1
|
Bengs BD, Nde J, Dutta S, Li Y, Sardiu ME. Integrative approaches for predicting protein network perturbations through machine learning and structural characterization. J Proteomics 2025; 316:105439. [PMID: 40228603 DOI: 10.1016/j.jprot.2025.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/14/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
Chromatin remodeling complexes, such as the Saccharomyces cerevisiae INO80 complex, exemplify how dynamic protein interaction networks govern cellular function through a balance of conserved structural modules and context-dependent functional partnerships, as revealed by integrative machine learning and structural mapping approaches. In this study, we explored the INO80 complex using machine learning to predict network changes caused by genetic deletions. Tree-based models outperformed linear approaches, highlighting non-linear relationships within the interaction network. Feature selection identified key INO80 components (e.g., Arp5, Arp8) and cross-compartment features from other remodeling complexes like SWR1 and NuA4, emphasizing shared functional pathways. Perturbation patterns aligned with biological modules, particularly those linked to telomere maintenance and aging, underscoring the functional coherence of these networks. Structural mapping revealed that not all interactions are predictable through proximity alone, particularly with Arp5 and Yta7. By combining structural insights with machine learning, we enhanced predictions of genetic perturbation effects, providing a template for analyzing cross-species homologs (e.g., human INO80) and their disease-associated variants. This integrative approach bridges the gap between static structural data and dynamic functional networks, offering a pathway to disentangle conserved mechanisms from context-dependent adaptations in chromatin biology. SIGNIFICANCE: By leveraging an innovative, integrative machine learning approach, we have successfully predicted and analyzed perturbations in the INO80 network with good accuracy and depth. Our novel combination of machine learning, perturbation analysis, and structural investigation approach has provided crucial insights into the complex's structure-function relationships, shedding new light on its pivotal roles in affected pathways such as telomere maintenance. Our findings not only enhance our understanding of the INO80 complex but also establish a powerful framework for future studies in chromatin biology and beyond. This work represents a step forward in our understanding of chromatin remodeling complexes and their diverse cellular functions, laying the groundwork for future studies that can further refine our computational approaches and experimental techniques in this field.
Collapse
Affiliation(s)
- Bethany D Bengs
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas, USA
| | - Jules Nde
- Department of Cancer Biology, University of Kansas Medical Center, Kansas, USA
| | - Sreejata Dutta
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas, USA
| | - Yanming Li
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas, USA
| | - Mihaela E Sardiu
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas, USA; University of Kansas Cancer Center, Kansas City, USA; Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas, USA.
| |
Collapse
|
2
|
Chen Y, Li D, Liu S, Song X, Li Z, Sun J, Xu Y, Hou J. Deposited dead algae influence the microbial communities and functional potentials on the surface sediment in eutrophic shallow lakes. ENVIRONMENTAL RESEARCH 2025; 271:121072. [PMID: 39922263 DOI: 10.1016/j.envres.2025.121072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/06/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Dead algae deposition will change the nutrient transformation on the sediment-water interface. However, the key factors that drive nutrient turnover, particularly the influence of sediment microbiota, remain poorly understood. As a result, this study conducted an 80-day simulated incubation to investigate the effect of different deposition of death algae on microbial communities and functional potentials in sediments. It was revealed that dead algae deposition changed the microbial communities and interactions. Changes in the bacteria are not only reflected in community composition and diversity but also in the interrelation among bacteria taxa, while changes in the fungi are mainly reflected in the interrelation among fungi taxa. Meanwhile, dead algae deposition increased the abundance of mostly functional genes related to the C, N, P, and S cycle processes and improved the function potentials of microorganisms. Both of them led to the increase of PO43-, NO3-, NH4+, and TOC content in the overlying water, influencing the nutrient cycle processes. Moreover, partial least squares path modeling indicated which key factors are to influence different nutrient cycle processes. Sediment nutrients directly influenced the P cycle process, whereas the C, N, and S cycle processes were directly affected by the changes in biological properties. These results provide a new perspective on the effects of dead algal deposition on the sediment nutrient cycle processes mediated by the sediment microbiota.
Collapse
Affiliation(s)
- Yanqi Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| | - Songqi Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| | - Xinyu Song
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Ziyu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Jingqiu Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Yao Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, PR China, 210098
| |
Collapse
|
3
|
Adler FR, Griffiths JI. Mathematical models of intercellular signaling in breast cancer. Semin Cancer Biol 2025; 109:91-100. [PMID: 39890041 PMCID: PMC11858920 DOI: 10.1016/j.semcancer.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND AND OBJECTIVES The development and regulation of healthy and cancerous breast tissue is guided by communication between cells. Diverse signals are exchanged between cancer cells and non-cancerous cells of the tumor microenvironment (TME), influencing all stages of tumor progression. Mathematical models are essential for understanding how this complex network determines cancer progression and the effectiveness of treatment. METHODOLOGY We reviewed the current dynamical mathematical models of intercellular signaling in breast cancer, examining models with cancer cells only, fibroblasts, endothelial cells, macrophages and the immune system as whole. We categorized the goals and complexity of these models, to highlight how they can explain many features of cancer emergence and progression. RESULTS We found that dynamical models of intercellular signaling can elucidate tissue-level dysregulation in cancer by explaining: i) maintenance of non-heritable intratumor phenotypic heterogeneity, ii) transitions between tumor dormancy and accelerated invasive growth, iii) stromal support of tumor vascularization and growth factor enrichment and iv) suppression of immune infiltration and cancer surveillance. These models also provide a framework to propose novel TME-targeting treatment strategies. However, most models were focused on a highly selected and small set of signaling interactions between a few cell types, and their translational applicability were severely limited by the availability of tumor-specific data for personalized model calibration. CONCLUSIONS AND IMPLICATIONS Mathematical models of breast cancer have many challenges and opportunities to incorporate signaling. The four key challenges are: 1) finding ways to treat signaling networks as a context-dependent language that incorporates non-linear and non-additive responses, 2) identifying the key cell phenotypes that signals control and understanding the feedbacks between signals and phenotype that determine the progression of cancer, (3) estimating parameters of specific patient tumors early in treatment, 4) linking models with novel data collection methods that have single cell and spatial resolution. As our approaches advance, it is our hope that dynamical mathematical models of inter-cellular signaling can play a central role in identifying and testing new treatment strategies as well as forecasting impacts of disease treatment.
Collapse
Affiliation(s)
- Frederick R Adler
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA; School of Biological Sciences, 257 South 1400 East, University of Utah, Salt Lake City, UT, 84112 USA..
| | - Jason I Griffiths
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA; Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Liu J, Song X, Fu X, Niu S, Chang H, Shi S, Yang M, Wang P, Bai W. Exploring the Mechanism of Action and Potential Targets of Saorilao-4 Decoction in the Treatment of Pulmonary Fibrosis in Rats by Metabolomics. Food Sci Nutr 2025; 13:e4633. [PMID: 39898125 PMCID: PMC11783149 DOI: 10.1002/fsn3.4633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/13/2024] [Accepted: 11/14/2024] [Indexed: 02/04/2025] Open
Abstract
Pulmonary fibrosis (PF) is a chronic progressive disease marked by alveolar epithelial cell damage. Saorilao-4 decoction (SRL), a traditional Mongolian prescription, has demonstrated therapeutic effects on PF, though its mechanism of action remains elusive. This study used a bleomycin-induced fibrosis rat model to evaluate SRL's effects by measuring inflammatory factors, assessing fibrosis-related indices, and performing histopathological lung examinations. Serum metabolite levels in the experimental groups were measured using high-performance liquid chromatography coupled with mass spectrometry. Data analysis involved principal component and partial least-squares discriminant analyses, followed by functional enrichment analysis of differential metabolites. SRL significantly ameliorated alveolar interstitial injury, fibrosis, and metabolic disorders induced by bleomycin. Additionally, we identified 71 metabolic components related to PF progression, including sphingolipids and fatty acids. Administration of SRL affected 59 metabolic components involved in purine, cysteine and methionine, and arginine and proline metabolisms. Specifically, SRL regulated the levels of hexadecanoic acid, S-adenosylmethionine, 3-oxopalmitoyl coenzyme A, and dodecanoic acid metabolites, thereby improving the metabolic course of PF. In conclusion, this study offers insights into the potential mechanisms of SRL in treating PF from a metabolomics perspective. It provides valuable information for its clinical application.
Collapse
Affiliation(s)
- Jiali Liu
- Department of PharmacyBaotou Medical CollegeBaotouChina
| | - Xinni Song
- Department of PharmacyBaotou Medical CollegeBaotouChina
| | - Xinyue Fu
- Department of PharmacyBaotou Medical CollegeBaotouChina
| | - Shufang Niu
- Department of PharmacyBaotou Medical CollegeBaotouChina
| | - Hong Chang
- Department of PharmacyBaotou Medical CollegeBaotouChina
| | - Songli Shi
- Department of PharmacyBaotou Medical CollegeBaotouChina
| | - Meiqing Yang
- Department of PharmacyBaotou Medical CollegeBaotouChina
| | - Peng Wang
- Department of PharmacyBaotou Medical CollegeBaotouChina
- The Second Affiliated Hospital of Baotou Medical CollegeBaotouChina
| | - Wanfu Bai
- Department of PharmacyBaotou Medical CollegeBaotouChina
- Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia MedicaBaotou Medical CollegeBaotouChina
| |
Collapse
|
5
|
Chen G, Lu H, Huang S, Zhang C, Ma X, Li B, Hou L, Xu Q, Wang Y. Ecological and Functional Changes in the Hindgut Microbiome of Holstein Cows at High Altitudes. Animals (Basel) 2025; 15:218. [PMID: 39858218 PMCID: PMC11758639 DOI: 10.3390/ani15020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The extreme environmental conditions of the Qinhai-Tibetan Plateau (QTP) challenge livestock survival and productivity, yet little is known about how high-altitude environments impact the gut microbiota of dairy cows. To fill this gap, we systematically investigated the differences in the hindgut microbiome between 87 plateau Holstein cows and 72 plain Holstein cows using 16S rRNA gene sequencing. Our analysis revealed that the hindgut microbiota of the plateau group exhibited lower species richness but higher evenness than that in the plain group. Additionally, significant separation in hindgut microbiota composition between the two groups was observed based on altitude, while parity, days in milk, and age did not show a comparable impact. Moreover, altitude had a lasting impact on bacterial communities and their co-occurrence networks, resulting in reduced microbial interactions and lower modularity in the plateau group. Furthermore, we identified four key microbial taxa, the Bacteroidaceae and Rikenellaceae families, as well as the Prevotella and Treponema genera, which were associated with the regulation of carbohydrate digestion and energy metabolism and might help the Holstein cows adapt to the plateau environment. Our findings provide insights into strategies for enhancing the adaptability of dairy cows to high-altitude environments through microbiota modulation, which could ultimately contribute to improving livestock management and sustainability in these extreme environments.
Collapse
Affiliation(s)
- Gong Chen
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China; (G.C.); (C.Z.); (X.M.); (L.H.)
| | - Haibo Lu
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (S.H.)
| | - Shangzhen Huang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (S.H.)
| | - Congcong Zhang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China; (G.C.); (C.Z.); (X.M.); (L.H.)
| | - Xiaojuan Ma
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China; (G.C.); (C.Z.); (X.M.); (L.H.)
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibetan Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China;
| | - Lingling Hou
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China; (G.C.); (C.Z.); (X.M.); (L.H.)
| | - Qing Xu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China; (G.C.); (C.Z.); (X.M.); (L.H.)
| | - Yachun Wang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (S.H.)
| |
Collapse
|
6
|
Chao H, Zhong L, Schaefer I, Sun M, Junggebauer A, Hu F, Scheu S. Litter quality modulates changes in bacterial and fungal communities during the gut transit of earthworm species of different ecological groups. ISME COMMUNICATIONS 2025; 5:ycae171. [PMID: 39882509 PMCID: PMC11778916 DOI: 10.1093/ismeco/ycae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025]
Abstract
Earthworms are keystone animals stimulating litter decomposition and nutrient cycling. However, earthworms comprise diverse species which live in different soil layers and consume different types of food. Microorganisms in the gut of earthworms are likely to contribute significantly to their ability to digest organic matter, but this may vary among earthworm species. Here, we analyse the effect of food (litter) quality on gut microbiota and their changes during the gut passage (from foregut to hindgut) of earthworms of different ecological groups. The endogeic (soil living) species Aporrectodea caliginosa and the anecic (litter feeding) species Lumbricus terrestris were fed with high- (rape leaves) and low-quality litter (wheat straw) in a microcosm experiment for 18 weeks. Irrespective of earthworm species, alpha diversity of bacterial and fungal communities changed little during the gut passage, with the composition and diversity of microbial communities in the gut generally resembling those in soil more than in litter. In addition, the low-quality litter supported higher alpha diversity and more complex communities than high-quality litter. Further, gut microbial communities of the anecic L. terrestris changed less during gut passage than those of the endogeic A. caliginosa, especially when fed low-quality litter. Our findings indicate that earthworm gut microbial communities are predominantly shaped by the soil they ingest, but are modulated by the quality of litter they feed on and earthworm ecological group. Overall, the results suggest that earthworms primarily influence soil microbiota by mixing and spreading microorganisms from different microhabitats through bioturbation rather than by digesting microorganisms.
Collapse
Affiliation(s)
- Huizhen Chao
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Linlin Zhong
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
| | - Ina Schaefer
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
- Loewe Center for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt Main, Germany
- Senckenberg Biodiversity Climate Research Center, 60325 Frankfurt Main, Germany
| | - Mingming Sun
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - André Junggebauer
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
| | - Feng Hu
- Soil Ecology Lab, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Tie D, He M, Li W, Xiang Z. Advances in the application of network analysis methods in traditional Chinese medicine research. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156256. [PMID: 39615211 DOI: 10.1016/j.phymed.2024.156256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/03/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025]
Abstract
OBJECTIVE This review aims at evaluating the role and potential applications of network analysis methods in the medicinal substances of traditional Chinese medicine (TCM), theories of TCM compatibility, properties of herbs, and TCM syndromes. METHODS Literature was retrieved from databases, such as CNKI, PubMed, and Web of Science, using keywords, including "network analysis," "network biology," "network pharmacology," and "network medicine." The extracted literature included the biological network construction (including ingredient-target and target-disease relations), analysis of network topology characteristics (including node degree, clustering coefficient, and path length), network modularization analysis, functional annotation and so on. These studies were categorized and organized based on their research methods, application domains, and other relevant characteristics. RESULTS Network analysis algorithms, such as network distance, random walk, matrix factorization, graph embedding, and graph neural networks, are widely applied in fields related to the properties, compatibility, and mechanisms of TCM. They effectively reflect the interactive relations within the complex systems of TCM and elucidate and clarify theories, such as the effective substances, the principles of TCM compatibility, the TCM syndromes, and the properties of TCM. CONCLUSION The network analysis method is a powerful mathematical and computational tool that reveals the structure, dynamics, and functions of complex systems by analyzing the elements and their relations. This approach has effectively promoted the modernization of TCM, providing essential theoretical and practical tools for personalized treatment and scientific research on TCM. It also offers a significant methodological framework for the modernization and internationalization of TCM.
Collapse
Affiliation(s)
- Defu Tie
- Medical School, Hangzhou City University, Hangzhou, 310015, China; College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Mulan He
- Medical School, Hangzhou City University, Hangzhou, 310015, China; College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Zheng Xiang
- Medical School, Hangzhou City University, Hangzhou, 310015, China.
| |
Collapse
|
8
|
Bereczki Z, Benczik B, Balogh OM, Marton S, Puhl E, Pétervári M, Váczy-Földi M, Papp ZT, Makkos A, Glass K, Locquet F, Euler G, Schulz R, Ferdinandy P, Ágg B. Mitigating off-target effects of small RNAs: conventional approaches, network theory and artificial intelligence. Br J Pharmacol 2025; 182:340-379. [PMID: 39293936 DOI: 10.1111/bph.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 09/20/2024] Open
Abstract
Three types of highly promising small RNA therapeutics, namely, small interfering RNAs (siRNAs), microRNAs (miRNAs) and the RNA subtype of antisense oligonucleotides (ASOs), offer advantages over small-molecule drugs. These small RNAs can target any gene product, opening up new avenues of effective and safe therapeutic approaches for a wide range of diseases. In preclinical research, synthetic small RNAs play an essential role in the investigation of physiological and pathological pathways as silencers of specific genes, facilitating discovery and validation of drug targets in different conditions. Off-target effects of small RNAs, however, could make it difficult to interpret experimental results in the preclinical phase and may contribute to adverse events of small RNA therapeutics. Out of the two major types of off-target effects we focused on the hybridization-dependent, especially on the miRNA-like off-target effects. Our main aim was to discuss several approaches, including sequence design, chemical modifications and target prediction, to reduce hybridization-dependent off-target effects that should be considered even at the early development phase of small RNA therapy. Because there is no standard way of predicting hybridization-dependent off-target effects, this review provides an overview of all major state-of-the-art computational methods and proposes new approaches, such as the possible inclusion of network theory and artificial intelligence (AI) in the prediction workflows. Case studies and a concise survey of experimental methods for validating in silico predictions are also presented. These methods could contribute to interpret experimental results, to minimize off-target effects and hopefully to avoid off-target-related adverse events of small RNA therapeutics. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Zoltán Bereczki
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bettina Benczik
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Olivér M Balogh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Szandra Marton
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Eszter Puhl
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Mátyás Pétervári
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Sanovigado Kft, Budapest, Hungary
| | - Máté Váczy-Földi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zsolt Tamás Papp
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András Makkos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Kimberly Glass
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Fabian Locquet
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Gerhild Euler
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
9
|
Ji J, Hu F, Qin J, Zhao Y, Dong Y, Yang H, Bai Z, Wu G, Wang Q, Jin B. Comparation on the responses and resilience of single-Anammox system and synergistic partial-denitrification/anammox system to long-term nutrient starvation: Performance and metagenomic insights. BIORESOURCE TECHNOLOGY 2025; 415:131694. [PMID: 39447919 DOI: 10.1016/j.biortech.2024.131694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Starvation disturbance was a common problem in biological sewage treatment processes. However, understanding about the responses and resilience of different active anammox biomass in autotrophic and heterotrophic systems to long-term nutrient starvation remains limited. This study compared responses and potential recovery mechanisms of autotrophic single-Anammox and heterotrophic synergistic partial-denitrification/anammox (PD/anammox) systems to prolonged starvation (31-40 days). After starvation, total inorganic nitrogen (TIN) removal efficiency of single-Anammox and synergistic PD/anammox systems decreased to 62.16 % and 78.52 %, respectively, of their original level. After the nutrient resupply, the performance of both systems gradually recovered to a similar-to-pre-starvation level at the rate of 1.26 %/day and 1.89 %/day, respectively. Compared with single-Anammox system, complex synergistic relationship of microorganisms and effective quorum sensing (QS) regulation strategies might mitigate the negative influences were caused by starvation and ensure the performance quickly return of synergistic PD/anammox system. This study would contribute to promote the application of Anammox technology.
Collapse
Affiliation(s)
- Jiantao Ji
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Feiyue Hu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jing Qin
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ying Zhao
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yongen Dong
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Haosen Yang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhixuan Bai
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Guanqi Wu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qiyue Wang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Baodan Jin
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| |
Collapse
|
10
|
Shen Y, Zhang B, Yao Y, Wang H, Chen Z, Hao A, Guo P. Insights into the interactions of plant-associated bacteria and their role in the transfer of antibiotic resistance genes from soil to plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135881. [PMID: 39305593 DOI: 10.1016/j.jhazmat.2024.135881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/25/2024] [Accepted: 09/16/2024] [Indexed: 12/01/2024]
Abstract
This study discussed the role of plant-associated microbiome in regulating ARG transfer in soil-plant systems. Results showed that target ARGs in plants were mainly derived from rhizosphere soil. Cooperative interactions among bacteria in rhizosphere soil, plant-roots, plant-shoots, and soil-roots-shoots systems occurred during ARG transfer. The number of modules and keystone taxa identified as positively correlated with ARG transfer in rhizosphere soil, roots, and shoots was 3 and 49, 3 and 41, 2 and 5, respectively. Among these modules, module 3 in roots was significantly positively correlated with module 3 in rhizosphere soils and module 2 in shoots, indicating that module 3 in roots played central hub roles in ARG transfer from rhizosphere soil to roost and shoots. This may be because module 3 in roots increased cell motility and xenobiotics biodegradation and metabolism. These keystone taxa mainly belonged to Proteobacteria that can carry ARGs to transfer in soil-plant systems, especially Clostridium-sensu_stricito and Pseudomonas in rhizosphere soil carried ARGs into the shoot. Additionally, they promoted ARG transfer by increasing plant biomass, net photosynthetic rate and water use efficiency. The findings helped reveal the mechanism of plant-associated bacterial interactions and provided understanding for potential risks of ARG transfer from soil to plants.
Collapse
Affiliation(s)
- Yanping Shen
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's A1B 3×5, NL, Canada
| | - Ye Yao
- College of Physics, Jilin university, Changchun 130012, PR China
| | - Hanbo Wang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Zhilu Chen
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Anjing Hao
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Ping Guo
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
11
|
Yu H, Huang Q, Men J, Wang J, Xiao J, Jin D, Deng Y. Chromium contamination affects the fungal community and increases the complexity and stability of the network in long-term contaminated soils. ENVIRONMENTAL RESEARCH 2024; 262:119946. [PMID: 39276837 DOI: 10.1016/j.envres.2024.119946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Chromium (Cr) contamination can adversely affect soil ecology, yet our knowledge of how fungi respond to Cr contamination at heavily contaminated field sites remains relatively limited. This study employed high-throughput sequencing technology to analyze fungal community characteristics in soils with varying Cr concentrations. The results showed that Cr contamination significantly influenced soil fungi's relative abundance and structure. Mantel test analysis identified hexavalent chromium (Cr(VI)) as the primary factor affecting the structure of the soil fungal community. In addition, FUNGuild functional prediction analysis exhibited that Cr contamination reduced the relative abundance of Pathotroph and Symbiotroph trophic types. High concentrations of Cr may lead to a drop in the relative abundance of Animal Pathogens. Molecular ecological network analysis showed that Cr contamination increased interactions among soil fungi, thereby enhancing the stability and complexity of the network. Within these networks, specific keystone taxa, such as the genus Phanerochaete, exhibited properties capable of removing or reducing the toxicity of heavy metals. Our studies suggest that Cr contamination can alter indigenous fungal communities in soil systems, potentially impacting soil ecosystem function.
Collapse
Affiliation(s)
- Hao Yu
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Qi Huang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianan Men
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jian Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Juanjuan Xiao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
12
|
Zhang W, Yang S, Wei T, Su Y. Enhancing Photosynthetic Carbon Transport in Rice Plant Optimizes Rhizosphere Bacterial Community in Saline Soil. Int J Mol Sci 2024; 25:12184. [PMID: 39596253 PMCID: PMC11594718 DOI: 10.3390/ijms252212184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Saline soils exert persistent salt stress on plants that inhibits their ability to carry out photosynthesis and leads to photosynthetic carbon (C) scarcity in plant roots and the rhizosphere. However, it remains unclear how a rhizosphere environment is shaped by photosynthetic C partitioning under saline conditions. Given that sucrose is the primary form of photosynthetic C transport, we, respectively, created sucrose transport distorted (STD) and enhanced (STE) rice lines through targeted mutation and overexpression of the sucrose transporter gene OsSUT5. This approach allowed us to investigate different scenarios of photosynthate partitioning to the rhizosphere. Compared to the non-saline soil, we found a significant decrease in soil dissolved organic carbon (DOC) in the rhizosphere, associated with a reduction in bacterial diversity when rice plants were grown under moderate saline conditions. These phenomena were sharpened with STD plants but were largely alleviated in the rhizosphere of STE plants, in which the rhizosphere DOC, and the diversity and abundances of dominant bacterial phyla were measured at comparable levels to the wildtype plants under non-saline conditions. The complexity of bacteria showed a greater level in the rhizosphere of STE plants grown under saline conditions. Several salt-tolerant genera, such as Halobacteroidaceae and Zixibacteria, were found to colonize the rhizosphere of STE plants that could contribute to improved rice growth under persistent saline stresses, due to an increase in C deposition.
Collapse
Affiliation(s)
- Weiwei Zhang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunying Yang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tianqi Wei
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhua Su
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
13
|
Du J, Wang Z, Gao X, Xing Y, Lu Z, Li D, Sanganyado E, Tian J. Unstable pathogen profile in spotted seal (Phoca largha) gut microbiota and limited turnover with habitat microbiome. Int Microbiol 2024:10.1007/s10123-024-00615-6. [PMID: 39532804 DOI: 10.1007/s10123-024-00615-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
It is vital that we monitor the gut microbiota of sentinel species such as spotted seals (Phoca largha) and their association with habitat microbiomes, which can provide critical data for assessing the health of marine mammals and their potential ecological influences. In this study, PacBio technology was used to sequence the full-length bacterial 16S rRNA gene from the feces of captive and wild spotted seals, as well as samples from a wild population and their habitats. Based on the pathogen identification results, the gut microbiota of wild and captive spotted seals showed similar levels of pathogen richness and abundance. In particular, the pathogen profiles in wild spotted seals were more variable, with a high risk of disease in a minority of individuals. Meanwhile, the gut microbiota of spotted seals was significantly less diverse than their habitat microbiomes. Firmicutes and Proteobacteria dominated the gut microbiota of spotted seals and their habitat microbiomes, respectively. Furthermore, network analysis revealed that the gut microbiota of spotted seals was simple and weak. The ratios of microbial turnover between spotted seal gut microbiota and their habitat microbiomes were further analyzed using SourceTracker, and the estimated values were low (< 0.1%). These results provide baseline data on pathogen profiles in spotted seals and their potential interactions with habitat microbiomes.
Collapse
Affiliation(s)
- Jing Du
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Zhen Wang
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Xianggang Gao
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Yankuo Xing
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Zhichuang Lu
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Duohui Li
- Dalian Modern Agricultural Production Development Service Center, Dalian, 116023, Liaoning, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China.
| |
Collapse
|
14
|
Yang Q, Yang B, Yang B, Zhang W, Tang X, Sun H, Zhang Y, Li J, Ling J, Dong J. Alleviating Coral Thermal Stress via Inoculation with Quorum Quenching Bacteria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:951-963. [PMID: 39030411 DOI: 10.1007/s10126-024-10344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
In the background of global warming, coral bleaching induced by elevated seawater temperature is the primary cause of coral reef degradation. Coral microbiome engineering using the beneficial microorganisms for corals (BMCs) has become a hot spot in the field of coral reef conservation and restoration. Investigating the potential of alleviating thermal stress by quorum quenching (QQ) bacteria may provide more tools for coral microbial engineering remediation. In this study, QQ bacteria strain Pseudoalteromonas piscicida SCSIO 43740 was screened among 75 coral-derived bacterial strains, and its quorum sensing inhibitor (QSI) compound was isolated and identified as 2,4-di-tert-butylphenol (2,4-DTBP). Then, the thermal stress alleviating potential of QQ bacteria on coral Pocillopora damicornis was tested by a 30-day controlled experiment with three different treatments: control group (Con: 29 °C), high temperature group (HT: 31 °C), and the group of high temperature with QQ bacteria inoculation (HTQQ: 31 °C + QQ bacteria). The results showed that QQ bacteria SCSIO 43740 inoculation can significantly mitigate the loss of symbiotic algae and impairment of photosynthesis efficiency of coral P. damicornis under thermal stress. Significant difference in superoxide dismutase (SOD) and catalase (CAT) enzyme activities between HT and HTQQ was not observed. In addition, QQ bacteria inoculation suppressed the coral microbial community beta-dispersion and improved the stability of microbial co-occurrence network under thermal stress. It was suggested that QQ bacteria inoculation can alleviate coral thermal stress via reshaping microbial interaction and maintain community stability of coral microbiome. This study provided new evidence for the probiotic function of QQ bacteria in corals, which shedding light on the development of new microbiological tools for coral reef conservation.
Collapse
Affiliation(s)
- Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Bing Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Wenqian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Huiming Sun
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Yanying Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Yantai University, Yantai, 264003, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China.
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China.
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China.
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China.
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China.
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China.
| |
Collapse
|
15
|
Yang B, Yang Z, He K, Zhou W, Feng W. Soil Fungal Community Diversity, Co-Occurrence Networks, and Assembly Processes under Diverse Forest Ecosystems. Microorganisms 2024; 12:1915. [PMID: 39338589 PMCID: PMC11433935 DOI: 10.3390/microorganisms12091915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Fungal communities are critical players in the biogeochemical soil processes of forest ecosystems. However, the factors driving their diversity and community assembly are still unclear. In the present study, five typical vegetation types of soil fungal communities in Liziping Nature Reserve, China, were investigated using fungal ITS sequences. The results show that the topsoil fungal community is mainly dominated by the phyla Ascomycota, Basidiomycota, and Mortierellomycota. Although there was no significant difference in α diversity (Shannon, Simpson, and Pielou evenness indices) among different forest types, there was a significant difference in β diversity (community composition). This study found that soil pH, soil organic carbon, total nitrogen (TN), total phosphorus (TP), and the total nitrogen/total phosphorus (N/P) ratio are the main environmental factors that affect soil fungal communities. Each forest type has a specific co-occurrence network, indicating that these community structures have significant specificities and complexities. Deciduous evergreen broad-leaved forests as well as deciduous broad-leaved and evergreen broad-leaved mixed forests showed high modularity and average path lengths, indicating their highly modular nature without distinct small-scale characteristics. Furthermore, our findings indicate that the structures of topsoil fungal communities are mainly shaped by stochastic processes, with the diffusion limitation mechanism playing a particularly significant role.
Collapse
Affiliation(s)
- Bing Yang
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Zhisong Yang
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Ke He
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Wenjia Zhou
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Wanju Feng
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| |
Collapse
|
16
|
Li F, Sun A, Jiao X, Yu DT, Ren P, Wu BX, He P, Bi L, He JZ, Hu HW. Nitrogenous fertilizer plays a more important role than cultivars in shaping sorghum-associated microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173831. [PMID: 38866152 DOI: 10.1016/j.scitotenv.2024.173831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
The plant microbiome plays a crucial role in facilitating plant growth through enhancing nutrient cycling, acquisition and transport, as well as alleviating stresses induced by nutrient limitations. Despite its significance, the relative importance of common agronomic practices, such as nitrogenous fertilizer, in shaping the plant microbiome across different cultivars remains unclear. This study investigated the dynamics of bacterial and fungal communities in leaf, root, rhizosphere, and bulk soil in response to nitrogenous fertilizer across ten sorghum varieties, using 16S rRNA and ITS gene amplicon sequencing, respectively. Our results revealed that nitrogen addition had a greater impact on sorghum-associated microbial communities compared to cultivar. Nitrogen addition significantly reduced bacterial diversity in all compartments except for the root endophytes. However, N addition significantly increased fungal diversity in both rhizosphere and bulk soils, while significantly reducing fungal diversity in the root endophytes. Furthermore, N addition significantly altered the community composition of bacteria and fungi in all four compartments, while cultivars only affected the community composition of root endosphere bacteria and fungi. Network analysis revealed that fertilization significantly reduced microbial network complexity and increased fungal-related network complexity. Collectively, this study provides empirical evidence that sorghum-associated microbiomes are predominantly shaped by nitrogenous fertilizer rather than by cultivars, suggesting that consistent application of nitrogenous fertilizer will ultimately alter plant-associated microbiomes regardless of cultivar selection.
Collapse
Affiliation(s)
- Fangfang Li
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Anqi Sun
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaoyan Jiao
- College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - Dan-Ting Yu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China.
| | - Peixin Ren
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Bing-Xue Wu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Peng He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Li Bi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ji-Zheng He
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
17
|
Meng L, Liang L, Shi Y, Yin H, Li L, Xiao J, Huang N, Zhao A, Xia Y, Hou J. Biofilms in plastisphere from freshwater wetlands: Biofilm formation, bacterial community assembly, and biogeochemical cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134930. [PMID: 38901258 DOI: 10.1016/j.jhazmat.2024.134930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Microorganisms can colonize to the surface of microplastics (MPs) to form biofilms, termed "plastisphere", which could significantly change their physiochemical properties and ecological roles. However, the biofilm characteristics and the deep mechanisms (interaction, assembly, and biogeochemical cycles) underlying plastisphere in wetlands currently lack a comprehensive perspective. In this study, in situ biofilm formation experiments were performed in a park with different types of wetlands to examine the plastisphere by extrinsic addition of PVC MPs in summer and winter, respectively. Results from the spectroscopic and microscopic analyses revealed that biofilms attached to the MPs in constructed forest wetlands contained the most abundant biomass and extracellular polymeric substances. Meanwhile, data from the high-throughput sequencing showed lower diversity in plastisphere compared with soil bacterial communities. Network analysis suggested a simple and unstable co-occurrence pattern in plastisphere, and the null model indicated increased deterministic process of heterogeneous selection for its community assembly. Based on the quantification of biogeochemical cycling genes by high-throughput qPCR, the relative abundances of genes involving in carbon degradation, carbon fixation, and denitrification were significantly higher in plastisphere than those of soil communities. This study greatly enhanced our understanding of biofilm formation and ecological effects of MPs in freshwater wetlands.
Collapse
Affiliation(s)
- Liang Meng
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China; Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Ministry of Education, Hangzhou 310058, China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 201722, China
| | - Longrui Liang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yansong Shi
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Haitao Yin
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Li Li
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jiamu Xiao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Nannan Huang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Angang Zhao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yangrongchang Xia
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jingwen Hou
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
18
|
Wu F, Chen Z, Xu X, Xue X, Zhang Y, Sui N. Halotolerant Bacillus sp. strain RA coordinates myo-inositol metabolism to confer salt tolerance to tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1871-1885. [PMID: 38967265 DOI: 10.1111/jipb.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Soil salinity is a worldwide problem threatening crop yields. Some plant growth-promoting rhizobacteria (PGPR) could survive in high salt environment and assist plant adaptation to stress. Nevertheless, the genomic and metabolic features, as well as the regulatory mechanisms promoting salt tolerance in plants by these bacteria remain largely unknown. In the current work, a novel halotolerant PGPR strain, namely, Bacillus sp. strain RA can enhance tomato tolerance to salt stress. Comparative genomic analysis of strain RA with its closely related species indicated a high level of evolutionary plasticity exhibited by strain-specific genes and evolutionary constraints driven by purifying selection, which facilitated its genomic adaptation to salt-affected soils. The transcriptome further showed that strain RA could tolerate salt stress by balancing energy metabolism via the reprogramming of biosynthetic pathways. Plants exude a plethora of metabolites that can strongly influence plant fitness. The accumulation of myo-inositol in leaves under salt stress was observed, leading to the promotion of plant growth triggered by Bacillus sp. strain RA. Importantly, myo-inositol serves as a selective force in the assembly of the phyllosphere microbiome and the recruitment of plant-beneficial species. It promotes destabilizing properties in phyllosphere bacterial co-occurrence networks, but not in fungal networks. Furthermore, interdomain interactions between bacteria and fungi were strengthened by myo-inositol in response to salt stress. This work highlights the genetic adaptation of RA to salt-affected soils and its ability to impact phyllosphere microorganisms through the adjustment of myo-inositol metabolites, thereby imparting enduring resistance against salt stress in tomato.
Collapse
Affiliation(s)
- Fenghui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China
| | - Xiaotong Xu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China
| | - Xin Xue
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yanling Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
19
|
Wang L, Tang M, Gong J, Malik K, Liu J, Kong X, Chen X, Chen L, Tang R, Zheng R, Wang J, Yi Y. Variations of soil metal content, soil enzyme activity and soil bacterial community in Rhododendron delavayi natural shrub forest at different elevations. BMC Microbiol 2024; 24:300. [PMID: 39135165 PMCID: PMC11318175 DOI: 10.1186/s12866-024-03455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Rhododendron delavayi is a natural shrub that is distributed at different elevations in the karst region of Bijie, China, and that has an important role in preventing land degradation in this region. In this study, we determined the soil mineral element contents and soil enzyme activities. The composition of the soil bacterial community of R. delavayi at three elevations (1448 m, 1643 m, and 1821 m) was analyzed by high-throughput sequencing, and the interrelationships among the soil bacterial communities, mineral elements, and enzyme activities were determined. RESULTS The Shannon index of the soil bacterial community increased and then decreased with increasing elevation and was highest at 1643 m. Elevations increased the number of total nodes and edges of the soil bacterial community network, and more positive correlations at 1821 m suggested stronger intraspecific cooperation. Acidobacteria, Actinobacteria and Proteobacteria were the dominant phyla at all three elevations. The Mantel test and correlation analysis showed that Fe and soil urease significantly affected bacterial communities at 1448 m; interestingly, Chloroflexi was positively related to soil urease at 1448 m, and Actinobacteria was positively correlated with Ni and Zn at 1821 m. Fe and soil urease significantly influenced the bacterial communities at lower elevations, and high elevation (1821 m) enhanced the positive interactions of the soil bacteria, which might be a strategy for R. delavayi to adapt to high elevation environments. CONCLUSION Elevation significantly influenced the composition of soil bacterial communities by affecting the content of soil mineral elements and soil enzyme activity.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountains Areas of Southwest China, Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Science, Guizhou Normal University, Guiyang, 550001, China
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountains Areas of Southwest China, Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Science, Guizhou Normal University, Guiyang, 550001, China
| | - Jiyi Gong
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountains Areas of Southwest China, Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Science, Guizhou Normal University, Guiyang, 550001, China
| | - Kamran Malik
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University; Center for Grassland Microbiome, Lanzhou University; Key Laboratory of Grassland Livestock Industry Innovation; Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry; Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Jie Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountains Areas of Southwest China, Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Science, Guizhou Normal University, Guiyang, 550001, China
| | - Xin Kong
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountains Areas of Southwest China, Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Science, Guizhou Normal University, Guiyang, 550001, China
| | - Xianlei Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountains Areas of Southwest China, Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Science, Guizhou Normal University, Guiyang, 550001, China
| | - Lanlan Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountains Areas of Southwest China, Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Science, Guizhou Normal University, Guiyang, 550001, China
| | - Rong Tang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University; Center for Grassland Microbiome, Lanzhou University; Key Laboratory of Grassland Livestock Industry Innovation; Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry; Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Rong Zheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University; Center for Grassland Microbiome, Lanzhou University; Key Laboratory of Grassland Livestock Industry Innovation; Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry; Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Jianfeng Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University; Center for Grassland Microbiome, Lanzhou University; Key Laboratory of Grassland Livestock Industry Innovation; Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry; Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, 810016, China.
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountains Areas of Southwest China, Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Science, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
20
|
Gong J, Wang C, Wang J, Yang Y, Kong X, Liu J, Tang M, Lou H, Wen Z, Yang S, Yi Y. Integrative study of transcriptome and microbiome to reveal the response of Rhododendron decorum to cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116536. [PMID: 38833983 DOI: 10.1016/j.ecoenv.2024.116536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/06/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
The anomalies of cadmium (Cd) in karst region pose a severe threat to plant growth and development. In this study, the responses of Rhododendron decorum to Cd stress were investigated at physiological, molecular, and endophytic microbial levels, and the potential correlation among these responses was assessed. The Cd stress impeded R. decorum growth and led to an increase in malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels, as well as enhanced superoxide dismutase (SOD) and catalase (CAT) activities. Meanwhile, Cd stress increased the Cd (up to 80 times compared to the control), sodium (Na), aluminum (Al), and zinc (Zn) contents, while decreased the magnesium (Mg) and manganese (Mn) contents in R. decorum leaves. Transcriptome suggested that Cd significantly regulated the pathways including "protein repair", "hormone-mediated signaling pathway", and "ATP-binding cassette (ABC) transporters". Additionally, q-PCR analysis showed that Cd stress significantly up-regulated the expressions of ABCB19-like and pleiotropic drug resistance, while down-regulated the expressions of indole-3-acetic acid-amido synthetase and cytokinin dehydrogenase. The Cd stress influenced the composition of endophytic microbial communities in R. decorum leaves and enhanced the interspecific bacterial associations. Furthermore, the bacterial genera Achromobacter, Aureimonas and fungal genus Vishniacozyma exhibited a high degree of connectivity with other nodes in networks constructed by the metal element contents, differentially expressed genes (DEGs), and microbial communities, respectively. These findings provide a comprehensive insight into the response of R. decorum to Cd-induced stress, which might facilitate the breeding of the Cd-tolerant R. decorum.
Collapse
Affiliation(s)
- Jiyi Gong
- College of Water Sciences, Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing Normal University, Beijing 100875, China; Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Chao Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Jianfeng Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- Gansu Yasheng Agricultural Research Institute Co., Ltd., Lanzhou 730010, China
| | - Xin Kong
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Jie Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Hezhen Lou
- College of Water Sciences, Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing Normal University, Beijing 100875, China
| | - Zhirui Wen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Shengtian Yang
- College of Water Sciences, Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing Normal University, Beijing 100875, China.
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
21
|
Zhang S, Hu W, Zhang J, Yu G, Liu Y, Kong Z, Wu L. Long-term cultivation reduces soil carbon storage by altering microbial network complexity and metabolism activity in macroaggregates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172788. [PMID: 38677431 DOI: 10.1016/j.scitotenv.2024.172788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Cultivation alters soil aggregation, microbial compositions and the potential for carbon sequestration in cropland soils. However, the specific effects of long-term cultivation and the underlying mechanisms on soil organic carbon (SOC) storage at different aggregate sizes remain poorly understood. We characterized the dynamics of SOC storage in macroaggregates (>0.25 mm) and microaggregates (<0.25 mm) across four paddy soils successively cultivated for 60, 100, 125, and 150 years. Microbial community compositions, network patterns, enzyme activities and carbon use efficiency (CUE) were examined to elucidate the underlying microbial pathways governing SOC storage. The results showed that prolonged cultivation led to an average reduction of 45 % in SOC storage, particularly in macroaggregates. Partial least squares path modeling revealed that shifts in microorganisms in macroaggregates explained almost 80 % of the variation in SOC storage. Specifically, variations in fungal composition and decreased complexity of microbial interaction networks were strongly correlated with SOC storage. Fungal community and microbial interactions also indirectly affected SOC storage by positively correlating with extracellular enzyme activity. Moreover, bacterial composition indirectly regulated SOC storage by positively correlating with carbon use efficiency. Our findings indicated that the macroaggregate-associated microbial interactions and the metabolism activities had significant implications for SOC sequestration in paddy fields. We suggest that implementation of management practices targeted at improvement of these microbial attributes could enhance agroecosystems sustainability.
Collapse
Affiliation(s)
- Shan Zhang
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China
| | - Wanjin Hu
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China
| | - Jinting Zhang
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China
| | - Guanjun Yu
- Jiangxi Poyang Lake Nanji Wetland National Nature Reserve Authority, Nanchang 330038, China
| | - Yizhen Liu
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China.
| | - Zhaoyu Kong
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China
| | - Lan Wu
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China.
| |
Collapse
|
22
|
Li C, Shao X, Zhang S, Wang Y, Jin K, Yang P, Lu X, Fan X, Wang Y. scRank infers drug-responsive cell types from untreated scRNA-seq data using a target-perturbed gene regulatory network. Cell Rep Med 2024; 5:101568. [PMID: 38754419 PMCID: PMC11228399 DOI: 10.1016/j.xcrm.2024.101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/27/2023] [Accepted: 04/21/2024] [Indexed: 05/18/2024]
Abstract
Cells respond divergently to drugs due to the heterogeneity among cell populations. Thus, it is crucial to identify drug-responsive cell populations in order to accurately elucidate the mechanism of drug action, which is still a great challenge. Here, we address this problem with scRank, which employs a target-perturbed gene regulatory network to rank drug-responsive cell populations via in silico drug perturbations using untreated single-cell transcriptomic data. We benchmark scRank on simulated and real datasets, which shows the superior performance of scRank over existing methods. When applied to medulloblastoma and major depressive disorder datasets, scRank identifies drug-responsive cell types that are consistent with the literature. Moreover, scRank accurately uncovers the macrophage subpopulation responsive to tanshinone IIA and its potential targets in myocardial infarction, with experimental validation. In conclusion, scRank enables the inference of drug-responsive cell types using untreated single-cell data, thus providing insights into the cellular-level impacts of therapeutic interventions.
Collapse
Affiliation(s)
- Chengyu Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China.
| | - Shujing Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Yingchao Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Kaiyu Jin
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China
| | - Penghui Yang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314103, China.
| |
Collapse
|
23
|
Gai X, Xing W, Chen G. Divergent responses of rhizosphere soil phosphorus fractions and biological features of Salix psammophila to fertilization strategies under cadmium contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172554. [PMID: 38657824 DOI: 10.1016/j.scitotenv.2024.172554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Soil oligotrophy in areas heavily contaminated with heavy metals poses a significant challenge to vegetation establishment and phytoremediation processes. Phosphorus (P) cycling plays a critical role in global biogeochemical cycles, but there is limited understanding of its response to varying fertilization strategies and its correlation with phytoremediation effectiveness. This study primarily investigated the effects of various fertilization strategies, including nitrogen (N, 300 mg·kg-1), P (100 mg·kg-1), NP (combined N and P at 300 mg·kg-1 and 100 mg·kg-1, respectively), and HP (high P, 300 mg·kg-1) application, on rhizosphere soil P fractions and P-solubilizing microbial community (harboring phoD and phoC genes, respectively) of Salix psammophila under cadmium contamination. Application of NP significantly enhanced plant growth and cadmium accumulation, whereas HP inhibited cadmium bioaccumulation but promoted its translocation. Compared to untreated soil, N application promoted P cycling, leading to increases of 141.9 %, 60.4 %, and 10.3 % in Resin-Pi, diluted HCl-Pi, and conc.HCl-Pi, respectively. P application decreased organic phosphorus (Po) fractions by 24.4 % - 225.8 %, but N incorporation mitigated the declining trend in Po and augmented alkaline phosphatase activity. Fertilization strategies significantly regulated phoC- or phoD-harboring bacterial community structure, but their differential nutrient demands resulted in distinct responses. The phoD-harboring bacteria exhibited higher diversity and network complexity, with numerous biomarkers and fertilizer-sensitive OTUs discovered across treatments. Structural equation modeling (SEM) analysis indicated that phytoremediation efficiency was directly affected by Pi fractions, and phoD-harboring bacteria exhibited stronger associations with Pi fractions than phoC-harboring bacteria. In conclusion, our results reveal potential pathways through which fertilization strategies influence phytoremediation by affecting the structure of P-solubilizing microbial community. Furthermore, our study emphasizes the importance of combined N and P application in promoting Cd accumulation in plants, with high P levels appearing as an ideal fertilization strategy for phytoremediation targeting the harvest of aboveground biomass.
Collapse
Affiliation(s)
- Xu Gai
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, PR China
| | - Wenli Xing
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, PR China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, PR China.
| |
Collapse
|
24
|
Kochel B. Negative feedback systems for modelling NF-κB transcription factor oscillatory activity. Transcription 2024; 15:65-96. [PMID: 38739365 PMCID: PMC11810101 DOI: 10.1080/21541264.2024.2331887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 05/14/2024] Open
Abstract
Low-dimensional negative feedback systems (NFSs) were developed within a signal flow model to describe the oscillatory activities of NF-κB caused by interactions with its inhibitor IκBα. The NFSs were established as 3rd- and 4th-order linear systems containing unperturbed and perturbed negative feedback (NF) loops with constant or time-varying NF strengths and a feed-forward loop. NF-related analytical solutions to the NFSs representing the time courses of NF-κB and IκBα were determined and their exact mathematical relationship was found. The NFS's parameters were determined to fit the experimental time courses of NF-κB in TNF-α-stimulated embryonic fibroblasts, rela-/- embryonic fibroblasts reconstituted with RelA, C9L cells, GFP-p65 knock-in embryonic fibroblasts and embryogenic fibroblasts lacking Iκβ and IκBε, LPS-stimulated IC-21 macrophages treated or not with DCPA, and anti-IgM-stimulated DT40 B-lymphocytes. The unperturbed and perturbed NFSs describing the above biosystems generated isochronous and non-isochronous solutions, depending on a constant or time-varying NF strength, respectively. The oscillation period of the NF-coupled solutions, the phase difference between them and the time delays in the appearance of cytoplasmic IκBα after stimulation of NF-κB were determined. A significant divergence between the IκBα solutions to the NFSs and the IκBα experimental courses led to a rejection of the NF coupling between NF-κB and IκBα in the above biosystems. It was shown that neither the linearity nor the low dimensionality of the NFSs altered the NF relationship and the divergence between the IκBα solutions to the NFS and IκBα experimental time courses. Although the NF relationship between IκBα and NF-κB was not confirmed in all the experimental data analyzed, delayed negative feedback was found in some cases.
Collapse
Affiliation(s)
- Bonawentura Kochel
- Immunotherapy Central Europe, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
25
|
Mes W, Lücker S, Jetten MSM, Siepel H, Gorissen M, van Kessel MAHJ. Feeding strategy and feed protein level affect the gut microbiota of common carp (Cyprinus carpio). ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13262. [PMID: 38725141 PMCID: PMC11082430 DOI: 10.1111/1758-2229.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/06/2024] [Indexed: 05/13/2024]
Abstract
Common carp (Cyprinus carpio) were fed food with different protein concentrations following different feeding regimes, which were previously shown to affect growth, nitrogen excretion and amino acid catabolism. 16S rRNA gene amplicon sequencing was performed to investigate the gut microbiota of these fish. Lower dietary protein content increased microbial richness, while the combination of demand feeding and dietary protein content affected the composition of the gut microbiota. Hepatic glutamate dehydrogenase (GDH) activity was correlated to the composition of the gut microbiota in all dietary treatments. We found that demand-fed carp fed a diet containing 39% protein had a significantly higher abundance of Beijerinckiaceae compared to other dietary groups. Network analysis identified this family and two Rhizobiales families as hubs in the microbial association network. In demand-fed carp, the microbial association network had significantly fewer connections than in batch-fed carp. In contrast to the large effects of the feeding regime and protein content of the food on growth and nitrogen metabolism, it had only limited effects on gut microbiota composition. However, correlations between gut microbiota composition and liver GDH activity showed that host physiology and gut microbiota are connected, which warrants functional studies into the role of the gut microbiota in fish physiology.
Collapse
Affiliation(s)
- Wouter Mes
- Department of Microbiology, Radboud Institute for Biological and Environmental SciencesRadboud UniversityNijmegenThe Netherlands
- Department of Plant and Animal Biology, Radboud Institute for Biological and Environmental SciencesRadboud UniversityNijmegenThe Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental SciencesRadboud UniversityNijmegenThe Netherlands
| | - Mike S. M. Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental SciencesRadboud UniversityNijmegenThe Netherlands
| | - Henk Siepel
- Department of Plant and Animal Biology, Radboud Institute for Biological and Environmental SciencesRadboud UniversityNijmegenThe Netherlands
| | - Marnix Gorissen
- Department of Plant and Animal Biology, Radboud Institute for Biological and Environmental SciencesRadboud UniversityNijmegenThe Netherlands
| | - Maartje A. H. J. van Kessel
- Department of Microbiology, Radboud Institute for Biological and Environmental SciencesRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
26
|
Cao T, Shi M, Zhang J, Ji H, Wang X, Sun J, Chen Z, Li Q, Song X. Nitrogen fertilization practices alter microbial communities driven by clonal integration in Moso bamboo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171581. [PMID: 38461973 DOI: 10.1016/j.scitotenv.2024.171581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Nitrogen (N) fertilization is crucial for maintaining plant productivity. Clonal plants can share resources between connected ramets through clonal integration influencing microbial communities and regulating soil biogeochemical cycling, especially in the rhizosphere. However, the effect of various N fertilization practices on microbial communities in the rhizosphere of clonal ramets remain unknown. In this study, clonal fragments of Moso bamboo (Phyllostachys edulis), consisting of a parent ramet, an offspring ramet, and an interconnecting rhizome, were established in the field. NH4NO3 solution was applied to the parent, offspring ramets or rhizomes to investigate the effect of fertilization practices on the structure and function of rhizosphere microbial communities. The differences in N availability, microbial biomass and community composition, and abundance of nitrifying genes among rhizosphere soils of ramets gradually decreased during the rapid growth of Moso bamboo, irrespective of fertilization practice. The soil N availability variation, particularly in NO3-, caused by fertilization practices altered the rhizosphere microbial community. Soil N availability and stable microbial biomass N in parent fertilization were the highest, being 9.0 % and 18.7 %, as well as 60.8 % and 90.4 % higher than rhizome and offspring fertilizations, respectively. The microbial network nodes and links in rhizome fertilization were 1.8 and 7.5 times higher than in parent and offspring fertilization, respectively. However, the diversity of bacterial community and abundance of nitrifying and denitrifying genes were the highest in offspring fertilization among three practices, which may be associated with increased N loss. Collectively, the rhizosphere microbial community characteristics depended on fertilization practices by altering the clonal integration of N in Moso bamboo. Parent and rhizome fertilization were favorable for N retention in plant-soil system and resulted in more stable microbial functions than offspring fertilization. Our findings provide new insights into precision fertilization for the sustainable Moso bamboo forest management.
Collapse
Affiliation(s)
- Tingting Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Man Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Junbo Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Hangxiang Ji
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jilei Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhenxiong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Quan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
27
|
Li J, Zheng Q, Liu J, Pei S, Yang Z, Chen R, Ma L, Niu J, Tian T. Bacterial-fungal interactions and response to heavy metal contamination of soil in agricultural areas. Front Microbiol 2024; 15:1395154. [PMID: 38800759 PMCID: PMC11116572 DOI: 10.3389/fmicb.2024.1395154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Long-term heavy metal contamination of soil affects the structure and function of microbial communities. The aim of our study was to investigate the effect of soil heavy metal contamination on microorganisms and the impact of different heavy metal pollution levels on the microbial interactions. Methods We collected soil samples and determined soil properties. Microbial diversity was analyzed in two groups of samples using high-throughput sequencing technology. Additionally, we constructed microbial networks to analyze microbial interactions. Results The pollution load index (PLI) < 1 indicates that the area is not polluted. 1 < PLI < 2 represents moderate pollution. PLI was 1.05 and 0.14 for the heavy metal contaminated area and the uncontaminated area, respectively. Cd, Hg, Pb, Zn, and Cu were identified as the major contaminants in the contaminated area, with the contamination factors were 30.35, 11.26, 5.46, 5.19, and 2.46, respectively. The diversities and compositions of the bacterial community varied significantly between the two groups. Compared to the uncontaminated area, the co-occurrence network between bacterial and fungal species in the contaminated area was more complex. The keystone taxa of the co-occurrence network in the contaminated area were more than those in the uncontaminated area and were completely different from it. Discussion Heavy metal concentrations played a crucial role in shaping the difference in microbial community compositions. Microorganisms adapt to long-term and moderate levels of heavy metal contamination through enhanced interactions. Bacteria resistant to heavy metal concentrations may play an important role in soils contaminated with moderate levels of heavy metals over long periods of time.
Collapse
Affiliation(s)
- Jia Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Qiwen Zheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jiangyun Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Shuwei Pei
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Zhen Yang
- Lanzhou Maternal and Child Health Care Hospital, Lanzhou, Gansu, China
| | - Rentong Chen
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
28
|
Zhang M, Zhou Y, Cui X, Zhu L. The Potential of Co-Evolution and Interactions of Gut Bacteria-Phages in Bamboo-Eating Pandas: Insights from Dietary Preference-Based Metagenomic Analysis. Microorganisms 2024; 12:713. [PMID: 38674657 PMCID: PMC11051890 DOI: 10.3390/microorganisms12040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Bacteria and phages are two of the most abundant biological entities in the gut microbiome, and diet and host phylogeny are two of the most critical factors influencing the gut microbiome. A stable gut bacterial community plays a pivotal role in the host's physiological development and immune health. A phage is a virus that directly infects bacteria, and phages' close associations and interactions with bacteria are essential for maintaining the stability of the gut bacterial community and the entire microbial ecosystem. Here, we utilized 99 published metagenomic datasets from 38 mammalian species to investigate the relationship (diversity and composition) and potential interactions between gut bacterial and phage communities and the impact of diet and phylogeny on these communities. Our results highlight the co-evolutionary potential of bacterial-phage interactions within the mammalian gut. We observed a higher alpha diversity in gut bacteria than in phages and identified positive correlations between bacterial and phage compositions. Furthermore, our study revealed the significant influence of diet and phylogeny on mammalian gut bacterial and phage communities. We discovered that the impact of dietary factors on these communities was more pronounced than that of phylogenetic factors at the order level. In contrast, phylogenetic characteristics had a more substantial influence at the family level. The similar omnivorous dietary preference and closer phylogenetic relationship (family Ursidae) may contribute to the similarity of gut bacterial and phage communities between captive giant panda populations (GPCD and GPYA) and omnivorous animals (OC; including Sun bear, brown bear, and Asian black bear). This study employed co-occurrence microbial network analysis to reveal the potential interaction patterns between bacteria and phages. Compared to other mammalian groups (carnivores, herbivores, and omnivores), the gut bacterial and phage communities of bamboo-eating species (giant pandas and red pandas) exhibited a higher level of interaction. Additionally, keystone species and modular analysis showed the potential role of phages in driving and maintaining the interaction patterns between bacteria and phages in captive giant pandas. In sum, gaining a comprehensive understanding of the interaction between the gut microbiota and phages in mammals is of great significance, which is of great value in promoting healthy and sustainable mammals and may provide valuable insights into the conservation of wildlife populations, especially endangered animal species.
Collapse
Affiliation(s)
| | | | | | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210098, China; (M.Z.); (Y.Z.); (X.C.)
| |
Collapse
|
29
|
Lopez-Moreno A, Cerk K, Rodrigo L, Suarez A, Aguilera M, Ruiz-Rodriguez A. Bisphenol A exposure affects specific gut taxa and drives microbiota dynamics in childhood obesity. mSystems 2024; 9:e0095723. [PMID: 38426791 PMCID: PMC10949422 DOI: 10.1128/msystems.00957-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
Cumulative xenobiotic exposure has an environmental and human health impact which is currently assessed under the One Health approach. Bisphenol A (BPA) exposure and its potential link with childhood obesity that has parallelly increased during the last decades deserve special attention. It stands during prenatal or early life and could trigger comorbidities and non-communicable diseases along life. Accumulation in the nature of synthetic chemicals supports the "environmental obesogen" hypothesis, such as BPA. This estrogen-mimicking xenobiotic has shown endocrine disruptive and obesogenic effects accompanied by gut microbiota misbalance that is not yet well elucidated. This study aimed to investigate specific microbiota taxa isolated and selected by direct BPA exposure and reveal its role on the overall children microbiota community and dynamics, driving toward specific obesity dysbiosis. A total of 333 BPA-resistant isolated species obtained through culturing after several exposure conditions were evaluated for their role and interplay with the global microbial community. The selected BPA-cultured taxa biomarkers showed a significant impact on alpha diversity. Specifically, Clostridium and Romboutsia were positively associated promoting the richness of microbiota communities, while Intestinibacter, Escherichia-Shigella, Bifidobacterium, and Lactobacillus were negatively associated. Microbial community dynamics and networks analyses showed differences according to the study groups. The normal-weight children group exhibited a more enriched, structured, and connected taxa network compared to overweight and obese groups, which could represent a more resilient community to xenobiotic substances. In this sense, subnetwork analysis generated with the BPA-cultured genera showed a correlation between taxa connectivity and more diverse potential enzymatic BPA degradation capacities.IMPORTANCEOur findings indicate how gut microbiota taxa with the capacity to grow in BPA were differentially represented within differential body mass index children study groups and how these taxa affected the overall dynamics toward patterns of diversity generally recognized in dysbiosis. Community network and subnetwork analyses corroborated the better connectedness and stability profiles for normal-weight group compared to the overweight and obese groups.
Collapse
Affiliation(s)
- Ana Lopez-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
- />Instituto de Investigación Biosanitaria ibs, Granada, Spain
| | - Klara Cerk
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, United Kingdom
| | - Lourdes Rodrigo
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
| | - Antonio Suarez
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus of Cartuja, University of Granada, Granada, Spain
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
- />Instituto de Investigación Biosanitaria ibs, Granada, Spain
| | - Alicia Ruiz-Rodriguez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus of Cartuja, University of Granada, Granada, Spain
| |
Collapse
|
30
|
Yue H, Sun X, Wang T, Zhang A, Han D, Wei G, Song W, Shu D. Host genotype-specific rhizosphere fungus enhances drought resistance in wheat. MICROBIOME 2024; 12:44. [PMID: 38433268 PMCID: PMC10910722 DOI: 10.1186/s40168-024-01770-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND The severity and frequency of drought are expected to increase substantially in the coming century and dramatically reduce crop yields. Manipulation of rhizosphere microbiomes is an emerging strategy for mitigating drought stress in agroecosystems. However, little is known about the mechanisms underlying how drought-resistant plant recruitment of specific rhizosphere fungi enhances drought adaptation of drought-sensitive wheats. Here, we investigated microbial community assembly features and functional profiles of rhizosphere microbiomes related to drought-resistant and drought-sensitive wheats by amplicon and shotgun metagenome sequencing techniques. We then established evident linkages between root morphology traits and putative keystone taxa based on microbial inoculation experiments. Furthermore, root RNA sequencing and RT-qPCR were employed to explore the mechanisms how rhizosphere microbes modify plant response traits to drought stresses. RESULTS Our results indicated that host plant signature, plant niche compartment, and planting site jointly contribute to the variation of soil microbiome assembly and functional adaptation, with a relatively greater effect of host plant signature observed for the rhizosphere fungi community. Importantly, drought-resistant wheat (Yunhan 618) possessed more diverse bacterial and fungal taxa than that of the drought-sensitive wheat (Chinese Spring), particularly for specific fungal species. In terms of microbial interkingdom association networks, the drought-resistant variety possessed more complex microbial networks. Metagenomics analyses further suggested that the enriched rhizosphere microbiomes belonging to the drought-resistant cultivar had a higher investment in energy metabolism, particularly in carbon cycling, that shaped their distinctive drought tolerance via the mediation of drought-induced feedback functional pathways. Furthermore, we observed that host plant signature drives the differentiation in the ecological role of the cultivable fungal species Mortierella alpine (M. alpina) and Epicoccum nigrum (E. nigrum). The successful colonization of M. alpina on the root surface enhanced the resistance of wheats in response to drought stresses via activation of drought-responsive genes (e.g., CIPK9 and PP2C30). Notably, we found that lateral roots and root hairs were significantly suppressed by co-colonization of a drought-enriched fungus (M. alpina) and a drought-depleted fungus (E. nigrum). CONCLUSIONS Collectively, our findings revealed host genotypes profoundly influence rhizosphere microbiome assembly and functional adaptation, as well as it provides evidence that drought-resistant plant recruitment of specific rhizosphere fungi enhances drought tolerance of drought-sensitive wheats. These findings significantly underpin our understanding of the complex feedbacks between plants and microbes during drought, and lay a foundation for steering "beneficial keystone biome" to develop more resilient and productive crops under climate change. Video Abstract.
Collapse
Affiliation(s)
- Hong Yue
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuming Sun
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tingting Wang
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ali Zhang
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dejun Han
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gehong Wei
- College of Life Sciences, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| | - Weining Song
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Duntao Shu
- College of Life Sciences, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
31
|
Zhao P, Gao G, Ding G, Zhang Y, Ren Y. Fungal complexity and stability across afforestation areas in changing desert environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169398. [PMID: 38114026 DOI: 10.1016/j.scitotenv.2023.169398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
The great achievements in combating desertification are attributed to large-scale afforestation, yet we lack verification of how the stability of the fungal community changes in afforestation areas in desert environments. Here, we present the fungal network structure from different niches (root and bulk soil) of plantations of Mongolian pine, a crucial species for afforestation introduced widely in desertification regions. We assessed changes in community complexity and stability of root-associated fungi (RAF) and soil fungi (SF) among different introduction sites: the Hulunbuir Desert (HB), the Horqin Desert (HQ) and the Mu Us Desert (MU). To illuminate the complexity and stability of the fungal network, the differences in topological properties, fungal function, and vegetation and environmental factors between introduction sites were fully considered. We showed that (1) the SF networks had more nodes and edges than the RAF networks. There was a lower ratio of negative:positive cohesion of RAF networks in HB and MU. For SF but not for RAF, across the three introduction sites, a higher modularity and ratio of negative:positive cohesion indicated higher stability. (2) Ectomycorrhizal (EcM) fungi were the dominant functional group in the RAF network (especially in HQ), and were only significantly correlated with vegetation factor. There was a higher relative abundance and number of OTUs of saprophytic fungi in the SF network and they showed positive correlations with soil nutrients. (3) RAF and SF network complexity and stability showed different responses to environmental and vegetation variables. The key determinant of the complexity and stability of the SF networks in Mongolian pine plantations was soil nutrients, followed by climate conditions. The composition and structure of the RAF community was closely related to host plants. Therefore, clarifying the complexity and stability of fungal communities in afforestation areas in changing desert environments is helpful for understanding the interactions between the environment, plants and fungi.
Collapse
Affiliation(s)
- Peishan Zhao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Guanglei Gao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Guodong Ding
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Ying Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yue Ren
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
32
|
Khatri-Chhetri U, Banerjee S, Thompson KA, Quideau SA, Boyce MS, Bork EW, Carlyle CN. Cattle grazing management affects soil microbial diversity and community network complexity in the Northern Great Plains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169353. [PMID: 38104847 DOI: 10.1016/j.scitotenv.2023.169353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/04/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Soil microbial communities play a vital role in the biogeochemical cycling and ecological functioning of grassland, but may be affected by common land uses such as cattle grazing. Changes in microbial diversity and network complexity can affect key ecosystem functions such as nutrient cycling. However, it is not well known how microbial diversity and network complexity respond to grazing in the Northern Great Plains. Consequently, it is important to understand whether variation in grazing management alters the diversity and complexity of grassland microbial communities. We compared the effect of intensive adaptive multi-paddock (AMP) grazing and conventional grazing practices on soil microbial communities using 16S/ITS amplicon sequencing. Samples were collected from grasslands in 13 AMP ranches and 13 neighboring, conventional ranches located across the Canadian prairies. We found that AMP grazing increased fungal diversity and evenness, and led to more complex microbial associations. Acidobacteria, Actinobacteria, Gemmatimonadetes, and Bacteroidetes were keystone taxa associated with AMP grazing, while Actinobacteria, Acidobacteria, Proteobacteria, and Armatimonadetes were keystone taxa under conventional grazing. Besides overall grazing treatment effects, specific grazing metrics like cattle stocking rate and rest-to-grazing ratio affected microbial richness and diversity. Bacterial and fungal richness increased with elevated stocking rate, and fungal richness and diversity increased directly with the rest-to-grazing ratio. These results suggest that AMP grazing may improve ecosystem by enhancing fungal diversity and increasing microbial network complexity and connectivity.
Collapse
Affiliation(s)
- Upama Khatri-Chhetri
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Karen A Thompson
- Trent School of Environment, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Sylvie A Quideau
- Department of Renewable Resources, Earth Science Building University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Mark S Boyce
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Edward W Bork
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Cameron N Carlyle
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
33
|
Zhang S, Liu S, Liu H, Li H, Luo J, Zhang A, Ding Y, Ren T, Chen W. Stochastic Assembly Increases the Complexity and Stability of Shrimp Gut Microbiota During Aquaculture Progression. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:92-102. [PMID: 38165637 DOI: 10.1007/s10126-023-10279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024]
Abstract
The gut microbiota of aquaculture species contributes to their food metabolism and regulates their health, which has been shown to vary during aquaculture progression of their hosts. However, limited research has examined the outcomes and mechanisms of these changes in the gut microbiota of hosts. Here, Kuruma shrimps from the beginning, middle, and late stages of aquaculture progression (about a time duration of 2 months between each stage) were collected and variations in the gut microbiota of Kuruma shrimp during the whole aquaculture process were examined. High-throughput sequencing demonstrated increases in the diversity and richness of the shrimp gut microbiota with aquaculture progression. In addition, the gut microbiota composition differed among cultural stages, with enrichment of Firmicutes, RF39, and Megamonas and a reduction in Proteobacteria in the mid-stage. Notably, only very few taxa were persistent in the shrimp gut microbiota during the whole aquaculture progression, while the number of taxa that specific to the end of aquaculture was high. Network analysis revealed increasing complexity of the shrimp gut microbiota during aquaculture progression. Moreover, the shrimp gut microbiota became significantly more stable towards the end of aquaculture. According to the results of neutral community model, contribution of stochastic processes for shaping the shrimp gut microbiota was elevated along the aquaculture progression. This study showed substantial variations in shrimp gut microbiota during aquaculture progression and explored the underlying mechanisms regulating these changes.
Collapse
Affiliation(s)
- Saisai Zhang
- Dalian Ocean Development Affairs Service, Dalian, Liaoning, 116023, China
| | - Shuang Liu
- Dalian Ocean Development Affairs Service, Dalian, Liaoning, 116023, China
| | - Hongwei Liu
- Dalian Ocean University, Dalian Liaoning, 116023, China
| | - Hui Li
- Dalian Ocean Development Affairs Service, Dalian, Liaoning, 116023, China
| | - Jun Luo
- Dalian Sun Asia Tourism Holding Co. Ltd., Dalian, Liaoning, 116023, China
| | - Aili Zhang
- Dalian Ocean School, Dalian, Liaoning, 116023, China
| | - Yinpeng Ding
- Dalian Ocean Development Affairs Service, Dalian, Liaoning, 116023, China
| | - Tongjun Ren
- Dalian Ocean University, Dalian Liaoning, 116023, China
| | - Wenbo Chen
- Dalian Ocean Development Affairs Service, Dalian, Liaoning, 116023, China.
| |
Collapse
|
34
|
Zhang B, Xi Y, Huang Y, Zhang Y, Guo F, Yang H. Integration of single-nucleus RNA sequencing and network disturbance to elucidate crosstalk between multicomponent drugs and trigeminal ganglia cells in migraine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117286. [PMID: 37838292 DOI: 10.1016/j.jep.2023.117286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Migraine is caused by hyperactivity of the trigeminovascular system, where trigeminal ganglia (TG) plays an important role. TG is composed of multiple neuronal and non-neuronal cell types, which is related to "neuro-inflammation-vascular" disorder in migraine. Tou Tong Ning capsule (TTNC), a CFDA-approved traditional Chinese medicine for treating migraine, has the characteristics of "multicomponents, multitargets, multipathways". AIM OF THE STUDY To clarify the mechanism of TTNC and elucidate crosstalk between multicomponent drugs and neuronal and non-neuronal functions and cells in migraine. MATERIALS AND METHODS We integrated single-nucleus RNA sequencing and a quantitative evaluation algorithm of the disturbance of multitarget drugs on the disease network and explored the specific pathology of migraine and corresponding compounds. A cerebrovascular smooth muscle spasmolytic activity experiment was carried out to verify the results of the bioinformatics analysis. RESULTS TTNC exhibited its regulation activities in neuronal and non-neuronal aspects based on drugs attack to four subnetworks and cell specific networks, which explored the MoA of TTNC in comprehensive and refined perspectives. Compared to neuronal regulation, TTNC showed more significant attack score on non-neuronal biological function (smooth muscle and vessel). And TTNC compound clusters C1, C6 and C7, targeting non-neuronal function and cells, had larger group area than C10, C4 and C6 for neuronal function and cell, which implied that TTNC may mainly regulate the non-neuronal function, e.g., vessel smooth muscle contraction. Contraction of cerebrovascular smooth muscle of mice ex vivo confirmed the vasodilation activity of TTNC and active compounds from C1, C6, C9 (Emodin, Luteolin and Levistilide A). Literature mining confirmed the vasospasmodolytic activity and neuroprotective effect of TTNC. CONCLUSIONS The study found that TTNC may primarily alleviate non-neuronal functional disorders in migraine by relaxing cerebral vascular smooth muscle cell spasm to alleviate migraine. Integrating single-nucleus RNA sequencing data and network disturbance tools provides a new strategy for the pharmacological mechanism of multicomponent drugs through cell subtyping.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujie Xi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Huang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China; China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
35
|
Liang J, Wei C, Song X, Wang R, Shi H, Tan J, Cheng D, Wang W, Wang X. Bacterial wilt affects the structure and assembly of microbial communities along the soil-root continuum. ENVIRONMENTAL MICROBIOME 2024; 19:6. [PMID: 38229154 PMCID: PMC10792853 DOI: 10.1186/s40793-024-00548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
BACKGROUND Beneficial root-associated microbiomes play crucial roles in enhancing plant growth and suppressing pathogenic threats, and their application for defending against pathogens has garnered increasing attention. Nonetheless, the dynamics of microbiome assembly and defense mechanisms during pathogen invasion remain largely unknown. In this study, we aimed to investigate the diversity and assembly of microbial communities within four niches (bulk soils, rhizosphere, rhizoplane, and endosphere) under the influence of the bacterial plant pathogen Ralstonia solanacearum. RESULTS Our results revealed that healthy tobacco plants exhibited more diverse community compositions and more robust co-occurrence networks in root-associated niches compared to diseased tobacco plants. Stochastic processes (dispersal limitation and drift), rather than determinism, dominated the assembly processes, with a higher impact of drift observed in diseased plants than in healthy ones. Furthermore, during the invasion of R. solanacearum, the abundance of Fusarium genera, a known potential pathogen of Fusarium wilt, significantly increased in diseased plants. Moreover, the response strategies of the microbiomes to pathogens in diseased and healthy plants diverged. Diseased microbiomes recruited beneficial microbial taxa, such as Streptomyces and Bacilli, to mount defenses against pathogens, with an increased presence of microbial taxa negatively correlated with the pathogen. Conversely, the potential defense strategies varied across niches in healthy plants, with significant enrichments of functional genes related to biofilm formation in the rhizoplane and antibiotic biosynthesis in the endosphere. CONCLUSION Our study revealed the varied community composition and assembly mechanism of microbial communities between healthy and diseased tobacco plants along the soil-root continuum, providing new insights into niche-specific defense mechanisms against pathogen invasions. These findings may underscore the potential utilization of different functional prebiotics to enhance plants' ability to fend off pathogens.
Collapse
Affiliation(s)
- Jinchang Liang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 266101, Qingdao, China
| | - Chengjian Wei
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 266101, Qingdao, China
- College of Agriculture, Guangxi University, 530004, Nanning, China
| | - Xueru Song
- Engineering Center for Biological Control of Diseases and Pests in Tobacco Industry, 653100, Yuxi, China
| | - Rui Wang
- Enshi Tobacco Science and Technology Center, 445000, Enshi, China
| | - Heli Shi
- Enshi Tobacco Science and Technology Center, 445000, Enshi, China
| | - Jun Tan
- Enshi Tobacco Science and Technology Center, 445000, Enshi, China
| | - Dejie Cheng
- College of Agriculture, Guangxi University, 530004, Nanning, China
| | - Wenjing Wang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 266101, Qingdao, China
| | - Xiaoqiang Wang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 266101, Qingdao, China.
| |
Collapse
|
36
|
Maurice K, Bourceret A, Youssef S, Boivin S, Laurent-Webb L, Damasio C, Boukcim H, Selosse MA, Ducousso M. Anthropic disturbances impact the soil microbial network structure and stability to a greater extent than natural disturbances in an arid ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167969. [PMID: 37914121 DOI: 10.1016/j.scitotenv.2023.167969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Growing pressure from climate change and agricultural land use is destabilizing soil microbial community interactions. Yet little is known about microbial community resistance and adaptation to disturbances over time. This hampers our ability to determine the recovery latency of microbial interactions after disturbances, with fundamental implications for ecosystem functioning and conservation measures. Here we examined the response of bacterial and fungal community networks in the rhizosphere of Haloxylon salicornicum (Moq.) Bunge ex Boiss. over the course of soil disturbances resulting from a history of different hydric constraints involving flooding-drought successions. An anthropic disturbance related to past agricultural use, with frequent successions of flooding and drought, was compared to a natural disturbance, i.e., an evaporation basin, with yearly flooding-drought successions. The anthropic disturbance resulted in a specific microbial network topology characterized by lower modularity and stability, reflecting the legacy of past agricultural use on soil microbiome. In contrast, the natural disturbance resulted in a network topology and stability close to those of natural environments despite the lower alpha diversity, and a different community composition compared to that of the other sites. These results highlighted the temporality in the response of the microbial community structure to disturbance, where long-term adaptation to flooding-drought successions lead to a higher stability than disturbances occurring over a shorter timescale.
Collapse
Affiliation(s)
- Kenji Maurice
- LSTM, Univ Montpellier, CIRAD, INRAE, IRD, SupAgro, UMR082 LSTM, 34398 Montpellier Cedex 5, France.
| | - Amélia Bourceret
- ISYEB, Muséum national d'Histoire naturelle, CNRS, EPHE-PSL, Sorbonne Université, 57 rue Cuvier, CP39, 75005 Paris, France
| | - Sami Youssef
- Department of Research and Development, VALORHIZ, 1900, Boulevard de la Lironde, PSIII, Parc Scientifique Agropolis, F34980 Montferrier sur Lez, France
| | - Stéphane Boivin
- LSTM, Univ Montpellier, CIRAD, INRAE, IRD, SupAgro, UMR082 LSTM, 34398 Montpellier Cedex 5, France
| | - Liam Laurent-Webb
- ISYEB, Muséum national d'Histoire naturelle, CNRS, EPHE-PSL, Sorbonne Université, 57 rue Cuvier, CP39, 75005 Paris, France
| | - Coraline Damasio
- LSTM, Univ Montpellier, CIRAD, INRAE, IRD, SupAgro, UMR082 LSTM, 34398 Montpellier Cedex 5, France
| | - Hassan Boukcim
- Department of Research and Development, VALORHIZ, 1900, Boulevard de la Lironde, PSIII, Parc Scientifique Agropolis, F34980 Montferrier sur Lez, France; ASARI, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid Ben Guerir, 43150, Morocco
| | - Marc-André Selosse
- ISYEB, Muséum national d'Histoire naturelle, CNRS, EPHE-PSL, Sorbonne Université, 57 rue Cuvier, CP39, 75005 Paris, France; Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland; Institut Universitaire de France, Paris, France
| | - Marc Ducousso
- LSTM, Univ Montpellier, CIRAD, INRAE, IRD, SupAgro, UMR082 LSTM, 34398 Montpellier Cedex 5, France
| |
Collapse
|
37
|
Li K, Xu L, Bai X, Zhang G, Zhang M, Huang Y. Differential fungal assemblages and functions between the plastisphere of biodegradable and conventional microplastics in farmland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167478. [PMID: 37804989 DOI: 10.1016/j.scitotenv.2023.167478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
The heterogeneity of plastisphere and soil can lead to variation in microbiome, potentially impacting soil functions. Current studies of the plastisphere have mainly focused on bacterial communities, and fungal communities are poorly understood. Biodegradable and conventional microplastics may recruit specific microbial taxa due to their different biodegradability. Herein, we collected polyethylene (PE) and polybutylene adipate terephthalate/polylactide (PBAT/PLA) microplastics in farmland (Hebei, China) and characterized the fungal community in PE and PBAT/PLA plastisphere. Results from high-throughput sequencing showed significantly lower alpha diversity and distinct composition of fungal community in PBAT/PLA plastisphere compared to PE plastisphere. Additionally, the PBAT/PLA plastisphere demonstrated a significant enrichment of fungal taxa with potential plastic-degrading capability such as Nectriaceae, Pleosporaceae and Didymellaceae. The stochasticity of drift (28.7-43.5 %) and dispersal limitation (38.6-39.4 %) were dominant in the assembly of PE and PBAT/PLA plastisphere fungal community. Higher stable and more complex network in PBAT/PLA plastispheres were observed as compared to PE plastisphere. Besides, the total relative abundance of plant and animal pathogens were higher in PBAT/PLA plastisphere than that in PE plastisphere, suggesting that biodegradable microplastics may pose a higher threat to soil health. This study contributes to our understanding of the characteristics of plastisphere fungal communities in soil environments and the associated risks to terrestrial ecosystems resulting from microplastic accumulation.
Collapse
Affiliation(s)
- Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guangbao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mengjun Zhang
- Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
38
|
Huang WF, Li J, Huang JA, Liu ZH, Xiong LG. Review: Research progress on seasonal succession of phyllosphere microorganisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111898. [PMID: 37879538 DOI: 10.1016/j.plantsci.2023.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/15/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Phyllosphere microorganisms have recently attracted the attention of scientists studying plant microbiomes. The origin, diversity, functions, and interactions of phyllosphere microorganisms have been extensively explored. Many experiments have demonstrated seasonal cycles of phyllosphere microbes. However, a comprehensive comparison of these separate investigations to characterize seasonal trends in phyllosphere microbes of woody and herbaceous plants has not been conducted. In this review, we explored the dynamic changes of phyllosphere microorganisms in woody and non-woody plants with the passage of the season, sought to find the driving factors, summarized these texts, and thought about future research trends regarding the application of phyllosphere microorganisms in agricultural production. Seasonal trends in phyllosphere microorganisms of herbaceous and woody plants have similarities and differences, but extensive experimental validation is needed. Climate, insects, hosts, microbial interactions, and anthropogenic activities are the diverse factors that influence seasonal variation in phyllosphere microorganisms.
Collapse
Affiliation(s)
- Wen-Feng Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Li-Gui Xiong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
39
|
Wang JF, Huang JW, Cai ZX, Li QS, Sun YY, Zhou HZ, Zhu H, Song XS, Wu HM. Differential Nitrous oxide emission and microbiota succession in constructed wetlands induced by nitrogen forms. ENVIRONMENT INTERNATIONAL 2024; 183:108369. [PMID: 38070437 DOI: 10.1016/j.envint.2023.108369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/26/2023] [Accepted: 12/03/2023] [Indexed: 01/25/2024]
Abstract
Nitrous oxide (N2O) emission during the sewage treatment process is a serious environmental issue that requires attention. However, the N2O emission in constructed wetlands (CWs) as affected by different nitrogen forms in influents remain largely unknown. This study investigated the N2O emission profiles driven by microorganisms in CWs when exposed to two typical nitrogen sources (NH4+-N or NO3--N) along with different carbon source supply (COD/N ratios: 3, 6, and 9). The results showed that CWs receiving NO3--N caused a slight increase in total nitrogen removal (by up to 11.8 %). This increase was accomplished by an enrichment of key bacteria groups, including denitrifiers, dissimilatory nitrate reducers, and assimilatory nitrate reducers, which enhanced the stability of microbial interaction. Additionally, it led to a greater abundance of denitrification genes (e.g., nirK, norB, norC, and nosZ) as inferred from the database. Consequently, this led to a gradual increase in N2O emission from 66.51 to 486.77 ug-N/(m2·h) as the COD/N ratio increased in CWs. Conversely, in CWs receiving NH4+-N, an increasing influent COD/N ratio had a negative impact on nitrogen biotransformation. This resulted in fluctuating trend of N2O emissions, which decreased initially, followed by an increase at later stage (with values of 122.87, 44.00, and 148.59 ug-N/(m2·h)). Furthermore, NH4+-N in the aquatic improved the nitrogen uptake by plants and promoted the production of more root exudates. As a result, it adjusted the nitrogen-transforming function, ultimately reducing N2O emissions in CWs. This study highlights the divergence in microbiota succession and nitrogen transformation in CWs induced by nitrogen form and COD/N ratio, contributing to a better understanding of the microbial mechanisms of N2O emission in CWs with NH4+-N or NO3--N at different COD/N ratios.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Jia-Wei Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ze-Xiang Cai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yun-Yun Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Huan-Zhan Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Xin-Shan Song
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201600, China
| | - Hai-Ming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
40
|
Ren S, Zhang L, Tang X, Fan C, Zhao Y, Cheng Q, Zhang Y. Plant Secondary Compounds Promote White Adipose Tissue Browning via Modulation of the Gut Microbiota in Small Mammals. Int J Mol Sci 2023; 24:17420. [PMID: 38139249 PMCID: PMC10743627 DOI: 10.3390/ijms242417420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The browning of white adipose tissue (WAT) is a promising area of research for treating metabolic disorders and obesity in the future. However, studies on plant secondary compounds promoting WAT browning are limited. Herein, we explored the effects of swainsonine (SW) on gut microbiota and WAT browning in captive pikas. SW inhibited body mass gain, increased brown adipose tissue (BAT) mass, and induced WAT browning in pikas. The 16S rDNA sequencing revealed a significant reduction in the alpha diversity and altered community structure of the gut microbiota in captive pikas. However, the addition of SW to the diet significantly increased the alpha diversity of gut microbiota and the relative abundance of Akkermansia, Prevotella, and unclassified_f__Lachnospiraceae, along with the complexity of the microbial co-occurrence network structure, which decreased in the guts of captive pikas. Functional profiles showed that SW significantly decreased the relative abundances of energy metabolism, lipid metabolism, and glycan biosynthesis and metabolism, which were enriched in captive pikas. Furthermore, SW decreased deterministic processes of gut microbiota assembly in July and increased them in November. Finally, the genera Prevotella and unclassified_f__Prevotellaceae were positively correlated with BAT mass. Our results highlighted that plant secondary compounds promote WAT browning by modulating the gut microbiota in small mammals.
Collapse
Affiliation(s)
- Shien Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Yaqi Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| |
Collapse
|
41
|
Guan X, Zhao Z, Jiang J, Fu L, Liu J, Pan Y, Gao S, Wang B, Chen Z, Wang X, Sun H, Jiang B, Dong Y, Zhou Z. Succession and assembly mechanisms of seawater prokaryotic communities along an extremely wide salinity gradient. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:545-556. [PMID: 37537784 PMCID: PMC10667648 DOI: 10.1111/1758-2229.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
Salinity is an important environmental factor in microbial ecology for affecting the microbial communities in diverse environments. Understanding the salinity adaptation mechanisms of a microbial community is a significant issue, while most previous studies only covered a narrow salinity range. Here, variations in seawater prokaryotic communities during the whole salt drying progression (salinity from 3% to 25%) were investigated. According to high-throughput sequencing results, the diversity, composition, and function of seawater prokaryotic communities varied significantly along the salinity gradient, expressing as decreased diversity, enrichment of some halophilic archaea, and powerful nitrate reduction in samples with high salt concentrations. More importantly, a sudden and dramatic alteration of prokaryotic communities was observed when salinity reached 16%, which was recognized as the change point. Combined with the results of network analysis, we found the increasing of complexity but decreasing of stability in prokaryotic communities when salinity exceeded the change point. Moreover, prokaryotic communities became more deterministic when salinity exceeded the change point due to the niche adaptation of halophilic species. Our study showed that substantial variations in seawater prokaryotic communities along an extremely wide salinity gradient, and also explored the underlying mechanisms regulating these changes.
Collapse
Affiliation(s)
- Xiaoyan Guan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Zelong Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Jingwei Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Lei Fu
- Dalian Salt Chemical Group Co., LtdDalianLiaoningPeople's Republic of China
| | - Jiaojiao Liu
- Dalian Salt Chemical Group Co., LtdDalianLiaoningPeople's Republic of China
| | - Yongjia Pan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Shan Gao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Bai Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Zhong Chen
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Xuda Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Hongjuan Sun
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Bing Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Ying Dong
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| | - Zunchun Zhou
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic AnimalsLiaoning Ocean and Fisheries Science Research InstituteDalianLiaoningPeople's Republic of China
| |
Collapse
|
42
|
Xu CCY, Lemoine J, Albert A, Whirter ÉM, Barrett RDH. Community assembly of the human piercing microbiome. Proc Biol Sci 2023; 290:20231174. [PMID: 38018103 PMCID: PMC10685111 DOI: 10.1098/rspb.2023.1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Predicting how biological communities respond to disturbance requires understanding the forces that govern their assembly. We propose using human skin piercings as a model system for studying community assembly after rapid environmental change. Local skin sterilization provides a 'clean slate' within the novel ecological niche created by the piercing. Stochastic assembly processes can dominate skin microbiomes due to the influence of environmental exposure on local dispersal, but deterministic processes might play a greater role within occluded skin piercings if piercing habitats impose strong selection pressures on colonizing species. Here we explore the human ear-piercing microbiome and demonstrate that community assembly is predominantly stochastic but becomes significantly more deterministic with time, producing increasingly diverse and ecologically complex communities. We also observed changes in two dominant and medically relevant antagonists (Cutibacterium acnes and Staphylococcus epidermidis), consistent with competitive exclusion induced by a transition from sebaceous to moist environments. By exploiting this common yet uniquely human practice, we show that skin piercings are not just culturally significant but also represent ecosystem engineering on the human body. The novel habitats and communities that skin piercings produce may provide general insights into biological responses to environmental disturbances with implications for both ecosystem and human health.
Collapse
Affiliation(s)
- Charles C. Y. Xu
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | - Juliette Lemoine
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Avery Albert
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
- Trottier Space Institute, McGill University, Montreal, Quebec, Canada H3A 2A7
| | | | - Rowan D. H. Barrett
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| |
Collapse
|
43
|
Zhao X, Meng T, Jin S, Ren K, Cai Z, Cai B, Li S. The Salinity Survival Strategy of Chenopodium quinoa: Investigating Microbial Community Shifts and Nitrogen Cycling in Saline Soils. Microorganisms 2023; 11:2829. [PMID: 38137973 PMCID: PMC10745458 DOI: 10.3390/microorganisms11122829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Quinoa is extensively cultivated for its nutritional value, and its exceptional capacity to endure elevated salt levels presents a promising resolution to the agricultural quandaries posed by salinity stress. However, limited research has been dedicated to elucidating the correlation between alterations in the salinity soil microbial community and nitrogen transformations. To scrutinize the underlying mechanisms behind quinoa's salt tolerance, we assessed the changes in microbial community structure and the abundance of nitrogen transformation genes across three distinct salinity thresholds (1 g·kg-1, 3 g·kg-1, and 6 g·kg-1) at two distinct time points (35 and 70 days). The results showed the positive effect of quinoa on the soil microbial community structure, including changes in key populations and its regulatory role in soil nitrogen cycling under salt stress. Choroflexi, Acidobacteriota, and Myxococcota were inhibited by increased salinity, while the relative abundance of Bacteroidota increased. Proteobacteria and Actinobacteria showed relatively stable abundances across time and salinity levels. Quinoa possesses the ability to synthesize or modify the composition of keystone species or promote the establishment of highly complex microbial networks (modularity index > 0.4) to cope with fluctuations in external salt stress environments. Furthermore, quinoa exhibited nitrogen (N) cycling by downregulating denitrification genes (nirS, nosZ), upregulating nitrification genes (Archaeal amoA (AOA), Bacterial amoA (AOB)), and stabilizing nitrogen fixation genes (nifH) to absorb nitrate-nitrogen (NO3-_N). This study paves the way for future research on regulating quinoa, promoting soil microbial communities, and nitrogen transformation in saline environments.
Collapse
Affiliation(s)
- Xuli Zhao
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing 211100, China
| | - Tianzhu Meng
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing 211100, China
| | - Shenghan Jin
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing 211100, China
| | - Kaixing Ren
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing 211100, China
| | - Zhe Cai
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing 211100, China
| | - Bo Cai
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing 211100, China
| | - Saibao Li
- College of Water Resources and Civil Engineering, Tibet Agricultural and Animal Husbandry University, No. 8 Xueyuan Road, Linzhi 860000, China
| |
Collapse
|
44
|
Malyutina A, Tang J, Amiryousefi A. Resolving network clusters disparity based on dissimilarity measurements with nonmetric analysis of variance. iScience 2023; 26:108354. [PMID: 38026214 PMCID: PMC10663764 DOI: 10.1016/j.isci.2023.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/22/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Classic ANOVA (cA) tests the explanatory power of a partitioning on a set of objects. More fit for clusters proximity analysis, nonparametric ANOVA (npA) extends to a case where instead of the object values themselves, their mutual distances are available. However, extending the cA applicability, the metric conditions in npA are limiting. Based on the central limit theorem (CLT), here we introduce nonmetric ANOVA (nmA) that by relaxing the metric properties between objects, allows an ANOVA-like statistical testing of a network clusters disparity. We present a parametric test statistic which under the null hypothesis of no differences between the competing clusters means, follows an exact F-distribution. We apply our method on three diverse biological examples, discuss its parallel performance, and note the specific use of each method tailored by the inherent data properties. The R code is provided at github.com/AmiryousefiLab/nmANOVA.
Collapse
Affiliation(s)
- Alina Malyutina
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Ali Amiryousefi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
45
|
Ma Q, Li Q, Wang J, Parales RE, Li L, Ruan Z. Exposure to three herbicide mixtures influenced maize root-associated microbial community structure, function and the network complexity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122393. [PMID: 37595734 DOI: 10.1016/j.envpol.2023.122393] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Herbicide mixtures are a new and effective agricultural strategy for managing suppress weed resistance and have been widely used in controlling weeding growth in maize fields. However, the potential ecotoxicological impact of these mixtures on the microbial community structure and function within various root-associated niches, remains inadequately understood. Here, the effects of nicosulfuron, mesotrione and atrazine on soil enzyme activity and microbial community structure and function were investigated when applied alone and in combination. The findings indicated that herbicide mixtures exhibit a prolonged half-life compared to single herbicides. Ecological niches are the major factor influencing the structure and functions of the microbial community, with the rhizosphere exhibiting a more intensive response to herbicide stress. Herbicides significantly inhibited the activities of soil functional enzymes, including dehydrogenase, urease and sucrose in the short-term. Single herbicide did not drastically influence the alpha or beta diversity of the soil bacterial community, but herbicide mixtures significantly increased the richness of the fungal community. Meanwhile, the key functional microbial populations, such as Pseudomonas and Enterobacteriaceae, were significantly altered by herbicide stress. Both individual and combined use of the three herbicides reduced the complexity and stability of the bacterial network but increased the interspecific cooperations of fungal community in the rhizosphere. Moreover, by quantification of residual herbicide concentrations in the soil, we showed that the degradation period of the herbicide mixture was longer than that of single herbicides. Herbicide mixtures increased the contents of NO3--N and NH4+-N in the soil in the short-term. Overall, our study provided a comprehensive insight into the response of maize root-associated microbial communities to herbicide mixtures and facilitated the assessment of the ecological risks posed by herbicide mixtures to the agricultural environment from an agricultural sustainability perspective.
Collapse
Affiliation(s)
- Qingyun Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Qingqing Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jie Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; College of Life Science, Xinjiang Normal University, Urumqi, 830046, PR China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China
| | - Zhiyong Ruan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
46
|
Guo Y, Zhang D, Qi W. Bacterial diversity of herbal rhizospheric soils in Ordos desert steppes under different degradation gradients. PeerJ 2023; 11:e16289. [PMID: 37927778 PMCID: PMC10625353 DOI: 10.7717/peerj.16289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
Objectives This study explored the effects of different degradation gradients on bacterial diversity in the rhizospheric soils of herb plants. Methods The alpha diversity, species composition and correlations of bacterial communities in the rhizospheric soils of herb plants were studied using metagenomics 16SrDNA gene high-throughput sequencing. Results The diversity of bacterial communities in the rhizospheric soils of herb plants differed during the degradation of desert steppes. An analysis of bacterial community alpha diversity indices showed the bacterial diversity and species evenness of rhizospheric soils were best in moderately degraded desert steppes. Among all samples, a total of 43 phyla, 133 classes, 261 orders, 421 families, 802 genera and 1,129 species were detected. At the phylum level, the predominant bacterial phyla were: Actinobacteria, Proteobacteria, Acidobacteria, Gemmatimonadetes, Chloroflexi, Planctomycetes and Bacteroidetes. At the genus level, the predominant bacterial genera were: RB41, Sphingomonas, WD2101_soil_group_unclassified, Pseudomonas and Actinomyces. The relative abundance of unknown genera was very large, which deserves further research. At the phylum and genus levels, the species abundance levels under slight and moderate degradation were significantly higher than those under extreme degradation. Correlation network diagrams showed there were many nodes in both slightly deteriorated and moderately deteriorated soils, and the node proportions were large and mostly positively correlated. These results indicate the bacterial communities in rhizospheric soils under slight or moderate deterioration are relatively stable. The rhizospheric soil microbes of desert steppes can form a stable network structure, allowing them to adequately respond to environmental conditions. Conclusions The bacterial communities in the rhizospheric soils of herb plants differ between different degradation gradients. The species number, abundance and diversity of bacterial communities in rhizospheric soils are not directly correlated with degree of degradation. The abundance, species diversity and species abundance of bacterial communities in the rhizospheric soils of moderately degraded desert steppes are the highest and most stable. The soil bacterial diversity is lowest in severely degraded desert steppes.
Collapse
Affiliation(s)
- Yuefeng Guo
- College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, Asia, China
| | - Dan Zhang
- College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, Asia, China
| | - Wei Qi
- Inner Mongolia Autonomous Region Water Conservancy Development Center, Hohot, Inner Mongolia, Asia, China
| |
Collapse
|
47
|
Zheng Y, Cao X, Zhou Y, Li Z, Yang Y, Zhao D, Li Y, Xu Z, Zhang CS. Effect of planting salt-tolerant legumes on coastal saline soil nutrient availability and microbial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118574. [PMID: 37423189 DOI: 10.1016/j.jenvman.2023.118574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Soil salinization is a serious global environmental problem affecting sustainable development of agriculture. Legumes are excellent candidates for the phytoremediation of saline soils; however, how soil microbes mediate the amelioration of coastal saline ecosystems is unknown. In this study, two salt-tolerant legumes, Glycine soja and Sesbania cannabina were planted in coastal saline soil for three years. Soil nutrient availability and microbiota structure (including bacteria, fungi, and diazotrophs) were compared between the phytoremediated soils and control soil (barren land). Planting legumes reduced soil salinity, and increased total carbon, total nitrogen, and NO3--N contents. Among the soil microbiota, some nitrogen-fixing bacteria (e.g., Azotobacter) were enriched in legumes, which were probably responsible for soil nitrogen accumulation. The complexity of the bacterial, fungal, and diazotrophic networks increased significantly from the control to the phytoremediated soils, suggesting that the soil microbial community formed closer ecological interactions during remediation. Furthermore, the dominant microbial functions were chemoheterotrophy (24.75%) and aerobic chemoheterotrophy (21.97%) involved in the carbon cycle, followed by nitrification (13.68%) and aerobic ammonia oxidation (13.34%) involved in the nitrogen cycle. Overall, our findings suggested that G. soja and S. cannabina legumes were suitable for ameliorating saline soils as they decreased soil salinity and increased soil nutrient content, with microorganisms especially nitrogen-fixing bacteria, playing an important role in this remediation process.
Collapse
Affiliation(s)
- Yanfen Zheng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Xuwen Cao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266200, China
| | - Yanan Zhou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zhe Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yanzhe Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Donglin Zhao
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Zongchang Xu
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| | - Cheng-Sheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| |
Collapse
|
48
|
Ozen M, Lopez CF. Data-driven structural analysis of small cell lung cancer transcription factor network suggests potential subtype regulators and transition pathways. NPJ Syst Biol Appl 2023; 9:55. [PMID: 37907529 PMCID: PMC10618210 DOI: 10.1038/s41540-023-00316-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive disease and challenging to treat due to its mixture of transcriptional subtypes and subtype transitions. Transcription factor (TF) networks have been the focus of studies to identify SCLC subtype regulators via systems approaches. Yet, their structures, which can provide clues on subtype drivers and transitions, are barely investigated. Here, we analyze the structure of an SCLC TF network by using graph theory concepts and identify its structurally important components responsible for complex signal processing, called hubs. We show that the hubs of the network are regulators of different SCLC subtypes by analyzing first the unbiased network structure and then integrating RNA-seq data as weights assigned to each interaction. Data-driven analysis emphasizes MYC as a hub, consistent with recent reports. Furthermore, we hypothesize that the pathways connecting functionally distinct hubs may control subtype transitions and test this hypothesis via network simulations on a candidate pathway and observe subtype transition. Overall, structural analyses of complex networks can identify their functionally important components and pathways driving the network dynamics. Such analyses can be an initial step for generating hypotheses and can guide the discovery of target pathways whose perturbation may change the network dynamics phenotypically.
Collapse
Affiliation(s)
- Mustafa Ozen
- Dept. of Biochemistry, Vanderbilt University, Nashville, TN, USA
- Multiscale Modeling Group, SI3, Altos Labs, Redwood City, CA, USA
| | - Carlos F Lopez
- Dept. of Biochemistry, Vanderbilt University, Nashville, TN, USA.
- Multiscale Modeling Group, SI3, Altos Labs, Redwood City, CA, USA.
| |
Collapse
|
49
|
Liu Q, Li G, Baladandayuthapani V. Pan-Cancer Drug Response Prediction Using Integrative Principal Component Regression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560366. [PMID: 37873111 PMCID: PMC10592913 DOI: 10.1101/2023.10.03.560366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The pursuit of precision oncology heavily relies on large-scale genomic and pharmacological data garnered from preclinical cancer model systems such as cell lines. While cell lines are instrumental in understanding the interplay between genomic programs and drug response, it well-established that they are not fully representative of patient tumors. Development of integrative methods that can systematically assess the commonalities between patient tumors and cell-lines can help bridge this gap. To this end, we introduce the Integrative Principal Component Regression (iPCR) model which uncovers both joint and model-specific structured variations in the genomic data of cell lines and patient tumors through matrix decompositions. The extracted joint variation is then used to predict patient drug responses based on the pharmacological data from preclinical models. Moreover, the interpretability of our model allows for the identification of key driver genes and pathways associated with the treatment-specific response in patients across multiple cancers. We demonstrate that the outputs of the iPCR model can assist in inferring both model-specific and shared co-expression networks between cell lines and patients. We show that iPCR performs favorably compared to competing approaches in predicting patient drug responses, in both simulation studies and real-world applications, in addition to identifying key genomic drivers of cancer drug responses.
Collapse
|
50
|
Wang X, Zhao Z, Jiang J, Mi R, Guan X, Dong Y, Li S, Chen Z, Gao S, Wang B, Xiao Y, Pan Y, Zhou Z. Temporal stability and assembly mechanisms of gut microbiota in sea cucumbers response to nanoplastics treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115407. [PMID: 37639828 DOI: 10.1016/j.ecoenv.2023.115407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Aquaculture provides essential food for humans, and the health of farmed species is particularly important for the aquaculture industry. Aquaculture environment could be a sink of plastic debris (PDs) due to the enclosed character and heavy use of plastics. Gut microbiota of aquaculture species could respond to the exogenous pollutants and regulate the health of hosts. Here, variations in gut microbiota of Apostichopus japonicus induced by the ingested nanoplastics (NPs) were investigated by a lab experiment. We selected a NPs concentration gradient of 100 mg/kg and 500 mg/kg to simulate microplastic pollution to A. japonicus, and the significant differences in gut microbiota composition after 21 days of NP exposure were evaluated. According to the high-throughput sequencing from time series samples, a decrease of diversity in gut microbiota of A. japonicus with dietary NPs was observed. In addition, the gut microbiota compositions of sea cucumbers with and without NPs exposure were also distinct, expressing as enrichment of Bacteroidota while reducement of Proteobacteria under NPs stresses. Combined the results of network analysis, the less complexity and stability of gut microbiota in sea cucumbers with dietary NPs were proved. Based on the neutral community model, the ingested NPs elevated the contribution of stochastic processes for the gut microbiota assembly in sea cucumbers. Our study showed that substantial variations in gut microbiota of A. japonicus under NPs stresses, and also explored the underlying mechanisms regulating these changes. This research would offer new meaningful insights into the toxicity of NPs on sea cucumbers, contributing a solid fundament to improve the health of sea cucumbers under NPs stresses.
Collapse
Affiliation(s)
- Xuda Wang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zelong Zhao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Jingwei Jiang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Rui Mi
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xiaoyan Guan
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Ying Dong
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Shilei Li
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zhong Chen
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Shan Gao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Bai Wang
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Yao Xiao
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Yongjia Pan
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zunchun Zhou
- Key Laboratory of Protection and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| |
Collapse
|