1
|
Gao S, Gao M, Du H, Li L, An X, Shi Y, Wang X, Cong H, Han B, Zhou C, Zhou H. SARM regulates cell apoptosis and inflammation during Toxoplasma gondii infection through a multistep mechanism. Parasit Vectors 2025; 18:103. [PMID: 40075497 PMCID: PMC11899056 DOI: 10.1186/s13071-025-06721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The sterile alpha and HEAT/Armadillo motif (SARM) is the fifth Toll-like receptor (TLR) adaptor protein containing the Toll/interleukin-1 receptor (TIR) domain, which is highly enriched in the brain. Toxoplasma gondii (T. gondii) is an obligate intracellular parasitic protozoan that causes zoonotic toxoplasmosis, resulting in threats to human health, such as brain damage. Previous studies have shown that SARM plays crucial roles in cell death and triggers specific transcription programs of innate immunity in response to cell stress, viral, and bacterial infections. However, whether SARM is involved in T. gondii infection remains unclear. METHODS In this report, quantitative real-time polymerase chain reaction (qPCR), western blot, flow cytometry, ethynyldeoxyuridine (EdU) assay, and enzyme-linked immunosorbent assay (ELISA) were used to explore the relationship between SARM and T. gondii. RESULTS Here, we showed that T. gondii infection increased the expression of SARM in vitro and in vivo. SARM induced cell apoptosis during T. gondii infection, activating the mitochondrial apoptotic pathway, the endoplasmic reticulum stress (ER) pathway, and the mitogen-activated protein kinase (MAPK) signaling pathway, and prompting the production of reactive oxygen species (ROS). Furthermore, SARM participated in the regulation of the inflammatory response through the nod-like receptor pyrin domain 3 (NLRP3) inflammasome signaling pathway during T. gondii in vitro infection. CONCLUSIONS These results elucidate the relationship between SARM and T. gondii infection, suggesting that SARM may represent a potential target for T. gondii control.
Collapse
Affiliation(s)
- Shumin Gao
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, People's Republic of China
- National Institute On Drug Dependence, Peking University, Beijing, People's Republic of China
| | - Min Gao
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, People's Republic of China
| | - Huanhui Du
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, People's Republic of China
| | - Lingyu Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xudian An
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yongyu Shi
- Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiaoyan Wang
- Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, People's Republic of China
| | - Hua Cong
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, People's Republic of China
| | - Bing Han
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, People's Republic of China
| | - Chunxue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, People's Republic of China
| | - Huaiyu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Mohammed MMD, Mohammed HS, El Wafa SAA, Ahmed DA, Heikal EA, Elgohary I, Barakat AM. Discovery of potent anti-toxoplasmosis drugs from secondary metabolites in Citrus limon (lemon) leaves, supported in-silico study. Sci Rep 2025; 15:624. [PMID: 39753625 PMCID: PMC11698829 DOI: 10.1038/s41598-024-82787-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
Toxoplasmosis induced by Toxoplasma gondii is a well-known health threat, that prompts fatal encephalitis increased with immunocompromised patients, in addition, it can cause chorioretinitis, microcephaly, stillbirth in the fetus and even led to death. Standard therapy uses sulfadiazine and pyrimethamine drugs revealed beneficial results during the acute stage, however, it has severe side effects. UPLC-ESI-MS/MS used to explore C. limon MeOH ext. constituents, which revealed a list of 41 metabolites of different classes encompasses; unsaturated fatty acid, tricarboxylic acids, phenolic aldehyde, phenolic acids, phenolic glycosides, coumarins, sesquiterpene lactone, limonoid, steroid and flavonoids. C. limon MeOH ext. and the isolates reduced significantly the number of T. gondii tachyzoites. Consequently, histopathological examination, proved significant reduction in the number of mononuclear inflammatory cells in the kidney and liver sections, besides, lowering the number of shrunken and degenerative neurons in the brain sections of infected mice. Molecular docking study was performed targeted certain receptors, which are important for the life cycle fundamentals for the parasite mobility including invasion and egress, and further molecular dynamics simulation was conducted to get insights into the structural changes of the formed complexes, along with a pharmacophoric mapping approach, that confirmed the need for a free hydroxyl group and/or a phenolic substituted one, in order to form HB, Hyd/Aro and ML interactions, through which, cell cycle disruption via iron chelation, could be achieved. In addition, the ADMIT properties of all identified metabolites were predicted.
Collapse
Affiliation(s)
- Magdy Mostafa Desoky Mohammed
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Hala Sh Mohammed
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Salwa A Abu El Wafa
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Doaa A Ahmed
- Medical Parasitology Department, Faculty of Medicine, Al-Azhar University for Girls, Cairo, Egypt
| | - Elham A Heikal
- Medical Parasitology Department, Faculty of Medicine, Al-Azhar University for Girls, Cairo, Egypt
| | - Islam Elgohary
- Department of Pathology, Agriculture Research Centre, Animal Health Research Institute, Dokki, Giza, Egypt
| | - Ashraf M Barakat
- Department of Zoonotic Diseases, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
3
|
White MD, Angara RK, Dias LT, Shinde DD, Thomas VC, Augusto L. Selective host autophagy is induced during the intracellular parasite Toxoplasma gondii infection controlling amino acid levels. mSphere 2024; 9:e0036924. [PMID: 38980070 PMCID: PMC11288035 DOI: 10.1128/msphere.00369-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Toxoplasma gondii, a widespread parasite, has the ability to infect nearly any nucleated cell in warm-blooded vertebrates. It is estimated that around 2 billion people globally have been infected by this pathogen. Although most healthy individuals can effectively control parasite replication, certain parasites may evade the immune response, establishing cysts in the brain that are refractory to the immune system and resistant to available drugs. For its chronic persistence in the brain, the parasite relies on host cells' nutrients, particularly amino acids and lipids. Therefore, understanding how latent parasites persist in the brain is crucial for identifying potential drug targets against chronic forms. While shielded within parasitophorous vacuoles (PVs) or cysts, Toxoplasma exploits the host endoplasmic reticulum (ER) metabolism to sustain its persistence in the brain, resulting in host neurological alterations. In this study, we demonstrate that T. gondii disrupts the host ER homeostasis, resulting in the accumulation of unfolded protein within the host ER. The host counters this stress by initiating an autophagic pathway known as ER-phagy, which breaks down unfolded proteins into amino acids, promoting their recycling. Our findings unveil the underlying mechanisms employed by T. gondii to exploit host ER and lysosomal pathways, enhancing nutrient levels during infection. These insights provide new strategies for the treatment of toxoplasmosis. IMPORTANCE Intracellular parasites employ several mechanisms to manipulate the cellular environment, enabling them to persist in the host. Toxoplasma gondii, a single-celled parasite, possesses the ability to infect virtually any nucleated cell of warm-blooded vertebrates, including nearly 2 billion people worldwide. Unfortunately, existing treatments and immune responses are not entirely effective in eliminating the chronic persisting forms of the parasite. This study reveals that T. gondii induces the host's autophagic pathway to boost amino acid levels in infected cells. The depletion of amino acids, in turn, influences the persistence of the parasite's chronic forms. Significantly, our investigation establishes the crucial role of host endoplasmic reticulum (ER)-phagy in the parasite's persistence within the host during latent infection.
Collapse
Affiliation(s)
- Matthew D. White
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rajendra K. Angara
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Leticia Torres Dias
- Program in Health Science, University of Santo Amaro (UNISA), São Paulo, Brazil
| | - Dhananjay D. Shinde
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Vinai C. Thomas
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Leonardo Augusto
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Program in Health Science, University of Santo Amaro (UNISA), São Paulo, Brazil
- Cognitive Neuroscience of Development & Aging Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Wang X, Qu L, Chen J, Hu K, Zhou Z, Zhang J, An Y, Zheng J. Rhoptry proteins affect the placental barrier in the context of Toxoplasma gondii infection: Signaling pathways and functions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116567. [PMID: 38850700 DOI: 10.1016/j.ecoenv.2024.116567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Toxoplasma gondii is an opportunistic and pathogenic obligate intracellular parasitic protozoan that is widespread worldwide and can infect most warm-blooded animals, seriously endangering human health and affecting livestock production. Toxoplasmosis caused by T. gondii infection has different clinical manifestations, which are mainly determined by the virulence of T. gondii and host differences. Among the manifestations of this condition, abortion, stillbirth, and fetal malformation can occur if a woman is infected with T. gondii in early pregnancy. Here, we discuss how the T. gondii rhoptry protein affects host pregnancy outcomes and speculate on the related signaling pathways involved. The effects of rhoptry proteins of T. gondii on the placental barrier are complex. Rhoptry proteins not only regulate interferon-regulated genes (IRGs) to ensure the survival of parasites in activated cells but also promote the spread of worms in tissues and the invasive ability of the parasites. The functions of these rhoptry proteins and the associated signaling pathways highlight relevant mechanisms by which Toxoplasma crosses the placental barrier and influences fetal development and will guide future studies to uncover the complexity of the host-pathogen interactions.
Collapse
Affiliation(s)
- Xinlei Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Lai Qu
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, China
| | - Jie Chen
- Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Kaisong Hu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhengjie Zhou
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiaqi Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yiming An
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jingtong Zheng
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Cudjoe O, Afful R, Hagan TA. Toxoplasma-host endoplasmic reticulum interaction: How T. gondii activates unfolded protein response and modulates immune response. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100223. [PMID: 38352129 PMCID: PMC10861954 DOI: 10.1016/j.crmicr.2024.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Toxoplasma gondii is a neurotropic single-celled zoonotic parasite that can infect human beings and animals. Infection with T. gondii is usually asymptomatic in immune-competent individual, however, it can cause symptomatic and life-threatening conditions in immunocompromised individuals and in developing foetuses. Although the mechanisms that allow T. gondii to persist in host cells are poorly understood, studies in animal models have greatly improved our understanding of Toxoplasma-host cell interaction and how this interaction modulates parasite proliferation and development, host immune response and virulence of the parasite. T. gondii is capable of recruiting the host endoplasmic reticulum (ER), suggesting it may influence the host ER function. Herein, we provide an overview of T. gondii infection and the role of host ER during stressed conditions. Furthermore, we highlight studies that explore T. gondii's interaction with the host ER. We delve into how this interaction activates the unfolded protein response (UPR) and ER stress-mediated apoptosis. Additionally, we examine how T. gondii exploits these pathways to its advantage.
Collapse
Affiliation(s)
- Obed Cudjoe
- Department of Medical Laboratory Science, Klintaps College of Health and Allied Sciences, DTD TDC Plot 30A, Klagon, Tema, Ghana
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| | - Roger Afful
- Department of Medical Laboratory Science, Klintaps College of Health and Allied Sciences, DTD TDC Plot 30A, Klagon, Tema, Ghana
| | - Tonny Abraham Hagan
- Department of Biomedical Engineering, School of Life Science and Technology, University of Electronic Science and Technology of China, China
| |
Collapse
|
6
|
White MD, Angara RK, Dias LT, Shinde DD, Thomas VC, Augusto L. Host autophagy is exploited by the intracellular parasite Toxoplasma gondii to enhance amino acids levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570852. [PMID: 38106117 PMCID: PMC10723413 DOI: 10.1101/2023.12.08.570852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Toxoplasma gondii, a widespread parasite, has the ability to infect nearly any nucleated cell in warm-blooded vertebrates. It is estimated that around 2 billion people globally have been infected by this pathogen. Although most healthy individuals can effectively control parasite replication, certain parasites may evade the immune response, establishing cysts in the brain that are refractory to the immune system and resistance to available drugs. For its chronic persistence in the brain, the parasite relies on host cells' nutrients, particularly amino acids and lipids. Therefore, understanding how latent parasites persist in the brain is crucial for identifying potential drug targets against chronic forms. While shielded within parasitophorous vacuoles (PVs) or cysts, Toxoplasma exploits the host endoplasmic reticulum (ER) metabolism to sustains its persistence in the brain, resulting in host neurological alterations. In this study, we demonstrate that T. gondii disrupts the host ER homeostasis, resulting in accumulation of unfolded protein with the host ER. The host counters this stress by initiating an autophagic pathway known as ER-phagy, which breaks down unfolded proteins into amino acids, promoting their recycling. Remarkably, the persistence of latent forms in cell culture as well as behavioral changes in mice caused by the latent infection could be successfully reversed by restricting the availability of various amino acids during T. gondi infection. Our findings unveil the underlying mechanisms employed by T. gondii to exploit host ER and lysosomal pathways, enhancing nutrient levels during infection. These insights provide new strategies for the treatment of toxoplasmosis. Importance Intracellular parasites employ several mechanisms to manipulate the cellular environment, enabling them to persist in the host. Toxoplasma gondii , a single-celled parasite, possesses the ability to infect virtually any nucleated cell of warm-blooded vertebrates, including nearly 2 billion people worldwide. Unfortunately, existing treatments and immune responses are not entirely effective in eliminating the chronic persisting forms of the parasite. This study reveals that T. gondii induces the host's autophagic pathway to boost amino acid levels in infected cells. The depletion of amino acids, in turn, influences the persistence of the parasite's chronic forms, resulting in a reduction of neurological alterations caused by chronic infection in mice. Significantly, our investigation establishes the crucial role of host ER-phagy in the parasite's persistence within the host during latent infection.
Collapse
|
7
|
Wang X, Qu L, Chen J, Jin Y, Hu K, Zhou Z, Zhang J, An Y, Zheng J. Toxoplasma rhoptry proteins that affect encephalitis outcome. Cell Death Discov 2023; 9:439. [PMID: 38049394 PMCID: PMC10696021 DOI: 10.1038/s41420-023-01742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
Toxoplasma gondii, a widespread obligate intracellular parasite, can infect almost all warm-blooded animals, including humans. The cellular barrier of the central nervous system (CNS) is generally able to protect the brain parenchyma from infectious damage. However, T. gondii typically causes latent brain infections in humans and other vertebrates. Here, we discuss how T. gondii rhoptry proteins (ROPs) affect signaling pathways in host cells and speculate how this might affect the outcome of Toxoplasma encephalitis.
Collapse
Affiliation(s)
- Xinlei Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130021, China
| | - Lai Qu
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, 130021, China
| | - Jie Chen
- Institute of Theoretical Chemistry, Jilin University, Changchun, 130021, China
| | - Yufen Jin
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130021, China
| | - Kaisong Hu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Zhengjie Zhou
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jiaqi Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yiming An
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jingtong Zheng
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
8
|
Schator D, Mondino S, Berthelet J, Di Silvestre C, Ben Assaya M, Rusniok C, Rodrigues-Lima F, Wehenkel A, Buchrieser C, Rolando M. Legionella para-effectors target chromatin and promote bacterial replication. Nat Commun 2023; 14:2154. [PMID: 37059817 PMCID: PMC10104843 DOI: 10.1038/s41467-023-37885-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/04/2023] [Indexed: 04/16/2023] Open
Abstract
Legionella pneumophila replicates intracellularly by secreting effectors via a type IV secretion system. One of these effectors is a eukaryotic methyltransferase (RomA) that methylates K14 of histone H3 (H3K14me3) to counteract host immune responses. However, it is not known how L. pneumophila infection catalyses H3K14 methylation as this residue is usually acetylated. Here we show that L. pneumophila secretes a eukaryotic-like histone deacetylase (LphD) that specifically targets H3K14ac and works in synergy with RomA. Both effectors target host chromatin and bind the HBO1 histone acetyltransferase complex that acetylates H3K14. Full activity of RomA is dependent on the presence of LphD as H3K14 methylation levels are significantly decreased in a ∆lphD mutant. The dependency of these two chromatin-modifying effectors on each other is further substantiated by mutational and virulence assays revealing that the presence of only one of these two effectors impairs intracellular replication, while a double knockout (∆lphD∆romA) can restore intracellular replication. Uniquely, we present evidence for "para-effectors", an effector pair, that actively and coordinately modify host histones to hijack the host response. The identification of epigenetic marks modulated by pathogens has the potential to lead to the development of innovative therapeutic strategies to counteract bacterial infection and strengthening host defences.
Collapse
Affiliation(s)
- Daniel Schator
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Biologie des Bactéries Intracellulaires, 75015, Paris, France
- Sorbonne Université, Collège doctoral, 75005, Paris, France
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA, USA
| | - Sonia Mondino
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Biologie des Bactéries Intracellulaires, 75015, Paris, France
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Jérémy Berthelet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013, Paris, France
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, 75013, Paris, France
| | - Cristina Di Silvestre
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Biologie des Bactéries Intracellulaires, 75015, Paris, France
| | - Mathilde Ben Assaya
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Microbiologie Structurale, 75015, Paris, France
| | - Christophe Rusniok
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Biologie des Bactéries Intracellulaires, 75015, Paris, France
| | - Fernando Rodrigues-Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013, Paris, France
| | - Annemarie Wehenkel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Microbiologie Structurale, 75015, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Biologie des Bactéries Intracellulaires, 75015, Paris, France.
| | - Monica Rolando
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Biologie des Bactéries Intracellulaires, 75015, Paris, France.
| |
Collapse
|
9
|
Wang Q, Zhong Y, Chen N, Chen J. From the immune system to mood disorders especially induced by Toxoplasma gondii: CD4+ T cell as a bridge. Front Cell Infect Microbiol 2023; 13:1078984. [PMID: 37077528 PMCID: PMC10106765 DOI: 10.3389/fcimb.2023.1078984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Toxoplasma gondii (T. gondii), a ubiquitous and obligatory intracellular protozoa, not only alters peripheral immune status, but crosses the blood-brain barrier to trigger brain parenchymal injury and central neuroinflammation to establish latent cerebral infection in humans and other vertebrates. Recent findings underscore the strong correlation between alterations in the peripheral and central immune environment and mood disorders. Th17 and Th1 cells are important pro-inflammatory cells that can drive the pathology of mood disorders by promoting neuroinflammation. As opposed to Th17 and Th1, regulatory T cells have inhibitory inflammatory and neuroprotective functions that can ameliorate mood disorders. T. gondii induces neuroinflammation, which can be mediated by CD4+ T cells (such as Tregs, Th17, Th1, and Th2). Though the pathophysiology and treatment of mood disorder have been currently studied, emerging evidence points to unique role of CD4+ T cells in mood disorder, especially those caused by T. gondii infection. In this review, we explore some recent studies that extend our understanding of the relationship between mood disorders and T. gondii.
Collapse
|
10
|
Luan Y, Gou J, Zhong D, Ma L, Yin C, Shu M, Liu G, Lin Q. The Tick-Borne Pathogens: An Overview of China's Situation. Acta Parasitol 2023; 68:1-20. [PMID: 36642777 PMCID: PMC9841149 DOI: 10.1007/s11686-023-00658-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/02/2023] [Indexed: 01/17/2023]
Abstract
BACKGROUND Ticks are important medical arthropods that can transmit hundreds of pathogens, such as parasites, bacteria, and viruses, leading to serious public health burdens worldwide. Unexplained fever is the most common clinical manifestation of tick-borne diseases. Since the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the surge of coronavirus disease 2019 (COVID-19) cases led to the hospital overload and fewer laboratory tests for tick-borne diseases. Therefore, it is essential to review the tick-borne pathogens and further understand tick-borne diseases. PURPOSE The geographic distribution and population of ticks in the Northern hemisphere have expanded while emerging tick-borne pathogens have been introduced to China continuously. This paper focused on the tick-borne pathogens that are threatening public health in the world. Their medical significant tick vectors, as well as the epidemiology, clinical manifestations, diagnosis, treatment, prevention, and control measures, are emphasized in this document. METHODS In this study, all required data were collected from articles indexed in English databases, including Scopus, PubMed, Web of Science, Science Direct, and Google Scholar. RESULTS Ticks presented a great threat to the economy and public health. Although both infections by tick-borne pathogens and SARS-CoV-2 have fever symptoms, the history of tick bite and its associated symptoms such as encephalitis or eschar could be helpful for the differential diagnosis. Additionally, as a carrier of vector ticks, migratory birds may play a potential role in the geographical expansion of ticks and tick-borne pathogens during seasonal migration. CONCLUSION China should assess the risk score of vector ticks and clarify the potential role of migratory birds in transmitting ticks. Additionally, the individual and collective protection, vector control, comprehensive surveillance, accurate diagnosis, and symptomatic treatment should be carried out, to meet the challenge.
Collapse
Affiliation(s)
- Yuxuan Luan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,School of Basic Medical Science, Fudan University, Shanghai, 200032, China
| | - Jingmin Gou
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Dongjie Zhong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Chuansong Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Minfeng Shu
- School of Basic Medical Science, Fudan University, Shanghai, 200032, China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Qing Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China. .,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China.
| |
Collapse
|
11
|
Adderley J, Grau GE. Host-directed therapies for malaria: possible applications and lessons from other indications. Curr Opin Microbiol 2023; 71:102228. [PMID: 36395572 DOI: 10.1016/j.mib.2022.102228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/15/2022]
Abstract
Host-directed therapies (HDT) are rapidly advancing as a new and clinically relevant strategy to treat infectious disease. The application of HDT can be broadly used to (i) inhibit host factors essential for pathogen development, including host protein kinases, (ii) control detrimental immune signalling, resulting from excessive release of cytokines, chemokines and extracellular vesicles and (iii) strengthen host defence mechanisms, such as tight junctions in the endothelium. For malaria and other eukaryotic parasite-causing diseases, HDTs could provide a novel avenue to combat the growing resistance seen across all antimicrobials and provide protection against the severe forms of disease through modulation of the host immune response.
Collapse
Affiliation(s)
- Jack Adderley
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| | - Georges E Grau
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine & Health, The University of Sydney, Medical Foundation Building, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| |
Collapse
|
12
|
Wang L, Wang H, Wei S, Huang X, Yu C, Meng Q, Wang D, Yin G, Huang Z. Toxoplasma gondii induces MLTC-1 apoptosis via ERS pathway. Exp Parasitol 2022; 244:108429. [PMID: 36403802 DOI: 10.1016/j.exppara.2022.108429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Toxoplasma gondii (T. gondii) is a serious intracellular parasite and mammalian infection can damage the reproductive system and lead to apoptosis of Murine Leydig tumor cells (MLTC-1); however, the mechanism is unclear. The testis Leydig cell is the main testosterone synthesis cell in male mammals. We studied the mechanism of T. gondii infection on Leydig cell apoptosis in vitro. MLTC-1 were divided into control and experimental groups. Experiment group cells and tachyzoites were co-cultured, in a 1:20 ratio, for 3, 6, 9, and 12 h. T. gondii entered the cells and caused lesions at 12 h. Flow cytometry showed that the apoptosis rate of the experiment group increased with time and was significantly higher (P < 0.05) than the control group. RT-qPCR and western blot demonstrated that the expression of P53, Caspase-3, and Bax were significantly increased at 12 h (P < 0.05). Bcl-2 expression was significantly increased at 12 h (P < 0.05). The ER stress (ERS) pathway was important in cell apoptosis. RT-qPCR and western blot showed that the expression of CHOP was significantly increased at 12 h (P < 0.05). These data indicate that T. gondii induced MLTC-1 cell apoptosis may occur via the ERS pathway.
Collapse
Affiliation(s)
- Lei Wang
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China
| | - Hailun Wang
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China
| | - Shihao Wei
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China
| | - Xiaoyu Huang
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China
| | - Chunchen Yu
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China
| | - Qingrui Meng
- Jinshan College, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China
| | - Dengfeng Wang
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China
| | - Guangwen Yin
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China.
| | - Zhijian Huang
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China.
| |
Collapse
|
13
|
Pan M, Ge CC, Fan YM, Jin QW, Shen B, Huang SY. The determinants regulating Toxoplasma gondii bradyzoite development. Front Microbiol 2022; 13:1027073. [PMID: 36439853 PMCID: PMC9691885 DOI: 10.3389/fmicb.2022.1027073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular zoonotic pathogen capable of infecting almost all cells of warm-blooded vertebrates. In intermediate hosts, this parasite reproduces asexually in two forms, the tachyzoite form during acute infection that proliferates rapidly and the bradyzoite form during chronic infection that grows slowly. Depending on the growth condition, the two forms can interconvert. The conversion of tachyzoites to bradyzoites is critical for T. gondii transmission, and the reactivation of persistent bradyzoites in intermediate hosts may lead to symptomatic toxoplasmosis. However, the mechanisms that control bradyzoite differentiation have not been well studied. Here, we review recent advances in the study of bradyzoite biology and stage conversion, aiming to highlight the determinants associated with bradyzoite development and provide insights to design better strategies for controlling toxoplasmosis.
Collapse
Affiliation(s)
- Ming Pan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Ceng-Ceng Ge
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yi-Min Fan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qi-Wang Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Bai RX, Chen XZ, Ren JF, Hu L, Li H, Wang H, He C. Toxoplasma gondii rhoptry protein (TgROP18) enhances the expression of pro-inflammatory factor in LPS/IFN-γ-induced murine BV2 microglia cells via NF-κB signal pathway. Acta Trop 2022; 235:106650. [PMID: 35963313 DOI: 10.1016/j.actatropica.2022.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
Toxoplasma gondii, an opportunistic pathogenic protozoan, exhibits a strong predilection to infect the brain, causing severe neurological diseases, such as toxoplasmic encephalitis (TE), in immunocompromised patients. Microglia, the resident immune cells in the brain, is reported to play important roles in regulating the neuroinflammation mediated by T. gondii infection. Here we demonstrated that the tachyzoites of T. gondii RH strain could significantly upregulate the expression levels of microglial M1 phenotype markers including IL-1β, IL-6, TNF-α, iNOS and IL18 in activated murine BV2 microglia cells, which were regulated by T. gondii rhoptry protein 18 (TgROP18). Moreover, we found that TgROP18 could enhance the expression of M1 phenotype markers in activated murine BV2 microglia cells via activating NF-κB signal pathway. Additionally, TgROP18 was suggested to interact with the host p65 in activated murine BV2 microglia cells and induce the phosphorylation of p65 at S536. In summary, the present study demonstrated that TgROP18 could promote the activated microglia to polarize to M1 phenotype and enhanced the expression of pro-inflammatory factors via activating NF-κB signal pathway, which could contribute to elucidating the mechanism underlying the neuroinflammation mediated by activated microglia in the brain with T. gondii infection.
Collapse
Affiliation(s)
- Rui-Xue Bai
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Xin-Zhu Chen
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Jin-Feng Ren
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Lang Hu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Hui Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Hui Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| | - Cheng He
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| |
Collapse
|
15
|
Obed C, Wu M, Chen Y, An R, Cai H, Luo Q, Yu L, Wang J, Liu F, Shen J, Du J. Toxoplasma gondii dense granule protein 3 promotes endoplasmic reticulum stress-induced apoptosis by activating the PERK pathway. Parasit Vectors 2022; 15:276. [PMID: 35918751 PMCID: PMC9344675 DOI: 10.1186/s13071-022-05394-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Toxoplasma gondii is a neurotropic single-celled parasite that can infect mammals, including humans. Central nervous system infection with T. gondii infection can lead to Toxoplasma encephalitis. Toxoplasma infection can cause endoplasmic reticulum (ER) stress and unfolded protein response (UPR) activation, which ultimately can lead to apoptosis of host cells. The dense granule protein GRA3 has been identified as one of the secretory proteins that contribute to the virulence of T. gondii; however, the mechanism remains enigmatic. Methods The expression of the GRA3 gene in RH, ME49, Wh3, and Wh6 strains was determined using quantitative real-time polymerase chain reaction (qRT–PCR). pEGFP-GRA3Wh6 was constructed by inserting Chinese 1 Wh6 GRA3 (GRA3Wh6) cDNA into a plasmid encoding the enhanced GFP. Mouse neuro2a (N2a) cells were transfected with either pEGFP or pEGFP-GRA3Wh6 (GRA3Wh6) and incubated for 24–36 h. N2a cell apoptosis and ER stress-associated proteins were determined using flow cytometry and immunoblotting. Furthermore, N2a cells were pretreated with GSK2656157 (a PERK inhibitor) and Z-ATAD-FMK (a caspase-12 inhibitor) before GRA3Wh6 transfection, and the effect of the inhibitors on GRA3Wh6-induced ER stress and apoptosis were investigated. Results GRA3 gene expression was higher in the less virulent strains of type II ME49 and type Chinese 1 Wh6 strains compared with the virulent strains of type I RH strain and type Chinese 1 Wh3 strain. Transfection with GRA3Wh6 plasmid induced neuronal apoptosis and increased the expression of GRP78, p-PERK, cleaved caspase-12, cleaved caspase-3, and CHOP compared with the control vector. Pretreatment with GSK2656157 and Z-ATAD-FMK decreased apoptosis in N2a cells, and similarly, ER stress- and apoptosis-associated protein levels were significantly decreased. Conclusion GRA3 induces neural cell apoptosis via the ER stress signaling pathway, which could play a role in toxoplasmic encephalitis. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Cudjoe Obed
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, 230032, China.,Department of Microbiology & Immunology School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Minmin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Ying Chen
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,School of Nursing, Anhui Medical University, Hefei, 230032, China
| | - Ran An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Haijian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Qingli Luo
- The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Li Yu
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Fang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China.,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Jilong Shen
- The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China. .,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China. .,The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China. .,The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China. .,The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
16
|
Wu L, Yang H, Wang J, Yu X, He Y, Chen S. A Novel Combined DNA Vaccine Encoding Toxoplasma gondii SAG1 and ROP18 Provokes Protective Immunity Against a Lethal Challenge in Mice. Acta Parasitol 2021; 66:1387-1395. [PMID: 34019277 DOI: 10.1007/s11686-021-00415-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/08/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Antigens expressed by Toxoplasma gondii (T. gondii) during its life cycle trigger various immune responses in the host. Recently, toxoplasma vaccine research focused on T. gondii surface antigen 1 (SAG1) and Rhoptry Protein 18 (ROP18) to establish a safe and efficacious DNA vaccine. METHOD We constructed two eukaryotic expression plasmids: p3 × FLAG-Myc-CMV™-24-SAG1 and p3 × FLAG-Myc-CMV™-24-ROP18. BALB/c mice were randomly divided into six groups and immunized with these DNA vaccines either separately or in combination. The combination vaccine was administered at either the full dose or at half-strength dose. Control mice were immunized with empty vector or with phosphate-buffered saline. RESULTS The frequency of CD4+ cells in the spleen was consistent among all groups, whereas that of CD8+ T cells was the highest in the group immunized with the combination vaccine at half-strength dose (p < 0.05). Importantly, the mRNA expression levels of interleukin-12 (IL-12) and interferon-gamma (INF-γ) were closely correlated (r = 0.6, p < 0.0001) and both were upregulated in the group that was immunized with the combination vaccine at half-strength dose (p < 0.0001). The survival time of the mice subjected to a lethal dose of toxoplasma was significantly extended by prior immunization with DNA vaccines expressing either SAG1 or ROP18 or a combination of both (p < 0.05). The group that was immunized with the combination vaccine at half-strength dose demonstrated the best efficacy (p < 0.05). CONCLUSION These results showed that the combination DNA vaccine provided better immune protection than the single gene vaccines, and that optimizing the dosing of the vaccine can improve the immune response.
Collapse
Affiliation(s)
- Lamei Wu
- Department of Clinical Laboratory, Anting Hospital, Jiading District, Shanghai, 201800, China
| | - Huijian Yang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jianglin Wang
- Department of Clinical Laboratory, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Jiading District, Shanghai, 201800, China
| | - Xiuwen Yu
- Department of Clinical Laboratory, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Jiading District, Shanghai, 201800, China
| | - Yanhong He
- Department of Clinical Laboratory, Anting Hospital, Jiading District, Shanghai, 201800, China.
| | - Shenxia Chen
- Department of Microbiology, Medical College of Jiangsu University, ZhenJiang, 212013, China.
| |
Collapse
|
17
|
Tomita T, Guevara RB, Shah LM, Afrifa AY, Weiss LM. Secreted Effectors Modulating Immune Responses to Toxoplasma gondii. Life (Basel) 2021; 11:988. [PMID: 34575137 PMCID: PMC8467511 DOI: 10.3390/life11090988] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that chronically infects a third of humans. It can cause life-threatening encephalitis in immune-compromised individuals. Congenital infection also results in blindness and intellectual disabilities. In the intracellular milieu, parasites encounter various immunological effectors that have been shaped to limit parasite infection. Parasites not only have to suppress these anti-parasitic inflammatory responses but also ensure the host organism's survival until their subsequent transmission. Recent advancements in T. gondii research have revealed a plethora of parasite-secreted proteins that suppress as well as activate immune responses. This mini-review will comprehensively examine each secreted immunomodulatory effector based on the location of their actions. The first section is focused on secreted effectors that localize to the parasitophorous vacuole membrane, the interface between the parasites and the host cytoplasm. Murine hosts are equipped with potent IFNγ-induced immune-related GTPases, and various parasite effectors subvert these to prevent parasite elimination. The second section examines several cytoplasmic and ER effectors, including a recently described function for matrix antigen 1 (MAG1) as a secreted effector. The third section covers the repertoire of nuclear effectors that hijack transcription factors and epigenetic repressors that alter gene expression. The last section focuses on the translocation of dense-granule effectors and effectors in the setting of T. gondii tissue cysts (the bradyzoite parasitophorous vacuole).
Collapse
Affiliation(s)
- Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (T.T.); (R.B.G.)
| | - Rebekah B. Guevara
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (T.T.); (R.B.G.)
| | - Lamisha M. Shah
- Department of Biological Science, Lehman College of the City University of New York, Bronx, NY 10468, USA; (L.M.S.); (A.Y.A.)
| | - Andrews Y. Afrifa
- Department of Biological Science, Lehman College of the City University of New York, Bronx, NY 10468, USA; (L.M.S.); (A.Y.A.)
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (T.T.); (R.B.G.)
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
18
|
Toxoplasma gondii could have a possible role in the cancer mechanism by modulating the host's cell response. Acta Trop 2021; 220:105966. [PMID: 34023305 DOI: 10.1016/j.actatropica.2021.105966] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022]
Abstract
Toxoplasma gondii, which manipulates many signaling pathways to achieve persistence in host cells, is intimately linked to immune and inflammation responses. However, there is still lack of information about the impact of T. gondii on cellular and immune responses. This study was designed to seek the impact of T. gondii infection causing life-long inflammation in brain, on cancer mechanism. To identify molecular effects of the T. gondii and understand the association between the functional perturbations occurring during infection and cancer development, the transcriptomic datasets obtained mice infected with T. gondii were downloaded from GEO. The differentially expressed genes (DEGs) were identified and functional enrichment analysis was performed using IPA platform, then all results were evaluated with comparison analyses. Subsequently, a T. gondii infection model with human neuroepithelioma cell culture was performed in order to validate top DEGs participated in common networks/pathways in cancer mechanism. Transcriptomic analyses of infected mice and in vitro cell culture model revealed a strong immune response and inflammation occurred by parasite-induced damage and parasite-associated immunopathology in host cell and tissue. T. gondii infection could modulate certain signaling pathways of host, which were also common to those perturbed in carcinogenesis. Interestingly, the network analysis of the data sets predicted an activation in development of solid cancer vice versa inhibition in hematological cancer during T. gondii infection. Parasite might also control the tumor growth due to its potent immune-stimulant effects. As result, T. gondii infection generating a continual inflammation in tissues might potentially contribute to cancer development by regulating critical host signaling pathways or reveal an anti-tumoral activity.
Collapse
|
19
|
Peng M, Chen F, Wu Z, Shen J. Endoplasmic Reticulum Stress, a Target for Drug Design and Drug Resistance in Parasitosis. Front Microbiol 2021; 12:670874. [PMID: 34135878 PMCID: PMC8200641 DOI: 10.3389/fmicb.2021.670874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/03/2021] [Indexed: 01/14/2023] Open
Abstract
Endoplasmic reticulum stress (ER stress) can be induced when cellular protein homeostasis is damaged, and cells can activate the unfolded protein response (UPR) to restore protein homeostasis or induce cell death to facilitate the survival of the whole system. Globally, parasites are a constant threat to human health and are therefore considered a serious public health problem. Parasitic infection can cause ER stress in host cells, and parasites also possess part or all of the UPR under ER stress conditions. In this review, we aim to clarify the role of ER stress pathways and related molecules in parasites for their survival and development, the pathogenesis of parasitosis in hosts, and the artemisinin resistance of Plasmodium, which provides some potential drug design targets to inhibit survival of parasites, relieves pathological damage of parasitosis, and solves the problem of artemisinin resistance.
Collapse
Affiliation(s)
- Mei Peng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Fang Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Jia Shen
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
20
|
Li JX, He JJ, Elsheikha HM, Ma J, Xu XP, Zhu XQ. ROP18-Mediated Transcriptional Reprogramming of HEK293T Cell Reveals New Roles of ROP18 in the Interplay Between Toxoplasma gondii and the Host Cell. Front Cell Infect Microbiol 2020; 10:586946. [PMID: 33330132 PMCID: PMC7734210 DOI: 10.3389/fcimb.2020.586946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/30/2020] [Indexed: 12/02/2022] Open
Abstract
Toxoplasma gondii secretes a number of virulence-related effector proteins, such as the rhoptry protein 18 (ROP18). To further broaden our understanding of the molecular functions of ROP18, we examined the transcriptional response of human embryonic kidney cells (HEK293T) to ROP18 of type I T. gondii RH strain. Using RNA-sequencing, we compared the transcriptome of ROP18-expressing HEK293T cells to control HEK293T cells. Our analysis revealed that ROP18 altered the expression of 750 genes (467 upregulated genes and 283 downregulated genes) in HEK293T cells. Gene ontology (GO) and pathway enrichment analyses showed that differentially expressed genes (DEGs) were significantly enriched in extracellular matrix– and immune–related GO terms and pathways. KEGG pathway enrichment analysis revealed that DEGs were involved in several disease-related pathways, such as nervous system diseases and eye disease. ROP18 significantly increased the alternative splicing pattern “retained intron” and altered the expression of 144 transcription factors (TFs). These results provide new insight into how ROP18 may influence biological processes in the host cells via altering the expression of genes, TFs, and pathways. More in vitro and in vivo studies are required to substantiate these findings.
Collapse
Affiliation(s)
- Jie-Xi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao-Pei Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
21
|
Toxoplasma invasion delayed by TgERK7 eradication. Parasitol Res 2020; 119:3771-3776. [PMID: 32914221 DOI: 10.1007/s00436-020-06881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Toxoplasma gondii causes serious clinical toxoplasmosis in humans mostly due to its asexual life cycles, which can be artificially divided into five tightly coterminous stages. Any radical or delay for the stage will result in tremendous changes immediately behind. We previously demonstrated that TgERK7 is associated with the intracellular proliferation of T. gondii, but during the process, other stages before were not meanwhile determined. To further clarify the function of ERK7 gene in T. gondii, the complemental strain of ΔTgERK7 tachyzoites created previously was engineered via electric transfection with the recombinant pUC/Tgerk7 plasmid, named pUC/TgERK7 strain in this study, and was used together with ΔTgERK7 and wild-type GT1 strains to retrospect the phenotypic changes including invasion and attachment. The results showed that TgERK7 protein can be re-expressed in the ΔTgERK7 tachyzoites and eradication of this protein leads to significantly lower invasion of T. gondii at 1 h and 2 h post-infection (P < 0.05), which is the key factor causing the following slow intracellular proliferation, in comparison with wild-type GT1 and pUC/TgERK7 parasites; noteworthily, at other early time points including 15 min for attachment assay was no statistical difference (P > 0.05). The data suggested that ERK7 protein in T. gondii is an important virulence factor that participates in the invasion of this parasite.
Collapse
|
22
|
Immunogenicity and Protective Effect of a Virus-Like Particle Containing the SAG1 Antigen of Toxoplasma gondii as a Potential Vaccine Candidate for Toxoplasmosis. Biomedicines 2020; 8:biomedicines8040091. [PMID: 32325746 PMCID: PMC7235809 DOI: 10.3390/biomedicines8040091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
This study was carried out to evaluate the vaccination effect of a virus-like particle (VLP) including the surface antigen 1 (SAG1) of Toxoplasma gondii as a potential vaccine for toxoplasmosis. The SAG1 virus-like particles (SAG1-VLPs) were expressed by Sf9 cells, and their expression was confirmed through cloning, RT-PCR analysis, and western blot method. The immunogenicity and vaccine efficacy of SAG1-VLPs were assessed by the antibody response, cytokine analysis, neutralization activity, splenocyte assay, and survival rates through a mouse model. In particular, IgG, IgG1, IgG2a, and IgA were markedly increased after immunization, and the survival rates of T. gondii were strongly inhibited by the immunized sera. Furthermore, the immunization of SAG1-VLPs effectively decreased the production of specific cytokines, such as IL-1β, IL-6, TNF-α, and IFN-γ, after parasite infection. In particular, the immunized group showed strong activity and viability compared with the non-immunized infection group, and their survival rate was 75%. These results demonstrate that SAG1-VLP not only has the immunogenicity to block T. gondii infection by effectively inducing the generation of specific antibodies against T. gondii, but is also an effective antigen delivery system for preventing toxoplasmosis. This study indicates that SAG1-VLP can be effectively utilized as a promising vaccine candidate for preventing or inhibiting T. gondii infection.
Collapse
|
23
|
Cheng JH, Xu X, Li YB, Zhao XD, Aosai F, Shi SY, Jin CH, Piao JS, Ma J, Piao HN, Jin XJ, Piao LX. Arctigenin ameliorates depression-like behaviors in Toxoplasma gondii-infected intermediate hosts via the TLR4/NF-κB and TNFR1/NF-κB signaling pathways. Int Immunopharmacol 2020; 82:106302. [PMID: 32086097 DOI: 10.1016/j.intimp.2020.106302] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 01/23/2023]
Abstract
Toxoplasma gondii (T. gondii) is a known neurotropic protozoan that remains in the central nervous system and induces neuropsychiatric diseases in intermediate hosts. Arctigenin (AG) is one of the major bioactive lignans of the fruit Arctium lappa L. and has a broad spectrum of pharmacological activities such as neuroprotective, anti-inflammatory and anti-T. gondii effects. However, the effect of AG against depressive behaviors observed in T. gondii-infected hosts has not yet been clarified. In the present study, we analyzed the effects of AG against T. gondii-induced depressive behaviors in intermediate hosts using a microglia cell line (BV2 cells) and brain tissues of BALB/c mice during the acute phase of infection with the RH strain of T. gondii. AG attenuated microglial activation and neuroinflammation via the Toll-like receptor/nuclear factor-kappa B (NF-κB) and tumor necrosis factor receptor 1/NF-κB signaling pathways, followed by up-regulating the dopamine and 5-hydroxytryptamine levels and inhibiting the depression-like behaviors of hosts. AG also significantly decreased the T. gondii burden in mouse brain tissues. In conclusion, we elucidated the effects and underlying molecular mechanisms of AG against depressive behaviors induced by T. gondii infection.
Collapse
Affiliation(s)
- Jia-Hui Cheng
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xiang Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Ying-Biao Li
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji 133000, Jilin, China
| | - Xu-Dong Zhao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Fumie Aosai
- Department of Infection and Host Defense, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Su-Yun Shi
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Jing-Shu Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Hu-Nan Piao
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji 133000, Jilin, China.
| | - Xue-Jun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China. https://orcid.org/0000-0002-8315-5918
| |
Collapse
|
24
|
Li ZY, Guo HT, Tan J, Geng ZY, Zhu XQ. Devitalization of the immune mapped protein 1 undermines the intracellular proliferation of Toxoplasma gondii. Exp Parasitol 2020; 211:107843. [PMID: 32044321 DOI: 10.1016/j.exppara.2020.107843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/15/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022]
Abstract
The intracellular protozoan Toxoplasma gondii infects approximately one-third of the world's population as well as various animals, causing toxoplasmosis. However, there remains a need to define the functions of newly identified genes of T. gondii. In the present study, a novel molecule, immune mapped protein 1 of T. gondii (TgIMP1), was devitalized by CRISPR/Cas9 system to investigate the phenotypic changes of the parasite. We found that the virulence of ΔTgIMP1 knockout strain was reduced in comparison with wild-type GT1 tachyzoites, showing a statistically decreased plaque in HFF cells and a significantly prolonged survival period of mice (P < 0.05). Moreover, the data of phenotype analyses in vitro showed a different level of the intracellular proliferation and the subsequent egress between ΔTgIMP1 and wild-type GT1 strain (P < 0.05); while no statistically significant difference was detected during the process of attachment or invasion. These results suggested that TgIMP1 is closely associated with the intracellular proliferation of this parasite.
Collapse
Affiliation(s)
- Zhong-Yuan Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, PR China; College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, 230036, PR China; State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| | - Hai-Ting Guo
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, PR China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541199, PR China
| | - Zhao-Yu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, 230036, PR China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, PR China.
| |
Collapse
|
25
|
Wu M, An R, Chen Y, Chen T, Wen H, Yan Q, Shen J, Chen L, Du J. Vaccination with recombinant Toxoplasma gondii CDPK3 induces protective immunity against experimental toxoplasmosis. Acta Trop 2019; 199:105148. [PMID: 31425673 DOI: 10.1016/j.actatropica.2019.105148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 12/27/2022]
Abstract
Toxoplasma gondii, a ubiquitous and obligate intracellular pathogen, belonging to the phylum Apicomplexa, is capable of infecting a broad range of warm-blooded hosts including birds and mammals that is nearly worldwide. Preventive measures for toxoplasmosis are currently lacking and as such, development of novel vaccines is of urgent need. The plant-like calcium-dependent protein kinases (CDPKs) expressed by T. gondii, play important roles in cell invasion, gliding motility, egress and some other developmental processes, in which T. gondii CDPK3 (TgCDPK3) has been implicated as an important virulence factor. In this study, the immune protective function of recombinant TgCDPK3 (rTgCDPK3) against experimental toxoplasmosis in BALB/c were evaluated. We divided the mice into different dose groups of vaccines and all immunizations with purified rTgCDPK3 protein were injected by intramuscular at weeks 0, 2, and 4 in BALB/c mice. The rTgCDPK3 vaccine provided protection was correlated with the development of humoral and cellular immune responses demonstrated through the antigen-specific spleen cell proliferation, release of Th1 cytokines IFN-γ, and the production of the high titers of IgG antibody with a predominance of IgG2a over IgG1. Vaccination with rTgCDPK3 conferred partial protection against acute toxoplasmosis, as demonstrated by prolonged survival rate after lethal challenge. Additionally, the amount of brain tissues cysts in vaccinated mice led to 46.5% reduction compared with non-vaccinated ones. These data demonstrated that rTgCDPK3 inoculation prevents or attenuates the harmful influence of T. gondii infection, and it is a potential vaccine candidate against toxoplasmosis.
Collapse
|
26
|
Choi WH, Lee IA. The Mechanism of Action of Ursolic Acid as a Potential Anti-Toxoplasmosis Agent, and Its Immunomodulatory Effects. Pathogens 2019; 8:pathogens8020061. [PMID: 31075881 PMCID: PMC6631288 DOI: 10.3390/pathogens8020061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
This study was performed to investigate the mechanism of action of ursolic acid in terms of anti-Toxoplasma gondii effects, including immunomodulatory effects. We evaluated the anti-T. gondii effects of ursolic acid, and analyzed the production of nitric oxide (NO), reactive oxygen species (ROS), and cytokines through co-cultured immune cells, as well as the expression of intracellular organelles of T. gondii. The subcellular organelles and granules of T. gondii, particularly rhoptry protein 18, microneme protein 8, and inner membrane complex sub-compartment protein 3, were markedly decreased when T. gondii was treated with ursolic acid, and their expressions were effectively inhibited. Furthermore, ursolic acid effectively increased the production of NO, ROS, interleukin (IL)-10, IL-12, granulocyte macrophage colony stimulating factor (GM-CSF), and interferon-β, while reducing the expression of IL-1β, IL-6, tumor necrosis factor alpha (TNF-α), and transforming growth factor beta 1 (TGF-β1) in T. gondii-infected immune cells. These results demonstrate that ursolic acid not only causes anti-T. gondii activity/action by effectively inhibiting the survival of T. gondii and the subcellular organelles of T. gondii, but also induces specific immunomodulatory effects in T. gondii-infected immune cells. Therefore, this study indicates that ursolic acid can be effectively utilized as a potential candidate agent for developing novel anti-toxoplasmosis drugs, and has immunomodulatory activity.
Collapse
Affiliation(s)
- Won Hyung Choi
- Marine Bio Research & Education Center, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| | - In Ah Lee
- Department of Chemistry, College of Natural Science, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| |
Collapse
|
27
|
Diallo MA, Sausset A, Gnahoui-David A, Silva ARE, Brionne A, Le Vern Y, Bussière FI, Tottey J, Lacroix-Lamandé S, Laurent F, Silvestre A. Eimeria tenella ROP kinase EtROP1 induces G0/G1 cell cycle arrest and inhibits host cell apoptosis. Cell Microbiol 2019; 21:e13027. [PMID: 30941872 PMCID: PMC6593979 DOI: 10.1111/cmi.13027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/04/2019] [Accepted: 03/28/2019] [Indexed: 12/16/2022]
Abstract
Coccidia are obligate intracellular protozoan parasites responsible for human and veterinary diseases. Eimeria tenella, the aetiologic agent of caecal coccidiosis, is a major pathogen of chickens. In Toxoplasma gondii, some kinases from the rhoptry compartment (ROP) are key virulence factors. ROP kinases hijack and modulate many cellular functions and pathways, allowing T. gondii survival and development. E. tenella's kinome comprises 28 putative members of the ROP kinase family; most of them are predicted, as pseudokinases and their functions have never been characterised. One of the predicted kinase, EtROP1, was identified in the rhoptry proteome of E. tenella sporozoites. Here, we demonstrated that EtROP1 is active, and the N-terminal extension is necessary for its catalytic kinase activity. Ectopic expression of EtROP1 followed by co-immunoprecipitation identified cellular p53 as EtROP1 partner. Further characterisation confirmed the interaction and the phosphorylation of p53 by EtROP1. E. tenella infection or overexpression of EtROP1 resulted both in inhibition of host cell apoptosis and G0/G1 cell cycle arrest. This work functionally described the first ROP kinase from E. tenella and its noncanonical structure. Our study provides the first mechanistic insight into host cell apoptosis inhibition by E. tenella. EtROP1 appears as a new candidate for coccidiosis control.
Collapse
Affiliation(s)
| | - Alix Sausset
- Infectiologie et Santé Publique, INRA, Université de Tours, Nouzilly, France
| | | | | | | | - Yves Le Vern
- Infectiologie et Santé Publique, INRA, Université de Tours, Nouzilly, France
| | | | - Julie Tottey
- Infectiologie et Santé Publique, INRA, Université de Tours, Nouzilly, France
| | | | - Fabrice Laurent
- Infectiologie et Santé Publique, INRA, Université de Tours, Nouzilly, France
| | - Anne Silvestre
- Infectiologie et Santé Publique, INRA, Université de Tours, Nouzilly, France
| |
Collapse
|
28
|
Toxoplasma gondii Modulates the Host Cell Responses: An Overview of Apoptosis Pathways. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6152489. [PMID: 31080827 PMCID: PMC6475534 DOI: 10.1155/2019/6152489] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/13/2019] [Accepted: 03/26/2019] [Indexed: 01/29/2023]
Abstract
Infection with Toxoplasma gondii has a major implication in public health. Toxoplasma gondii is an obligate intracellular protozoan parasite that can infect all nucleated cells belonging to a wide range of host species. One of the particularities of this parasite is its invasion and persistence in host cells of immunocompetent people. This infection is usually asymptomatic. In immunocompromised patients, the infection is severe and symptomatic. The mechanisms by which T. gondii persists are poorly studied in humans. In mouse models, many aspects of the interaction between the parasite and the host cells are being studied. Apoptosis is one of these mechanisms that could be modulated by Toxoplasma to persist in host cells. Indeed, Toxoplasma has often been implicated in the regulation of apoptosis and viability mechanisms in both human and murine infection models. Several of these studies centered on the regulation of apoptosis pathways have revealed interference of this parasite with host cell immunity, cell signalling, and invasion mechanisms. This review provides an overview of recent studies concerning the effect of Toxoplasma on different apoptotic pathways in infected host cells.
Collapse
|
29
|
Increased risk of Toxoplasma gondii infection in cancer patients: A meta-analysis of current evidence based on case-control study. Acta Trop 2019; 192:30-40. [PMID: 30639453 DOI: 10.1016/j.actatropica.2019.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/25/2022]
Abstract
Toxoplasma gondii (T. gondii) is an intracellular protozoan parasite that often infects warm-blooded animals or causes opportunistic infections if exists a suppressed immunity. This study aims to investigate the seroprevalence of T. gondii and its odds ratio (OR) in patients with cancer in compared with healthy individuals, and to find the possible factors. Related literatures reported the seroprevalence of T. gondii in cancer/tumor patients and controls (health individuals) were retrieved from electronic databases PubMed, EMBASE, Chinese Web of Knowledge and The Cochrane Library from inception until Aug 31 2018. The non-weighted prevalence of T. gondii, pooled estimates of OR and its 95% confidence intervals (CI) were calculated through random-effect model. Between-study heterogeneity was tested with Cochrane Q, and statistic I2 was to quantify the results. Funnel plot depiction and Egger's linear regression test were combined to evaluate the potential of publication bias. The literature identified a total of 2216 potential studies; the final 18 studies were incorporated, with 6001 cancer/tumor patients and 6067 controls. Our results demonstrated that, the cancer/tumor patients had an elevated seroprevalence of T. gondii (18.43% vs 8.19%), and an increased risk of T. gondii infection (OR = 3.18, 95% CI: 2.65-3.82) when compared with the controls. Subgroup analyses suggested that publication year, study sample size and diagnostic options are closely associated with the seroprevalence of T. gondii. Overall, our study indicates that there is an increased risk of T. gondii infection in cancer/tumor patients, suggesting a precautionary monitoring of T. gondii and related risk factors in patients with cancer/tumor.
Collapse
|
30
|
Schlüter D, Barragan A. Advances and Challenges in Understanding Cerebral Toxoplasmosis. Front Immunol 2019; 10:242. [PMID: 30873157 PMCID: PMC6401564 DOI: 10.3389/fimmu.2019.00242] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/28/2019] [Indexed: 11/22/2022] Open
Abstract
Toxoplasma gondii is a widespread parasitic pathogen that infects over one third of the global human population. The parasite invades and chronically persists in the central nervous system (CNS) of the infected host. Parasite spread and persistence is intimately linked to an ensuing immune response, which does not only limit parasite-induced damage but also may facilitate dissemination and induce parasite-associated immunopathology. Here, we discuss various aspects of toxoplasmosis where knowledge is scarce or controversial and, the recent advances in the understanding of the delicate interplay of T. gondii with the immune system in experimental and clinical settings. This includes mechanisms for parasite passage from the circulation into the brain parenchyma across the blood-brain barrier during primary acute infection. Later, as chronic latent infection sets in with control of the parasite in the brain parenchyma, the roles of the inflammatory response and of immune cell responses in this phase of the disease are discussed. Additionally, the function of brain resident cell populations is delineated, i.e., how neurons, astrocytes and microglia serve both as target cells for the parasite but also actively contribute to the immune response. As the infection can reactivate in the CNS of immune-compromised individuals, we bring up the immunopathogenesis of reactivated toxoplasmosis, including the special case of congenital CNS manifestations. The relevance, advantages and limitations of rodent infection models for the understanding of human cerebral toxoplasmosis are discussed. Finally, this review pinpoints questions that may represent challenges to experimental and clinical science with respect to improved diagnostics, pharmacological treatments and immunotherapies.
Collapse
Affiliation(s)
- Dirk Schlüter
- Hannover Medical School, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
31
|
Protein targets of thiazolidinone derivatives in Toxoplasma gondii and insights into their binding to ROP18. BMC Genomics 2018; 19:856. [PMID: 30497375 PMCID: PMC6267824 DOI: 10.1186/s12864-018-5223-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 11/05/2018] [Indexed: 01/20/2023] Open
Abstract
Background Thiazolidinone derivatives show inhibitory activity (IC50) against the Toxoplasma gondii parasite, as well as high selectivity with high therapeutic index. To disclose the target proteins of the thiazolidinone core in this parasite, we explored in silico the active sites of different T. gondii proteins and estimated the binding-free energy of reported thiazolidinone molecules with inhibitory effect on invasion and replication of the parasite inside host cells. This enabled us to describe some of the most suitable structural characteristics to design a compound derived from the thiazolidinone core. Results The best binding affinity was observed in the active site of kinase proteins, we selected the active site of the T. gondii ROP18 kinase, because it is an important factor for the virulence and survival of the parasite. We present the possible effect of a derivative of thiazolidinone core in the active site of T. gondii ROP18 and described some characteristics of substituent groups that could improve the affinity and specificity of compounds derived from the thiazolidinone core against T. gondii. Conclusions The results of our study suggest that compounds derived from the thiazolidinone core have a preference for protein kinases of T. gondii, being promising compounds for the development of new drugs with potential anti-toxoplasmosis activity. Our findings highlight the importance of use computational studies for the understanding of the action mechanism of compounds with biological activity. Electronic supplementary material The online version of this article (10.1186/s12864-018-5223-7) contains supplementary material, which is available to authorized users.
Collapse
|