacology Case Western Reserve University Cleveland OH USA
| | - Marvin T Nieman
- Department of Pharmacology Case Western Reserve University Cleveland OH USA
| | - Bryce A Kerlin
- Center for Clinical and Translational Research Abigail Wexner Research Institute at Nationwide Children's Hospital Columbus OH USA.,Department of Pediatrics The Ohio State University College of Medicine Columbus OH USA
| |
Collapse
|
35
|
Abstract
Endothelial cells (ECs) are vascular, nonconventional immune cells that play a major role in the systemic response after bacterial infection to limit its dissemination. Triggered by exposure to pathogens, microbial toxins, or endogenous danger signals, EC responses are polymorphous, heterogeneous, and multifaceted. During sepsis, ECs shift toward a proapoptotic, proinflammatory, proadhesive, and procoagulant phenotype. In addition, glycocalyx damage and vascular tone dysfunction impair microcirculatory blood flow, leading to organ injury and, potentially, life-threatening organ failure. This review aims to cover the current understanding of the EC adaptive or maladaptive response to acute inflammation or bacterial infection based on compelling recent basic research and therapeutic clinical trials targeting microvascular and endothelial alterations during septic shock.
Collapse
Affiliation(s)
- Jérémie Joffre
- Medical Intensive Care Unit, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France.,Department of Anesthesia and Perioperative Care, University of California San Francisco School of Medicine, San Francisco, California
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California San Francisco School of Medicine, San Francisco, California
| | - Can Ince
- Department of Intensive Care Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands; and
| | - Hafid Ait-Oufella
- Medical Intensive Care Unit, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France.,INSERM U970, Cardiovascular Research Center, Université de Paris, Paris, France
| |
Collapse
|
36
|
Bicker J, Alves G, Fonseca C, Falcão A, Fortuna A. Repairing blood-CNS barriers: Future therapeutic approaches for neuropsychiatric disorders. Pharmacol Res 2020; 162:105226. [PMID: 33007420 DOI: 10.1016/j.phrs.2020.105226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
Central nervous system (CNS) drug development faces significant difficulties that translate into high rates of failure and lack of innovation. The pathophysiology of neurological and psychiatric disorders often results in the breakdown of blood-CNS barriers, disturbing the CNS microenvironment and worsening disease progression. Therefore, restoring the integrity of blood-CNS barriers may have a beneficial influence in several CNS disorders and improve treatment outcomes. In this review, pathways that may be modulated to protect blood-CNS barriers from neuroinflammatory and oxidative insults are featured. First, the participation of the brain endothelium and glial cells in disruption processes is discussed. Then, the relevance of regulatory systems is analysed, specifically the hypothalamic-pituitary axis, the renin-angiotensin system, sleep and circadian rhythms, and glutamate neurotransmission. Lastly, compounds of endogenous and exogenous origin that are known to mediate the repair of blood-CNS barriers are presented. We believe that enhancing the protection of blood-CNS barriers is a promising therapeutic strategy to pursue in the future.
Collapse
Affiliation(s)
- Joana Bicker
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal.
| | - Gilberto Alves
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Carla Fonseca
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| | - Amílcar Falcão
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Ana Fortuna
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| |
Collapse
|
37
|
Han X, Nieman MT. The domino effect triggered by the tethered ligand of the protease activated receptors. Thromb Res 2020; 196:87-98. [PMID: 32853981 DOI: 10.1016/j.thromres.2020.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
Protease activated receptors (PARs) are G-protein coupled receptors (GPCRs) that have a unique activation mechanism. Unlike other GPCRs that can be activated by free ligands, under physiological conditions, PARs are activated by the tethered ligand, which is a part of their N-terminus that is unmasked by proteolysis. It has been 30 years since the first member of the family, PAR1, was identified. In this review, we will discuss this unique tethered ligand mediate receptor activation of PARs in detail: how they interact with the proteases, the complex structural rearrangement of the receptors upon activation, and the termination of the signaling. We also summarize the structural studies of the PARs and how single nucleotide polymorphisms impact the receptor reactivity. Finally, we review the current strategies for inhibiting PAR function with therapeutic targets for anti-thrombosis. The focus of this review is PAR1 and PAR4 as they are the thrombin signal mediators on human platelets and therapeutics targets. We also include the structural studies of PAR2 as it informs the mechanism of action for PARs in general.
Collapse
Affiliation(s)
- Xu Han
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
38
|
Zhou P, Yin JX, Tao HL, Zhang HW. Pathogenesis and management of heparin-induced thrombocytopenia and thrombosis. Clin Chim Acta 2020; 504:73-80. [DOI: 10.1016/j.cca.2020.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 01/19/2023]
|
39
|
Therapeutic strategies for thrombosis: new targets and approaches. Nat Rev Drug Discov 2020; 19:333-352. [PMID: 32132678 DOI: 10.1038/s41573-020-0061-0] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Antiplatelet agents and anticoagulants are a mainstay for the prevention and treatment of thrombosis. However, despite advances in antithrombotic therapy, a fundamental challenge is the side effect of bleeding. Improved understanding of the mechanisms of haemostasis and thrombosis has revealed new targets for attenuating thrombosis with the potential for less bleeding, including glycoprotein VI on platelets and factor XIa of the coagulation system. The efficacy and safety of new agents are currently being evaluated in phase III trials. This Review provides an overview of haemostasis and thrombosis, details the current landscape of antithrombotic agents, addresses challenges with preventing thromboembolic events in patients at high risk and describes the emerging therapeutic strategies that may break the inexorable link between antithrombotic therapy and bleeding risk.
Collapse
|
40
|
Liu Y, Tang ZZ, Zhang YM, Kong L, Xiao WF, Ma TF, Liu YW. Thrombin/PAR-1 activation induces endothelial damages via NLRP1 inflammasome in gestational diabetes. Biochem Pharmacol 2020; 175:113849. [PMID: 32059841 DOI: 10.1016/j.bcp.2020.113849] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/06/2020] [Indexed: 12/14/2022]
Abstract
Gestational diabetes mellitus (GDM) is associated with an increased risk of progressing to type 2 DM and cardiovascular disease; however, the pathogenesis is still poorly understood. This study was to investigate roles of thrombin and its receptor protease-activated receptor 1 (PAR-1) and NLRP1 inflammasome in endothelial injury in GDM condition. Umbilical cord and plasma of GDM patients and high glucose (HG) cultured human umbilical vein endothelial cells (HUVECs) were used to examine the pathological changes of these pathways. Meanwhile, ameliorative effects and potential mechanisms of a natural product sarsasapogenin (Sar) were investigated in HUVECs. Thrombin/PAR-1 pathway, advanced glycation endproducts (AGEs) and their receptor (RAGE) axis, and the nucleotide-binding domain and leucine-rich repeat containing protein 1 (NLRP1) inflammasome were activated in GDM condition and HG-cultured HUVECs, accompanied by endothelial injury (decreased cell viability and increased lactate dehydrogenase release). Nevertheless, thrombin inhibition or PAR-1 antagonism caused decreases in AGEs formation and RAGE expression in HG-cultured HUVECs, while AGEs inhibition or RAGE antagonism declined PAR-1 expression not thrombin activity. Furthermore, thrombin inhibition or PAR-1 antagonism restrained NLRP1 inflammasome activation in HG-cultured HUVECs; meanwhile, NLRP1 expression and interleukin 18 levels were remarkably reduced in HG-cultured HUVECs after PAR-1 knockdown. Interestingly, Sar co-treatment could suppress thrombin/PAR-1 pathway, NLRP1 inflammasome, and AGEs/RAGE axis. Together, endothelial damages in GDM were likely due to enhanced interaction between AGEs/RAGE axis and thrombin/PAR-1 pathway, followed by NLRP1 inflammasome activation. Moreover, Sar may act as a protective agent against endothelial injury in chronic HG condition.
Collapse
Affiliation(s)
- Yue Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zhuang-Zhuang Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yu-Meng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Li Kong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Wei-Fen Xiao
- Department of Obstetrics and Gynecology, Xuzhou Medical University Affiliated Hospital, Xuzhou 221006, Jiangsu, China
| | - Teng-Fei Ma
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yao-Wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
41
|
Willis Fox O, Preston RJS. Molecular basis of protease-activated receptor 1 signaling diversity. J Thromb Haemost 2020; 18:6-16. [PMID: 31549766 DOI: 10.1111/jth.14643] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Protease-activated receptors (PARs) are a family of highly conserved G protein-coupled receptors (GPCRs) that respond to extracellular proteases via a unique proteolysis-dependent activation mechanism. Protease-activated receptor 1 (PAR1) was the first identified member of the receptor family and plays important roles in hemostasis, inflammation and malignancy. The biology underlying PAR1 signaling by its canonical agonist thrombin is well characterized; however, definition of the mechanistic basis of PAR1 signaling by other proteases, including matrix metalloproteases, activated protein C, plasmin, and activated factors VII and X, remains incompletely understood. In this review, we discuss emerging insights into the molecular bases for "biased" PAR1 signaling, including atypical PAR1 proteolysis, PAR1 heterodimer and coreceptor interactions, PAR1 translocation on the membrane surface, and interactions with different G-proteins and β-arrestins upon receptor activation. Moreover, we consider how these new insights into PAR1 signaling have acted to spur development of novel PAR1-targeted therapeutics that act to inhibit, redirect, or fine-tune PAR1 signaling output to treat cardiovascular and inflammatory disease. Finally, we discuss some of the key unanswered questions relating to PAR1 biology, in particular how differences in PAR1 proteolysis, signaling intermediate coupling, and engagement with coreceptors and GPCRs combine to mediate the diversity of identified PAR1 signaling outputs.
Collapse
Affiliation(s)
- Orla Willis Fox
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Roger J S Preston
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| |
Collapse
|
42
|
Gandhi DM, Rosas R, Greve E, Kentala K, D-R Diby N, Snyder VA, Stephans A, Yeung THW, Subramaniam S, DiMilo E, Kurtenbach KE, Arnold LA, Weiler H, Dockendorff C. The parmodulin NRD-21 is an allosteric inhibitor of PAR1 Gq signaling with improved anti-inflammatory activity and stability. Bioorg Med Chem 2019; 27:3788-3796. [PMID: 31320211 PMCID: PMC6706283 DOI: 10.1016/j.bmc.2019.06.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 11/19/2022]
Abstract
Novel analogs of the allosteric, biased PAR1 ligand ML161 (parmodulin 2, PM2) were prepared in order to identify potential anti-thrombotic and anti-inflammatory compounds of the parmodulin class with improved properties. Investigations of structure-activity relationships of the western portion of the 1,3-diaminobenzene scaffold were performed using an intracellular calcium mobilization assay with endothelial cells, and several heterocycles were identified that inhibited PAR1 at sub-micromolar concentrations. The oxazole NRD-21 was profiled in additional detail, and it was confirmed to act as a selective, reversible, negative allosteric modulator of PAR1. In addition to inhibiting human platelet aggregation, it showed superior anti-inflammatory activity to ML161 in a qPCR assay measuring the expression of tissue factor in response to the cytokine TNF-alpha in endothelial cells. Additionally, NRD-21 is much more plasma stable than ML161, and is a promising lead compound for the parmodulin class for anti-thrombotic and anti-inflammatory indications.
Collapse
Affiliation(s)
- Disha M Gandhi
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Ricardo Rosas
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Eric Greve
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Kaitlin Kentala
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - N'Guessan D-R Diby
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Vladyslava A Snyder
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Allison Stephans
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Teresa H W Yeung
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | | | - Elliot DiMilo
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, WI 53211, USA
| | - Khia E Kurtenbach
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, WI 53211, USA
| | - Hartmut Weiler
- Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chris Dockendorff
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA.
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Activated protein C (APC) is a homeostatic coagulation protease with anticoagulant and cytoprotective activities. Focusing on APC's effects in the brain, this review discusses three different scenarios that illustrate how APC functions are intimately affecting the physiology and pathophysiology of the brain. RECENT FINDINGS Cytoprotective APC therapy holds promise for the treatment of ischemic stroke, and a recently completed trial suggested that cytoprotective-selective 3K3A-APC reduced bleeding in ischemic stroke patients. In contrast, APC's anticoagulant activity contributes to brain bleeding as shown by the disproportional upregulation of APC generation in cerebral cavernous malformations lesions in mice. However, too little APC generation also contributes to maladies of the brain, such as in case of cerebral malaria where the binding of infected erythrocytes to the endothelial protein C receptor (EPCR) may interfere with the EPCR-dependent functions of the protein C pathway. Furthermore, discoveries of new activities of APC such as the inhibition of the NLRP3-mediated inflammasome and of new applications of APC therapy such as in Alzheimer's disease and graft-versus-host disease continue to advance our knowledge of this important proteolytic regulatory system. SUMMARY APC's many activities or lack thereof are intimately involved in multiple neuropathologies, providing abundant opportunities for translational research.
Collapse
|
44
|
Shi L, Wu Z, Miao J, Du S, Ai S, Xu E, Feng M, Song J, Guan W. Adenosine interaction with adenosine receptor A2a promotes gastric cancer metastasis by enhancing PI3K-AKT-mTOR signaling. Mol Biol Cell 2019; 30:2527-2534. [PMID: 31339445 PMCID: PMC6743355 DOI: 10.1091/mbc.e19-03-0136] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The accumulation of adenosine in the tumor microenvironment is associated with tumor progression in many cancers. However, whether adenosine is involved in gastric cancer (GC) metastasis and progression, and the underlying molecular mechanism, is largely unclear. In this study, we find that GC tissues and cell lines had higher A2aR levels than nontumor gastric tissues and cell lines. A2aR expression correlated positively with TNMstage, and associated with poor outcomes. Adenosine enhanced the expression of the stemness and epithelial-mesenchymal transition-associated genes by binding to A2aR. A2aR expression on GC cells promoted metastasis in vivo. The PI3K-AKT-mTOR signaling pathway was involved in adenosine-stimulated GC cell migration and invasion. Our results indicate that adenosine promotes GC cell invasion and metastasis by interacting with A2aR to enhance PI3K-AKT-mTOR pathway signaling.
Collapse
Affiliation(s)
- Linsen Shi
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, People's Republic of China.,The Affiliated Nanjing Drum Tower Clinical College of Nanjing Medical University, Nanjing 210002, People's Republic of China
| | - Zhaoying Wu
- Xuzhou Medical University, Xuzhou 221006, People's Republic of China
| | - Ji Miao
- Department of Gastrointestinal Surgery, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing 210000, People's Republic of China
| | - Shangce Du
- The Affiliated Nanjing Drum Tower Clinical College of Nanjing Medical University, Nanjing 210002, People's Republic of China
| | - Shichao Ai
- Nanjing University, Nanjing 21000, People's Republic of China
| | - En Xu
- Nanjing University, Nanjing 21000, People's Republic of China
| | - Min Feng
- Department of Gastrointestinal Surgery, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing 210000, People's Republic of China
| | - Jun Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, People's Republic of China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou 221006, People's Republic of China
| | - Wenxian Guan
- The Affiliated Nanjing Drum Tower Clinical College of Nanjing Medical University, Nanjing 210002, People's Republic of China.,Department of Gastrointestinal Surgery, The Affiliated Drum Tower Hospital of Nanjing University, Nanjing 210000, People's Republic of China
| |
Collapse
|
45
|
Heuberger DM, Schuepbach RA. Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thromb J 2019; 17:4. [PMID: 30976204 PMCID: PMC6440139 DOI: 10.1186/s12959-019-0194-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
Inflammatory diseases have become increasingly prevalent with industrialization. To address this, numerous anti-inflammatory agents and molecular targets have been considered in clinical trials. Among molecular targets, protease-activated receptors (PARs) are abundantly recognized for their roles in the development of chronic inflammatory diseases. In particular, several inflammatory effects are directly mediated by the sensing of proteolytic activity by PARs. PARs belong to the seven transmembrane domain G protein-coupled receptor family, but are unique in their lack of physiologically soluble ligands. In contrast with classical receptors, PARs are activated by N-terminal proteolytic cleavage. Upon removal of specific N-terminal peptides, the resulting N-termini serve as tethered activation ligands that interact with the extracellular loop 2 domain and initiate receptor signaling. In the classical pathway, activated receptors mediate signaling by recruiting G proteins. However, activation of PARs alternatively lead to the transactivation of and signaling through receptors such as co-localized PARs, ion channels, and toll-like receptors. In this review we consider PARs and their modulators as potential therapeutic agents, and summarize the current understanding of PAR functions from clinical and in vitro studies of PAR-related inflammation.
Collapse
Affiliation(s)
- Dorothea M Heuberger
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Surgical Research Division, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto A Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Festoff BW, Citron BA. Thrombin and the Coag-Inflammatory Nexus in Neurotrauma, ALS, and Other Neurodegenerative Disorders. Front Neurol 2019; 10:59. [PMID: 30804878 PMCID: PMC6371052 DOI: 10.3389/fneur.2019.00059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
This review details our current understanding of thrombin signaling in neurodegeneration, with a focus on amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease) as well as future directions to be pursued. The key factors are multifunctional and involved in regulatory pathways, namely innate immune and the coagulation cascade activation, that are essential for normal nervous system function and health. These two major host defense systems have a long history in evolution and include elements and regulators of the coagulation pathway that have significant impacts on both the peripheral and central nervous system in health and disease. The clotting cascade responds to a variety of insults to the CNS including injury and infection. The blood brain barrier is affected by these responses and its compromise also contributes to these detrimental effects. Important molecules in signaling that contribute to or protect against neurodegeneration include thrombin, thrombomodulin (TM), protease activated receptor 1 (PAR1), damage associated molecular patterns (DAMPs), such as high mobility group box protein 1 (HMGB1) and those released from mitochondria (mtDAMPs). Each of these molecules are entangled in choices dependent upon specific signaling pathways in play. For example, the particular cleavage of PAR1 by thrombin vs. activated protein C (APC) will have downstream effects through coupled factors to result in toxicity or neuroprotection. Furthermore, numerous interactions influence these choices such as the interplay between HMGB1, thrombin, and TM. Our hope is that improved understanding of the ways that components of the coagulation cascade affect innate immune inflammatory responses and influence the course of neurodegeneration, especially after injury, will lead to effective therapeutic approaches for ALS, traumatic brain injury, and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Barry W Festoff
- pHLOGISTIX LLC, Fairway, KS, United States.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Bruce A Citron
- Laboratory of Molecular Biology Research & Development, VA New Jersey Health Care System, East Orange, NJ, United States.,Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
47
|
Majewski MW, Gandhi DM, Rosas R, Kodali R, Arnold LA, Dockendorff C. Design and Evaluation of Heterobivalent PAR1-PAR2 Ligands as Antagonists of Calcium Mobilization. ACS Med Chem Lett 2019; 10:121-126. [PMID: 30655958 DOI: 10.1021/acsmedchemlett.8b00538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
A novel class of bivalent ligands targeting putative protease-activated receptor (PAR) heteromers has been prepared based upon reported antagonists for the subtypes PAR1 and PAR2. Modified versions of the PAR1 antagonist RWJ-58259 containing alkyne adapters were connected via cycloaddition reactions to azide-capped polyethylene glycol (PEG) spacers attached to imidazopyridazine-based PAR2 antagonists. Initial studies of the PAR1-PAR2 antagonists indicated that they inhibited G alpha q-mediated calcium mobilization in endothelial and cancer cells driven by both PAR1 and PAR2 agonists. Compounds of this novel class hold promise for the prevention of restenosis, cancer cell metastasis, and other proliferative disorders.
Collapse
Affiliation(s)
- Mark W. Majewski
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Disha M. Gandhi
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Ricardo Rosas
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Revathi Kodali
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, Wisconsin 53211, United States
| | - Leggy A. Arnold
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, Wisconsin 53211, United States
| | - Chris Dockendorff
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
48
|
Endothelial Protein C Receptor (EPCR), Protease Activated Receptor-1 (PAR-1) and Their Interplay in Cancer Growth and Metastatic Dissemination. Cancers (Basel) 2019; 11:cancers11010051. [PMID: 30626007 PMCID: PMC6356956 DOI: 10.3390/cancers11010051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/20/2022] Open
Abstract
Endothelial protein C receptor (EPCR) and protease activated receptor 1 (PAR-1) by themselves play important role in cancer growth and dissemination. Moreover, interactions between the two receptors are essential for tumor progression. EPCR is a cell surface transmembrane glycoprotein localized predominantly on endothelial cells (ECs). It is a vital component of the activated protein C (APC)—mediated anticoagulant and cytoprotective signaling cascade. PAR-1, which belongs to a family of G protein–coupled cell surface receptors, is also widely distributed on endothelial and blood cells, where it plays a critical role in hemostasis. Both EPCR and PAR-1, generally considered coagulation-related receptors, are implicated in carcinogenesis and dissemination of diverse tumor types, and their expression correlates with clinical outcome of cancer patients. Existing data explain some mechanisms by which EPCR/PAR-1 affects cancer growth and metastasis; however, the exact molecular basis of cancer invasion associated with the signaling is still obscure. Here, we discuss the role of EPCR and PAR-1 reciprocal interactions in cancer progression as well as potential therapeutic options targeted specifically to interact with EPCR/PAR-1-induced signaling in cancer patients.
Collapse
|
49
|
|
50
|
Shinozawa E, Nakayama M, Imura Y. TAK-442, a Direct Factor Xa Inhibitor, Inhibits Monocyte Chemoattractant Protein 1 Production in Endothelial Cells via Involvement of Protease-Activated Receptor 1. Front Pharmacol 2018; 9:1431. [PMID: 30568593 PMCID: PMC6290330 DOI: 10.3389/fphar.2018.01431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
Oral blood coagulation inhibitors and their receptors, such as factor Xa (FXa), thrombin, and the thrombin receptor protease-activated receptor 1 (PAR1), are entered into clinical trials for acute coronary syndrome therapy; however, the results obtained so far are different for each drug. The underlying mechanisms of the results have not been fully investigated. We studied the in vitro anti-inflammatory effects of the selective FXa inhibitor TAK-442 on human endothelial cells, with comparing those of the selective thrombin inhibitor melagatran and the PAR1 antagonist vorapaxar. In human umbilical vein endothelial cells, FXa-increased production of monocyte chemoattractant protein 1 (MCP-1), a key inflammatory mediator, was inhibited by TAK-442 but not melagatran, and was also remarkably suppressed by vorapaxar. As thrombin did, FXa increased calcium mobilization in PAR1-overexpressed Chinese hamster ovary cells, which was selectively inhibited by TAK-442 and vorapaxar. We therefore confirmed the inhibitory effect of TAK-442 in endothelial MCP-1 production and the PAR1 intervention in the response. Our results suggest that TAK-442 may have anti-inflammatory potential in addition to its anti-thrombotic effects.
Collapse
Affiliation(s)
- Emiko Shinozawa
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | | | - Yoshimi Imura
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|