1
|
Muthubharathi BC, Subalakshmi PK, Mounish BSC, Rao TS, Balamurugan K. Impact of low-dose UV-A in Caenorhabditis elegans during candidate bacterial infections. Photochem Photobiol 2025; 101:404-422. [PMID: 39205325 DOI: 10.1111/php.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Ultraviolet radiation is a non-ionizing radiation produced by longer wavelength energy sources with lower frequency and is categorized into UV-A, UV-B, and UV-C. Minimal exposure to this radiation has several health benefits, which include treating microbial contaminations and skin therapies. However, the antimicrobial action of low-dose UV-A during pathogenic bacterial infections is still unrevealed. In this study, the impact of low-dose UV-A as pre- or post-treatment using the model organism, Caenorhabditis elegans with candidate pathogens (Acinetobacter baumannii and Staphylococcus aureus) mediated infections was investigated. The results indicated enrichment of metabolites, reduced level of antioxidants, increased expression of dopamine biosynthesis and transportation, and decrease in serotonin biosynthesis when the organism was exposed to low-dose UV-A for 5 min. This, in turn, elevated the expression of candidate regulatory proteins involved in lifespan determination, innate immunity, and cAMP-response element binding protein (CREB), which appear to increase the lifespan and brood size of C. elegans during A. baumannii and S. aureus infections. The findings suggested that the low-dose UV-A treatment during A. baumannii and S. aureus infections prolonged the lifespan and increased the egg-laying capacity of C. elegans.
Collapse
Affiliation(s)
| | | | | | - Toleti Subba Rao
- School of Arts and Sciences, Sai University, Chennai, Tamil Nadu, India
| | | |
Collapse
|
2
|
Mukhopadhyay H, Bairagi A, Mukherjee A, Prasad AK, Roy AD, Nayak A. Multidrug resistant Acinetobacter baumannii: A study on its pathogenesis and therapeutics. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100331. [PMID: 39802320 PMCID: PMC11718326 DOI: 10.1016/j.crmicr.2024.100331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
The overuse of antibiotics has led to the global dissemination of Acinetobacter baumannii, an increasingly challenging nosocomial pathogen. This review explores the medical significance along with the diverse resistance ability of A. baumannii. Intensive care units (ICUs) serve as a breeding ground for A. baumannii, as these settings harbour vulnerable patients and facilitate the spread of opportunistic microorganisms. A. baumannii belongs to the ESKAPE group of bacterial pathogens that are major contributors to antibiotic-resistant infections. The pathogenic nature of A. baumannii is particularly evident in seriously ill patients, causing pneumonia, wound infections, and other healthcare-associated infections. Historically considered benign, A. baumannii is a global threat due to its propensity for rapid acquisition of multidrug resistance phenotypes. The genus Acinetobacter was formally recognized in 1968 following a comprehensive survey by Baumann et al., highlighting the relationship between previously identified species and consolidating them under the name Acinetobacter. A. baumannii is characterized by its Gram-negative nature, dependence on oxygen, positive catalase activity, lack of oxidase activity, inability to ferment sugars, and non-motility. The DNA G+C content of Acinetobacter species falls within a specific range. For diagnostic purposes, A. baumannii can be cultured on specific agar media, producing distinct colonies. The genus Acinetobacter comprises numerous species those are associated with bloodstream infections with high mortality rates. Therefore, A. baumannii poses a significant challenge to global healthcare due to its multidrug resistance and ability to cause various infections. A comprehensive understanding of the mechanisms underlying its resistance acquisition and pathogenicity is essential for combating this healthcare-associated pathogen effectively.
Collapse
Affiliation(s)
- Hridesh Mukhopadhyay
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Khardaha, West Bengal 700118, India
| | - Arnab Bairagi
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India
| | - Anushka Mukherjee
- Maulana Abul Kalam Azad University of Technology, West Bengal, India
| | | | - Arjama Dhar Roy
- Serampore Vivekananda Academy, Serampore, Hooghly 712203, West Bengal, India
| | - Aditi Nayak
- Department of Life Science, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| |
Collapse
|
3
|
Ye Z, Chen H, Weinans H, van der Wal B, Rios JL. Novel Aptamer Strategies in Combating Bacterial Infections: From Diagnostics to Therapeutics. Pharmaceutics 2024; 16:1140. [PMID: 39339177 PMCID: PMC11435160 DOI: 10.3390/pharmaceutics16091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial infections and antimicrobial resistance are posing substantial difficulties to the worldwide healthcare system. The constraints of conventional diagnostic and therapeutic approaches in dealing with continuously changing infections highlight the necessity for innovative solutions. Aptamers, which are synthetic oligonucleotide ligands with a high degree of specificity and affinity, have demonstrated significant promise in the field of bacterial infection management. This review examines the use of aptamers in the diagnosis and therapy of bacterial infections. The scope of this study includes the utilization of aptasensors and imaging technologies, with a particular focus on their ability to detect conditions at an early stage. Aptamers have shown exceptional effectiveness in suppressing bacterial proliferation and halting the development of biofilms in therapeutic settings. In addition, they possess the capacity to regulate immune responses and serve as carriers in nanomaterial-based techniques, including radiation and photodynamic therapy. We also explore potential solutions to the challenges faced by aptamers, such as nuclease degradation and in vivo instability, to broaden the range of applications for aptamers to combat bacterial infections.
Collapse
Affiliation(s)
- Zijian Ye
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Huaizhi Chen
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), 2628 CD Delft, The Netherlands
| | - Bart van der Wal
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jaqueline Lourdes Rios
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
4
|
Musket A, Davern S, Elam BM, Musich PR, Moorman JP, Jiang Y. The application of radionuclide therapy for breast cancer. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 3:1323514. [PMID: 39355029 PMCID: PMC11440853 DOI: 10.3389/fnume.2023.1323514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/27/2023] [Indexed: 10/03/2024]
Abstract
Radionuclide-mediated diagnosis and therapy have emerged as effective and low-risk approaches to treating breast cancer. Compared to traditional anatomic imaging techniques, diagnostic radionuclide-based molecular imaging systems exhibit much greater sensitivity and ability to precisely illustrate the biodistribution and metabolic processes from a functional perspective in breast cancer; this transitions diagnosis from an invasive visualization to a noninvasive visualization, potentially ensuring earlier diagnosis and on-time treatment. Radionuclide therapy is a newly developed modality for the treatment of breast cancer in which radionuclides are delivered to tumors and/or tumor-associated targets either directly or using delivery vehicles. Radionuclide therapy has been proven to be eminently effective and to exhibit low toxicity when eliminating both primary tumors and metastases and even undetected tumors. In addition, the specific interaction between the surface modules of the delivery vehicles and the targets on the surface of tumor cells enables radionuclide targeting therapy, and this represents an exceptional potential for this treatment in breast cancer. This article reviews the development of radionuclide molecular imaging techniques that are currently employed for early breast cancer diagnosis and both the progress and challenges of radionuclide therapy employed in breast cancer treatment.
Collapse
Affiliation(s)
- Anna Musket
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Sandra Davern
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Brianna M Elam
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Philip R Musich
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jonathan P Moorman
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Yong Jiang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
5
|
Keshwania P, Kaur N, Chauhan J, Sharma G, Afzal O, Alfawaz Altamimi AS, Almalki WH. Superficial Dermatophytosis across the World's Populations: Potential Benefits from Nanocarrier-Based Therapies and Rising Challenges. ACS OMEGA 2023; 8:31575-31599. [PMID: 37692246 PMCID: PMC10483660 DOI: 10.1021/acsomega.3c01988] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
The most prevalent infection in the world is dermatophytosis, which is a major issue with high recurrence and can affect the entire body including the skin, hair, and nails. The major goal of this Review is to acquire knowledge about cutting-edge approaches for treating dermatophytosis efficiently by adding antifungals to formulations based on nanocarriers in order to overcome the shortcomings of standard treatment methods. Updates on nanosystems and research developments on animal and clinical investigations are also presented. Along with the currently licensed formulations, the investigation also emphasizes novel therapies and existing therapeutic alternatives that can be used to control dermatophytosis. The Review also summarizes recent developments on the prevalence, management approaches, and disadvantages of standard dosage types. There are a number of therapeutic strategies for the treatment of dermatophytosis that have good clinical cure rates but also drawbacks such as antifungal drug resistance and unfavorable side effects. To improve therapeutic activity and get around the drawbacks of the traditional therapy approaches for dermatophytosis, efforts have been described in recent years to combine several antifungal drugs into new carriers. These formulations have been successful in providing improved antifungal activity, longer drug retention, improved effectiveness, higher skin penetration, and sustained drug release.
Collapse
Affiliation(s)
- Puja Keshwania
- Department
of Microbiology, Maharishi Markandeshwar
Institute of Medical Sciences and Research, Mullana, Ambala, Haryana 133207, India
| | - Narinder Kaur
- Department
of Microbiology, Maharishi Markandeshwar
Institute of Medical Sciences and Research, Mullana, Ambala, Haryana 133207, India
| | - Jyoti Chauhan
- Department
of Microbiology, Maharishi Markandeshwar
Institute of Medical Sciences and Research, Mullana, Ambala, Haryana 133207, India
| | - Gajanand Sharma
- University
Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | - Waleed H. Almalki
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21961, Saudi Arabia
| |
Collapse
|
6
|
Carvalho JLC, Dadachova E. Radioimmunotherapy for the treatment of infectious diseases: a comprehensive update. Expert Rev Anti Infect Ther 2023; 21:365-374. [PMID: 36815406 DOI: 10.1080/14787210.2023.2184345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION Corona Virus Disease of 2019 (COVID-19) pandemic has renewed interest in monoclonal antibodies for treating infectious diseases. During last two decades experimental data has been accumulated showing the potential of radioimmunotherapy (RIT) of infectious diseases. In addition, COVID-19 pandemic has created a novel landscape for opportunistic fungal infections in post-COVID-19 patients resulting from severe immune suppression. AREAS COVERED We analyze recent results on targeting "pan-antigens" shared by fungal pathogens in mouse models and in healthy dogs; on developing RIT of prosthetic joint infections (PJI); examine RIT as potential human immunodeficiency virus (HIV) cure strategy and analyze its mechanisms and safety. Literature review was performed using PubMed and Google Scholar and includes relevant articles from 2000 to 2022. EXPERT OPINION Some of the RIT of infection applications can, hopefully, be moved into the clinic earlier than others after preclinical development: (1) RIT of opportunistic fungal infections might contribute to saving lives as current antifungal drugs do not work in severely immunocompromised patients; (2) RIT of patients with PJI. Success of RIT in these patients will allow to expand the application of RIT to other similarly vulnerable patients' populations such as cancer patients with weakened immune system and organ transplant recipients.
Collapse
|
7
|
Lian X, Scott-Thomas A, Lewis JG, Bhatia M, MacPherson SA, Zeng Y, Chambers ST. Monoclonal Antibodies and Invasive Aspergillosis: Diagnostic and Therapeutic Perspectives. Int J Mol Sci 2022; 23:5563. [PMID: 35628374 PMCID: PMC9146623 DOI: 10.3390/ijms23105563] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening fungal disease that causes high morbidity and mortality in immunosuppressed patients. Early and accurate diagnosis and treatment of IA remain challenging. Given the broad range of non-specific clinical symptoms and the shortcomings of current diagnostic techniques, most patients are either diagnosed as "possible" or "probable" cases but not "proven". Moreover, because of the lack of sensitive and specific tests, many high-risk patients receive an empirical therapy or a prolonged treatment of high-priced antifungal agents, leading to unnecessary adverse effects and a high risk of drug resistance. More precise diagnostic techniques alongside a targeted antifungal treatment are fundamental requirements for reducing the morbidity and mortality of IA. Monoclonal antibodies (mAbs) with high specificity in targeting the corresponding antigen(s) may have the potential to improve diagnostic tests and form the basis for novel IA treatments. This review summarizes the up-to-date application of mAb-based approaches in assisting IA diagnosis and therapy.
Collapse
Affiliation(s)
- Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
- Department of Medical Imaging, The Second Clinical Medical School of Fujian Medical University, Quanzhou 362000, China
| | - Amy Scott-Thomas
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
| | - John G. Lewis
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
- Steroid and Immunobiochemistry Laboratory, Canterbury Health Laboratories, Christchurch 8140, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
| | - Sean A. MacPherson
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
- Haematology Department, Christchurch Hospital, Christchurch 8011, New Zealand
| | - Yiming Zeng
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362000, China;
| | - Stephen T. Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (X.L.); (A.S.-T.); (J.G.L.); (M.B.); (S.A.M.)
| |
Collapse
|
8
|
Sharma DN, Welsh J, Kumar R. Can low-dose radiation therapy reduce the risk of mucormycosis in COVID-19 patients? J Cancer Res Ther 2021; 17:1294-1296. [PMID: 34916356 DOI: 10.4103/jcrt.jcrt_2011_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Daya Nand Sharma
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - James Welsh
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University, Chicago; Department of Radiation Oncology, Edward Hines Jr VA Hospital, Hines, Illinois, USA
| | - Rishabh Kumar
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Kuzma BA, Pence IJ, Greenfield DA, Ho A, Evans CL. Visualizing and quantifying antimicrobial drug distribution in tissue. Adv Drug Deliv Rev 2021; 177:113942. [PMID: 34437983 DOI: 10.1016/j.addr.2021.113942] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
The biodistribution and pharmacokinetics of drugs are vital to the mechanistic understanding of their efficacy. Measuring antimicrobial drug efficacy has been challenging as plasma drug concentration is used as a surrogate for tissue drug concentration, yet typically does not reflect that at the intended site(s) of action. Utilizing an image-guided approach, it is feasible to accurately quantify the biodistribution and pharmacokinetics within the desired site(s) of action. We outline imaging modalities used in visualizing drug distribution with examples ranging from in vitro cellular drug uptake to clinical treatment of microbial infections. The imaging modalities of interest are: radio-labeling, magnetic resonance, mass spectrometry imaging, computed tomography, fluorescence, and Raman spectroscopy. We outline the progress, limitations, and future outlook for each methodology. Further advances in these optical approaches would benefit patients and researchers alike, as non-invasive imaging could yield more profound insights with a lower clinical burden than invasive measurement approaches used today.
Collapse
Affiliation(s)
- Benjamin A Kuzma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Daniel A Greenfield
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Alexander Ho
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.
| |
Collapse
|
10
|
Emerging Preclinical and Clinical Applications of Theranostics for Nononcological Disorders. PET Clin 2021; 16:429-440. [PMID: 34053586 DOI: 10.1016/j.cpet.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Studies in nuclear medicine have shed light on molecular imaging and therapeutic approaches for oncological and nononcological conditions. Using the same radiopharmaceuticals for diagnosis and therapeutics of malignancies, the theranostics approach, has improved clinical management of patients. Theranostic approaches for nononcological conditions are recognized as emerging topics of research. This review focuses on preclinical and clinical studies of nononcological disorders that include theranostic strategies. Theranostic approaches are demonstrated as possible in the clinical management of infections and inflammations. There is an emerging need for randomized trials to specify the factors affecting validity and efficacy of theranostic approaches in nononcological diseases.
Collapse
|
11
|
Neumaier F, Zlatopolskiy BD, Neumaier B. Nuclear Medicine in Times of COVID-19: How Radiopharmaceuticals Could Help to Fight the Current and Future Pandemics. Pharmaceutics 2020; 12:E1247. [PMID: 33371500 PMCID: PMC7767508 DOI: 10.3390/pharmaceutics12121247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence and global spread of COVID-19, an infectious disease caused by the novel coronavirus SARS-CoV-2, has resulted in a continuing pandemic threat to global health. Nuclear medicine techniques can be used for functional imaging of (patho)physiological processes at the cellular or molecular level and for treatment approaches based on targeted delivery of therapeutic radionuclides. Ongoing development of radiolabeling methods has significantly improved the accessibility of radiopharmaceuticals for in vivo molecular imaging or targeted radionuclide therapy, but their use for biosafety threats such as SARS-CoV-2 is restricted by the contagious nature of these agents. Here, we highlight several potential uses of nuclear medicine in the context of SARS-CoV-2 and COVID-19, many of which could also be performed in laboratories without dedicated containment measures. In addition, we provide a broad overview of experimental or repurposed SARS-CoV-2-targeting drugs and describe how radiolabeled analogs of these compounds could facilitate antiviral drug development and translation to the clinic, reduce the incidence of late-stage failures and possibly provide the basis for radionuclide-based treatment strategies. Based on the continuing threat by emerging coronaviruses and other pathogens, it is anticipated that these applications of nuclear medicine will become a more important part of future antiviral drug development and treatment.
Collapse
Affiliation(s)
- Felix Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany; (B.D.Z.); (B.N.)
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Boris D. Zlatopolskiy
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany; (B.D.Z.); (B.N.)
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Bernd Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany; (B.D.Z.); (B.N.)
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
12
|
Safety Evaluation of an Alpha-Emitter Bismuth-213 Labeled Antibody to (1→3)-β-Glucan in Healthy Dogs as a Prelude for a Trial in Companion Dogs with Invasive Fungal Infections. Molecules 2020; 25:molecules25163604. [PMID: 32784359 PMCID: PMC7465188 DOI: 10.3390/molecules25163604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 01/30/2023] Open
Abstract
Background: With the limited options available for therapy to treat invasive fungal infections (IFI), radioimmunotherapy (RIT) can potentially offer an effective alternative treatment. Microorganism-specific monoclonal antibodies have shown promising results in the experimental treatment of fungal, bacterial, and viral infections, including our recent and encouraging results from treating mice infected with Blastomyces dermatitidis with 213Bi-labeled antibody 400-2 to (1→3)-β-glucan. In this work, we performed a safety study of 213Bi-400-2 antibody in healthy dogs as a prelude for a clinical trial in companion dogs with acquired invasive fungal infections and later on in human patients with IFI. Methods: Three female beagle dogs (≈6.1 kg body weight) were treated intravenously with 155.3, 142.5, or 133.2 MBq of 213Bi-400-2 given as three subfractions over an 8 h period. RBC, WBC, platelet, and blood serum biochemistry parameters were measured periodically for 6 months post injection. Results: No significant acute or long-term side effects were observed after RIT injections; only a few parameters were mildly and transiently outside reference change value limits, and a transient atypical morphology was observed in the circulating lymphocyte population of two dogs. Conclusions: These results demonstrate the safety of systemic 213Bi-400-2 administration in dogs and provide encouragement to pursue evaluation of RIT of IFI in companion dogs.
Collapse
|
13
|
van Dijk B, Lemans JVC, Hoogendoorn RM, Dadachova E, de Klerk JMH, Vogely HC, Weinans H, Lam MGEH, van der Wal BCH. Treating infections with ionizing radiation: a historical perspective and emerging techniques. Antimicrob Resist Infect Control 2020; 9:121. [PMID: 32736656 PMCID: PMC7393726 DOI: 10.1186/s13756-020-00775-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023] Open
Abstract
Background Widespread use and misuse of antibiotics have led to a dramatic increase in the emergence of antibiotic resistant bacteria, while the discovery and development of new antibiotics is declining. This has made certain implant-associated infections such as periprosthetic joint infections, where a biofilm is formed, very difficult to treat. Alternative treatment modalities are needed to treat these types of infections in the future. One candidate that has been used extensively in the past, is the use of ionizing radiation. This review aims to provide a historical overview and future perspective of radiation therapy in infectious diseases with a focus on orthopedic infections. Methods A systematic search strategy was designed to select studies that used radiation as treatment for bacterial or fungal infections. A total of 216 potentially relevant full-text publications were independently reviewed, of which 182 focused on external radiation and 34 on internal radiation. Due to the large number of studies, several topics were chosen. The main advantages, disadvantages, limitations, and implications of radiation treatment for infections were discussed. Results In the pre-antibiotic era, high mortality rates were seen in different infections such as pneumonia, gas gangrene and otitis media. In some cases, external radiation therapy decreased the mortality significantly but long-term follow-up of the patients was often not performed so long term radiation effects, as well as potential increased risk of malignancies could not be investigated. Internal radiation using alpha and beta emitting radionuclides show great promise in treating fungal and bacterial infections when combined with selective targeting through antibodies, thus minimizing possible collateral damage to healthy tissue. Conclusion The novel prospects of radiation treatment strategies against planktonic and biofilm-related microbial infections seem feasible and are worth investigating further. However, potential risks involving radiation treatment must be considered in each individual patient.
Collapse
Affiliation(s)
- B van Dijk
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - J V C Lemans
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R M Hoogendoorn
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - J M H de Klerk
- Department of Nuclear Medicine, Meander Medical Center Amersfoort, Amersfoort, The Netherlands
| | - H C Vogely
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Weinans
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Biomechanical engineering, TU Delft, Delft, The Netherlands
| | - M G E H Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - B C H van der Wal
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
14
|
van Dijk B, Allen KJH, Helal M, Vogely HC, Lam MGEH, de Klerk JMH, Weinans H, van der Wal BCH, Dadachova E. Radioimmunotherapy of methicillin-resistant Staphylococcus aureus in planktonic state and biofilms. PLoS One 2020; 15:e0233086. [PMID: 32407350 PMCID: PMC7224548 DOI: 10.1371/journal.pone.0233086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background Implant associated infections such as periprosthetic joint infections are difficult to treat as the bacteria form a biofilm on the prosthetic material. This biofilm complicates surgical and antibiotic treatment. With rising antibiotic resistance, alternative treatment options are needed to treat these infections in the future. The aim of this article is to provide proof-of-principle data required for further development of radioimmunotherapy for non-invasive treatment of implant associated infections. Methods Planktonic cells and biofilms of Methicillin-resistant staphylococcus aureus are grown and treated with radioimmunotherapy. The monoclonal antibodies used, target wall teichoic acids that are cell and biofilm specific. Three different radionuclides in different doses were used. Viability and metabolic activity of the bacterial cells and biofilms were measured by CFU dilution and XTT reduction. Results Alpha-RIT with Bismuth-213 showed significant and dose dependent killing in both planktonic MRSA and biofilm. When planktonic bacteria were treated with 370 kBq of 213Bi-RIT 99% of the bacteria were killed. Complete killing of the bacteria in the biofilm was seen at 185 kBq. Beta-RIT with Lutetium-177 and Actinium-225 showed little to no significant killing. Conclusion Our results demonstrate the ability of specific antibodies loaded with an alpha-emitter Bismuth-213 to selectively kill staphylococcus aureus cells in vitro in both planktonic and biofilm state. RIT could therefore be a potentially alternative treatment modality against planktonic and biofilm-related microbial infections.
Collapse
Affiliation(s)
- B. van Dijk
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - K. J. H. Allen
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - M. Helal
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - H. C. Vogely
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M. G. E. H. Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. M. H. de Klerk
- Department of Nuclear Medicine, Meander Medical Center Amersfoort, Amersfoort, The Netherlands
| | - H. Weinans
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomechanical engineering, TU Delft, Delft, The Netherlands
| | - B. C. H. van der Wal
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E. Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
- * E-mail:
| |
Collapse
|
15
|
Helal M, Allen KJH, van Dijk B, Nosanchuk JD, Snead E, Dadachova E. Radioimmunotherapy of Blastomycosis in a Mouse Model With a (1→3)-β-Glucans Targeting Antibody. Front Microbiol 2020; 11:147. [PMID: 32117166 PMCID: PMC7019017 DOI: 10.3389/fmicb.2020.00147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Invasive fungal infections (IFI) cause devastating morbidity and mortality, with the number of IFIs more than tripling since 1979. Our laboratories were the first to demonstrate that radiolabeled microorganism-specific monoclonal antibodies are highly effective for treatment of experimental fungal, bacterial and viral infections. Later we proposed to utilize surface expressed pan-antigens shared by major IFI-causing pathogens such as beta-glucans as RIT targets. Here we evaluated in vivo RIT targeting beta-glucan in Blastomyces dermatitidis which causes serious infections in immunocompromised and immunocompetent individuals and in companion dogs. B. dermatitidis cells were treated with the 400-2 antibody to (1→3)-β-glucans radiolabeled with the beta-emitter 177Lutetium (177Lu) and alpha-emitter 213Bismuth (213Bi) and the efficacy of cell kill was determined by colony forming units (CFUs). To determine the antigen-specific localization of the 400-2 antibody in vivo, C57BL6 mice were infected intratracheally with 2 × 105B. dermatitidis cells and given 111In-400-2 antibody 24 h later. To evaluate the killing of B. dermatitidis cells with RIT, intratracheally infected mice were treated with 150 μCi 213Bi-400-2 and their lungs analyzed for CFUs 96 h post-infection. 213Bi-400-2 proved to be more effective in killing B. dermatitidis cells in vitro than 177Lu-400-2. Three times more 111In-400-2 accumulated in the lungs of infected mice, than in the non-infected ones. 213Bi-400-2 lowered the fungal burden in the lungs of infected mice more than 2 logs in comparison with non-treated infected controls. In conclusion, our results demonstrate the ability of an anti-(1-3)-beta-D-glucan antibody armed with an alpha-emitter 213Bi to selectively kill B. dermatitidis cells in vitro and in vivo. These first in vivo results of the effectiveness of RIT targeting pan-antigens on fungal pathogens warrant further investigation.
Collapse
Affiliation(s)
- Muath Helal
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kevin J H Allen
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bruce van Dijk
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joshua D Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, The Bronx, NY, United States
| | - Elisabeth Snead
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
16
|
Future Vistas in Alpha Therapy of Infectious Diseases. J Med Imaging Radiat Sci 2019; 50:S49-S52. [PMID: 31427256 PMCID: PMC7104931 DOI: 10.1016/j.jmir.2019.06.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
|
17
|
Lepareur N, Lacœuille F, Bouvry C, Hindré F, Garcion E, Chérel M, Noiret N, Garin E, Knapp FFR. Rhenium-188 Labeled Radiopharmaceuticals: Current Clinical Applications in Oncology and Promising Perspectives. Front Med (Lausanne) 2019; 6:132. [PMID: 31259173 PMCID: PMC6587137 DOI: 10.3389/fmed.2019.00132] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
Rhenium-188 (188Re) is a high energy beta-emitting radioisotope with a short 16.9 h physical half-life, which has been shown to be a very attractive candidate for use in therapeutic nuclear medicine. The high beta emission has an average energy of 784 keV and a maximum energy of 2.12 MeV, sufficient to penetrate and destroy targeted abnormal tissues. In addition, the low-abundant gamma emission of 155 keV (15%) is efficient for imaging and for dosimetric calculations. These key characteristics identify 188Re as an important therapeutic radioisotope for routine clinical use. Moreover, the highly reproducible on-demand availability of 188Re from the 188W/188Re generator system is an important feature and permits installation in hospital-based or central radiopharmacies for cost-effective availability of no-carrier-added (NCA) 188Re. Rhenium-188 and technetium-99 m exhibit similar chemical properties and represent a "theranostic pair." Thus, preparation and targeting of 188Re agents for therapy is similar to imaging agents prepared with 99mTc, the most commonly used diagnostic radionuclide. Over the last three decades, radiopharmaceuticals based on 188Re-labeled small molecules, including peptides, antibodies, Lipiodol and particulates have been reported. The successful application of these 188Re-labeled therapeutic radiopharmaceuticals has been reported in multiple early phase clinical trials for the management of various primary tumors, bone metastasis, rheumatoid arthritis, and endocoronary interventions. This article reviews the use of 188Re-radiopharmaceuticals which have been investigated in patients for cancer treatment, demonstrating that 188Re represents a cost effective alternative for routine clinical use in comparison to more expensive and/or less readily available therapeutic radioisotopes.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène MarquisRennes, France
- Univ RennesInra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer)—UMR_A 1341, UMR_S 1241, Rennes, France
| | - Franck Lacœuille
- Angers University HospitalAngers, France
- Univ AngersUniv Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Nantes, France
| | - Christelle Bouvry
- Comprehensive Cancer Center Eugène MarquisRennes, France
- Univ RennesCNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Rennes, France
| | - François Hindré
- Univ AngersUniv Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Nantes, France
- Univ AngersPRIMEX (Plateforme de Radiobiologie et d'Imagerie EXperimentale), Angers, France
| | - Emmanuel Garcion
- Univ AngersUniv Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Nantes, France
- Univ AngersPRIMEX (Plateforme de Radiobiologie et d'Imagerie EXperimentale), Angers, France
| | - Michel Chérel
- Univ AngersUniv Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Nantes, France
- ICO (Institut de Cancérologie de l'Ouest)Comprehensive Cancer Center René Gauducheau, Saint-Herblain, France
| | - Nicolas Noiret
- Univ RennesCNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Rennes, France
- ENSCR (Ecole Nationale Supérieure de Chimie de Rennes)Rennes, France
| | - Etienne Garin
- Comprehensive Cancer Center Eugène MarquisRennes, France
- Univ RennesInra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer)—UMR_A 1341, UMR_S 1241, Rennes, France
| | - F. F. Russ Knapp
- EmeritusMedical Radioisotopes Program, ORNL (Oak Ridge National Laboratory), Oak Ridge, TN, United States
| |
Collapse
|
18
|
Kowalik M, Masternak J, Barszcz B. Recent Research Trends on Bismuth Compounds in Cancer Chemoand Radiotherapy. Curr Med Chem 2019; 26:729-759. [DOI: 10.2174/0929867324666171003113540] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/15/2022]
Abstract
Background:Application of coordination chemistry in nanotechnology is a rapidly developing research field in medicine. Bismuth complexes have been widely used in biomedicine with satisfactory therapeutic effects, mostly in Helicobacter pylori eradication, but also as potential antimicrobial and anti-leishmanial agents. Additionally, in recent years, application of bismuth-based compounds as potent anticancer drugs has been studied extensively.Methods:Search for data connected with recent trends on bismuth compounds in cancer chemo- and radiotherapy was carried out using web-based literature searching tools such as ScienceDirect, Springer, Royal Society of Chemistry, American Chemical Society and Wiley. Pertinent literature is covered up to 2016.Results:In this review, based on 213 papers, we highlighted a number of current problems connected with: (i) characterization of bismuth complexes with selected thiosemicarbazone, hydrazone, and dithiocarbamate classes of ligands as potential chemotherapeutics. Literature results derived from 50 papers show that almost all bismuth compounds inhibit growth and proliferation of breast, colon, ovarian, lung, and other tumours; (ii) pioneering research on application of bismuth-based nanoparticles and nanodots for radiosensitization. Results show great promise for improvement in therapeutic efficacy of ionizing radiation in advanced radiotherapy (described in 36 papers); and (iii) research challenges in using bismuth radionuclides in targeted radioimmunotherapy, connected with choice of adequate radionuclide, targeting vector, proper bifunctional ligand and problems with 213Bi recoil daughters toxicity (derived from 92 papers).Conclusion:This review presents recent research trends on bismuth compounds in cancer chemo- and radiotherapy, suggesting directions for future research.
Collapse
Affiliation(s)
- Mateusz Kowalik
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Joanna Masternak
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Barbara Barszcz
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
19
|
Di Mambro T, Guerriero I, Aurisicchio L, Magnani M, Marra E. The Yin and Yang of Current Antifungal Therapeutic Strategies: How Can We Harness Our Natural Defenses? Front Pharmacol 2019; 10:80. [PMID: 30804788 PMCID: PMC6370704 DOI: 10.3389/fphar.2019.00080] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Fungal infections have aroused much interest over the last years because of their involvement in several human diseases. Immunocompromission due to transplant-related therapies and malignant cancer treatments are risk factors for invasive fungal infections, but also aggressive surgery, broad-spectrum antibiotics and prosthetic devices are frequently associated with infectious diseases. Current therapy is based on the administration of antifungal drugs, but the occurrence of resistant strains to the most common molecules has become a serious health-care problem. New antifungal agents are urgently needed and it is essential to identify fungal molecular targets that could offer alternatives for development of treatments. The fungal cell wall and plasma membrane are the most important structures that offer putative new targets which can be modulated in order to fight microbial infections. The development of monoclonal antibodies against new targets is a valid therapeutic strategy, both to solve resistance problems and to support the immune response, especially in immunocompromised hosts. In this review, we summarize currently used antifungal agents and propose novel therapeutic approaches, including new fungal molecular targets to be considered for drug development.
Collapse
Affiliation(s)
- Tomas Di Mambro
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.,Diatheva s.r.l., Cartoceto, Italy
| | - Ilaria Guerriero
- Takis s.r.l., Rome, Italy.,Veterinary Immunotherapy and Translational Research, Rome, Italy
| | - Luigi Aurisicchio
- Takis s.r.l., Rome, Italy.,Veterinary Immunotherapy and Translational Research, Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.,Diatheva s.r.l., Cartoceto, Italy
| | - Emanuele Marra
- Takis s.r.l., Rome, Italy.,Veterinary Immunotherapy and Translational Research, Rome, Italy
| |
Collapse
|
20
|
Nami S, Aghebati-Maleki A, Morovati H, Aghebati-Maleki L. Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomed Pharmacother 2019; 110:857-868. [DOI: 10.1016/j.biopha.2018.12.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/20/2018] [Accepted: 12/02/2018] [Indexed: 12/21/2022] Open
|
21
|
Naran K, Nundalall T, Chetty S, Barth S. Principles of Immunotherapy: Implications for Treatment Strategies in Cancer and Infectious Diseases. Front Microbiol 2018; 9:3158. [PMID: 30622524 PMCID: PMC6308495 DOI: 10.3389/fmicb.2018.03158] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022] Open
Abstract
The advances in cancer biology and pathogenesis during the past two decades, have resulted in immunotherapeutic strategies that have revolutionized the treatment of malignancies, from relatively non-selective toxic agents to specific, mechanism-based therapies. Despite extensive global efforts, infectious diseases remain a leading cause of morbidity and mortality worldwide, necessitating novel, innovative therapeutics that address the current challenges of increasing antimicrobial resistance. Similar to cancer pathogenesis, infectious pathogens successfully fashion a hospitable environment within the host and modulate host metabolic functions to support their nutritional requirements, while suppressing host defenses by altering regulatory mechanisms. These parallels, and the advances made in targeted therapy in cancer, may inform the rational development of therapeutic interventions for infectious diseases. Although "immunotherapy" is habitually associated with the treatment of cancer, this review accentuates the evolving role of key targeted immune interventions that are approved, as well as those in development, for various cancers and infectious diseases. The general features of adoptive therapies, those that enhance T cell effector function, and ligand-based therapies, that neutralize or eliminate diseased cells, are discussed in the context of specific diseases that, to date, lack appropriate remedial treatment; cancer, HIV, TB, and drug-resistant bacterial and fungal infections. The remarkable diversity and versatility that distinguishes immunotherapy is emphasized, consequently establishing this approach within the armory of curative therapeutics, applicable across the disease spectrum.
Collapse
Affiliation(s)
- Krupa Naran
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Trishana Nundalall
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Shivan Chetty
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
22
|
Allen KJH, Jiao R, Malo ME, Frank C, Dadachova E. Biodistribution of a Radiolabeled Antibody in Mice as an Approach to Evaluating Antibody Pharmacokinetics. Pharmaceutics 2018; 10:pharmaceutics10040262. [PMID: 30563123 PMCID: PMC6320949 DOI: 10.3390/pharmaceutics10040262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 12/01/2018] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Monoclonal antibodies are used in the treatment of multiple conditions including cancer, autoimmune disorders, and infectious diseases. One of the initial steps in the selection of an antibody candidate for further pre-clinical development is determining its pharmacokinetics in small animal models. The use of mass spectrometry and other techniques to determine the fate of these antibodies is laborious and expensive. Here we describe a straightforward and highly reproducible methodology for utilizing radiolabeled antibodies for pharmacokinetics studies. (2) Methods: Commercially available bifunctional linker CHXA” and 111Indium radionuclide were used. A melanin-specific chimeric antibody A1 and an isotype matching irrelevant control A2 were conjugated with the CHXA”, and then radiolabeled with 111In. The biodistribution was performed at 4 and 24 h time points in melanoma tumor-bearing and healthy C57BL/6 female mice. (3) The biodistribution of the melanin-binding antibody showed the significant uptake in the tumor, which increased with time, and very low uptake in healthy melanin-containing tissues such as the retina of the eye and melanized skin. This biodistribution pattern in healthy tissues was very close to that of the isotype matching control antibody. (4) Conclusions: The biodistribution experiment allows us to assess the pharmacokinetics of both antibodies side by side and to make a conclusion regarding the suitability of specific antibodies for further development.
Collapse
Affiliation(s)
- Kevin J H Allen
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Rubin Jiao
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Mackenzie E Malo
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Connor Frank
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
23
|
Helal M, Dadachova E. Radioimmunotherapy as a Novel Approach in HIV, Bacterial, and Fungal Infectious Diseases. Cancer Biother Radiopharm 2018; 33:330-335. [PMID: 30133305 DOI: 10.1089/cbr.2018.2481] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the past several decades, many antimicrobial agents have been used in treating different fungal, bacterial, and viral infections. However, these agents have faced challenges such as pronounced side-effect profiles and pathogen resistance. In addition, a cure for many chronic infections such as human immunodeficiency virus (HIV) has not been achieved, and the incidence of opportunistic infections in immunocompromised patients has increased significantly in the past decades. Therefore, an alternative strategy for combating these infections is needed. Radioimmunotherapy (RIT) has been proposed to be a valuable tool in the management of such infections. The side-effects associated with RIT are minimal as the targeted antigens are only expressed on microbial or infected cells. RIT demonstrated impressive potency in eradicating pathogens in animal models and patient samples. Cryptococcus neoformans, HIV, and Bacillus anthracis are few examples of infections for which RIT has been an effective treatment using radionuclides such as bismuth-213 (213Bi) or rhenium-188 (188Re).
Collapse
Affiliation(s)
- Muath Helal
- University of Saskatchewan , Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
24
|
Helminth eggs as parasitic indicators of fecal contamination in agricultural irrigation water, biosolids, soils and pastures. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2018; 38:42-53. [PMID: 29668133 DOI: 10.7705/biomedica.v38i0.3352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 03/29/2017] [Indexed: 12/31/2022]
Abstract
INTRODUCTION A very common practice in agriculture is the disposal of wastewater and biosolids from water treatment systems due to their high nutrient content, which substantially improves crop yields. However, the presence of pathogens of fecal origin creates a sanitary risk to farmers and consumers. OBJECTIVE To determine the presence and concentration of helminth eggs in irrigation waters, biosolids, agricultural soils, and pastures. MATERIALS AND METHODS Water, biosolids, soil, and pasture samples were collected and analyzed for helminth egg detection, total eggs and viable eggs counts. The behavior of helminth eggs was evaluated in irrigation waters and dairy cattle grassland, where biosolids had been used as an organic amendment. RESULTS Concentrations between 0.1-3 total helminth eggs/L, and 0.1-1 viable helminth eggs/L were found in water. In biosolids and soil, we found 3-22 total helminth eggs/4 g of dry weight, and 2-12 viable helminth eggs/4 g of dry weight, and in grass, we found <2-9 total helminth eggs/g of fresh weight, and <1-3 viable helminth eggs/g of fresh weight. The presence of helminth eggs in each matrix varied from days to months, which may represent a sanitary risk to farmers as well as to consumers. CONCLUSIONS The presence of helminth eggs in the assessed matrixes confirms the sanitary risk of such practices. Therefore, it is important to control and incorporate regulations related to the use of wastewater and biosolids in agriculture.
Collapse
|
25
|
Coelho C, Casadevall A. Cryptococcal therapies and drug targets: the old, the new and the promising. Cell Microbiol 2016; 18:792-9. [PMID: 26990050 DOI: 10.1111/cmi.12590] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/28/2016] [Accepted: 03/08/2016] [Indexed: 01/09/2023]
Abstract
Half a century after the introduction of Amphotericin B the management of cryptococcosis remains unsatisfactory. The disease, caused primarily by the two fungal species Cryptococcus neoformans and Cryptococcus gattii, remains responsible for considerable morbidity and mortality despite standard medical care. Current therapeutic options are limited to Amphotericin B, azoles and 5-flucytosine. However, this organism has numerous well-characterized virulence mechanisms that are amenable to pharmacological interference and are thus potential therapeutic targets. Here, we discuss existing approved antifungal drugs, resistance mechanisms to these drugs and non-standard antifungal drugs that have potential in treatment of cryptococcosis, including immunomodulatory strategies that synergize with antifungal drugs, such as cytokine administration or monoclonal antibodies. Finally, we summarize attempts to target well-described virulence factors of Cryptococcus, the capsule or fungal melanin. This review emphasizes the pressing need for new therapeutic alternatives for cryptococcosis.
Collapse
Affiliation(s)
- Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
26
|
Abstract
Novel approaches to the treatment of infectious diseases are urgently needed. This need has resulted in renewing the interest in antibodies for therapy of infectious diseases. Radioimmunotherapy (RIT) is a cancer treatment modality that utilizes radiolabeled monoclonal antibodies. During the last decade we have translated RIT into the field of experimental fungal, bacterial, and HIV infections. In addition, successful proof of principle experiments with radiolabeled pan-antibodies that bind to antigens shared by major pathogenic fungi have been performed in vitro. The armamentarium of pan-antibodies would result in reducing our dependence on microorganism-specific antibodies and thus would speed up the development of RIT for infections. We believe that the time is ripe for deploying RIT in the clinic to combat infectious diseases.
Collapse
|
27
|
Abstract
Concomitant with the increased prevalence of immunocompromised persons, invasive fungal infections have become considerably more frequent in the last 50 years. High mortality rates caused by invasive mycoses and high morbidity because of intractable mucosal infections have created an unmet need for innovative prophylactic and therapeutic strategies against fungal pathogens. Several immunotherapeutics and vaccines are in development to address this need, although one has yet to reach the clinic. This review focuses on past and current immunotherapeutic and vaccine strategies being tested to either prevent or treat fungal infections, as well as the challenges associated with their development.
Collapse
Affiliation(s)
- Evelyn Santos
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| |
Collapse
|
28
|
Bryan RA, Jiang Z, Jandl T, Strauss J, Koba W, Onyedika C, Morgenstern A, Bruchertseifer F, Epstein AL, Dadachova E. Treatment of experimental pancreatic cancer with 213-Bismuth-labeled chimeric antibody to single-strand DNA. Expert Rev Anticancer Ther 2014; 14:1243-9. [PMID: 25156106 DOI: 10.1586/14737140.2014.952285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Novel approaches to treatment of pancreatic cancer (PCa) are urgently needed. A chimeric monoclonal antibody (mAb) chTNT3 binds to single-strand DNA (ssDNA) and RNA released from the non-viable cells in fast growing tumors. Here the authors investigated whether radioimmunotherapy (RIT) using chTNT3 mAb radiolabeled with 213-Bismuth ((213)Bi) could be effective in treatment of experimental PCa. METHODS Two human PCa cell lines, Panc1 and MiaPaCa-2, were used for in vitro experiments. The xenografts in mice were established using MiaPaCa-2 cells. Therapy compared (213)Bi-chTNT3 (700 μCi) to gemcitabine or cisplatin, untreated controls and 'cold' chTNT3. RESULTS RIT abrogated the tumors growth while tumors in control groups grew aggressively. Chemotherapy was less effective than RIT and toxic to mice while RIT did not have any side effects. CONCLUSIONS RIT with (213)Bi-chTNT3 was safe and effective in the treatment of experimental PCa in comparison with chemotherapy. This makes α-RIT targeting ssDNA a promising modality for further development.
Collapse
Affiliation(s)
- Ruth A Bryan
- Department of Radiology, Albert Einstein College of Medicine, 1695A Eastchester Rd. Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chaturvedi AK, Wormley FL. Cryptococcus antigens and immune responses: implications for a vaccine. Expert Rev Vaccines 2014; 12:1261-72. [PMID: 24156284 DOI: 10.1586/14760584.2013.840094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cryptococcosis is a fungal disease primarily occurring in immunocompromised individuals, such as AIDS patients, and is associated with high morbidity and mortality. However, cryptococcosis can occur within immunocompetent populations as observed during an outbreak in Vancouver Island, British Columbia, Canada, the Pacific Northwest and other regions of the USA and in Mediterranean Europe. Mortality rates due to cryptococcosis have significantly declined in economically developed countries since the widespread implementation of highly active antiretroviral therapy. However, the incidence and mortality of this disease remains high in economically undeveloped areas in Africa and Asia where HIV infections are high and availability of HAART is limited. The continuing AIDS epidemic coupled with the increased usage of immunosuppressive drugs to prevent organ transplant rejection or to treat autoimmune diseases has resulted in an increase in individuals at risk for developing cryptococcosis. The purpose of this review is to discuss the need, challenges and potential for developing vaccines against cryptococcosis.
Collapse
Affiliation(s)
- Ashok K Chaturvedi
- Department of Biology and The South Texas Center for Emerging Infectious Diseases, The University of Texas, San Antonio, TX, USA
| | | |
Collapse
|
30
|
Thornton CR. Breaking the mould - novel diagnostic and therapeutic strategies for invasive pulmonary aspergillosis in the immune deficient patient. Expert Rev Clin Immunol 2014; 10:771-80. [PMID: 24689528 DOI: 10.1586/1744666x.2014.904747] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Invasive pulmonary aspergillosis (IPA) caused by the ubiquitous environmental fungus Aspergillus is a frequently fatal lung disease of immunocompromised humans accounting for more than 200,000 infections each year, with an associated mortality rate of 30-90%. This review addresses the current status of IPA diagnosis and treatment and the urgent need to develop accurate, non-invasive strategies for identifying pulmonary infections in the ever-expanding population of immune deficient patients at risk of acquiring opportunistic fungal infections including hematological malignancy and hematopoetic stem cell transplant patients. Recent advances in the use of an Aspergillus-specific monoclonal antibody, JF5, for point-of-care diagnosis of IPA using lateral-flow technology is examined, as is its use in PET/MRI bioimaging and radio-immunotherapy using radionuclide-labeled single chain antibody fragments, Fab fragments, and a fully humanized JF5 derivative.
Collapse
|
31
|
Bryan RA, Jiang Z, Morgenstern A, Bruchertseifer F, Casadevall A, Dadachova E. Radioimmunotherapy of Cryptococcus neoformans spares bystander mammalian cells. Future Microbiol 2014; 8:1081-9. [PMID: 24020737 DOI: 10.2217/fmb.13.79] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AIM Previously, we showed that radioimmunotherapy (RIT) for cryptococcal infections using radioactively labeled antibodies recognizing the cryptococcal capsule reduced fungal burden and prolonged survival of mice infected with Cryptococcus neoformans. Here, we investigate the effects of RIT on bystander mammalian cells. MATERIALS & METHODS Heat-killed C. neoformans bound to anticapsular antibodies, unlabeled or labeled with the β-emitter rhenium-188 (16.9-h half-life) or the α-emitter bismuth-213 (46-min half-life), was incubated with macrophage-like J774.16 cells or epithelial-like Chinese hamster ovary cells. Lactate dehydrogenase activity, crystal violet uptake, reduction of tetrazolium dye (2,3)-bis-(2-methoxy-4-nitro-5-sulfenyl)-(2H)-terazolium-5-carboxanilide and nitric oxide production were measured. RESULTS The J774.16 and Chinese hamster ovary cells maintained membrane integrity, viability and metabolic activity following exposure to radiolabeled C. neoformans. CONCLUSION RIT of C. neoformans is a selective therapy with minimal effects on host cells and these results are consistent with observations that RIT-treated mice with cryptococcal infection lacked RIT-related pathological changes in lungs and brain tissues.
Collapse
Affiliation(s)
- Ruth A Bryan
- Department of Radiology, 1695A Eastchester Road, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | |
Collapse
|
32
|
Microbicidal power of alpha radiation in sterilizing germinating Bacillus anthracis spores. Antimicrob Agents Chemother 2013; 58:1813-5. [PMID: 24379209 DOI: 10.1128/aac.01266-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Radioimmunotherapy (RIT) takes advantage of the specificity and affinity of the antigen-antibody interaction to deliver microbicidal radioactive nuclides to a site of infection. In this study, we investigated the microbicidal properties of an alpha particle-emitting 213Bi-labeled monoclonal antibody (MAb), EA2-1 (213Bi-EA2-1), that binds to the immunodominant antigen on Bacillus anthracis spores. Our results showed that dormant spores were resistant to 213Bi-EA2-1. Significant spore killing was observed following treatment with EA2-1 labeled with 300 μCi 213Bi; however, this effect was not dependent on the MAb. In contrast, when spores were germinating, 213Bi-EA2-1 mediated MAb-specific killing in a dose-dependent manner. Dormant spores are very resistant to RIT, and RIT should focus on targeting vegetative cells and germinating spores.
Collapse
|
33
|
Thornton CR, Wills OE. Immunodetection of fungal and oomycete pathogens: established and emerging threats to human health, animal welfare and global food security. Crit Rev Microbiol 2013; 41:27-51. [PMID: 23734714 DOI: 10.3109/1040841x.2013.788995] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Filamentous fungi (moulds), yeast-like fungi, and oomycetes cause life-threatening infections of humans and animals and are a major constraint to global food security, constituting a significant economic burden to both agriculture and medicine. As well as causing localized or systemic infections, certain species are potent producers of allergens and toxins that exacerbate respiratory diseases or cause cancer and organ damage. We review the pathogenic and toxigenic organisms that are etiologic agents of both animal and plant diseases or that have recently emerged as serious pathogens of immunocompromised individuals. The use of hybridoma and phage display technologies and their success in generating monoclonal antibodies for the detection and control of fungal and oomycete pathogens are explored. Monoclonal antibodies hold enormous potential for the development of rapid and specific tests for the diagnosis of human mycoses, however, unlike plant pathology, their use in medical mycology remains to be fully exploited.
Collapse
|
34
|
|
35
|
Casadevall A, Pirofski LA. Immunoglobulins in defense, pathogenesis, and therapy of fungal diseases. Cell Host Microbe 2012; 11:447-56. [PMID: 22607798 DOI: 10.1016/j.chom.2012.04.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Only two decades ago antibodies to fungi were thought to have little or no role in protection against fungal diseases. However, subsequent research has provided convincing evidence that certain antibodies can modify the course of fungal infection to the benefit or detriment of the host. Hybridoma technology was the breakthrough that enabled the characterization of antibodies to fungi, illuminating some of the requirements for antibody efficacy. As discussed in this review, fungal-specific antibodies mediate protection through direct actions on fungal cells and through classical mechanisms such as phagocytosis and complement activation. Although mechanisms of antibody-mediated protection are often species-specific, numerous fungal antigens can be targeted to generate vaccines and therapeutic immunoglobulins. Furthermore, the study of antibody function against medically important fungi has provided fresh immunological insights into the complexity of humoral immunity that are likely to apply to other pathogens.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Microbiology and Immunology and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
36
|
Hole CR, Wormley FL. Vaccine and immunotherapeutic approaches for the prevention of cryptococcosis: lessons learned from animal models. Front Microbiol 2012; 3:291. [PMID: 22973262 PMCID: PMC3428735 DOI: 10.3389/fmicb.2012.00291] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/24/2012] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus neoformans and C. gattii, the predominant etiological agents of cryptococcosis, can cause life-threatening infections of the central nervous system in immunocompromised and immunocompetent individuals. Cryptococcal meningoencephalitis is the most common disseminated fungal infection in AIDS patients, and C. neoformans remains the third most common invasive fungal infection among organ transplant recipients. Current anti-fungal drug therapies are oftentimes rendered ineffective due to drug toxicity, the emergence of drug resistant organisms, and/or the inability of the host's immune defenses to assist in eradication of the yeast. Therefore, there remains an urgent need for the development of immune-based therapies and/or vaccines to combat cryptococcosis. Studies in animal models have demonstrated the efficacy of various vaccination strategies and immune therapies to induce protection against cryptococcosis. This review will summarize the lessons learned from animal models supporting the feasibility of developing immunotherapeutics and vaccines to prevent cryptococcosis.
Collapse
Affiliation(s)
- Camaron R Hole
- Department of Biology, The University of Texas at San Antonio San Antonio, TX, USA
| | | |
Collapse
|
37
|
Dufresne SF, Datta K, Li X, Dadachova E, Staab JF, Patterson TF, Feldmesser M, Marr KA. Detection of urinary excreted fungal galactomannan-like antigens for diagnosis of invasive aspergillosis. PLoS One 2012; 7:e42736. [PMID: 22900046 PMCID: PMC3416763 DOI: 10.1371/journal.pone.0042736] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/12/2012] [Indexed: 02/06/2023] Open
Abstract
Mortality associated with invasive aspergillosis (IA) remains high, partly because of delayed diagnosis. Detection of microbial exoantigens, released in serum and other body fluids during infection, may help timely diagnosis. In course of IA, Aspergillus galactomannan (GM), a well established polysaccharide biomarker, is released in body fluids including urine. Urine is an abundant, safely collected specimen, well-suited for point-of-care (POC) testing, which could play an increasing role in screening for early disease. Our main objective was to demonstrate GM antigenuria as a clinically relevant biological phenomenon in IA and establish proof-of-concept that it could be translated to POC diagnosis. Utilizing a novel IgM monoclonal antibody (MAb476) that recognizes GM-like antigens from Aspergillus and other molds, we demonstrated antigenuria in an experimental animal IA model (guinea pig), as well as in human patients. In addition, we investigated the chemical nature of the urinary excreted antigen in human samples, characterized antigen detection in urine by immunoassays, described a putative assay inhibitor in urine, and indicated means of alleviation of the inhibition. We also designed and used a lateral flow immunochromatographic assay to detect urinary excreted antigen in a limited number of IA patient urine samples. In this study, we establish that POC diagnosis of IA based on urinary GM detection is feasible. Prospective studies will be necessary to establish the performance characteristics of an optimized device and define its optimal clinical use.
Collapse
Affiliation(s)
- Simon F. Dufresne
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Département de Microbiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Kausik Datta
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Xinming Li
- Albert Einstein College of Medicine, Bronx, New York, United States of America
- China Medical University, Shenyang, People's Republic of China
| | - Ekaterina Dadachova
- Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Janet F. Staab
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Thomas F. Patterson
- University of Texas Health Science Center and South Texas Veterans Healthcare System, San Antonio, Texas, United States of America
| | - Marta Feldmesser
- Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Kieren A. Marr
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
38
|
Armstrong-James D, Harrison TS. Immunotherapy for fungal infections. Curr Opin Microbiol 2012; 15:434-9. [PMID: 22884572 DOI: 10.1016/j.mib.2012.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/02/2012] [Accepted: 06/04/2012] [Indexed: 02/02/2023]
Abstract
Invasive fungal infections have become a major cause of mortality in immunocompromised individuals. Despite the current availability of number of highly active antifungal agents, overall mortality remains around 40%. Importantly, it is clear that a failure to restore host immunity leads to worse outcomes. These observations provide clear rationale for the development of novel immunotherapies to improve outcomes in immunocompromised individuals with invasive fungal infections. In this article we summarise the key advances that have been made in the field of immunotherapy for fungal infections in recent years, with a particular focus on clinical studies of interferon-γ therapy, adoptive T cell therapy, and gene therapy for chronic granulomatous disorder. In addition a number of pre-clinical approaches are reviewed.
Collapse
Affiliation(s)
- Darius Armstrong-James
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| | | |
Collapse
|
39
|
Steele C, Wormley FL. Immunology of fungal infections: lessons learned from animal models. Curr Opin Microbiol 2012; 15:413-9. [PMID: 22763286 DOI: 10.1016/j.mib.2012.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/04/2012] [Accepted: 05/08/2012] [Indexed: 01/09/2023]
Abstract
The continuing AIDS epidemic coupled with increased usage of immunosuppressive drugs to prevent organ rejection or treat autoimmune diseases has resulted in an increase in individuals at risk for acquiring fungal diseases. These concerns highlight the need to elucidate mechanisms of inducing protective immune responses against fungal pathogens. Consequently, several experimental models of human mycoses have been developed to study these diseases. The availability of transgenic animal models allows for in-depth analysis of specific components, receptors, and signaling pathways that elicit protection against fungal diseases. This review focuses on recent advances in our understanding of immune responses to fungal infections gained using animal models.
Collapse
Affiliation(s)
- Chad Steele
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | | |
Collapse
|
40
|
Bryan RA, Guimaraes AJ, Hopcraft S, Jiang Z, Bonilla K, Morgenstern A, Bruchertseifer F, Del Poeta M, Torosantucci A, Cassone A, Nosanchuk JD, Casadevall A, Dadachova E. Toward developing a universal treatment for fungal disease using radioimmunotherapy targeting common fungal antigens. Mycopathologia 2012; 173:463-71. [PMID: 22048869 PMCID: PMC4397502 DOI: 10.1007/s11046-011-9476-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 08/26/2011] [Indexed: 01/20/2023]
Abstract
BACKGROUND Previously, we demonstrated the ability of radiolabeled antibodies recognizing the cryptococcal polysaccharide capsule to kill Cryptococcus neoformans both in vitro and in infected mice. This approach, known as radioimmunotherapy (RIT), uses the exquisite ability of antibodies to bind antigens to deliver microbicidal radiation. To create RIT reagents which would be efficacious against all major medically important fungi, we have selected monoclonal antibodies (mAbs) to common surface fungal antigens such as heat shock protein 60 (HSP60), which is found on the surface of diverse fungi; beta (1,3)-glucan, which is a major constituent of fungal cell walls; ceramide which is found at the cell surface, and melanin, a polymer present in the fungal cell wall. METHODS MAbs 4E12, an IgG2a to fungal HSP60; 2G8, an IgG2b to beta-(1,3)-glucan; and 6D2, an IgM to melanin, were labeled with the alpha particle emitting radionuclide 213-Bismuth ((213)Bi) using the chelator CHXA". B11, an IgM antibody to glucosylceramide, was labeled with the beta emitter 188-Rhenium ((188)Re). Model organisms Cryptococcus neoformans and Candida albicans were used to assess the cytotoxicity of these compounds after exposure to either radiolabeled mAbs or controls. RESULTS (213)Bi-mAbs to HSP60 and to the beta-(1,3)-glucan each reduced the viability of both fungi by 80-100%. The (213)Bi-6D2 mAb to melanin killed 22% of C. neoformans, but did not kill C. albicans. B11 mAb against fungal ceramide was effective against wild-type C. neoformans, but was unable to kill a mutant lacking the ceramide target. Unlabeled mAbs and radiolabeled irrelevant control mAbs caused no killing. CONCLUSION Our results suggest that it is feasible to develop RIT against fungal pathogens by targeting common antigens and such an approach could be developed against fungal diseases for which existing therapy is unsatisfactory.
Collapse
Affiliation(s)
- R. A. Bryan
- Albert Einstein College of Medicine, 1695A Eastchester Rd., Bronx, NY 10461, USA
| | - A. J. Guimaraes
- Albert Einstein College of Medicine, 1695A Eastchester Rd., Bronx, NY 10461, USA
| | - S. Hopcraft
- Albert Einstein College of Medicine, 1695A Eastchester Rd., Bronx, NY 10461, USA
| | - Z. Jiang
- Albert Einstein College of Medicine, 1695A Eastchester Rd., Bronx, NY 10461, USA
| | - K. Bonilla
- Albert Einstein College of Medicine, 1695A Eastchester Rd., Bronx, NY 10461, USA
| | | | | | - M. Del Poeta
- Medical University of South Carolina, Charleston, SC, USA
| | | | - A. Cassone
- Istituto Superiore di Sanita, Rome, Italy
| | - J. D. Nosanchuk
- Albert Einstein College of Medicine, 1695A Eastchester Rd., Bronx, NY 10461, USA
| | - A. Casadevall
- Albert Einstein College of Medicine, 1695A Eastchester Rd., Bronx, NY 10461, USA
| | - E. Dadachova
- Albert Einstein College of Medicine, 1695A Eastchester Rd., Bronx, NY 10461, USA
| |
Collapse
|
41
|
Abstract
Despite appropriate antifungal treatment, the management of cryptococcal disease remains challenging, especially in immunocompromised patients, such as human immunodeficiency virus-infected individuals and solid organ transplant recipients. During the past two decades, our knowledge of host immune responses against Cryptococcus spp. has been greatly advanced, and the role of immunomodulation in augmenting the response to infection has been investigated. In particular, the role of 'protective' Th1 (tumour necrosis factor-α, interferon (IFN)-γ, interleukin (IL)-12, and IL-18) and Th17 (IL-23 and IL-17) and 'non-protective' Th2 (IL-4, IL-10, and IL-13) cytokines has been extensively studied in vitro and in animal models of cryptococcal infection. Immunomodulation with monoclonal antibodies against the capsular polysaccharide glucuronoxylomannan, glucosylceramides, melanin and β-glucan and, lately, with radioimmunotherapy has also yielded promising results in animal models. As a balance between sufficiently protective Th1 responses and excessive inflammation is important for optimal outcome, the effect of immunotherapy may range from beneficial to deleterious, depending on factors related to the host, the infecting organism, and the immunomodulatory regimen. Clinical evidence supporting immunomodulation in patients with cryptococcal infection remains too limited to allow firm recommendations. Limited human data suggest a role for IFN-γ. Identification of surrogate markers characterizing patients' immunological status could possibly suggest candidate patients for immunotherapy and the type of immunomodulation to be administered.
Collapse
Affiliation(s)
- C Antachopoulos
- 3rd Department of Paediatrics, Hippokration Hospital, Aristotle University, Thessaloniki, Greece
| | | |
Collapse
|
42
|
|
43
|
Howard A, O'Donoghue M, Feeney A, Sleator RD. Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence 2012; 3:243-50. [PMID: 22546906 PMCID: PMC3442836 DOI: 10.4161/viru.19700] [Citation(s) in RCA: 499] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic bacterial pathogen primarily associated with hospital-acquired infections. The recent increase in incidence, largely associated with infected combat troops returning from conflict zones, coupled with a dramatic increase in the incidence of multidrug-resistant (MDR) strains, has significantly raised the profile of this emerging opportunistic pathogen. Herein, we provide an overview of the pathogen, discuss some of the major factors that have led to its clinical prominence and outline some of the novel therapeutic strategies currently in development.
Collapse
Affiliation(s)
- Aoife Howard
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | | | | | | |
Collapse
|
44
|
Pre-clinical evaluation of a 213Bi-labeled 2556 antibody to HIV-1 gp41 glycoprotein in HIV-1 mouse models as a reagent for HIV eradication. PLoS One 2012; 7:e31866. [PMID: 22427811 PMCID: PMC3302885 DOI: 10.1371/journal.pone.0031866] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 01/13/2012] [Indexed: 11/28/2022] Open
Abstract
Background Any strategy for curing HIV infection must include a method to eliminate viral-infected cells. Based on our earlier proof-of-principle results targeting HIV-1 infected cells with radiolabeled antibody (mAb) to gp41 viral antigen, we embarked on identifying a suitable candidate mAb for preclinical development. Methodology/Principal Findings Among the several human mAbs to gp41 tested, mAb 2556 was found to have high affinity, reactivity with multimeric forms of gp41 present on both the surface of virus particles and cells expressing HIV-1 Env, and recognition of a highly conserved epitope of gp41 shared by all HIV-1 subtypes. Also, mAb 2556 was the best in competition with HIV-1+ serum antibodies, which is an extremely important consideration for efficacy in the treatment of HIV patients. When radiolabeled with alpha-emitting radionuclide 213-Bismuth (213Bi) - 213Bi-2556 efficiently and specifically killed ACH-2 human lymphocytes chronically infected with HIV-1, and HIV-1 infected human peripheral blood mononuclear cells (hPBMCs). The number of binding sites for 213Bi-2556 on the surface of the infected cells was >106. The in vivo experiments were performed in two HIV-1 mouse models – splenic and intraperitoneal. In both models, the decrease in HIV-1 infected hPBMCs from the spleens and peritoneum, respectively, was dose-dependent with the most pronounced killing of hPBMCs observed in the 100 µCi 213Bi-2556 group (P = 0.01). Measurement of the blood platelet counts and gross pathology of the treated mice demonstrated the lack of toxicity for 213Bi-2556. Conclusions/Significance We describe the preclinical development of a novel radiolabeled mAb reagent that could potentially be part of an HIV eradication strategy that is ready for translation into the clinic as the next step in its development. As viral antigens are very different from “self” human antigens - this approach promises high selectivity, increased efficacy and low toxicity, especially in comparison to immunotoxins.
Collapse
|
45
|
Abstract
The interaction of pathogenic Cryptococcus species with their various hosts is somewhat unique compared to other fungal pathogens such as Aspergillus fumigatus and Candida albicans. Cryptococcus shares an intimate association with host immune cells, leading to enhanced intracellular growth. Furthermore, unlike most other fungal pathogens, the signs and symptoms of cryptococcal disease are typically self-inflicted by the host during the host's attempt to clear this invader from sensitive organ systems such as the central nervous system. In this review, we will summarize the story of host-Cryptococcus interactions to date and explore strategies to exploit the current knowledge for treatment of cryptococcal infections.
Collapse
Affiliation(s)
- Michael S Price
- Department of Medicine, Duke University Medical Center, Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
46
|
Nosanchuk JD, Dadachova E. Radioimmunotherapy of fungal diseases: the therapeutic potential of cytocidal radiation delivered by antibody targeting fungal cell surface antigens. Front Microbiol 2012; 2:283. [PMID: 22275913 PMCID: PMC3257868 DOI: 10.3389/fmicb.2011.00283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/28/2011] [Indexed: 01/26/2023] Open
Abstract
Radioimmunotherapy is the targeted delivery of cytocidal radiation to cells via specific antibody. Although mature for the treatment of cancer, RIT of infectious diseases is in pre-clinical development. However, as there is an obvious and urgent need for novel approaches to treat infectious diseases, RIT can provide us with a powerful approach to combat serious diseases, including invasive fungal infections. For example, RIT has proven more effective than standard amphotericin B for the treatment of experimental cryptococcosis. This review will discuss the concepts of RIT, its applications for infectious diseases, and the strides made to date to bring RIT of infectious diseases to fruition. Finally, we will discuss the potential of PAN-FUNGAL RIT, the targeting of conserved fungal cell surface antigens by RIT, as a treatment modality for fungi prior to the formal microbiological identification of the specific pathogen. In sum, RIT provides a mechanism for the targeted killing of drug susceptible or resistant fungi irrespective of the host immune status and may dramatically reduce the length of therapy currently required for many invasive fungal diseases.
Collapse
Affiliation(s)
- Joshua D Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine Bronx, NY, USA
| | | |
Collapse
|
47
|
Treatment of early and established Cryptococcus neoformans infection with radiolabeled antibodies in immunocompetent mice. Antimicrob Agents Chemother 2011; 56:552-4. [PMID: 22005995 DOI: 10.1128/aac.00473-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We investigated the utility of radioimmunotherapy (RIT) in early and established cryptococcal infection in immunocompetent mice. RIT with (213)Bi-18B7 antibody completely eliminated fungus from mouse lungs and brains for early infection, while (188)Re-18B7 significantly reduced CFU in the lungs or both lungs and brains during early and established infection, respectively. The results point to the independence of RIT of the immune status of the host, which is encouraging for translation of this strategy into the clinic.
Collapse
|
48
|
Abstract
Antibody preparations have a long history of providing protection from infectious diseases. Although antibodies remain the only natural host-derived defense mechanism capable of completely preventing infection, as products, they compete against inexpensive therapeutics such as antibiotics, small molecule inhibitors and active vaccines. The continued discovery in the monoclonal antibody (mAb) field of leads with broadened cross neutralization of viruses and demonstrable synergy of antibody with antibiotics for bacterial diseases, clearly show that innovation remains. The commercial success of mAbs in chronic disease has not been paralleled in infectious diseases for several reasons. Infectious disease immunotherapeutics are limited in scope as endemic diseases necessitate active vaccine development. Also, the complexity of these small markets draws the interest of niche companies rather than big pharmaceutical corporations. Lastly, the cost of goods for mAb therapeutics is inherently high for infectious agents due to the need for antibody cocktails, which better mimic polyclonal immunoglobulin preparations and prevent antigenic escape. In cases where vaccine or convalescent populations are available, current polyclonal hyperimmune immunoglobulin preparations (pIgG), with modern and highly efficient purification technology and standardized assays for potency, can make economic sense. Recent innovations to broaden the potency of mAb therapies, while reducing cost of production, are discussed herein. On the basis of centuries of effective use of Ab treatments, and with growing immunocompromised populations, the question is not whether antibodies have a bright future for infectious agents, but rather what formats are cost effective and generate safe and efficacious treatments to satisfy regulatory approval.
Collapse
Affiliation(s)
- Jody D Berry
- Cangene Corporation, 155 Innovation Drive, Winnipeg, Man., Canada R3T 5Y3.
| | | |
Collapse
|
49
|
Cryptococcus neoformans as a Model for Radioimmunotherapy of Infections. Interdiscip Perspect Infect Dis 2011; 2011:830286. [PMID: 21747848 PMCID: PMC3124862 DOI: 10.1155/2011/830286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/14/2011] [Indexed: 12/17/2022] Open
Abstract
There is an obvious and urgent need for novel approaches to treat infectious diseases. The use of monoclonal antibodies in therapy of infectious diseases is now experiencing renewed interest. During the last 5 years radioimmunotherapy (RIT), a modality previously developed only for cancer treatment, has been successfully adapted for the treatment of experimental fungal, bacterial, and viral infections. As our model organism for studying the efficacy, mechanisms, potential toxicity, and radioresistance to RIT, as well as for comparison of RIT with the existing antimicrobial therapies we have chosen the encapsulated yeast Cryptococcus neoformans (CN). The success of RIT approach in laboratory studies provides encouragement for feasibility of therapeutically targeting microbes with labeled antibodies. In addition, the creation of “panantibodies” for RIT which would recognize antigens shared by the whole class of pathogens such as fungi, for example, would facilitate the introduction of RIT into the clinic.
Collapse
|
50
|
An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov 2010; 9:719-27. [PMID: 20725094 DOI: 10.1038/nrd3074] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Invasive fungal infections are increasing in incidence and are associated with substantial mortality. Improved diagnostics and the availability of new antifungals have revolutionized the field of medical mycology in the past decades. This Review focuses on recent developments in the antifungal pipeline, concentrating on promising candidates such as new azoles, polyenes and echinocandins, as well as agents such as nikkomycin Z and the sordarins. Developments in vaccines and antibody-based immunotherapy are also discussed. Few therapeutic products are currently in active development, and progression of therapeutic agents with fungus-specific mechanisms of action is of key importance.
Collapse
|