1
|
AIUM Practice Parameter for the Performance of Contrast-Enhanced Ultrasound. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:E8-E19. [PMID: 37873725 DOI: 10.1002/jum.16360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
|
2
|
Padilla F, Brenner J, Prada F, Klibanov AL. Theranostics in the vasculature: bioeffects of ultrasound and microbubbles to induce vascular shutdown. Theranostics 2023; 13:4079-4101. [PMID: 37554276 PMCID: PMC10405856 DOI: 10.7150/thno.70372] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2023] [Indexed: 08/10/2023] Open
Abstract
Ultrasound-triggered microbubbles destruction leading to vascular shutdown have resulted in preclinical studies in tumor growth delay or inhibition, lesion formation, radio-sensitization and modulation of the immune micro-environment. Antivascular ultrasound aims to be developed as a focal, targeted, non-invasive, mechanical and non-thermal treatment, alone or in combination with other treatments, and this review positions these treatments among the wider therapeutic ultrasound domain. Antivascular effects have been reported for a wide range of ultrasound exposure conditions, and evidence points to a prominent role of cavitation as the main mechanism. At relatively low peak negative acoustic pressure, predominantly non-inertial cavitation is most likely induced, while higher peak negative pressures lead to inertial cavitation and bubbles collapse. Resulting bioeffects start with inflammation and/or loose opening of the endothelial lining of the vessel. The latter causes vascular access of tissue factor, leading to platelet aggregation, and consequent clotting. Alternatively, endothelium damage exposes subendothelial collagen layer, leading to rapid adhesion and aggregation of platelets and clotting. In a pilot clinical trial, a prevalence of tumor response was observed in patients receiving ultrasound-triggered microbubble destruction along with transarterial radioembolization. Two ongoing clinical trials are assessing the effectiveness of ultrasound-stimulated microbubble treatment to enhance radiation effects in cancer patients. Clinical translation of antivascular ultrasound/microbubble approach may thus be forthcoming.
Collapse
Affiliation(s)
- Frederic Padilla
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
- Department of Radiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | - Francesco Prada
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
- Ultrasound Neuroimaging and Therapy Lab, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alexander L Klibanov
- Department of Radiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
3
|
Sekine S, Mayama S, Nishijima N, Kojima T, Endo-Takahashi Y, Ishii Y, Shiono H, Akiyama S, Sakurai A, Sashida S, Hamano N, Tada R, Suzuki R, Maruyama K, Negishi Y. Development of a Gene and Nucleic Acid Delivery System for Skeletal Muscle Administration via Limb Perfusion Using Nanobubbles and Ultrasound. Pharmaceutics 2023; 15:1665. [PMID: 37376113 PMCID: PMC10302710 DOI: 10.3390/pharmaceutics15061665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Strategies for gene and nucleic acid delivery to skeletal muscles have been extensively explored to treat Duchenne muscular dystrophy (DMD) and other neuromuscular diseases. Of these, effective intravascular delivery of naked plasmid DNA (pDNA) and nucleic acids into muscles is an attractive approach, given the high capillary density in close contact with myofibers. We developed lipid-based nanobubbles (NBs) using polyethylene-glycol-modified liposomes and an echo-contrast gas and found that these NBs could improve tissue permeability by ultrasound (US)-induced cavitation. Herein, we delivered naked pDNA or antisense phosphorodiamidate morpholino oligomers (PMOs) into the regional hindlimb muscle via limb perfusion using NBs and US exposure. pDNA encoding the luciferase gene was injected with NBs via limb perfusion into normal mice with application of US. High luciferase activity was achieved in a wide area of the limb muscle. DMD model mice were administered PMOs, designed to skip the mutated exon 23 of the dystrophin gene, with NBs via intravenous limb perfusion, followed by US exposure. The number of dystrophin-positive fibers increased in the muscles of mdx mice. Combining NBs and US exposure, which can be widely delivered to the hind limb muscles via the limb vein, could be an effective therapeutic approach for DMD and other neuromuscular disorders.
Collapse
Affiliation(s)
- Shohko Sekine
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Sayaka Mayama
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Nobuaki Nishijima
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Takuo Kojima
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Yuko Ishii
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Hitomi Shiono
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Saki Akiyama
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Akane Sakurai
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Sanae Sashida
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Nobuhito Hamano
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan;
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo 173-8605, Japan;
| | - Kazuo Maruyama
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo 173-8605, Japan;
- Laboratory of Ultrasound Theranostics, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.E.-T.); (N.H.); (R.T.)
| |
Collapse
|
4
|
Quarato CMI, Lacedonia D, Salvemini M, Tuccari G, Mastrodonato G, Villani R, Fiore LA, Scioscia G, Mirijello A, Saponara A, Sperandeo M. A Review on Biological Effects of Ultrasounds: Key Messages for Clinicians. Diagnostics (Basel) 2023; 13:855. [PMID: 36899998 PMCID: PMC10001275 DOI: 10.3390/diagnostics13050855] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Ultrasound (US) is acoustic energy that interacts with human tissues, thus, producing bioeffects that may be hazardous, especially in sensitive organs (i.e., brain, eye, heart, lung, and digestive tract) and embryos/fetuses. Two basic mechanisms of US interaction with biological systems have been identified: thermal and non-thermal. As a result, thermal and mechanical indexes have been developed to provide a means of assessing the potential for biological effects from exposure to diagnostic US. The main aims of this paper were to describe the models and assumptions used to estimate the "safety" of acoustic outputs and indices and to summarize the current state of knowledge about US-induced effects on living systems deriving from in vitro models and in vivo experiments on animals. This review work has made it possible to highlight the limits associated with the use of the estimated safety values of thermal and mechanical indices relating above all to the use of new US technologies, such as contrast-enhanced ultrasound (CEUS) and acoustic radiation force impulse (ARFI) shear wave elastography (SWE). US for diagnostic and research purposes has been officially declared safe, and no harmful biological effects in humans have yet been demonstrated with new imaging modalities; however, physicians should be adequately informed on the potential risks of biological effects. US exposure, according to the ALARA (As Low As Reasonably Achievable) principle, should be as low as reasonably possible.
Collapse
Affiliation(s)
- Carla Maria Irene Quarato
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Michela Salvemini
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Giulia Tuccari
- Department of Medical and Surgical Sciences, Institute of Geriatric, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Grazia Mastrodonato
- Department of Basic Medical Science, Neuroscience and Sensory Organs, Institute of Sports Medicine, University “Aldo Moro” of Bari, 70122 Bari, Italy
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, Institute of Internal Medicine, Liver Unit, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Lucia Angela Fiore
- Department of Medical and Surgical Sciences, Institute of Geriatric, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Antonio Mirijello
- Department of Internal of Medicine, IRCCS Fondazione Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | | | - Marco Sperandeo
- Unit of Interventional and Diagnostic Ultrasound of Internal Medicine, IRCCS Fondazione Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
5
|
Stable Cavitation-Mediated Delivery of miR-126 to Endothelial Cells. Pharmaceutics 2022; 14:pharmaceutics14122656. [PMID: 36559150 PMCID: PMC9784098 DOI: 10.3390/pharmaceutics14122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
In endothelial cells, microRNA-126 (miR-126) promotes angiogenesis, and modulating the intracellular levels of this gene could suggest a method to treat cardiovascular diseases such as ischemia. Novel ultrasound-stimulated microbubbles offer a means to deliver therapeutic payloads to target cells and sites of disease. The purpose of this study was to investigate the feasibility of gene delivery by stimulating miR-126-decorated microbubbles using gentle acoustic conditions (stable cavitation). A cationic DSTAP microbubble was formulated and characterized to carry 6 µg of a miR-126 payload per 109 microbubbles. Human umbilical vein endothelial cells (HUVECs) were treated at 20−40% duty cycle with miR-126-conjugated microbubbles in a custom ultrasound setup coupled with a passive cavitation detection system. Transfection efficiency was assessed by RT-qPCR, Western blotting, and endothelial tube formation assay, while HUVEC viability was monitored by MTT assay. With increasing duty cycle, the trend observed was an increase in intracellular miR-126 levels, up to a 2.3-fold increase, as well as a decrease in SPRED1 (by 33%) and PIK3R2 (by 46%) expression, two salient miR-126 targets. Under these ultrasound parameters, HUVECs maintained >95% viability after 96 h. The present work describes the delivery of a proangiogenic miR-126 using an ultrasound-responsive cationic microbubble with potential to stimulate therapeutic angiogenesis while minimizing endothelial damage.
Collapse
|
6
|
Overcoming Hypoxia-Induced Drug Resistance via Promotion of Drug Uptake and Reoxygenation by Acousto–Mechanical Oxygen Delivery. Pharmaceutics 2022; 14:pharmaceutics14050902. [PMID: 35631488 PMCID: PMC9144555 DOI: 10.3390/pharmaceutics14050902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Hypoxia-induced drug resistance (HDR) is a critical issue in cancer therapy. The presence of hypoxic tumor cells impedes drug uptake and reduces the cytotoxicity of chemotherapeutic drugs, leading to HDR and increasing the probability of tumor recurrence and metastasis. Microbubbles, which are used as an ultrasound contrast agent and drug/gas carrier, can locally deliver drugs/gas and produce an acousto–mechanical effect to enhance cell permeability under ultrasound sonication. The present study applied oxygen-loaded microbubbles (OMBs) to evaluate the mechanisms of overcoming HDR via promotion of drug uptake and reoxygenation. A hypoxic mouse prostate tumor cell model was established by hypoxic incubation for 4 h. After OMB treatment, the permeability of HDR cells was enhanced by 23 ± 5% and doxorubicin uptake was increased by 11 ± 7%. The 61 ± 14% reoxygenation of HDR cells increased the cytotoxicity of doxorubicin from 18 ± 4% to 58 ± 6%. In combination treatment with OMB and doxorubicin, the relative contributions of uptake promotion and reoxygenation towards overcoming HDR were 11 ± 7% and 28 ± 10%, respectively. Our study demonstrated that reoxygenation of hypoxic conditions is a critical mechanism in the inhibition of HDR and enhancing the outcome of OMB treatment.
Collapse
|
7
|
Grudzenski S, Heger S, de Jonge A, Schipp J, Dumont E, Larrat B, Schad L, Platten M, Fatar M. Simulation, Implementation and Measurement of Defined Sound Fields for Blood-Brain Barrier Opening in Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:422-436. [PMID: 34863589 DOI: 10.1016/j.ultrasmedbio.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
The blood-brain barrier (BBB) is the most important obstacle to delivery of therapeutics to the central nervous system. Low-intensity pulsed focused ultrasound (FUS) in combination with microbubbles applied under magnetic resonance imaging (MRI) control provides a non-invasive and safe technique for BBB opening (BBBo). In rodent models, however, settings and application protocols differ significantly. Depending on the strain and size, important variables include ultrasound attenuation and sound field distortion caused by the skull. We examined the ultrasound attenuation of the skull of Wistar rats using a targeted FUS system. By modifying the transducer elements and by varying and simulating the acoustic field of the FUS system, we measured a skull attenuation of about 60%. To evaluate potential application of the targeted FUS system in genetically modified animals with increased sensitivity to brain hemorrhage caused by vascular dysfunction, we assessed safety in healthy animals. Histological and MRI analyses of the central nervous system revealed an increase in the number and severity of hyperacute bleeds with focal pressure. At a pressure of 0.4 MPa, no bleeds were induced, albeit at the cost of a weaker hyperintense MRI signal post BBBo. These results indicate a relationship between pressure and the dimension of permeabilization.
Collapse
Affiliation(s)
- Saskia Grudzenski
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Stefan Heger
- Institute for Biomedical Engineering, Mannheim University, Mannheim, Germany
| | - Andreas de Jonge
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julia Schipp
- Institute for Biomedical Engineering, Mannheim University, Mannheim, Germany
| | | | - Benoit Larrat
- Université Paris-Saclay, CEA, CNRS, Baobab, NeuroSpin, Gif-sur-Yvette, France
| | - Lothar Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Platten
- Mannheimer Center of Translational Neuroscience (MCTN), Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marc Fatar
- European Center of Angioscience (ECAS), Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
8
|
Walsh AP, Gordon HN, Peter K, Wang X. Ultrasonic particles: An approach for targeted gene delivery. Adv Drug Deliv Rev 2021; 179:113998. [PMID: 34662671 PMCID: PMC8518240 DOI: 10.1016/j.addr.2021.113998] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Gene therapy has been widely investigated for the treatment of genetic, acquired, and infectious diseases. Pioneering work utilized viral vectors; however, these are suspected of causing serious adverse events, resulting in the termination of several clinical trials. Non-viral vectors, such as lipid nanoparticles, have attracted significant interest, mainly due to their successful use in vaccines in the current COVID-19 pandemic. Although they allow safe delivery, they come with the disadvantage of off-target delivery. The application of ultrasound to ultrasound-sensitive particles allows for a direct, site-specific transfer of genetic materials into the organ/site of interest. This process, termed ultrasound-targeted gene delivery (UTGD), also increases cell membrane permeability and enhances gene uptake. This review focuses on the advances in ultrasound and the development of ultrasonic particles for UTGD across a range of diseases. Furthermore, we discuss the limitations and future perspectives of UTGD.
Collapse
Affiliation(s)
- Aidan P.G. Walsh
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Henry N. Gordon
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Biochemistry and Pharmacology, University of Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Medicine, Monash University, Melbourne, VIC, Australia,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Medicine, Monash University, Melbourne, VIC, Australia,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Corresponding author at: Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| |
Collapse
|
9
|
Ntoulia A, Anupindi SA, Back SJ, Didier RA, Hwang M, Johnson AM, McCarville MB, Papadopoulou F, Piskunowicz M, Sellars ME, Darge K. Contrast-enhanced ultrasound: a comprehensive review of safety in children. Pediatr Radiol 2021; 51:2161-2180. [PMID: 34716453 PMCID: PMC11459369 DOI: 10.1007/s00247-021-05223-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/10/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
Contrast-enhanced ultrasound (CEUS) has been increasingly used in pediatric radiology practice worldwide. For nearly two decades, CEUS applications have been performed with the off-label use of gas-containing second-generation ultrasound contrast agents (UCAs). Since 2016, the United States Food and Drug Administration (FDA) has approved the UCA Lumason for three pediatric indications: the evaluation of focal liver lesions and echocardiography via intravenous administration and the assessment of vesicoureteral reflux via intravesical application (contrast-enhanced voiding urosonography, ceVUS). Prior to the FDA approval of Lumason, numerous studies with the use of second-generation UCAs had been conducted in adults and children. Comprehensive protocols for clinical safety evaluations have demonstrated the highly favorable safety profile of UCA for intravenous, intravesical and other intracavitary uses. The safety data on CEUS continue to accumulate as this imaging modality is increasingly utilized in clinical settings worldwide. As of August 2021, 57 pediatric-only original research studies encompassing a total of 4,518 children with 4,906 intravenous CEUS examinations had been published. As in adults, there were a few adverse events; the majority of these were non-serious, although very rarely serious anaphylactic reactions were reported. In the published pediatric-only intravenous CEUS studies included in our analysis, the overall incidence rate of serious adverse events was 0.22% (10/4,518) of children and 0.20% (10/4,906) of all CEUS examinations. Non-serious adverse events from the intravenous CEUS were observed in 1.20% (54/4,518) of children and 1.10% (54/4,906) of CEUS examinations. During the same time period, 31 studies with the intravesical use of UCA were conducted in 12,362 children. A few non-serious adverse events were encountered (0.31%; 38/12,362), but these were most likely attributable to the bladder catheterization rather than the UCA. Other developing clinical applications of UCA in children, including intracavitary and intralymphatic, are ongoing. To date, no serious adverse events have been reported with these applications. This article reviews the existing pediatric CEUS literature and provides an overview of safety-related information reported from UCA uses in children.
Collapse
Affiliation(s)
- Aikaterini Ntoulia
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Sudha A Anupindi
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan J Back
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryne A Didier
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ann M Johnson
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Beth McCarville
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Maria E Sellars
- Department of Radiology, King's College Hospital, London, UK
| | - Kassa Darge
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Ultrasound-Enabled Therapeutic Delivery and Regenerative Medicine: Physical and Biological Perspectives. ACS Biomater Sci Eng 2021; 7:4371-4387. [PMID: 34460238 DOI: 10.1021/acsbiomaterials.1c00276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of ultrasound in medicine and biological sciences is expanding rapidly beyond its use in conventional diagnostic imaging. Numerous studies have reported the effects of ultrasound on cellular and tissue physiology. Advances in instrumentation and electronics have enabled successful in vivo applications of therapeutic ultrasound. Despite path breaking advances in understanding the biophysical and biological mechanisms at both microscopic and macroscopic scales, there remain substantial gaps. With the progression of research in this area, it is important to take stock of the current understanding of the field and to highlight important areas for future work. We present herein key developments in the biological applications of ultrasound especially in the context of nanoparticle delivery, drug delivery, and regenerative medicine. We conclude with a brief perspective on the current promise, limitations, and future directions for interfacing ultrasound technology with biological systems, which could provide guidance for future investigations in this interdisciplinary area.
Collapse
|
11
|
Telichko AV, Wang H, Bachawal S, Kumar SU, Bose JC, Paulmurugan R, Dahl JJ. Therapeutic Ultrasound Parameter Optimization for Drug Delivery Applied to a Murine Model of Hepatocellular Carcinoma. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:309-322. [PMID: 33153807 PMCID: PMC8489309 DOI: 10.1016/j.ultrasmedbio.2020.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 05/07/2023]
Abstract
Ultrasound and microbubble (USMB)-mediated drug delivery is a valuable tool for increasing the efficiency of the delivery of therapeutic agents to cancer while maintaining low systemic toxicity. Typically, selection of USMB drug delivery parameters used in current research settings are either based on previous studies described in the literature or optimized using tissue-mimicking phantoms. However, phantoms rarely mimic in vivo tumor environments, and the selection of parameters should be based on the application or experiment. In the following study, we optimized the therapeutic parameters of the ultrasound drug delivery system to achieve the most efficient in vivo drug delivery using fluorescent semiconducting polymer nanoparticles as a model nanocarrier. We illustrate that voltage, pulse repetition frequency and treatment time (i.e., number of ultrasound pulses per therapy area) delivered to the tumor can successfully be optimized in vivo to ensure effective delivery of the semiconducting polymer nanoparticles to models of hepatocellular carcinoma. The optimal in vivo parameters for USMB drug delivery in this study were 70 V (peak negative pressure = 3.4 MPa, mechanical index = 1.22), 1-Hz pulse repetition frequency and 100-s therapy time. USMB-mediated drug delivery using in vivo optimized ultrasound parameters caused an up to 2.2-fold (p < 0.01) increase in drug delivery to solid tumors compared with that using phantom-optimized ultrasound parameters.
Collapse
Affiliation(s)
- Arsenii V Telichko
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA
| | - Huaijun Wang
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA
| | - Sunitha Bachawal
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA
| | - Sukumar U Kumar
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA
| | - Jagathesh C Bose
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA
| | - Jeremy J Dahl
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA.
| |
Collapse
|
12
|
Coiado OC, Lowe J, O'Brien WD. Therapeutic Ultrasound in Cardiovascular Medicine. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 40:1061-1076. [PMID: 32964505 DOI: 10.1002/jum.15493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
An advantage of therapeutic ultrasound (US) is the ability to cause controlled biological effects noninvasively. Depending on the magnitude and frequency of exposure parameters, US can interact in different ways with a variety of biological tissues. The development and clinical utility of therapeutic US techniques are now rapidly growing, especially with regard to the application of US pulses for cardiac pacing and the potential treatment of cardiovascular diseases. This review outlines the basic principles of US-based therapy in cardiology, including the acoustic properties of the cardiovascular tissue, and the use of US in therapeutic cardiovascular medicine.
Collapse
Affiliation(s)
- Olivia C Coiado
- Department of Biomedical and Translational Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jacques Lowe
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - William D O'Brien
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
Frost PA, Chen S, Rodriguez-Ayala E, Laviada-Molina HA, Vaquera Z, Gaytan-Saucedo JF, Li WH, Haack K, Grayburn PA, Sayers K, Cole SA, Bastarrachea RA. Research methodology for in vivo measurements of resting energy expenditure, daily body temperature, metabolic heat and non-viral tissue-specific gene therapy in baboons. Res Vet Sci 2020; 133:136-145. [PMID: 32979746 DOI: 10.1016/j.rvsc.2020.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
A large number of studies have shown that the baboon is one of the most commonly used non-human primate (NHP) research model for the study of immunometabolic complex traits such as type 2 diabetes (T2D), insulin resistance (IR), adipose tissue dysfunction (ATD), dyslipidemia, obesity (OB) and cardiovascular disease (CVD). This paper reports on innovative technologies and advanced research strategies for energetics and translational medicine with this NHP model. This includes the following: measuring resting energy expenditure (REE) with the mobile indirect calorimeter Breezing®; monitoring daily body temperature using subcutaneously implanted data loggers; quantifying metabolic heat with veterinary infrared thermography (IRT) imaging, and non-viral non-invasive, tissue-specific ultrasound-targeted microbubble destruction (UTMD) gene-based therapy. These methods are of broad utility; for example, they may facilitate the engineering of ectopic overexpression of brown adipose tissue (BAT) mUCP-1 via UTMD-gene therapy into baboon SKM to achieve weight loss, hypophagia and immunometabolic improvement. These methods will be valuable to basic and translational research, and human clinical trials, in the areas of metabolism, cardiovascular health, and immunometabolic and infectious diseases.
Collapse
Affiliation(s)
- Patrice A Frost
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA
| | - Shuyuan Chen
- Departments of Cell Biology and of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75235, United States of America
| | - Ernesto Rodriguez-Ayala
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Norte, Naucalpan de Juárez 52786, Mexico
| | - Hugo A Laviada-Molina
- Escuela de Ciencias de la Salud, Universidad Marista de Mérida, Mérida 97300, Yucatán, Mexico
| | - Zoila Vaquera
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA
| | - Janeth F Gaytan-Saucedo
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA
| | - Wen-Hong Li
- Departments of Cell Biology and of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75235, United States of America
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA
| | - Paul A Grayburn
- Division of Cardiology, Department of Internal Medicine, Baylor University Medical Center and the Baylor Scott and White Heart and Vascular Hospital, Dallas, TX, United States of America
| | - Ken Sayers
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA
| | - Raul A Bastarrachea
- Population Health Program, Texas Biomedical Research Institute, Southwest National Primate Research Center (SNPRC), San Antonio, TX 78227-0549, USA.
| |
Collapse
|
14
|
Navarro-Becerra JA, Caballero-Robledo GA, Franco-Urquijo CA, Ríos A, Escalante B. Functional Activity and Endothelial-Lining Integrity of Ex Vivo Arteries Exposed to Ultrasound-Mediated Microbubble Destruction. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2335-2348. [PMID: 32553691 DOI: 10.1016/j.ultrasmedbio.2020.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Ultrasound-mediated microbubble destruction (UMMD) is a promising strategy to improve local drug delivery in specific tissues. However, acoustic cavitation can lead to harmful bioeffects in endothelial cells. We investigated the side effects of UMMD treatment on vascular function (contraction and relaxation) and endothelium integrity of ex vivo Wistar rat arteries. We used an isolated organ system to evaluate vascular responses and confocal microscopy to quantify the integrity and viability of endothelial cells. The arteries were exposed for 1-3 min to ultrasound at a 100 Hz pulse-repetition frequency, 0.5 MPa acoustic pressure, 50% duty cycle and 1%-5% v/v microbubbles. The vascular contractile response was not affected. The acetylcholine-dependent maximal relaxation response was reduced from 78% (control) to 60% after 3 min of ultrasound exposure. In arteries treated simultaneously with 1 min of ultrasound exposure and 1%, 2%, 3% or 5% microbubble concentration, vascular relaxation was reduced by 19%, 58%, 80% or 93%, respectively, compared with the control arteries. Fluorescent labeling revealed that apoptotic death, detachment of endothelial cells and reduced nitric oxide synthase phosphorylation are involved in relaxation impairment. We demonstrated that UMMD can be a safe technology if the correct ultrasound and microbubble parameters are applied. Furthermore, we found that tissue-function evaluation combined with cellular analysis can be useful to study ultrasound-microbubble-tissue interactions in the optimization of targeted endothelial drug delivery.
Collapse
Affiliation(s)
| | | | | | - Amelia Ríos
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Apodaca, México
| | - Bruno Escalante
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, Apodaca, México; Universidad de Monterrey, San Pedro Garza García, México
| |
Collapse
|
15
|
AIUM Practice Parameter for the Performance of Contrast-Enhanced Ultrasound Examinations. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:421-429. [PMID: 31930582 DOI: 10.1002/jum.15204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
16
|
Delayed contrast enhancement of hepatic parenchyma after intravenous sonographic contrast agent: unusual phenomenon. Case report and review of literature. J Ultrasound 2020; 24:3-9. [PMID: 31981154 PMCID: PMC7925801 DOI: 10.1007/s40477-020-00429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/10/2020] [Indexed: 11/10/2022] Open
Abstract
Aim A case of heterogeneous late-phase hepatic enhancement (HLHE) using contrast‐enhanced ultrasound (CEUS) with SonoVue is presented, where HLHE lasted after 50 min of injection. Methods This study aims to review prior literature on this topic, to characterize the features of HLHE in the liver, and to find possible and reliable explanations for this phenomenon. Results From literature, thus far five publications discuss this phenomenon with a total of 21 patients. Conclusion We suggest that phagocytosis of contrast agent microbubbles by macrophages, and lymphocytosis of peripheral blood due to stress conditions of the patients might be in the background of HLHE.
Collapse
|
17
|
Abstract
Ultrasound imaging plays an important role in oncological imaging for more than five decades now. It can be applied in all tissues that are not occluded by bone or gas-filled regions. The quality of ultrasound images benefitted strongly from improved electronics and increased computational power. To the morphological imaging, several functional imaging methods were added: Flow visualization became possible by Doppler techniques and as a recent addition the elastic properties of tissues can be imaged by elastographic methods with transient shear wave imaging. In the beginning of molecular imaging, ultrasound with its contrast based on mechanical tissue properties was an unlikely candidate to play a role. However, with contrast agents consisting of micrometer-sized gas bubbles, which can be imaged with high sensitivity, ligands addressing targets in the vascular wall could be used. Because even single bubbles can be detected, this led to various ultrasound molecular imaging techniques and the ongoing development of clinical molecular contrast media. In this chapter, the basic properties of ultrasonic imaging like its contrast mechanisms and spatiotemporal resolution are discussed. The image formation and its ongoing change from line-oriented scanning to full-volume reconstructions are explained. Then, the ultrasound contrast media and imaging techniques are introduced and emerging new methods like super-resolution vascular imaging demonstrate the ongoing development in this field.
Collapse
|
18
|
Fadhel MN, Hysi E, Zalev J, Kolios MC. Photoacoustic simulations of microvascular bleeding: spectral analysis and its application for monitoring vascular-targeted treatments. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-8. [PMID: 31707772 PMCID: PMC7003142 DOI: 10.1117/1.jbo.24.11.116001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/21/2019] [Indexed: 05/04/2023]
Abstract
Solid tumors are typically supplied nutrients by a network of irregular blood vessels. By targeting these vascular networks, it might be possible to hinder cancer growth and metastasis. Vascular disrupting agents induce intertumoral hemorrhaging, making photoacoustic (PA) imaging well positioned to detect bleeding due to its sensitivity to hemoglobin and its various states. We introduce a fractal-based numerical model of intertumoral hemorrhaging to simulate the PA signals from disrupted tumor blood vessels. The fractal model uses bifurcated cylinders to represent vascular trees. To mimic bleeding from blood vessels, hemoglobin diffusion from microvessels was simulated. In the simulations, the PA signals were detected by a linear array transducer (30 MHz center frequency) of four different vascular trees. The power spectrum of each beamformed PA signal was computed and fitted to a straight line within the −6-dB bandwidth of the receiving transducer. The spectral slope and midband fit (MBF) based on the fit decreased by 0.11 dB / MHz and 2.12 dB, respectively, 1 h post bleeding, while the y-intercept increased by 1.21 dB. The results suggest that spectral PA analysis can be used to measure changes in the concentration and spatial distribution of hemoglobin in tissue without the need to resolve individual vessels. The simulations support the feasibility of using PA imaging and spectral analysis in cancer treatment monitoring by detecting microvessel disruption.
Collapse
Affiliation(s)
- Muhannad N. Fadhel
- Ryerson University, Department of Physics, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Keenan Research Center, Toronto, Canada
| | - Eno Hysi
- Ryerson University, Department of Physics, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Keenan Research Center, Toronto, Canada
| | - Jason Zalev
- Ryerson University, Department of Physics, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Keenan Research Center, Toronto, Canada
| | - Michael C. Kolios
- Ryerson University, Department of Physics, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Keenan Research Center, Toronto, Canada
- Address all correspondence to Michael C. Kolios, E-mail:
| |
Collapse
|
19
|
Lu X, Dou C, Fabiilli ML, Miller DL. Capillary Hemorrhage Induced by Contrast-Enhanced Diagnostic Ultrasound in Rat Intestine. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2133-2139. [PMID: 31101449 PMCID: PMC6591078 DOI: 10.1016/j.ultrasmedbio.2019.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/21/2019] [Accepted: 04/07/2019] [Indexed: 05/25/2023]
Abstract
Contrast-enhanced diagnostic ultrasound (CEDUS) can lead to microvascular injury and petechial hemorrhage by the cavitational mechanism of ultrasonic bioeffects. Capillary hemorrhage has been noted in the heart and kidney, which are common targets of CEDUS examination. CEDUS has also become useful for monitoring intestinal inflammation. In the 1990s, the risk of intestinal microvascular hemorrhage was investigated both for incidental exposure by lithotripter shockwaves and for contrast agent microbubbles acting as cavitation nuclei with laboratory pulsed ultrasound systems. This study was initiated to update the risk assessment for intestine exposed to diagnostic imaging simulating CEDUS. The abdomens of anesthetized rats were scanned by a 1.6 MHz phased array probe during infusion of microbubble suspensions simulating Definity ultrasound contrast agent. Dual image frames were triggered intermittently, and the output power was varied to assess the exposure response. Petechiae counts in small intestine mucosa and muscle layers increased with increasing trigger interval from 2 s to 10 s, indicative of a slow refill after microbubble destruction. The counts increased with increasing output above a threshold of 1.4 MPa peak rarefactional pressure amplitude. Petechiae were also seen in Peyer's patches, and occult blood was detected in many affected segments of intestine. These results are consistent with early laboratory pulsed-ultrasound results.
Collapse
Affiliation(s)
- Xiaofang Lu
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Chunyan Dou
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Douglas L Miller
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Miller DL, Lu X, Fabiilli M, Dou C. Hepatocyte Injury Induced by Contrast-Enhanced Diagnostic Ultrasound. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2019; 38:1855-1864. [PMID: 30548874 DOI: 10.1002/jum.14883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/05/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVES Contrast-enhanced diagnostic ultrasound (US) has a potential to induce localized biological effects. The potential for contrast-enhanced diagnostic US bioeffects in liver were researched, with guidance from a report by Yang et al (Ultrasonics 2012; 52:1065-1071). METHODS Contact and standoff scanning was performed for 10 minutes with a diagnostic US phased array at 1.6 MHz during bolus injection or infusion of a contrast agent at a high dose. The impact of the imaging on rat liver was investigated by measuring enzyme release, microvascular leakage, and staining of injured hepatocytes. RESULTS The results showed liver enzyme release at 30 minutes, indicating liver injury, and elevated extraction of Evans blue dye, indicating microvascular leakage. In addition, Evans blue and trypan blue vital-staining methods revealed scattered stained cells within the US scan plane. For the Evans blue method, fluorescent cell counts in frozen sections were greatest for standoff exposure with contrast infusion. The count decreased strongly with depth for bolus injection, which was probably reflective of the high attenuation noted for this agent delivery method. CONCLUSIONS The results qualitatively confirmed the report by Yang et al and additionally showed hepatocyte vital staining. Research is needed to determine the threshold for the effects and the contrast agent dose response.
Collapse
Affiliation(s)
- Douglas L Miller
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Xiaofang Lu
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Mario Fabiilli
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Chunyan Dou
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Jones RM, Hynynen K. Advances in acoustic monitoring and control of focused ultrasound-mediated increases in blood-brain barrier permeability. Br J Radiol 2019; 92:20180601. [PMID: 30507302 DOI: 10.1259/bjr.20180601] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transcranial focused ultrasound (FUS) combined with intravenously circulating microbubbles can transiently and selectively increase blood-brain barrier permeability to enable targeted drug delivery to the central nervous system, and is a technique that has the potential to revolutionize the way neurological diseases are managed in medical practice. Clinical testing of this approach is currently underway in patients with brain tumors, early Alzheimer's disease, and amyotrophic lateral sclerosis. A major challenge that needs to be addressed in order for widespread clinical adoption of FUS-mediated blood-brain barrier permeabilization to occur is the development of systems and methods for real-time treatment monitoring and control, to ensure that safe and effective acoustic exposure levels are maintained throughout the procedures. This review gives a basic overview of the oscillation dynamics, acoustic emissions, and biological effects associated with ultrasound-stimulated microbubbles in vivo, and provides a summary of recent advances in acoustic-based strategies for detecting, controlling, and mapping microbubble activity in the brain. Further development of next-generation clinical FUS brain devices tailored towards microbubble-mediated applications is warranted and required for translation of this potentially disruptive technology into routine clinical practice.
Collapse
Affiliation(s)
- Ryan M Jones
- 1 Physical Sciences Platform, Sunnybrook Research Institute , Toronto, ON , Canada
| | - Kullervo Hynynen
- 1 Physical Sciences Platform, Sunnybrook Research Institute , Toronto, ON , Canada.,2 Department of Medical Biophysics, University of Toronto , Toronto, ON , Canada.,3 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
22
|
Enhanced microbubble contrast agent oscillation following 250 kHz insonation. Sci Rep 2018; 8:16347. [PMID: 30397280 PMCID: PMC6218550 DOI: 10.1038/s41598-018-34494-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/18/2018] [Indexed: 12/22/2022] Open
Abstract
Microbubble contrast agents are widely used in ultrasound imaging and therapy, typically with transmission center frequencies in the MHz range. Currently, an ultrasound center frequency near 250 kHz is proposed for clinical trials in which ultrasound combined with microbubble contrast agents is applied to open the blood brain barrier, since at this low frequency focusing through the human skull to a predetermined location can be performed with reduced distortion and attenuation compared to higher frequencies. However, the microbubble vibrational response has not yet been carefully evaluated at this low frequency (an order of magnitude below the resonance frequency of these contrast agents). In the past, it was assumed that encapsulated microbubble expansion is maximized near the resonance frequency and monotonically decreases with decreasing frequency. Our results indicated that microbubble expansion was enhanced for 250 kHz transmission as compared with the 1 MHz center frequency. Following 250 kHz insonation, microbubble expansion increased nonlinearly with increasing ultrasonic pressure, and was accurately predicted by either the modified Rayleigh-Plesset equation for a clean bubble or the Marmottant model of a lipid-shelled microbubble. The expansion ratio reached 30-fold with 250 kHz at a peak negative pressure of 400 kPa, as compared to a measured expansion ratio of 1.6 fold for 1 MHz transmission at a similar peak negative pressure. Further, the range of peak negative pressure yielding stable cavitation in vitro was narrow (~100 kPa) for the 250 kHz transmission frequency. Blood brain barrier opening using in vivo transcranial ultrasound in mice followed the same trend as the in vitro experiments, and the pressure range for safe and effective treatment was 75-150 kPa. For pressures above 150 kPa, inertial cavitation and hemorrhage occurred. Therefore, we conclude that (1) at this low frequency, and for the large oscillations, lipid-shelled microbubbles can be approximately modeled as clean gas microbubbles and (2) the development of safe and successful protocols for therapeutic delivery to the brain utilizing 250 kHz or a similar center frequency requires consideration of the narrow pressure window between stable and inertial cavitation.
Collapse
|
23
|
Chen M, Liang X, Gao C, Zhao R, Zhang N, Wang S, Chen W, Zhao B, Wang J, Dai Z. Ultrasound Triggered Conversion of Porphyrin/Camptothecin-Fluoroxyuridine Triad Microbubbles into Nanoparticles Overcomes Multidrug Resistance in Colorectal Cancer. ACS NANO 2018; 12:7312-7326. [PMID: 29901986 DOI: 10.1021/acsnano.8b03674] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Multidrug resistance remains one of the main obstacles to efficient chemotherapy of colorectal cancer. Herein, an efficient combination therapeutic strategy is proposed based on porphyrin/camptothecin-floxuridine triad microbubbles (PCF-MBs) with high drug loading contents, which own highly stable co-delivery drug combinations and no premature release. The triad PCF-MBs can act not only as a contrast agent for ultrasound (US)/fluorescence bimodal imaging but also a multimodal therapeutic agent for synergistic chemo-photodynamic combination therapy. Upon local ultrasound exposure under the guidance of ultrasound imaging, in situ conversion of PCF-MBs into porphyrin/camptothecin-floxuridine nanoparticles (PCF-NPs) leads to high accumulation of chemo-drugs and photosensitizer in tumors due to the induced high permeability of the capillary wall and cell membrane temporarily via sonoporation effect, greatly reducing the risk of systemic exposure. Most importantly, it was found that the PCF-MB-mediated photodynamic therapy could significantly reduce the expression of adenosine-triphosphate (ATP)-binding cassette subfamily G member 2 (ABCG2), which is responsible for the drug resistance in chemotherapy, resulting in a prominent intracellular camptothecin increase. In vivo experiments revealed that the PCF-MBs in combination with ultrasound and laser irradiation could achieve a 90% tumor inhibition rate of HT-29 cancer with no recurrence. Therefore, such triad PCF-MB-based combination therapeutic strategy shows great promise for overcoming drug resistance of colorectal cancer and other cancers.
Collapse
Affiliation(s)
- Min Chen
- Department of Biomedical Engineering, College of Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Xiaolong Liang
- Department of Ultrasound , Peking University Third Hospital , Beijing 100191 , People's Republic of China
| | - Chuang Gao
- Department of Biomedical Engineering, College of Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Ranran Zhao
- Department of Ultrasound , Peking University Third Hospital , Beijing 100191 , People's Republic of China
| | - Nisi Zhang
- Department of Biomedical Engineering, College of Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Shumin Wang
- Department of Ultrasound , Peking University Third Hospital , Beijing 100191 , People's Republic of China
| | - Wen Chen
- Department of Ultrasound , Peking University Third Hospital , Beijing 100191 , People's Republic of China
| | - Bo Zhao
- Department of Ultrasound , Peking University Third Hospital , Beijing 100191 , People's Republic of China
| | - Jinrui Wang
- Department of Ultrasound , Peking University Third Hospital , Beijing 100191 , People's Republic of China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering , Peking University , Beijing 100871 , People's Republic of China
| |
Collapse
|
24
|
Jones RM, Deng L, Leung K, McMahon D, O'Reilly MA, Hynynen K. Three-dimensional transcranial microbubble imaging for guiding volumetric ultrasound-mediated blood-brain barrier opening. Am J Cancer Res 2018; 8:2909-2926. [PMID: 29896293 PMCID: PMC5996357 DOI: 10.7150/thno.24911] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/05/2018] [Indexed: 01/08/2023] Open
Abstract
Focused ultrasound (FUS)-mediated blood-brain barrier (BBB) opening recently entered clinical testing for targeted drug delivery to the brain. Sources of variability exist in the current procedures, motivating the development of real-time monitoring and control techniques to improve treatment safety and efficacy. Here we used three-dimensional (3D) transcranial microbubble imaging to calibrate FUS exposure levels for volumetric BBB opening. Methods: Using a sparse hemispherical transmit/receive ultrasound phased array, pulsed ultrasound was focused transcranially into the thalamus of rabbits during microbubble infusion and multi-channel 3D beamforming was performed online with receiver signals captured at the subharmonic frequency. Pressures were increased pulse-by-pulse until subharmonic activity was detected on acoustic imaging (psub), and tissue volumes surrounding the calibration point were exposed at 50-100%psub via rapid electronic beam steering. Results: Spatially-coherent subharmonic microbubble activity was successfully reconstructed transcranially in vivo during calibration sonications. Multi-point exposures induced volumetric regions of elevated BBB permeability assessed via contrast-enhanced magnetic resonance imaging (MRI). At exposure levels ≥75%psub, MRI and histological examination occasionally revealed tissue damage, whereas sonications at 50%psub were performed safely. Substantial intra-grid variability of FUS-induced bioeffects was observed via MRI, prompting future development of multi-point calibration schemes for improved treatment consistency. Receiver array sparsity and sensor configuration had substantial impacts on subharmonic detection sensitivity, and are factors that should be considered when designing next-generation clinical FUS brain therapy systems. Conclusion: Our findings suggest that 3D subharmonic imaging can be used to calibrate exposure levels for safe FUS-induced volumetric BBB opening, and should be explored further as a method for cavitation-mediated treatment guidance.
Collapse
|
25
|
Izadifar Z, Babyn P, Chapman D. Ultrasound Cavitation/Microbubble Detection and Medical Applications. J Med Biol Eng 2018. [DOI: 10.1007/s40846-018-0391-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Chong WK, Papadopoulou V, Dayton PA. Imaging with ultrasound contrast agents: current status and future. Abdom Radiol (NY) 2018; 43:762-772. [PMID: 29508011 DOI: 10.1007/s00261-018-1516-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microbubble ultrasound contrast agents (UCAs) were recently approved by the Food and Drug administration for non-cardiac imaging. The physical principles of UCAs, methods of administration, dosage, adverse effects, and imaging techniques both current and future are described. UCAs consist of microbubbles in suspension which strongly interact with the ultrasound beam and are readily detectable by ultrasound imaging systems. They are confined to the blood pool when administered intravenously, unlike iodinated and gadolinium contrast agents. UCAs have a proven safety record based on over two decades of use, during which they have been used in echocardiography in the U.S. and for non-cardiac imaging in the rest of the world. Adverse effects are less common with UCAs than CT/MR contrast agents. Compared to CT and MR, contrast-enhanced ultrasound has the advantages of real-time imaging, portability, and reduced susceptibility to metal and motion artifact. UCAs are not nephrotoxic and can be used in renal failure. High acoustic amplitudes can cause microbubbles to fragment in a manner that can result in short-term increases in capillary permeability or capillary rupture. These bioeffects can be beneficial and have been used to enhance drug delivery under appropriate conditions. Imaging with a mechanical index of < 0.4 preserves the microbubbles and is not typically associated with substantial bioeffects. Molecularly targeted ultrasound contrast agents are created by conjugating the microbubble shell with a peptide, antibody, or other ligand designed to target an endothelial biomarker associated with tumor angiogenesis or inflammation. These microbubbles then accumulate in the microvasculature at target sites where they can be imaged. Ultrasound contrast agents are a valuable addition to the diagnostic imaging toolkit. They will facilitate cross-sectional abdominal imaging in situations where contrast-enhanced CT and MR are contraindicated or impractical.
Collapse
Affiliation(s)
- Wui K Chong
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Unit 1473 | FCT15.5092, 1400 Pressler Street, Houston, TX, 77030, USA.
| | - Virginie Papadopoulou
- UNC-NC State Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Paul A Dayton
- UNC Biomedical Research Imaging Center, Chapel Hill, NC, 27599, USA
- UNC-NC State Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| |
Collapse
|
27
|
|
28
|
Yang Q, Tang P, He G, Ge S, Liu L, Zhou X. Hemocoagulase Combined with Microbubble-Enhanced Ultrasound Cavitation for Augmented Ablation of Microvasculature in Rabbit VX2 Liver Tumors. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1658-1670. [PMID: 28545858 DOI: 10.1016/j.ultrasmedbio.2017.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
We investigated a new method for combining microbubble-enhanced ultrasound cavitation (MEUC) with hemocoagulase (HC) atrox. Our goal was to induce embolic effects in the vasculature and combine these with an anti-angiogenic treatment strategy. Fourteen days after being implanted with a single slice of the liver VX2 tumor, rabbits were randomly divided into five groups: (i) a control group injected intra-venously with saline using a micropump; (ii) a group given only an injection of HC; (iii) a group treated only with ultrasound cavitation; (iv) a group treated with MEUC; (v) a group treated with MEUC + HC. Contrast-enhanced ultrasound was performed before treatment and 1 h and 7 d post-treatment to measure tumor size, enhancement and necrosis range. QontraXt software was used to determine the time-intensity curve of tumor blood perfusion and microvascular changes. At 1 h and 7 d after treatment with MEUC + HC, the parameters of the time-intensity curve, which included peak value, regional blood volume, regional blood flow and area under the curve value and which were measured using contrast-enhanced ultrasound, were significantly lower than those of the other treatment groups. The MEUC + HC treatment group exhibited significant growth inhibition relative to the ultrasound cavitation only, HC and MEUC treatment groups. No damage was observed in the surrounding normal tissues. These results support the feasibility of reducing the blood perfusion of rabbit VX2 liver tumors using a new method that combines MEUC and HC.
Collapse
Affiliation(s)
- Qian Yang
- Department of Ultrasound, Xijing Hospital, Xi'an, China
| | - Peng Tang
- Department of Orthopedics and Rehabilitation, China Rehabilitation Research Center, Beijing Charity Hospital, Beijing, China
| | - Guangbin He
- Department of Ultrasound, Xijing Hospital, Xi'an, China
| | - Shuping Ge
- The Heart Center, St. Christopher's Hospital for Children & Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Deborah Heart and Lung Center, Browns Mills, New Jersey, USA
| | - Liwen Liu
- Department of Ultrasound, Xijing Hospital, Xi'an, China.
| | - Xiaodong Zhou
- Department of Ultrasound, Xijing Hospital, Xi'an, China
| |
Collapse
|
29
|
Izadifar Z, Babyn P, Chapman D. Mechanical and Biological Effects of Ultrasound: A Review of Present Knowledge. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1085-1104. [PMID: 28342566 DOI: 10.1016/j.ultrasmedbio.2017.01.023] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 05/12/2023]
Abstract
Ultrasound is widely used for medical diagnosis and increasingly for therapeutic purposes. An understanding of the bio-effects of sonography is important for clinicians and scientists working in the field because permanent damage to biological tissues can occur at high levels of exposure. Here the underlying principles of thermal mechanisms and the physical interactions of ultrasound with biological tissues are reviewed. Adverse health effects derived from cellular studies, animal studies and clinical reports are reviewed to provide insight into the in vitro and in vivo bio-effects of ultrasound.
Collapse
Affiliation(s)
- Zahra Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Paul Babyn
- Department of Medical Imaging, Royal University Hospital, University of Saskatchewan and Saskatoon Health Region, Saskatoon, Saskatchewan, Canada
| | - Dean Chapman
- Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
30
|
Zhang J, Liu H, Du X, Guo Y, Chen X, Wang S, Fang J, Cao P, Zhang B, Liu Z, Zhang W. Increasing of Blood-Brain Tumor Barrier Permeability through Transcellular and Paracellular Pathways by Microbubble-Enhanced Diagnostic Ultrasound in a C6 Glioma Model. Front Neurosci 2017; 11:86. [PMID: 28280455 PMCID: PMC5322268 DOI: 10.3389/fnins.2017.00086] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 02/09/2017] [Indexed: 11/13/2022] Open
Abstract
Most of the anticancer agents cannot be efficiently delivered into the brain tumor because of the existence of blood-brain tumor barrier (BTB). The objective of this study was to explore the effect of microbubble-enhanced diagnostic ultrasound (MEUS) on the BTB permeability and the possible mechanism. Glioma-bearing rats were randomized into three groups as follows: the microbubble-enhanced continued diagnostic ultrasound (MECUS) group; the microbubble-enhanced intermittent diagnostic ultrasound (MEIUS) group and the control group. The gliomas were insonicated through the skull with a diagnostic ultrasound and injected with microbubbles through the tail veins. Evans Blue (EB) and dynamic contrast-enhanced-MRI were used to test changes in the BTB permeability. Confocal laser scanning microscopy was used to observe the deposition of the EB in the tumor tissues. The distribution and expression of junctional adhesion molecule-A (JAM-A) and calcium-activated potassium channels (KCa channels) were detected by a Western blot, qRT-PCR, and immunohistochemical staining. In the MEUS groups, the EB extravasation (11.0 ± 2.2 μg/g in MECUS group and 17.9 ± 2.3 μg/g in MEIUS group) exhibited a significant increase compared with the control group (5.3 ± 0.9 μg/g). The MEIUS group had more EB extravasation than the MECUS group. The Ktrans value of the dynamic contrast-enhanced-MRI in the MEUS groups was higher than that of the control group and correlated strongly with the EB extravasation in the tumor (R2 = 0.97). This showed that the Ktrans value might be a non-invasive method to evaluate the BTB permeability in rat glioma after microbubble-enhanced ultrasound treatment.Western blot, qRT-PCR and immunohistochemical staining revealed that MEUS increased the KCa channels expression and reduced JAM-A expression in glioma. This change was more obvious in the MEIUS group than in the MECUS group. The results demonstrated that MEUS effectively increased the BTB permeability in glioma. The mechanisms might involve the up-regulation of KCa channels expression and affecting the formation of tight junctions in the BTB by a reduction of JAM-A expression. These findings might provide some new guidance for glioma drug therapy.
Collapse
Affiliation(s)
- Jinlong Zhang
- Department of Radiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University Chongqing, China
| | - Heng Liu
- Department of Radiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University Chongqing, China
| | - Xuesong Du
- Department of Radiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University Chongqing, China
| | - Yu Guo
- Department of Radiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University Chongqing, China
| | - Xiao Chen
- Department of Radiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University Chongqing, China
| | - Shunan Wang
- Department of Radiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University Chongqing, China
| | - Jingqin Fang
- Department of Radiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University Chongqing, China
| | | | - Bo Zhang
- Four and the State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University Chongqing, China
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Third Military Medical University Chongqing, China
| | - Weiguo Zhang
- Department of Radiology, Research Institute of Surgery, Daping Hospital, Third Military Medical UniversityChongqing, China; Chongqing Clinical Research Center for Imaging and Nuclear MedicineChongqing, China
| |
Collapse
|
31
|
Zhang J, Wu S, Liu Y, Qiao L, Gao W, Zhang W, Liu Z. Disruption of Prostate Microvasculature by Combining Microbubble-Enhanced Ultrasound and Prothrombin. PLoS One 2016; 11:e0162398. [PMID: 27643992 PMCID: PMC5028116 DOI: 10.1371/journal.pone.0162398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/26/2016] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown a unique method to disrupt tumor vasculature using pulsed, high-pressure amplitude therapeutic ultrasound combined with microbubbles. In this study, we attempted to destroy the prostate vasculature of canine prostates using microbubble-enhanced ultrasound (MEUS) and prothrombin. The prostates of 43 male mongrel canines were surgically exposed. Twenty-two prostates were treated using MEUS (n = 11) or MEUS and prothrombin (PMEUS, n = 11). The other 21 prostates, which were treated using microbubbles (n = 7), ultrasound (n = 7) or prothrombin (n = 7) only, served as the controls. Prothrombin was intravenously infused at 20 IU/kg. MEUS was induced using a therapeutic ultrasound device at a peak negative pressure of 4.47 MPa and a microbubble injection. Contrast-enhanced ultrasound was performed to assess the blood perfusion of the prostates. Then, the prostate tissue was harvested immediately after treatment and at 48 hours later for pathological examination. The contrast-enhanced ultrasound peak value of the prostate decreased significantly from 36.2 ± 5.6 to 27.1 ± 6.3 after treatment in the PMEUS group, but it remained unchanged in the other groups. Histological examination found severe microvascular rupture, hemorrhage and thrombosis in both MEUS- and PMEUS-treated prostates immediately after treatment, while disruption in the PMEUS group was more severe than in the MEUS group. Forty-eight hours after treatment, massive necrosis and infiltration of white blood cells occurred in the PMEUS group. This study demonstrated that PMEUS disrupted the normal microvasculature of canine prostates and induced massive necrosis. PMEUS could potentially become a new noninvasive method used for the treatment of benign prostatic hyperplasia.
Collapse
Affiliation(s)
- Jinlong Zhang
- Department of Radiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Shengzheng Wu
- Department of Ultrasound, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yongliang Liu
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lu Qiao
- Department of Ultrasound, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wenhong Gao
- Department of Ultrasound, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Weiguo Zhang
- Department of Radiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
- State key laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (ZL); (WZ)
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (ZL); (WZ)
| |
Collapse
|
32
|
Miller DL, Lu X, Fabiilli M, Fields K, Dou C. Frequency Dependence of Petechial Hemorrhage and Cardiomyocyte Injury Induced during Myocardial Contrast Echocardiography. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1929-41. [PMID: 27126240 PMCID: PMC4912900 DOI: 10.1016/j.ultrasmedbio.2016.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/15/2016] [Accepted: 03/20/2016] [Indexed: 05/24/2023]
Abstract
Myocardial contrast echocardiography (MCE) for perfusion imaging can induce microscale bio-effects during intermittent high-Mechanical Index scans. The dependence of MCE-induced bio-effects on the ultrasonic frequency was examined in rats at 1.6, 2.5 and 3.5 MHz. Premature complexes were counted in the electrocardiogram, petechial hemorrhages with microvascular leakage on the heart surface were observed at the time of exposure, plasma troponin elevation was measured after 4 h and cardiomyocyte injury was detected at 24 h. Increasing response to exposure above an apparent threshold was observed for all endpoints at each frequency. The effects decreased with increasing ultrasonic frequency, and the thresholds increased. Linear regressions for frequency-dependent thresholds indicated coefficients and exponents of 0.6 and 1.07 for petechial hemorrhages, respectively, and 1.02 and 0.8 for cardiomyocyte death, compared with 1.9 and 0.5 (square root) for the guideline limit of the mechanical index. The results clarify the dependence of cardiac bio-effects on frequency, and should allow development of theoretical descriptions of the phenomena and improved safety guidance for MCE.
Collapse
Affiliation(s)
- Douglas L Miller
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA.
| | - Xiaofang Lu
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Mario Fabiilli
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Kristina Fields
- Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Chunyan Dou
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Abstract
Mechanical index (MI) is a measure of acoustic power. It is generally omitted during routine echocardiographic imaging. By adjusting the MI, an echocardiographer can perform various contrast-specific imaging modalities during the same session.
Collapse
Affiliation(s)
- Taner Şen
- Department of Cardiology, Kütahya Evliya Çelebi Education and Research Hospital, Dumlupınar University; Kütahya-Turkey.
| | | | | |
Collapse
|
34
|
Cheng CC, Yang YL, Liao KH, Lai TW. Adenosine receptor agonist NECA increases cerebral extravasation of fluorescein and low molecular weight dextran independent of blood-brain barrier modulation. Sci Rep 2016; 6:23882. [PMID: 27025761 PMCID: PMC4812297 DOI: 10.1038/srep23882] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 03/16/2016] [Indexed: 01/13/2023] Open
Abstract
Conventional methods for therapeutic blood-brain barrier (BBB) disruption facilitate drug delivery but are cumbersome to perform. A previous study demonstrated that adenosine receptor (AR) stimulation by 5′-N-ethylcarboxamide adenosine (NECA) increased the extravasation of intravascular tracers into the brain and proposed that AR agonism may be an effective method for therapeutic BBB disruption. We attempted to confirm the extravasation of tracers into the brain and also investigated tracer extravasation into peripheral organs and tracer retention in the blood. We found that NECA not only increased the extravasation of intravascular fluorescein and low molecular weight dextran into the brain of mice but also increased the concentrations of these tracers in the blood. In fact, the brain:blood ratio-normalized BBB permeability for either tracer is actually decreased by NECA administration. Elevated blood urea nitrogen levels in mice following NECA treatment suggested that renal function impairment was a probable cause of tracer retention. Therefore, NECA has almost no effect on the extravasation of intravascular Evans blue dye (EBD), an albumin-binding tracer with little renal clearance. Rather than inducing BBB disruption, our study demonstrated that NECA increased tracer extravasation into the brain by increasing the concentration gradient of the tracer across the BBB.
Collapse
Affiliation(s)
- Chih-Chung Cheng
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
| | - Ya Lan Yang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
| | - Kate Hsiurong Liao
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
| | - Ted Weita Lai
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Translational Medicine Research Center, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
35
|
Chen C, Gu Y, Tu J, Guo X, Zhang D. Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study. ULTRASONICS 2016; 66:54-64. [PMID: 26651263 DOI: 10.1016/j.ultras.2015.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 06/05/2023]
Abstract
Understanding the dynamics of coated-microbubble oscillating in an elastic microvessel is important for effective and safe applications of ultrasound contrast agents (UCAs) in imaging and therapy. Numerical simulations are performed based on a two-dimensional (2D) asymmetric finite element model to investigate the influences of both acoustic driving parameters (e.g., pressure and frequency) and material properties (vessel size, microbubble shell visco-elastic parameters and fluid viscosity) on the dynamic interactions in the bubble-blood-vessel system. The results show that, the constrained effect of the blood vessel along the radial direction will induce the asymmetric bubble oscillation and vessel deformation, as well as shifting the bubble resonance frequency toward the higher frequency range. For a bubble (1.5-μm radius) activated by 1-MHz ultrasound pulses in a microvessel with a radius varying between 2 and 6.5 μm, up to 26.95 kPa shear stress could be generated on the vessel wall at a driving pressure of 0.2 MPa, which should be high enough to damage the vascular endothelial cells. The asymmetrical oscillation ratio of the bubble can be aggravated from 0.12% to 79.94% with the increasing acoustic driving pressure and blood viscosity, or the decreasing vessel size and microbubble shell visco-elastic properties. The maximum compression velocity on the bubble shell will be enhanced from 0.19 to 22.79 m/s by the increasing vessel size and acoustic pressure, or the decreasing microbubble shell visco-elasticity and blood viscosity. As the results, the peak values of microstreaming-induced shear stress on the vessel wall increases from 0.003 to 26.95 kPa and the deformation degree of vessel is raised from 1.01 to 1.49, due to the enhanced acoustic amplitude, or the decreasing vessel size, blood viscosity and microbubble shell visco-elasticity. Moreover, it also suggests that, among above impact parameters, microbubble resonance frequency and UCA shell elasticity might play more dominant roles in dynamic interactions of the bubble-blood-vessel system.
Collapse
Affiliation(s)
- Chuyi Chen
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Yuyang Gu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China.
| |
Collapse
|
36
|
Ho YJ, Chang YC, Yeh CK. Improving Nanoparticle Penetration in Tumors by Vascular Disruption with Acoustic Droplet Vaporization. Theranostics 2016; 6:392-403. [PMID: 26909113 PMCID: PMC4737725 DOI: 10.7150/thno.13727] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/20/2015] [Indexed: 12/21/2022] Open
Abstract
Drug penetration influences the efficacy of tumor therapy. Although the leaky vessels of tumors can improve the penetration of nanodrugs via the enhanced permeability and retention (EPR) effect, various aspects of the tumor microenvironment still restrict this process. This study investigated whether vascular disruption using the acoustic vaporization of micro- or nanoscale droplets (MDs or NDs) induced by ultrasound sonication can overcome the limitations of the EPR effect to allow drug diffusion into extensive regions. The intravital penetration of DiI-labeled liposomes (as a drug model with red fluorescence) was observed using an acousto-optical integrated system comprising a 2-MHz focused ultrasound transducer (transmitting a three-cycle single pulse and a peak negative pressure of 10 MPa) in a window-chamber mouse model. Histology images of the solid tumor were also used to quantify and demonstrate the locations where DiI-labeled liposomes accumulated. In the intravital image analyses, the cumulative diffusion area and fluorescence intensity at 180 min were 0.08±0.01 mm(2) (mean±standard deviation) and 8.5±0.4%, respectively, in the EPR group, 0.33±0.01 mm(2) and 13.1±0.4% in the MD group (p<0.01), and 0.63±0.01 mm(2) and 18.9±1.1% in the ND group (p<0.01). The intratumoral accumulations of DiI-labeled liposomes were 1.7- and 2.3-fold higher in the MD and ND groups, respectively, than in the EPR group. These results demonstrate that vascular disruption induced by acoustic droplet vaporization can improve drug penetration more than utilizing the EPR effect. The NDs showed longer lifetime in vivo than MDs and provided potential abilities of long periods of treatment, intertissue ND vaporization, and intertissue NDs-converted bubble cavitation to improve the drug penetration and transport distance.
Collapse
|
37
|
Hsiang YH, Song J, Price RJ. The partitioning of nanoparticles to endothelium or interstitium during ultrasound-microbubble-targeted delivery depends on peak-negative pressure. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2015; 17:345. [PMID: 26594129 PMCID: PMC4651175 DOI: 10.1007/s11051-015-3153-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/13/2015] [Indexed: 06/05/2023]
Abstract
Patients diagnosed with advanced peripheral arterial disease often face poor prognoses and have limited treatment options. For some patient populations, the therapeutic growth of collateral arteries (i.e. arteriogenesis) that bypass regions affected by vascular disease may become a viable treatment option. Our group and others are developing therapeutic approaches centered on the ability of ultrasound-activated microbubbles to permeabilize skeletal muscle capillaries and facilitate the targeted delivery of pro-arteriogenic growth factor-bearing nanoparticles. The development of such approaches would benefit significantly from a better understanding of how nanoparticle diameter and ultrasound peak-negative pressure affect both total nanoparticle delivery and the partitioning of nanoparticles to endothelial or interstitial compartments. Toward this goal, using Balb/C mice that had undergone unilateral femoral artery ligation, we intra-arterially co-injected nanoparticles (50 and 100 nm) with microbubbles, applied 1 MHz ultrasound to the gracilis adductor muscle at peak-negative pressures of 0.7, 0.55, 0.4, and 0.2 MPa, and analyzed nanoparticle delivery and distribution. As expected, total nanoparticle (50 and 100 nm) delivery increased with increasing peak-negative pressure, with 50 nm nanoparticles exhibiting greater tissue coverage than 100 nm nanoparticles. Of particular interest, increasing peak-negative pressure resulted in increased delivery to the interstitium for both nanoparticle sizes, but had little influence on nanoparticle delivery to the endothelium. Thus, we conclude that alterations to peak-negative pressure may be used to adjust the fraction of nanoparticles delivered to the interstitial compartment. This information will be useful when designing ultrasound protocols for delivering pro-arteriogenic nanoparticles to skeletal muscle.
Collapse
Affiliation(s)
- Y.-H. Hsiang
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 22908, USA
| | - J. Song
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 22908, USA
| | - R. J. Price
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
38
|
Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T. Noninvasive Imaging of Nanomedicines and Nanotheranostics: Principles, Progress, and Prospects. Chem Rev 2015; 115:10907-37. [PMID: 26166537 DOI: 10.1021/cr500314d] [Citation(s) in RCA: 317] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sijumon Kunjachan
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Josef Ehling
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Gert Storm
- Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University , Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Fabian Kiessling
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging (ExMI), University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 30, 52074 Aachen, Germany.,Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University , Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
39
|
Smith BW, Simpson DG, Miller RJ, Erdman JW, O'Brien WD. Contrast Ultrasound Imaging Does Not Affect Heat Shock Protein 70 Expression in Cholesterol-Fed Rabbit Aorta. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2015; 34:1209-1216. [PMID: 26112623 PMCID: PMC4494680 DOI: 10.7863/ultra.34.7.1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
OBJECTIVES Diagnostic ultrasound imaging is enhanced by the use of circulating microbubble contrast agents (UCAs), but the interactions between ultrasound, UCAs, and vascular tissue are not fully understood. We hypothesized that ultrasound with a UCA would stress the vascular tissue and increase levels of heat shock protein 70 (Hsp70), a cellular stress protein. METHODS Male New Zealand White rabbits (n = 32) were fed a standard chow diet (n = 4) or a 1% cholesterol, 10% fat, and 0.11% magnesium diet (n = 28). At 21 days, 24 rabbits on the cholesterol diet were either exposed to ultrasound (3.2-MHz f/3 transducer; 2.1 MPa; mechanical index, 1.17; 10 Hz pulse repetition frequency; 1.6 microseconds pulse duration; 2 minutes exposure duration at 4 sites along the aorta) with the UCA Definity (1× concentration, 1 mL/min; Lantheus Medical Imaging, North Billerica, MA) or sham exposed with a saline vehicle injection (n = 12 per group). Four rabbits on the cholesterol diet and 4 on the chow diet served as cage controls and were not exposed to ultrasound or restrained for blood sample collection. Animals were euthanized 24 hours after exposure, and aortas were quickly isolated and frozen in liquid nitrogen. Aorta lysates from the area of ultrasound exposure were analyzed for Hsp70 level by Western blot. Blood plasma was analyzed for cholesterol, Hsp70, and von Willebrand factor, a marker of endothelial function. RESULTS Plasma total cholesterol levels increased to an average of 705 mg/dL. Ultrasound did not affect plasma von Willebrand factor, plasma Hsp70, or aorta Hsp70. Restraint increased Hsp70 (P < .001, analysis of variance). CONCLUSIONS Restraint, but not ultrasound with the UCA or cholesterol feeding, significantly increased Hsp70.
Collapse
Affiliation(s)
- Brendon W Smith
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.) and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - Douglas G Simpson
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.) and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - Rita J Miller
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.) and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - John W Erdman
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.) and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - William D O'Brien
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.) and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA.
| |
Collapse
|
40
|
Smith BW, Simpson DG, Sarwate S, Miller RJ, Erdman JW, O'Brien WD. Contrast Ultrasound Imaging of the Aorta Does Not Affect Progression of Atherosclerosis or Cardiovascular Biomarkers in ApoE-/- Mice. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2015; 34:1115-1122. [PMID: 26014332 PMCID: PMC4471945 DOI: 10.7863/ultra.34.6.1115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
OBJECTIVES Ultrasound contrast agents (UCAs) enhance cardiovascular ultrasound imaging. Adverse biological effects have occurred after administration of UCAs, and more research is needed for a comprehensive understanding of the risks involved. We used the ApoE(-/-) mouse model of atherosclerosis to characterize the effects of ultrasound and UCAs on atherosclerosis and plasma biomarkers. METHODS Male ApoE(-/-) mice (8 weeks old; n = 24) were intravenously infused with a UCA (2 × 10(10) Definity microbubbles per hour; Lantheus Medical Imaging, North Billerica, MA) and exposed to 2.8-MHz center frequency ultrasound (10 Hz pulse repetition frequency, 1.4 microseconds pulse duration, 2 minutes exposure duration, and 2 sites) at 1 of 3 derated peak rarefactional pressure amplitudes (0, 1.9, or 3.8 MPa), and then consumed either a chow or Western diet for 4 weeks (n = 4 per group). Blood plasma samples were collected before ultrasound exposure and at 2 and 4 weeks after exposure and assayed for total cholesterol and von Willebrand Factor (vWF). A pathologist measured atheroma thickness in formalin-fixed, hematoxylin-eosin-stained transverse aorta sections and scored them for severity of atherosclerosis. RESULTS Plasma total cholesterol initially averaged 286 mg/dL in the Western diet group and increased to 861 mg/dL after 4 weeks on the diet (P < .0001). Total cholesterol did not increase significantly in the chow diet group. Plasma vWF increased after 2 weeks on the Western diet (P < .0001). Atheroma thickness was greater in animals consuming the Western diet than in chow-fed animals (P < .05). Ultrasound had no significant effect on plasma total cholesterol, plasma vWF, or atheroma thickness. CONCLUSIONS Contrast ultrasound did not increase the severity of atherosclerosis or alter cardiovascular biomarkers in the ApoE(-/-) mouse model.
Collapse
Affiliation(s)
- Brendon W Smith
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., S.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.), Pathology (S.S.), and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - Douglas G Simpson
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., S.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.), Pathology (S.S.), and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - Sandhya Sarwate
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., S.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.), Pathology (S.S.), and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - Rita J Miller
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., S.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.), Pathology (S.S.), and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - John W Erdman
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., S.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.), Pathology (S.S.), and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA
| | - William D O'Brien
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering (B.W.S., S.S., R.J.M., W.D.O.), Division of Nutritional Sciences (B.W.S., J.W.E., W.D.O.), and Departments of Statistics (D.G.S.), Pathology (S.S.), and Food Science and Human Nutrition (J.W.E.), University of Illinois at Urbana-Champaign, Urbana, Illinois USA.
| |
Collapse
|
41
|
Goertz DE. An overview of the influence of therapeutic ultrasound exposures on the vasculature: high intensity ultrasound and microbubble-mediated bioeffects. Int J Hyperthermia 2015; 31:134-44. [PMID: 25716770 DOI: 10.3109/02656736.2015.1009179] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is well established that the interaction of ultrasound with soft tissues can induce a wide range of bioeffects. One of the most important and complex of these interactions in the context of therapeutic ultrasound is with the vasculature. Potential vascular effects range from enhancing microvascular permeability to inducing vascular damage and vessel occlusion. While aspects of these effects are broadly understood, the development of improved approaches to exploit these effects and gain a more detailed mechanistic understanding is ongoing and largely anchored in preclinical research. Here a general overview of this established yet rapidly evolving topic is provided, with a particular emphasis on effects arising from high-intensity focused ultrasound and microbubble-mediated exposures.
Collapse
Affiliation(s)
- David E Goertz
- Department of Physical Sciences, Sunnybrook Health Sciences Center , Toronto, Ontario , Canada
| |
Collapse
|
42
|
Dalecki D, Hocking DC. Ultrasound technologies for biomaterials fabrication and imaging. Ann Biomed Eng 2014; 43:747-61. [PMID: 25326439 DOI: 10.1007/s10439-014-1158-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/09/2014] [Indexed: 01/19/2023]
Abstract
Ultrasound is emerging as a powerful tool for developing biomaterials for regenerative medicine. Ultrasound technologies are finding wide-ranging, innovative applications for controlling the fabrication of bioengineered scaffolds, as well as for imaging and quantitatively monitoring the properties of engineered constructs both during fabrication processes and post-implantation. This review provides an overview of the biomedical applications of ultrasound for imaging and therapy, a tutorial of the physical mechanisms through which ultrasound can interact with biomaterials, and examples of how ultrasound technologies are being developed and applied for biomaterials fabrication processes, non-invasive imaging, and quantitative characterization of bioengineered scaffolds in vitro and in vivo.
Collapse
Affiliation(s)
- Diane Dalecki
- Department of Biomedical Engineering, University of Rochester, 310 Goergen Hall, P.O. Box 270168, Rochester, NY, 14627, USA,
| | | |
Collapse
|
43
|
Rix A, Palmowski M, Gremse F, Palmowski K, Lederle W, Kiessling F, Bzyl J. Influence of repetitive contrast agent injections on functional and molecular ultrasound measurements. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2468-2475. [PMID: 25023096 DOI: 10.1016/j.ultrasmedbio.2014.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 04/04/2014] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
Quantitative contrast-enhanced ultrasound plays an important role in tumor characterization and treatment assessment. Besides established functional ultrasound techniques, ultrasound molecular imaging using microbubbles targeted to disease-associated markers is increasingly being applied in pre-clinical studies. Often, repeated injections of non-targeted or targeted microbubbles during the same imaging session are administered. However, the influence of repeated injections on the accuracy of the quantitative data is unclear. Therefore, in tumor-bearing mice, we investigated the influence of multiple injections of non-targeted microbubbles (SonoVue) on time to peak and peak enhancement in liver and tumor tissue and of vascular endothelial growth factor receptor 2 (VEGFR2)-targeted contrast agents (MicroMarker) on specific tumor accumulation. We found significantly decreasing values for time to peak and a tendency for increased values for peak enhancement after multiple injections. Repeated injections of VEGFR2-targeted microbubbles led to significantly increased tumor accumulation, which may result from the exposure of additional binding sites at endothelial surfaces caused by mechanical forces from destroyed microbubbles.
Collapse
Affiliation(s)
- Anne Rix
- Department of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Moritz Palmowski
- Department of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany; Academic Radiology Baden-Baden, Diagnostic and Interventional Radiology, University Medical Center Heidelberg, Baden-Baden, Germany
| | - Felix Gremse
- Department of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Karin Palmowski
- Pneumology and Critical Care Medicine, Thoraxklinik Heidelberg, Heidelberg, Germany
| | - Wiltrud Lederle
- Department of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Department of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.
| | - Jessica Bzyl
- Department of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
44
|
Koza Y. What do cardiologists know about the safety indexes of echocardiography? J Echocardiogr 2014; 12:127-8. [PMID: 27276901 DOI: 10.1007/s12574-014-0219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/18/2014] [Accepted: 07/06/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Yavuzer Koza
- Department of Cardiology, Ataturk University Faculty of Medicine, Yakutiye, Erzurum, 25100, Turkey.
| |
Collapse
|
45
|
Livneh A, Kimmel E, Kohut AR, Adam D. Extracorporeal acute cardiac pacing by High Intensity Focused Ultrasound. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:140-153. [DOI: 10.1016/j.pbiomolbio.2014.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 11/29/2022]
|
46
|
Chuang YH, Wang YH, Chang TK, Lin CJ, Li PC. Albumin acts like transforming growth factor β1 in microbubble-based drug delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:765-774. [PMID: 24433746 DOI: 10.1016/j.ultrasmedbio.2013.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/24/2013] [Accepted: 10/22/2013] [Indexed: 06/03/2023]
Abstract
Unlike lipid-shelled microbubbles (MBs), albumin-shelled microbubbles (MBs) have not been reported to be actively targeted to cells without the assistance of antibodies. Recent studies indicate that the albumin molecule is similar to transforming growth factor β (TGF-β) both structurally and functionally. The TGF-β superfamily is important during early tumor outgrowth, with an elevated TGF-β being tumor suppressive; at later stages, this switches to malignant conversion and progression, including breast cancer. TGF-β receptors I and II play crucial roles in both the binding and endocytosis of albumin. However, until now, no specific albumin receptor has been found. On the basis of the above-mentioned information, we hypothesized that non-antibody-conjugated albumin-shelled MBs can be used to deliver drugs to breast cancer cells. We also studied the possible roles of TGF-β1 and radiation force in the behavior of cells and albumin-shelled MBs. The results indicate that albumin-shelled MBs loaded with paclitaxel (PTX) induce breast cancer cell apoptosis without the specific targeting produced by an antibody. Applying either an acoustic radiation force or cavitation alone to cells with PTX-loaded albumin MBs increased the apoptosis rate to 23.2% and 26.3% (p < 0.05), respectively. We also found that albumin-shelled MBs can enter MDA-MB-231 breast cancer cells and remain there for at least 24 h, even in the presence of PTX loading. Confocal micrographs revealed that 70.5% of the breast cancer cells took up albumin-shelled MBs spontaneously after 1 d of incubation. Applying an acoustic radiation force further increased the percentage to 91.9% in our experiments. However, this process could be blocked by TGF-β1, even with subsequent exposure to the radiation force. From these results, we conclude that TGF-β1 receptors are involved in the endocytotic process by which albumin-shelled MBs enter breast cancer cells. The acoustic radiation force increases the contact rate between albumin-shelled MBs and tumor cells. Combining a radiation force and cavitation yields an apoptosis rate of 31.3%. This in vitro study found that non-antibody-conjugated albumin-shelled MBs provide a useful method of drug delivery. Further in vivo studies of the roles of albumin MBs and TGF-β in different stages of cancer are necessary.
Collapse
Affiliation(s)
- Yueh-Hsun Chuang
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Hsin Wang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Tien-Kuei Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ching-Jung Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Pai-Chi Li
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
47
|
Florinas S, Kim J, Nam K, Janát-Amsbury MM, Kim SW. Ultrasound-assisted siRNA delivery via arginine-grafted bioreducible polymer and microbubbles targeting VEGF for ovarian cancer treatment. J Control Release 2014; 183:1-8. [PMID: 24657947 DOI: 10.1016/j.jconrel.2014.03.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/03/2014] [Accepted: 03/14/2014] [Indexed: 12/17/2022]
Abstract
The major drawback hampering siRNA therapies from being more widely accepted in clinical practice is its insufficient accumulation at the target site mainly due to poor cellular uptake and rapid degradation in serum. Therefore, we designed a novel polymeric siRNA carrier system, which would withstand serum-containing environments and tested its performance in vitro as well as in vivo. Delivering siRNA with a system combining an arginine-grafted bioreducible polymer (ABP), microbubbles (MBs), and ultrasound technology (US) we were able to synergize the advantages each delivery system owns individually, and created our innovative siRNA-ABP-MB (SAM) complexes. SAM complexes show significantly higher siRNA uptake and VEGF protein knockdown in vitro with serum-containing media when compared to naked siRNA, and 25k-branched-polyethylenimine (bPEI) representing the current standard in nonviral gene therapy. SAM complexes activated by US are also able to improve siRNA uptake in tumor tissue resulting in decelerating tumor growth in vivo.
Collapse
Affiliation(s)
- Stelios Florinas
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, USA
| | - Jaesung Kim
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, USA
| | - Kihoon Nam
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, USA
| | - Margit M Janát-Amsbury
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, USA; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Utah, Salt Lake City 84132, USA
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, USA.
| |
Collapse
|
48
|
|
49
|
Knuuti J, Bengel F, Bax JJ, Kaufmann PA, Le Guludec D, Perrone Filardi P, Marcassa C, Ajmone Marsan N, Achenbach S, Kitsiou A, Flotats A, Eeckhout E, Minn H, Hesse B. Risks and benefits of cardiac imaging: an analysis of risks related to imaging for coronary artery disease. Eur Heart J 2013; 35:633-8. [DOI: 10.1093/eurheartj/eht512] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Sorace AG, Warram JM, Mahoney M, Zinn KR, Hoyt K. Enhancement of adenovirus delivery after ultrasound-stimulated therapy in a cancer model. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:2374-81. [PMID: 24063960 PMCID: PMC4006627 DOI: 10.1016/j.ultrasmedbio.2013.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 05/06/2023]
Abstract
Improving the efficiency of adenovirus (Ad) delivery to target tissues has the potential to advance the translation of cancer gene therapy. Ultrasound (US)-stimulated therapy uses microbubbles (MBs) exposed to low-intensity US energy to improve localized delivery. We hypothesize that US-stimulated gene therapy can improve Ad infection in a primary prostate tumor through enhanced tumor uptake and retention of the Ad vector. In vitro studies were performed to analyze the degree of Ad infectivity after application of US-stimulated gene therapy. A luciferase-based Ad on a ubiquitous cytomegalovirus (CMV) promoter (Ad5/3-CMV-Luc) was used in an animal model of prostate cancer (bilateral tumor growth) to evaluate Ad transduction efficiency after US-stimulated therapy. Bioluminescence imaging was employed for in vivo analysis to quantify Ad infection within the tumor. In vitro studies revealed no difference in Ad transduction between groups receiving US-stimulated therapy using high, low or sham US intensity exposures at various multiplicities of infection (MOIs) (p = 0.80). In vivo results indicated that tumors receiving US-stimulated therapy after intra-tumoral injection of Ad5/3-CMV-Luc (1 × 10(6) plaque-forming units) exhibited a 95.1% enhancement in tumor delivery compared with control tumors receiving sham US (p = 0.03). US-stimulated therapy has significant potential to immediately affect Ad-based cancer gene therapy by improving virus bioavailability in target tissues.
Collapse
Affiliation(s)
- Anna G. Sorace
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason M. Warram
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Marshall Mahoney
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kurt R. Zinn
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Electrical & Computer Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kenneth Hoyt
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Electrical & Computer Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|