1
|
Singh A, Chaudhary R. Potentials of peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ: An in-depth and comprehensive review of their molecular mechanisms, cellular Signalling, immune responses and therapeutic implications in multiple diseases. Int Immunopharmacol 2025; 155:114616. [PMID: 40222274 DOI: 10.1016/j.intimp.2025.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors, have emerged as a key regulator of various biological processes, underscoring their relevance in the pathophysiology and treatment of numerous diseases. PPARs are primarily recognized for their critical role in lipid and glucose metabolism, which underpins their therapeutic applications in managing type 2 diabetes mellitus. Beyond metabolic disorders, they have gained attention for their involvement in immune modulation, making them potential targets for autoimmune-related inflammatory diseases. Furthermore, PPAR's ability to regulate proliferation, differentiation, and apoptosis has positioned them as promising candidates in oncology. Their anti-inflammatory and anti-fibrotic properties further highlight their potential in dermatological and cardiovascular conditions, where dysregulated inflammatory responses contribute to disease progression. Recent advancements have elucidated the molecular mechanisms of different PPAR isoforms, including their regulation of key signalling pathways such as NF-κB and MAPK, which are crucial in inflammation and cellular stress responses. Additionally, their interactions with co-factors and post-translational modifications further diversify their functional roles. The therapeutic potential of various PPAR agonists has been extensively explored, although challenges related to side effects and target specificity remain. This growing body of evidence underscores the significance of PPARs in understanding the molecular basis of diseases and advancing therapeutic interventions, paving way for targeted treatment approach across a wide spectrum of medical conditions. Here, we provide a comprehensive and detailed perspective of PPARs and their potential across different health conditions to advance our understanding, elucidate underlying mechanisms, and facilitate the development of potential treatment strategies.
Collapse
Affiliation(s)
- Alpana Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
2
|
Skoczyńska A, Ołdakowska M, Dobosz A, Adamiec R, Gritskevich S, Jonkisz A, Lebioda A, Adamiec-Mroczek J, Małodobra-Mazur M, Dobosz T. PPARs in Clinical Experimental Medicine after 35 Years of Worldwide Scientific Investigations and Medical Experiments. Biomolecules 2024; 14:786. [PMID: 39062500 PMCID: PMC11275227 DOI: 10.3390/biom14070786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
This year marks the 35th anniversary of Professor Walter Wahli's discovery of the PPARs (Peroxisome Proliferator-Activated Receptors) family of nuclear hormone receptors. To mark the occasion, the editors of the scientific periodical Biomolecules decided to publish a special issue in his honor. This paper summarizes what is known about PPARs and shows how trends have changed and how research on PPARs has evolved. The article also highlights the importance of PPARs and what role they play in various diseases and ailments. The paper is in a mixed form; essentially it is a review article, but it has been enriched with the results of our experiments. The selection of works was subjective, as there are more than 200,000 publications in the PubMed database alone. First, all papers done on an animal model were discarded at the outset. What remained was still far too large to describe directly. Therefore, only papers that were outstanding, groundbreaking, or simply interesting were described and briefly commented on.
Collapse
Affiliation(s)
- Anna Skoczyńska
- Department of Internal and Occupational Medicine and Hypertension, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Monika Ołdakowska
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Agnieszka Dobosz
- Department of Basic Medical Sciences and Immunology, Division of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Rajmund Adamiec
- Department of Diabetology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Department of Internal Medicine, Faculty of Medical and Technical Sciences, Karkonosze University of Applied Sciences, Lwówiecka 18, 58-506 Jelenia Góra, Poland
| | - Sofya Gritskevich
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Anna Jonkisz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Arleta Lebioda
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Joanna Adamiec-Mroczek
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Tadeusz Dobosz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| |
Collapse
|
3
|
Rapuano R, Riccio A, Mercuri A, Madera JR, Dallavalle S, Moricca S, Lupo A. Proliferation and migration of PC-3 prostate cancer cells is counteracted by PPARγ-cladosporol binding-mediated apoptosis and a decreased lipid biosynthesis and accumulation. Biochem Pharmacol 2024; 222:116097. [PMID: 38428827 DOI: 10.1016/j.bcp.2024.116097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
OBJECTIVES Chemoprevention, consisting of the administration of natural and/or synthetic compounds, appears to be an alternative way to common therapeutical approaches to preventing the occurrence of various cancers. Cladosporols, secondary metabolites from Cladosporium tenuissimum, showed a powerful ability in controlling human colon cancer cell proliferation through a peroxisome proliferator-activated receptor gamma (PPARγ)-mediated modulation of gene expression. Hence, we carried out experiments to verify the anticancer properties of cladosporols in human prostate cancer cells. Prostate cancer represents one of the most widespread tumors in which several risk factors play a role in determining its high mortality rate in men. MATERIALS AND METHODS We assessed, by viability assays, PPARγ silencing and overexpression experiments and western blotting analysis, the anticancer properties of cladosporols in cancer prostate cell lines. RESULTS Cladosporols A and B selectively inhibited the proliferation of human prostate PNT-1A, LNCaP and PC-3 cells and their most impactful antiproliferative ability towards PC-3 prostate cancer cells, was mediated by PPARγ modulation. Moreover, the anticancer ability of cladosporols implied a sustained apoptosis. Finally, cladosporols negatively regulated the expression of enzymes involved in the biosynthesis of fatty acids and cholesterol, thus enforcing the relationship between prostate cancer development and lipid metabolism dysregulation. CONCLUSION This is the first work, to our knowledge, in which the role of cladosporols A and B was disclosed in prostate cancer cells. Importantly, the present study highlighted the potential of cladosporols as new therapeutical tools, which, interfering with cell proliferation and lipid pathway dysregulation, may control prostate cancer initiation and progression.
Collapse
Affiliation(s)
- Roberta Rapuano
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via dei Mulini, 42, 82100 Benevento, Italy
| | - Alessio Riccio
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via dei Mulini, 42, 82100 Benevento, Italy
| | - Antonella Mercuri
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via dei Mulini, 42, 82100 Benevento, Italy
| | - Jessica Raffaella Madera
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via dei Mulini, 42, 82100 Benevento, Italy
| | - Sabrina Dallavalle
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Salvatore Moricca
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Piazzale delle Cascine 28, 50144 Firenze, Italy
| | - Angelo Lupo
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via dei Mulini, 42, 82100 Benevento, Italy.
| |
Collapse
|
4
|
Wang Y, Lei F, Lin Y, Han Y, Yang L, Tan H. Peroxisome proliferator-activated receptors as therapeutic target for cancer. J Cell Mol Med 2024; 28:e17931. [PMID: 37700501 PMCID: PMC10902584 DOI: 10.1111/jcmm.17931] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor family. There are three subtypes of PPARs, including PPAR-α, PPAR-β/δ and PPAR-γ. They are expressed in different tissues and act by regulating the expression of target genes in the form of binding to ligands. Various subtypes of PPAR have been shown to have significant roles in a wide range of biological processes including lipid metabolism, body energy homeostasis, cell proliferation and differentiation, bone formation, tissue repair and remodelling. Recent studies have found that PPARs are closely related to tumours. They are involved in cancer cell growth, angiogenesis and tumour immune response, and are essential components in tumour progression and metastasis. As such, they have become a target for cancer therapy research. In this review, we discussed the current state of knowledge on the involvement of PPARs in cancer, including their role in tumourigenesis, the impact of PPARs in tumour microenvironment and the potential of using PPARs combinational therapy to treat cancer by targeting essential signal pathways, or as adjuvants to boost the effects of current chemo and immunotherapies. Our review highlights the complexity of PPARs in cancer and the need for a better understanding of the mechanism in order to design effective cancer therapies.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Internal MedicineMontefiore Medical Center, Wakefield CampusBronxNew YorkUSA
| | - Feifei Lei
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| | - Yiyun Lin
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuru Han
- Qinghai Provincial People's HospitalXiningChina
| | - Lei Yang
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Huabing Tan
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
5
|
Robinson JW, Martin R, Ozawa M, Elwenspoek MMC, Redaniel MT, Kurian K, Ben-Shlomo Y. Use of drugs for hyperlipidaemia and diabetes and risk of primary and secondary brain tumours: nested case-control studies using the UK Clinical Practice Research Datalink (CPRD). BMJ Open 2024; 14:e072026. [PMID: 38336454 PMCID: PMC10860117 DOI: 10.1136/bmjopen-2023-072026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 12/05/2023] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVES Previous studies have suggested that fibrates and glitazones may have a role in brain tumour prevention. We examined if there is support for these observations using primary care records from the UK Clinical Practice Research Datalink (CPRD). DESIGN We conducted two nested case-control studies using primary and secondary brain tumours identified within CPRD between 2000 and 2016. We selected cases and controls among the population of individuals who had been treated with any anti-diabetic or anti-hyperlipidaemic medication to reduce confounding by indication. SETTING Adults older than 18 years registered with a general practitioner in the UK contributing data to CPRD. RESULTS We identified 7496 individuals with any brain tumour (4471 primary; 3025 secondary) in total. After restricting cases and controls to those prescribed any anti-diabetic or anti-hyperlipidaemic medication, there were 1950 cases and 7791 controls in the fibrate and 480 cases with 1920 controls in the glitazone analyses. Longer use of glitazones compared with all other anti-diabetic medications was associated with a reduced risk of primary (adjusted OR (aOR) 0.89 per year, 95% CI 0.80 to 0.98), secondary (aOR 0.87 per year, 95% CI 0.77 to 0.99) or combined brain tumours (aOR 0.88 per year, 95% CI 0.81 to 0.95). There was little evidence that fibrate exposure was associated with risk of either primary or secondary brain tumours. CONCLUSIONS Longer exposure to glitazones was associated with reduced primary and secondary brain tumour risk. Further basic science and population-based research should explore this finding in greater detail, in terms of replication and mechanistic studies.
Collapse
Affiliation(s)
- Jamie W Robinson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Richard Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Mio Ozawa
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Martha Maria Christine Elwenspoek
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) West, Univeristy of Bristol, Bristol, UK
| | - Maria Theresa Redaniel
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) West, Univeristy of Bristol, Bristol, UK
| | - Kathreena Kurian
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Brain Tumour Research Centre, University of Bristol, Bristol, UK
| | - Yoav Ben-Shlomo
- Department of Population Health Sciences, University of Bristol Medical School, Bristol, UK
- National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) West, Univeristy of Bristol, Bristol, UK
| |
Collapse
|
6
|
Safdar M, Hassan F, Khan MS, Khan AH, Junejo Y, Ozaslan M, Arain MA, Behan AA. In silico analysis of polyphenols modulate bovine PPARγ to increase milk fat synthesis in dairy cattle via the MAPK signaling pathways. J Anim Sci 2024; 102:skae248. [PMID: 39210246 PMCID: PMC11551727 DOI: 10.1093/jas/skae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
This study investigates the potential phytochemicals that modulate bovine peroxisome proliferator-activated receptor gamma (PPARγ) and the mitogen-activated protein kinase (MAPK) pathways to enhance milk fat production in dairy animals. Bovine PPARγ, a key member of the nuclear hormone receptor superfamily, plays a vital role in regulating metabolic, cellular differentiation, apoptosis, and anti-inflammatory responses in livestock, while the MAPK pathway is contributory in cellular processes that impact milk fat synthesis. This approach involved an all-inclusive molecular docking analysis of 10,000 polyphenols to identify potential PPARγ ligands. From this extensive screening, top 10 compounds were selected that exhibited the highest binding affinities to bovine PPARγ. Particularly, curcumin sulfate, isoflavone, and quercetin emerged as the most promising candidates. These compounds demonstrated superior docking scores (-9.28 kcal/mol, -9.27 kcal/mol, and -7.31 kcal/mol, respectively) and lower RMSD values compared to the synthetic bovine PPARγ agonist, 2,4-thiazolidinedione (-4.12 kcal/mol), indicating a strong potential for modulating the receptor. Molecular dynamics simulations (MDS) further affirmed the stability of these polyphenols-bovine PPARγ complexes, suggesting their effective and sustained interactions. These polyphenols, known as fatty acid synthase inhibitors, are suggested to influence lipid metabolism pathways crucial to milk fat production, possibly through the downregulation of the MAPK pathway. The screened compounds showed favorable pharmacokinetic profiles, including nontoxicity, carcinogenicity, and high gastrointestinal absorption, positioning them as viable candidates for enhancing dairy cattle health and milk production. These findings may open new possibilities for the use of phytochemicals as feed additives in dairy animals, suggesting a novel approach to improve milk fat synthesis through the dual modulation of bovine PPARγ and MAPK pathways.
Collapse
Affiliation(s)
- Muhammad Safdar
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Faizul Hassan
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Sajjad Khan
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Aneeb Hassan Khan
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Yasmeen Junejo
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Mehmet Ozaslan
- Department of Biology, Division of Molecular Biology and Genetics, Gaziantep University, Gaziantep, Turkey
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Atique Ahmed Behan
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
7
|
Prat M, Coulson K, Blot C, Jacquemin G, Romano M, Renoud ML, AlaEddine M, Le Naour A, Authier H, Rahabi MC, Benmoussa K, Salon M, Parny M, Delord JP, Ferron G, Lefèvre L, Couderc B, Coste A. PPARγ activation modulates the balance of peritoneal macrophage populations to suppress ovarian tumor growth and tumor-induced immunosuppression. J Immunother Cancer 2023; 11:e007031. [PMID: 37586764 PMCID: PMC10432661 DOI: 10.1136/jitc-2023-007031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Ovarian adenocarcinoma (OVAD) frequently metastasizes to the peritoneal cavity and manifests by the formation of ascites, which constitutes a tumor-promoting microenvironment. In the peritoneal cavity, two developmentally, phenotypically and functionally distinct macrophage subsets, immunocompetent large peritoneal macrophages (LPM) and immunosuppressive small peritoneal macrophages (SPM), coexist. Because peroxisome proliferator-activated receptor γ (PPARγ) is a critical factor participating in macrophage differentiation and cooperates with CCAAT/enhancer binding protein β (C/EBPβ), a transcription factor essential for SPM-to-LPM differentiation, PPARγ could be also involved in the regulation of SPM/LPM balance and could be a promising therapeutic target. METHODS To evaluate the 15(S)-hydroxyeicosatetraenoic acid (HETE), a PPARγ endogenous ligand, impact on ovarian tumor growth, we intraperitoneally injected 15(S)-HETE into a murine ovarian cancer model. This experimental model consists in the intraperitoneally injection of ID8 cells expressing luciferase into syngeneic C57BL/6 female mice. This ID8 orthotopic mouse model is a well-established experimental model of end-stage epithelial OVAD. Tumor progression was monitored using an in vivo imaging system. Peritoneal immune cells in ascites were analyzed by flow cytometry and cell sorting. To determine whether the impact of 15(S)-HETE in tumor development is mediated through the macrophages, these cells were depleted by injection of liposomal clodronate. To further dissect how 15(S)-HETE mediated its antitumor effect, we assessed the tumor burden in tumor-bearing mice in which the PPARγ gene was selectively disrupted in myeloid-derived cells and in mice deficient of the recombination-activating gene Rag2. Finally, to validate our data in humans, we isolated and treated macrophages from ascites of individuals with OVAD. RESULTS Here we show, in the murine experimental model of OVAD, that 15(S)-HETE treatment significantly suppresses the tumor growth, which is associated with the differentiation of SPM into LPM and the LPM residency in the peritoneal cavity. We demonstrate that C/EBPβ and GATA6 play a central role in SPM-to-LPM differentiation and in LPM peritoneal residence through PPARγ activation during OVAD. Moreover, this SPM-to-LPM switch is associated with the increase of the effector/regulatory T-cell ratio. Finally, we report that 15(S)-HETE attenuates immunosuppressive properties of human ovarian tumor-associated macrophages from ascites. CONCLUSION Altogether, these results promote PPARγ as a potential therapeutic target to restrain OVAD development and strengthen the use of PPARγ agonists in anticancer therapy.
Collapse
Affiliation(s)
- Mélissa Prat
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Kimberley Coulson
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Clément Blot
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Godefroy Jacquemin
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Mathilde Romano
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Marie-Laure Renoud
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Mohamad AlaEddine
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Augustin Le Naour
- UMR1037 Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM, Toulouse, France
| | - Hélène Authier
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Mouna Chirine Rahabi
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Khaddouj Benmoussa
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Marie Salon
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Mélissa Parny
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | | | - Gwenaël Ferron
- Institut Claudius Regaud, IUCT Oncopole, Toulouse, France
| | - Lise Lefèvre
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Bettina Couderc
- UMR1037 Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM, Toulouse, France
- Institut Claudius Regaud, IUCT Oncopole, Toulouse, France
| | - Agnès Coste
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| |
Collapse
|
8
|
Simvastatin Improves Benign Prostatic Hyperplasia: Role of Peroxisome-Proliferator-Activated Receptor-γ and Classic WNT/β-Catenin Pathway. Int J Mol Sci 2023; 24:ijms24054911. [PMID: 36902342 PMCID: PMC10003121 DOI: 10.3390/ijms24054911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in elderly men with an uncertain etiology and mechanistic basis. Metabolic syndrome (MetS) is also a very common illness and is closely related to BPH. Simvastatin (SV) is one of the widely used statins for MetS. Peroxisome-proliferator-activated receptor gamma (PPARγ), crosstalking with the WNT/β-catenin pathway, plays important roles in MetS. Our current study aimed to examine SV-PPARγ-WNT/β-catenin signaling in the development of BPH. Human prostate tissues and cell lines plus a BPH rat model were utilized. Immunohistochemical, immunofluorescence, hematoxylin and eosin (H&E) and Masson's trichrome staining, construction of a tissue microarray (TMA), ELISA, CCK-8 assay, qRT-PCR, flow cytometry, and Western blotting were also performed. PPARγ was expressed in both prostate stroma and epithelial compartments and downregulated in BPH tissues. Furthermore, SV dose-dependently triggered cell apoptosis and cell cycle arrest at the G0/G1 phase and attenuated tissue fibrosis and the epithelial-mesenchymal transition (EMT) process both in vitro and in vivo. SV also upregulated the PPARγ pathway, whose antagonist could reverse SV produced in the aforementioned biological process. Additionally, crosstalk between PPARγ and WNT/β-catenin signaling was demonstrated. Finally, correlation analysis with our TMA containing 104 BPH specimens showed that PPARγ was negatively related with prostate volume (PV) and free prostate-specific antigen (fPSA) and positively correlated with maximum urinary flow rate (Qmax). WNT-1 and β-catenin were positively related with International Prostate Symptom Score (IPSS) and nocturia, respectively. Our novel data demonstrate that SV could modulate cell proliferation, apoptosis, tissue fibrosis, and the EMT process in the prostate through crosstalk between PPARγ and WNT/β-catenin pathways.
Collapse
|
9
|
Ishtiaq SM, Arshad MI, Khan JA. PPARγ signaling in hepatocarcinogenesis: Mechanistic insights for cellular reprogramming and therapeutic implications. Pharmacol Ther 2022; 240:108298. [PMID: 36243148 DOI: 10.1016/j.pharmthera.2022.108298] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) is leading cause of cancer-related mortalities globally. The therapeutic approaches for chronic liver diseases-associated liver cancers aimed at modulating immune check-points and peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathway during multistep process of hepatocarcinogenesis that played a dispensable role in immunopathogenesis and outcomes of disease. Herein, the review highlights PPARγ-induced effects in balancing inflammatory (tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1) and anti-inflammatory cytokines (IL-10, transforming growth factor beta (TGF-β), and interplay of PPARγ, hepatic stellate cells and fibrogenic niche in cell-intrinsic and -extrinsic crosstalk of hepatocarcinogenesis. PPARγ-mediated effects in pre-malignant microenvironment promote growth arrest, cell senescence and cell clearance in liver cancer pathophysiology. Furthermore, PPARγ-immune cell axis of liver microenvironment exhibits an immunomodulation strategy of resident immune cells of the liver (macrophages, natural killer cells, and dendritic cells) in concomitance with current clinical guidelines of the European Association for Study of Liver Diseases (EASL) for several liver diseases. Thus, mechanistic insights of PPARγ-associated high value targets and canonical signaling suggest PPARγ as a possible therapeutic target in reprogramming of hepatocarcinogenesis to decrease burden of liver cancers, worldwide.
Collapse
Affiliation(s)
- Syeda Momna Ishtiaq
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Junaid Ali Khan
- Department of Pharmacology and Physiology, MNS University of Agriculture, Multan 60000, Pakistan.
| |
Collapse
|
10
|
Molecular Modeling of Allosteric Site of Isoform-Specific Inhibition of the Peroxisome Proliferator-Activated Receptor PPARγ. Biomolecules 2022; 12:biom12111614. [DOI: 10.3390/biom12111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor and controls a number of gene expressions. The ligand binding domain (LBD) of PPARγ is large and involves two binding sites: orthosteric and allosteric binding sites. Increased evidence has shown that PPARγ is an oncogene and thus the PPARγ antagonists have potential as anticancer agents. In this paper, we use Glide Dock approach to determine which binding site, orthosteric or allosteric, would be a preferred pocket for PPARγ antagonist binding, though antidiabetic drugs such as thiazolidinediones (TZDs) bind to the orthosteric site. The Glide Dock results show that the binding of PPARγ antagonists at the allosteric site yielded results that were much closer to the experimental data than at the orthosteric site. The PPARγ antagonists seem to selectively bind to residues Lys265, Ser342 and Arg288 at the allosteric binding site, whereas PPARγ agonists would selectively bind to residues Leu228, Phe363, and His449, though Phe282 and Lys367 may also play a role for agonist binding at the orthosteric binding pocket. This finding will provide new perspectives in the design and optimization of selective and potent PPARγ antagonists or agonists.
Collapse
|
11
|
Ballav S, Biswas B, Sahu VK, Ranjan A, Basu S. PPAR-γ Partial Agonists in Disease-Fate Decision with Special Reference to Cancer. Cells 2022; 11:3215. [PMID: 36291082 PMCID: PMC9601205 DOI: 10.3390/cells11203215] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) has emerged as one of the most extensively studied transcription factors since its discovery in 1990, highlighting its importance in the etiology and treatment of numerous diseases involving various types of cancer, type 2 diabetes mellitus, autoimmune, dermatological and cardiovascular disorders. Ligands are regarded as the key determinant for the tissue-specific activation of PPAR-γ. However, the mechanism governing this process is merely a contradictory debate which is yet to be systematically researched. Either these receptors get weakly activated by endogenous or natural ligands or leads to a direct over-activation process by synthetic ligands, serving as complete full agonists. Therefore, fine-tuning on the action of PPAR-γ and more subtle modulation can be a rewarding approach which might open new avenues for the treatment of several diseases. In the recent era, researchers have sought to develop safer partial PPAR-γ agonists in order to dodge the toxicity induced by full agonists, akin to a balanced activation. With a particular reference to cancer, this review concentrates on the therapeutic role of partial agonists, especially in cancer treatment. Additionally, a timely examination of their efficacy on various other disease-fate decisions has been also discussed.
Collapse
Affiliation(s)
- Sangeeta Ballav
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Bini Biswas
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Vishal Kumar Sahu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Amit Ranjan
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| |
Collapse
|
12
|
Nayl AA, Arafa WAA, Ahmed IM, Abd-Elhamid AI, El-Fakharany EM, Abdelgawad MA, Gomha SM, Ibrahim HM, Aly AA, Bräse S, Mourad AK. Novel Pyridinium Based Ionic Liquid Promoter for Aqueous Knoevenagel Condensation: Green and Efficient Synthesis of New Derivatives with Their Anticancer Evaluation. Molecules 2022; 27:2940. [PMID: 35566291 PMCID: PMC9105511 DOI: 10.3390/molecules27092940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 11/22/2022] Open
Abstract
Herein, a distinctive dihydroxy ionic liquid ([Py-2OH]OAc) was straightforwardly assembled from the sonication of pyridine with 2-chloropropane-1,3-diol by employing sodium acetate as an ion exchanger. The efficiency of the ([Py-2OH]OAc as a promoter for the sono-synthesis of a novel library of condensed products through DABCO-catalyzed Knoevenagel condensation process of adequate active cyclic methylenes and ninhydrin was next investigated using ultimate greener conditions. All of the reactions studied went cleanly and smoothly, and the resulting Knoevenagel condensation compounds were recovered in high yields without detecting the aldol intermediates in the end products. Compared to traditional strategies, the suggested approach has numerous advantages including mild reaction conditions with no by-products, eco-friendly solvent, outstanding performance in many green metrics, and usability in gram-scale synthesis. The reusability of the ionic liquid was also studied, with an overall retrieved yield of around 97% for seven consecutive runs without any substantial reduction in the performance. The novel obtained compounds were further assessed for their in vitro antitumor potential toward three human tumor cell lines: Colo-205 (colon cancer), MCF-7 (breast cancer), and A549 (lung cancer) by employing the MTT assay, and the findings were evaluated with the reference Doxorubicin. The results demonstrated that the majority of the developed products had potent activities at very low doses. Compounds comprising rhodanine (5) or chromane (12) moieties exhibited the most promising cytotoxic effects toward three cell lines, particularly rhodanine carboxylic acid derivative (5c), showing superior cytotoxic effects against the investigated cell lines compared to the reference drug. Furthermore, automated docking simulation studies were also performed to support the results obtained.
Collapse
Affiliation(s)
- AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia; (W.A.A.A.); (I.M.A.)
| | - Wael A. A. Arafa
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia; (W.A.A.A.); (I.M.A.)
| | - Ismail M. Ahmed
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia; (W.A.A.A.); (I.M.A.)
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt;
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab, Alexandria 21934, Egypt;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia;
| | - Sobhi M. Gomha
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Al Jamiah, Saudi Arabia
| | - Hamada M. Ibrahim
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt; (H.M.I.); (A.K.M.)
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt;
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), Director Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Asmaa K. Mourad
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt; (H.M.I.); (A.K.M.)
| |
Collapse
|
13
|
Guo Y, Zhao Q, Tian Y, Liu Y, Yan Z, Xue C, Wang J. Study on the effects of the different polar group of EPA-enriched phospholipids on the proliferation and apoptosis in 95D cells. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:519-528. [PMID: 37073266 PMCID: PMC10077167 DOI: 10.1007/s42995-021-00097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/02/2021] [Indexed: 05/03/2023]
Abstract
EPA-enriched phosphatidylcholine (EPA-PC) and EPA-enriched phosphatidylethanolamine (EPA-PE) are newly identified marine phospholipids. The polar group of phospholipids is known to influence EPA-phospholipid activity. However, the differences in anti-tumor effects between EPA-PC and EPA-PE have not been reported. In this study, we evaluated the effects of two forms of EPA on the proliferation and apoptosis in the lung-cancer cell line 95D as well as possible molecular mechanisms. Our results showed that EPA-PC effectively inhibited proliferative activity and promoted apoptosis of 95D cells in a dose-dependent manner, while EPA-PE had no effect on cell proliferation, although it slightly promoted apoptosis. Western blot results showed that EPA-PC and EPA-PE upregulated the expression of PPARγ, RXRα, and PTEN, and downregulated the PI3K/AKT signaling pathway. Furthermore, EPA-PC and EPA-PE induced the expression of the pro-apoptotic gene, Bax, and reduced the expression of the anti-apoptotic gene, Bcl-xl. Additionally, EPA-PC and EPA-PE promoted the release of cytochrome c and activated the apoptotic enzyme-cleaved caspase-3. These data suggest that the anti-tumor effect of EPA-phospholipids may be exerted via a PPARγ-related mechanism. EPA-PC was more efficacious as compared to EPA-PE, which might be due to the different polar groups of phospholipids.
Collapse
Affiliation(s)
- Yao Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Qin Zhao
- School of Food Engineering, Ludong University, Yantai, 264025 China
| | - Yingying Tian
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266061 China
| | - Yuanyuan Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Ziyi Yan
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
14
|
Chi T, Wang M, Wang X, Yang K, Xie F, Liao Z, Wei P. PPAR-γ Modulators as Current and Potential Cancer Treatments. Front Oncol 2021; 11:737776. [PMID: 34631571 PMCID: PMC8495261 DOI: 10.3389/fonc.2021.737776] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, cancer has become one of the leading causes of mortality. Peroxisome Proliferator-Activated Receptors (PPARs) is a family of critical sensors of lipids as well as regulators of diverse metabolic pathways. They are also equipped with the capability to promote eNOS activation, regulate immunity and inflammation response. Aside from the established properties, emerging discoveries are also made in PPAR's functions in the cancer field. All considerations are given, there exists great potential in PPAR modulators which may hold in the management of cancers. In particular, PPAR-γ, the most expressed subtype in adipose tissues with two isoforms of different tissue distribution, has been proven to be able to inhibit cell proliferation, induce cell cycle termination and apoptosis of multiple cancer cells, promote intercellular adhesion, and cripple the inflamed state of tumor microenvironment, both on transcriptional and protein level. However, despite the multi-functionalities, the safety of PPAR-γ modulators is still of clinical concern in terms of dosage, drug interactions, cancer types and stages, etc. This review aims to consolidate the functions of PPAR-γ, the current and potential applications of PPAR-γ modulators, and the challenges in applying PPAR-γ modulators to cancer treatment, in both laboratory and clinical settings. We sincerely hope to provide a comprehensive perspective on the prospect of PPAR-γ applicability in the field of cancer treatment.
Collapse
Affiliation(s)
- Tiange Chi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Feiyu Xie
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Oncology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Harland A, Liu X, Ghirardello M, Galan MC, Perks CM, Kurian KM. Glioma Stem-Like Cells and Metabolism: Potential for Novel Therapeutic Strategies. Front Oncol 2021; 11:743814. [PMID: 34532295 PMCID: PMC8438230 DOI: 10.3389/fonc.2021.743814] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
Glioma stem-like cells (GSCs) were first described as a population which may in part be resistant to traditional chemotherapeutic therapies and responsible for tumour regrowth. Knowledge of the underlying metabolic complexity governing GSC growth and function may point to potential differences between GSCs and the tumour bulk which could be harnessed clinically. There is an increasing interest in the direct/indirect targeting or reprogramming of GSC metabolism as a potential novel therapeutic approach in the adjuvant or recurrent setting to help overcome resistance which may be mediated by GSCs. In this review we will discuss stem-like models, interaction between metabolism and GSCs, and potential current and future strategies for overcoming GSC resistance.
Collapse
Affiliation(s)
- Abigail Harland
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Xia Liu
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mattia Ghirardello
- Galan Research Group, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - M Carmen Galan
- Galan Research Group, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Claire M Perks
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Kathreena M Kurian
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
16
|
Virtual screening and biological evaluation of PPARγ antagonists as potential anti-prostate cancer agents. Bioorg Med Chem 2021; 46:116368. [PMID: 34433102 DOI: 10.1016/j.bmc.2021.116368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ) was identified as an oncogene and it plays a key role in prostate cancer (PC) development and progression. PPARγ antagonists have been shown to inhibit PC cell growth. Herein, we describe a virtual screening-based approach that led to the discovery of novel PPARγ antagonist chemotypes that bind at the allosteric pocket. Arg288, Lys367, and His449 appear to be important for PPARγ antagonist binding.
Collapse
|
17
|
Islam Z, Ali AM, Naik A, Eldaw M, Decock J, Kolatkar PR. Transcription Factors: The Fulcrum Between Cell Development and Carcinogenesis. Front Oncol 2021; 11:681377. [PMID: 34195082 PMCID: PMC8236851 DOI: 10.3389/fonc.2021.681377] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Higher eukaryotic development is a complex and tightly regulated process, whereby transcription factors (TFs) play a key role in controlling the gene regulatory networks. Dysregulation of these regulatory networks has also been associated with carcinogenesis. Transcription factors are key enablers of cancer stemness, which support the maintenance and function of cancer stem cells that are believed to act as seeds for cancer initiation, progression and metastasis, and treatment resistance. One key area of research is to understand how these factors interact and collaborate to define cellular fate during embryogenesis as well as during tumor development. This review focuses on understanding the role of TFs in cell development and cancer. The molecular mechanisms of cell fate decision are of key importance in efforts towards developing better protocols for directed differentiation of cells in research and medicine. We also discuss the dysregulation of TFs and their role in cancer progression and metastasis, exploring TF networks as direct or indirect targets for therapeutic intervention, as well as specific TFs' potential as biomarkers for predicting and monitoring treatment responses.
Collapse
Affiliation(s)
- Zeyaul Islam
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ameena Mohamed Ali
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Adviti Naik
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mohamed Eldaw
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Julie Decock
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Prasanna R. Kolatkar
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
18
|
Anasamy T, Chee CF, Wong YF, Heh CH, Kiew LV, Lee HB, Chung LY. Triorganotin complexes in cancer chemotherapy: Mechanistic insights and future perspectives. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Theebaa Anasamy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy University of Malaya Kuala Lumpur Malaysia
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre University of Malaya Kuala Lumpur Malaysia
| | - Yuen Fei Wong
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy University of Malaya Kuala Lumpur Malaysia
| | - Choon Han Heh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy University of Malaya Kuala Lumpur Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine University of Malaya Kuala Lumpur Malaysia
| | - Hong Boon Lee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy University of Malaya Kuala Lumpur Malaysia
- School of Biosciences, Faculty of Health and Medical Sciences Taylor's University Subang Jaya Selangor Malaysia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy University of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
19
|
Seçilmiş D, Hillerton T, Morgan D, Tjärnberg A, Nelander S, Nordling TEM, Sonnhammer ELL. Uncovering cancer gene regulation by accurate regulatory network inference from uninformative data. NPJ Syst Biol Appl 2020; 6:37. [PMID: 33168813 PMCID: PMC7652823 DOI: 10.1038/s41540-020-00154-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/15/2020] [Indexed: 01/11/2023] Open
Abstract
The interactions among the components of a living cell that constitute the gene regulatory network (GRN) can be inferred from perturbation-based gene expression data. Such networks are useful for providing mechanistic insights of a biological system. In order to explore the feasibility and quality of GRN inference at a large scale, we used the L1000 data where ~1000 genes have been perturbed and their expression levels have been quantified in 9 cancer cell lines. We found that these datasets have a very low signal-to-noise ratio (SNR) level causing them to be too uninformative to infer accurate GRNs. We developed a gene reduction pipeline in which we eliminate uninformative genes from the system using a selection criterion based on SNR, until reaching an informative subset. The results show that our pipeline can identify an informative subset in an overall uninformative dataset, allowing inference of accurate subset GRNs. The accurate GRNs were functionally characterized and potential novel cancer-related regulatory interactions were identified.
Collapse
Affiliation(s)
- Deniz Seçilmiş
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121, Solna, Sweden
| | - Thomas Hillerton
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121, Solna, Sweden
| | - Daniel Morgan
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121, Solna, Sweden
| | - Andreas Tjärnberg
- Center for Developmental Genetics, New York University, New York, NY, USA
| | - Sven Nelander
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Torbjörn E M Nordling
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Erik L L Sonnhammer
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121, Solna, Sweden.
| |
Collapse
|
20
|
Xu L, Ma X, Verma N, Perie L, Pendse J, Shamloo S, Marie Josephson A, Wang D, Qiu J, Guo M, Ping X, Allen M, Noguchi A, Springer D, Shen F, Liu C, Zhang S, Li L, Li J, Xiao J, Lu J, Du Z, Luo J, Aleman JO, Leucht P, Mueller E. PPARγ agonists delay age-associated metabolic disease and extend longevity. Aging Cell 2020; 19:e13267. [PMID: 33219735 PMCID: PMC7681041 DOI: 10.1111/acel.13267] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Aging leads to a number of disorders caused by cellular senescence, tissue damage, and organ dysfunction. It has been reported that anti‐inflammatory and insulin‐sensitizing compounds delay, or reverse, the aging process and prevent metabolic disorders, neurodegenerative disease, and muscle atrophy, improving healthspan and extending lifespan. Here we investigated the effects of PPARγ agonists in preventing aging and increasing longevity, given their known properties in lowering inflammation and decreasing glycemia. Our molecular and physiological studies show that long‐term treatment of mice at 14 months of age with low doses of the PPARγ ligand rosiglitazone (Rosi) improved glucose metabolism and mitochondrial functionality. These effects were associated with decreased inflammation and reduced tissue atrophy, improved cognitive function, and diminished anxiety‐ and depression‐like conditions, without any adverse effects on cardiac and skeletal functionality. Furthermore, Rosi treatment of mice started when they were 14 months old was associated with lifespan extension. A retrospective analysis of the effects of the PPARγ agonist pioglitazone (Pio) on longevity showed decreased mortality in patients receiving Pio compared to those receiving a PPARγ‐independent insulin secretagogue glimepiride. Taken together, these data suggest the possibility of using PPARγ agonists to promote healthy aging and extend lifespan.
Collapse
Affiliation(s)
- Lingyan Xu
- Division of Endocrinology Diabetes and MetabolismNYU Grossman School of Medicine New York NY USA
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Xinran Ma
- Division of Endocrinology Diabetes and MetabolismNYU Grossman School of Medicine New York NY USA
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Narendra Verma
- Division of Endocrinology, Diabetes and Metabolism NYU Grossman School of Medicine New York NY USA
| | - Luce Perie
- Division of Endocrinology, Diabetes and Metabolism NYU Grossman School of Medicine New York NY USA
| | - Jay Pendse
- Division of Endocrinology, Diabetes and Metabolism NYU Grossman School of Medicine New York NY USA
- Medical Service Veterans Affairs New York Harbor Healthcare System New York NY USA
| | - Sama Shamloo
- Division of Endocrinology, Diabetes and Metabolism NYU Grossman School of Medicine New York NY USA
| | - Anne Marie Josephson
- Department of Orthopedic Surgery NYU Grossman School of Medicine New York NY USA
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Xiaodan Ping
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Michele Allen
- Murine Phenotyping Core facility NHLBI National Institutes of Health Bethesda MD USA
| | - Audrey Noguchi
- Murine Phenotyping Core facility NHLBI National Institutes of Health Bethesda MD USA
| | - Danielle Springer
- Murine Phenotyping Core facility NHLBI National Institutes of Health Bethesda MD USA
| | - Fei Shen
- School of Physical Education & Health Care East China Normal University Shanghai China
| | - Caizhi Liu
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
- LANEH School of Life Sciences East China Normal University Shanghai China
| | - Shiwei Zhang
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Lingyu Li
- LANEH School of Life Sciences East China Normal University Shanghai China
| | - Jin Li
- Cardiac Regeneration and Ageing Lab Institute of Cardiovascular Sciences School of Life Science Shanghai University Shanghai China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab Institute of Cardiovascular Sciences School of Life Science Shanghai University Shanghai China
| | - Jian Lu
- School of Physical Education & Health Care East China Normal University Shanghai China
| | - Zhenyu Du
- LANEH School of Life Sciences East China Normal University Shanghai China
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Jose O. Aleman
- Division of Endocrinology, Diabetes and Metabolism NYU Grossman School of Medicine New York NY USA
- Medical Service Veterans Affairs New York Harbor Healthcare System New York NY USA
| | - Philipp Leucht
- Department of Orthopedic Surgery NYU Grossman School of Medicine New York NY USA
| | - Elisabetta Mueller
- Division of Endocrinology Diabetes and MetabolismNYU Grossman School of Medicine New York NY USA
- Division of Endocrinology, Diabetes and Metabolism NYU Grossman School of Medicine New York NY USA
- Cardiac Regeneration and Ageing Lab Institute of Cardiovascular Sciences School of Life Science Shanghai University Shanghai China
| |
Collapse
|
21
|
Lapcik P, Pospisilova A, Janacova L, Grell P, Fabian P, Bouchal P. How Different Are the Molecular Mechanisms of Nodal and Distant Metastasis in Luminal A Breast Cancer? Cancers (Basel) 2020; 12:E2638. [PMID: 32947901 PMCID: PMC7563588 DOI: 10.3390/cancers12092638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022] Open
Abstract
Lymph node status is one of the best prognostic factors in breast cancer, however, its association with distant metastasis is not straightforward. Here we compare molecular mechanisms of nodal and distant metastasis in molecular subtypes of breast cancer, with major focus on luminal A patients. We analyze a new cohort of 706 patients (MMCI_706) as well as an independent cohort of 836 primary tumors with full gene expression information (SUPERTAM_HGU133A). We evaluate the risk of distant metastasis, analyze targetable molecular mechanisms in Gene Set Enrichment Analysis and identify relevant inhibitors. Lymph node positivity is generally associated with NF-κB and Src pathways and is related to high risk (OR: 5.062 and 2.401 in MMCI_706 and SUPERTAM_HGU133A, respectively, p < 0.05) of distant metastasis in luminal A patients. However, a part (≤15%) of lymph node negative tumors at the diagnosis develop the distant metastasis which is related to cell proliferation control and thrombolysis. Distant metastasis of lymph node positive patients is mostly associated with immune response. These pro-metastatic mechanisms further vary in other molecular subtypes. Our data indicate that the management of breast cancer and prevention of distant metastasis requires stratified approach based on targeted strategies.
Collapse
Affiliation(s)
- Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (P.L.); (A.P.); (L.J.)
| | - Anna Pospisilova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (P.L.); (A.P.); (L.J.)
| | - Lucia Janacova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (P.L.); (A.P.); (L.J.)
| | - Peter Grell
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic;
| | - Pavel Fabian
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic;
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (P.L.); (A.P.); (L.J.)
| |
Collapse
|
22
|
Samec M, Liskova A, Koklesova L, Samuel SM, Zhai K, Buhrmann C, Varghese E, Abotaleb M, Qaradakhi T, Zulli A, Kello M, Mojzis J, Zubor P, Kwon TK, Shakibaei M, Büsselberg D, Sarria GR, Golubnitschaja O, Kubatka P. Flavonoids against the Warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA J 2020; 11:377-398. [PMID: 32843908 PMCID: PMC7429635 DOI: 10.1007/s13167-020-00217-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023]
Abstract
The Warburg effect is characterised by increased glucose uptake and lactate secretion in cancer cells resulting from metabolic transformation in tumour tissue. The corresponding molecular pathways switch from oxidative phosphorylation to aerobic glycolysis, due to changes in glucose degradation mechanisms known as the 'Warburg reprogramming' of cancer cells. Key glycolytic enzymes, glucose transporters and transcription factors involved in the Warburg transformation are frequently dysregulated during carcinogenesis considered as promising diagnostic and prognostic markers as well as treatment targets. Flavonoids are molecules with pleiotropic activities. The metabolism-regulating anticancer effects of flavonoids are broadly demonstrated in preclinical studies. Flavonoids modulate key pathways involved in the Warburg phenotype including but not limited to PKM2, HK2, GLUT1 and HIF-1. The corresponding molecular mechanisms and clinical relevance of 'anti-Warburg' effects of flavonoids are discussed in this review article. The most prominent examples are provided for the potential application of targeted 'anti-Warburg' measures in cancer management. Individualised profiling and patient stratification are presented as powerful tools for implementing targeted 'anti-Warburg' measures in the context of predictive, preventive and personalised medicine.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Constanze Buhrmann
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Tawar Qaradakhi
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011 Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011 Australia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafarik University, 040 11 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P. J. Šafarik University, 040 11 Košice, Slovakia
| | - Pavol Zubor
- Department of Gynecologic Oncology, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- OBGY Health & Care, Ltd., 01001 Zilina, Slovak Republic
| | - Taeg Kyu Kwon
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, 426 01 South Korea
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Gustavo R. Sarria
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
23
|
Haq MEU, Akash MSH, Rehman K, Khurshid M. Therapeutic role of metformin and troglitazone to prevent cancer risk in diabetic patients: evidences from experimental studies. TURKISH JOURNAL OF BIOCHEMISTRY 2020; 45:229-239. [DOI: 10.1515/tjb-2019-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
Objectives
It is evident from literature that individual with diabetes mellitus is more prone to develop cancer as compared to non-diabetic one. We aimed to highlight the risk factors that trigger the tumor formation in diabetic individuals and collect evidences regarding the preventive role of anti-diabetics in cancer.
Content
A comprehensive literature was searched in English language using electronic databases including PubMed, ScienceDirect, Medline, Scopus and Embase.
Summary and outlook
Antidiabetic drugs notably metformin and troglitazone, exhibit anticancer effects. Metformin targets energy sensor pathway i. e., AMPK/mTOR which is controlled by LKB1. Whereas. troglitazone activates PPARϒ that modulate the transcription of insulin responsive gene which is essential for lipid and glucose metabolism. Adipocytes are highly expressed with PPARɣ which induce differentiation and regulate adipogenesis. Ligand-driven expression of PPARɣ in myoblast and fibroblast cell lines produces adipocyte differentiation in breast cancer. Prostate cancer that expresses PPARɣ may be suppressed by troglitazone and retinoid which inhibit their proliferation and initiate differentiation. The findings summarized here show that metformin and troglitazone may have the ability to inhibit the cancer cell proliferation via involvement of molecular pathways. This therapeutic intervention will help to control the progression of cancer in diabetic patients.
Collapse
Affiliation(s)
- Muhammad Ejaz ul Haq
- Department of Pharmaceutical Chemistry , Government College University , Faisalabad , Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy , University of Agriculture , Faisalabad , Pakistan
| | - Mohsin Khurshid
- Department of Microbiology , Government College University , Faisalabad , Pakistan
| |
Collapse
|
24
|
Aydin AM, Chahoud J, Adashek JJ, Azizi M, Magliocco A, Ross JS, Necchi A, Spiess PE. Understanding genomics and the immune environment of penile cancer to improve therapy. Nat Rev Urol 2020; 17:555-570. [DOI: 10.1038/s41585-020-0359-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
|
25
|
Chaturvedi AP, Dehm SM. Androgen Receptor Dependence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1210:333-350. [PMID: 31900916 DOI: 10.1007/978-3-030-32656-2_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Androgens and the androgen receptor (AR) play crucial roles in the biology of normal and diseased prostate tissue, including prostate cancer (PCa). This dependence is evidenced by the use of androgen depletion therapy (ADT) as the primary treatment for locally advanced, metastatic, or relapsed PCa. This dependence is further evidenced by the various mechanisms employed by PCa cells to re-activate the AR to circumvent the growth-inhibitory effects of ADT. Re-activation of the AR during ADT is central to the disease evolving into the lethal castration resistant PCa (CRPC) phenotype, which is responsible for nearly all PCa mortality. Thus, understanding the regulation of AR and AR signaling is important for understanding the development and progression of PCa. This understanding provides the foundation for development of newer approaches for targeting CRPC therapeutically.
Collapse
Affiliation(s)
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
26
|
Anti-diabetic medications and the risk for colorectal cancer: A population-based nested case-control study. Cancer Epidemiol 2020; 64:101658. [DOI: 10.1016/j.canep.2019.101658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/30/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022]
|
27
|
Molecular signatures associated with prostate cancer cell line (PC-3) exposure to inactivated Zika virus. Sci Rep 2019; 9:15351. [PMID: 31653965 PMCID: PMC6814752 DOI: 10.1038/s41598-019-51954-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Abstract
The recent outbreak of Zika virus (ZIKV) infection associated with microcephaly cases has elicited much research on the mechanisms involved in ZIKV-host cell interactions. It has been described that Zika virus impairs cell growth, raising a hypothesis about its oncolytic potential against cancer cells. ZIKV tumor cell growth inhibition was later confirmed for glioblastoma. It was also demonstrated that an inactivated ZIKV prototype (ZVp) based on bacterial outer membrane vesicles has antiproliferative activity upon other cancer cell lines, such as PC-3 prostate cancer cell. This study aims at understanding the pathways that might be involved with the antiproliferative effect of Zika virus against prostate cancer cells. A metabolomic approach based on high-resolution mass spectrometry analysis led to the identification of 21 statistically relevant markers of PC-3 cells treated with ZVp. The markers were associated with metabolic alterations that trigger lipid remodeling, endoplasmic reticulum stress, inflammatory mediators, as well as disrupted porphyrin and folate metabolism. These findings highlight molecular signatures of ZVp-induced response that may be involved on cellular pathways triggered by its antiproliferative effect. To our knowledge, this is the first reported metabolomic assessment of ZIKV effect on prostate cancer cells, a promising topic for further research.
Collapse
|
28
|
Cheng HS, Tan WR, Low ZS, Marvalim C, Lee JYH, Tan NS. Exploration and Development of PPAR Modulators in Health and Disease: An Update of Clinical Evidence. Int J Mol Sci 2019; 20:E5055. [PMID: 31614690 PMCID: PMC6834327 DOI: 10.3390/ijms20205055] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that govern the expression of genes responsible for energy metabolism, cellular development, and differentiation. Their crucial biological roles dictate the significance of PPAR-targeting synthetic ligands in medical research and drug discovery. Clinical implications of PPAR agonists span across a wide range of health conditions, including metabolic diseases, chronic inflammatory diseases, infections, autoimmune diseases, neurological and psychiatric disorders, and malignancies. In this review we aim to consolidate existing clinical evidence of PPAR modulators, highlighting their clinical prospects and challenges. Findings from clinical trials revealed that different agonists of the same PPAR subtype could present different safety profiles and clinical outcomes in a disease-dependent manner. Pemafibrate, due to its high selectivity, is likely to replace other PPARα agonists for dyslipidemia and cardiovascular diseases. PPARγ agonist pioglitazone showed tremendous promises in many non-metabolic disorders like chronic kidney disease, depression, inflammation, and autoimmune diseases. The clinical niche of PPARβ/δ agonists is less well-explored. Interestingly, dual- or pan-PPAR agonists, namely chiglitazar, saroglitazar, elafibranor, and lanifibranor, are gaining momentum with their optimistic outcomes in many diseases including type 2 diabetes, dyslipidemia, non-alcoholic fatty liver disease, and primary biliary cholangitis. Notably, the preclinical and clinical development for PPAR antagonists remains unacceptably deficient. We anticipate the future design of better PPAR modulators with minimal off-target effects, high selectivity, superior bioavailability, and pharmacokinetics. This will open new possibilities for PPAR ligands in medicine.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Zun Siong Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Charlie Marvalim
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Justin Yin Hao Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| |
Collapse
|
29
|
Salgia MM, Elix CC, Pal SK, Jones JO. Different roles of peroxisome proliferator-activated receptor gamma isoforms in prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2019; 7:98-109. [PMID: 31317050 PMCID: PMC6627550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Due to the increasing occurrence of and high costs associated with prostate cancer (PC), there is an urgent need to develop novel PC treatment and chemoprevention strategies. Although androgen receptor (AR) signaling is significant in the development and progression of PC, other molecular pathways contribute as well. Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) has recently been implicated as an oncogene in PC, which may influence both the development and metastatic progression of the cancer. There are two isoforms of PPARγ, with PPARγ2 having an additional 30 amino acids at the amino terminus. Here, we investigated the differential expression and function of these two isoforms in benign and cancerous prostate epithelial cells. The findings from our immunohistochemistry (IHC) and RNA in situ hybridization experiments suggest that although both isoforms are expressed in benign human prostate tissue, PPARγ1 predominates in PC tissue. Our results from PC cell line experiments suggest that PPARγ1 contributes to the proliferation of some PC cells and that PPARγ2 represses PC cell growth. Our findings also suggest that PPARγ1 increases the growth and possibly the transformation of otherwise benign prostate epithelial cells. These results help to establish different roles for PPARγ isoforms in prostate cells, and support the hypothesis that PPARγ1 acts as an oncogene and that PPARγ2 acts as a tumor suppressor in prostate cells.
Collapse
Affiliation(s)
- Meghan M Salgia
- Department of Medical Oncology, City of Hope 1500 East Duarte Road, Duarte, CA, USA
| | - Catherine C Elix
- Department of Medical Oncology, City of Hope 1500 East Duarte Road, Duarte, CA, USA
| | - Sumanta K Pal
- Department of Medical Oncology, City of Hope 1500 East Duarte Road, Duarte, CA, USA
| | - Jeremy O Jones
- Department of Medical Oncology, City of Hope 1500 East Duarte Road, Duarte, CA, USA
| |
Collapse
|
30
|
Tremblay BL, Guénard F, Lamarche B, Pérusse L, Vohl MC. Weighted gene co-expression network analysis to explain the relationship between plasma total carotenoids and lipid profile. GENES AND NUTRITION 2019; 14:16. [PMID: 31086608 PMCID: PMC6505263 DOI: 10.1186/s12263-019-0639-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/15/2019] [Indexed: 12/27/2022]
Abstract
Background Variability in circulating carotenoids may be attributable to several factors including, among others, genetic variants and lipid profile. However, relatively few studies have considered the impact of gene expression in the inter-individual variability in circulating carotenoids. Most studies considered expression of genes individually and ignored their high degree of interconnection. Weighted gene co-expression network analysis (WGCNA) is a systems biology method used for finding gene clusters with highly correlated expression levels and for relating them to phenotypic traits. The objective of the present observational study is to examine the relationship between plasma total carotenoid concentrations and lipid profile using WGCNA. Results Whole blood expression levels of 533 probes were associated with plasma total carotenoids. Among the four WGCNA distinct modules identified, turquoise, blue, and brown modules correlated with plasma high-density lipoprotein cholesterol (HDL-C) and total cholesterol. Probes showing a strong association with HDL-C and total cholesterol were also the most important elements of the brown and blue modules. A total of four and 29 hub genes associated with total carotenoids were potentially related to HDL-C and total cholesterol, respectively. Conclusions Expression levels of 533 probes were associated with plasma total carotenoid concentrations. Using WGCNA, four modules and several hub genes related to lipid and carotenoid metabolism were identified. This integrative analysis provides evidence for the potential role of gene co-expression in the relationship between carotenoids and lipid concentrations. Further studies and validation of the hub genes are needed. Electronic supplementary material The online version of this article (10.1186/s12263-019-0639-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bénédicte L Tremblay
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| | - Frédéric Guénard
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| | - Benoît Lamarche
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| | - Louis Pérusse
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,3Department of Kinesiology, Laval University, 2300 rue de la Terrasse, Quebec City, QC G1V 0A6 Canada
| | - Marie-Claude Vohl
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| |
Collapse
|
31
|
Sun Q, Xu W, Ji S, Qin Y, Liu W, Hu Q, Zhang Z, Liu M, Yu X, Xu X. Role of hepatocyte nuclear factor 4 alpha in cell proliferation and gemcitabine resistance in pancreatic adenocarcinoma. Cancer Cell Int 2019; 19:49. [PMID: 30867652 PMCID: PMC6398265 DOI: 10.1186/s12935-019-0767-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 02/28/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Hepatocyte nuclear factor 4α (HNF4α) is a tissue-specific transcription factor that regulates the expression of numerous genes in hepatocytes and pancreatic β cells. HNF4α has been reported to affect cell proliferation and chemoresistance in several cancers. However, the role of HNF4α in pancreatic adenocarcinoma (PDAC) has not been studied extensively and remains unclear. METHODS By utilizing immunohistochemical (IHC) staining, we measured the expression of HNF4α in PDAC tissues. By silencing HNF4α in PDAC cell lines, we assessed the impact of HNF4α on pancreatic cancer cell proliferation and gemcitabine sensitivity. We used CCK8 and colony formation assays to examine the effect of HNF4α on cell proliferation. A flow cytometry assay was used to assess cell apoptosis. The expression of gemcitabine-related genes was detected by quantitative real‑time PCR (qRT-PCR) and Western blotting. IHC was utilized to assess the correlation between HNF4α and human equilibrative nucleoside transporter 1 (hENT1) expression in PDAC patients. Chromatin immunoprecipitation (ChIP) and dual‑luciferase reporter assays were used to confirm that hENT1 is a target gene of HNF4α. RESULTS Increased HNF4α expression was detected in PDAC tissues; patients with higher HNF4α expression displayed worse prognosis. To elucidate the function of HNF4α, we examined its role in pancreatic cancer cell proliferation, apoptosis and gemcitabine resistance. In HNF4α-silenced Capan-1 and MiaPaCa-2 cells, we observed decreased cell proliferation and increased sensitivity to gemcitabine compared to those of controls. The mechanism of HNF4α in gemcitabine-related chemosensitivity was then explored. In response to HNF4α silencing, the expression levels of gemcitabine-related proteins, hENT1 and deoxycytidine kinase (dCK) were significantly increased. Additionally, hENT1 was negatively correlated with HNF4α in PDAC tissue samples. Moreover, we identified hENT1 as a downstream target of HNF4α. CONCLUSION HNF4α is a prognostic marker for overall survival, is required for pancreatic cancer cell proliferation and promotes resistance to gemcitabine by downregulating hENT1. Therefore, targeting HNF4α might reverse gemcitabine resistance and provide novel treatment strategies for PDAC.
Collapse
Affiliation(s)
- Qiqing Sun
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Mengqi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
| |
Collapse
|
32
|
Broekema MF, Massink MPG, Donato C, de Ligt J, Schaarschmidt J, Borgman A, Schooneman MG, Melchers D, Gerding MN, Houtman R, Bonvin AMJJ, Majithia AR, Monajemi H, van Haaften GW, Soeters MR, Kalkhoven E. Natural helix 9 mutants of PPARγ differently affect its transcriptional activity. Mol Metab 2019; 20:115-127. [PMID: 30595551 PMCID: PMC6358588 DOI: 10.1016/j.molmet.2018.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The nuclear receptor PPARγ is the master regulator of adipocyte differentiation, distribution, and function. In addition, PPARγ induces terminal differentiation of several epithelial cell lineages, including colon epithelia. Loss-of-function mutations in PPARG result in familial partial lipodystrophy subtype 3 (FPDL3), a rare condition characterized by aberrant adipose tissue distribution and severe metabolic complications, including diabetes. Mutations in PPARG have also been reported in sporadic colorectal cancers, but the significance of these mutations is unclear. Studying these natural PPARG mutations provides valuable insights into structure-function relationships in the PPARγ protein. We functionally characterized a novel FPLD3-associated PPARγ L451P mutation in helix 9 of the ligand binding domain (LBD). Interestingly, substitution of the adjacent amino acid K450 was previously reported in a human colon carcinoma cell line. METHODS We performed a detailed side-by-side functional comparison of these two PPARγ mutants. RESULTS PPARγ L451P shows multiple intermolecular defects, including impaired cofactor binding and reduced RXRα heterodimerisation and subsequent DNA binding, but not in DBD-LBD interdomain communication. The K450Q mutant displays none of these functional defects. Other colon cancer-associated PPARγ mutants displayed diverse phenotypes, ranging from complete loss of activity to wildtype activity. CONCLUSIONS Amino acid changes in helix 9 can differently affect LBD integrity and function. In addition, FPLD3-associated PPARγ mutations consistently cause intra- and/or intermolecular defects; colon cancer-associated PPARγ mutations on the other hand may play a role in colon cancer onset and progression, but this is not due to their effects on the most well-studied functional characteristics of PPARγ.
Collapse
Affiliation(s)
- Marjoleine F Broekema
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten P G Massink
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Cinzia Donato
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joep de Ligt
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joerg Schaarschmidt
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Anouska Borgman
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marieke G Schooneman
- Department of Internal Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Diana Melchers
- PamGene International B. V., 's-Hertogenbosch, the Netherlands
| | | | - René Houtman
- PamGene International B. V., 's-Hertogenbosch, the Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Amit R Majithia
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Houshang Monajemi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Rijnstate Hospital, Arnhem, the Netherlands
| | - Gijs W van Haaften
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
33
|
Heudobler D, Rechenmacher M, Lüke F, Vogelhuber M, Klobuch S, Thomas S, Pukrop T, Hackl C, Herr W, Ghibelli L, Gerner C, Reichle A. Clinical Efficacy of a Novel Therapeutic Principle, Anakoinosis. Front Pharmacol 2018; 9:1357. [PMID: 30546308 PMCID: PMC6279883 DOI: 10.3389/fphar.2018.01357] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
Classic tumor therapy, consisting of cytotoxic agents and/or targeted therapy, has not overcome therapeutic limitations like poor risk genetic parameters, genetic heterogeneity at different metastatic sites or the problem of undruggable targets. Here we summarize data and trials principally following a completely different treatment concept tackling systems biologic processes: the principle of communicative reprogramming of tumor tissues, i.e., anakoinosis (ancient greek for communication), aims at establishing novel communicative behavior of tumor tissue, the hosting organ and organism via re-modeling gene expression, thus recovering differentiation, and apoptosis competence leading to cancer control - in contrast to an immediate, "poisoning" with maximal tolerable doses of targeted or cytotoxic therapies. Therefore, we introduce the term "Master modulators" for drugs or drug combinations promoting evolutionary processes or regulating homeostatic pathways. These "master modulators" comprise a broad diversity of drugs, characterized by the capacity for reprogramming tumor tissues, i.e., transcriptional modulators, metronomic low-dose chemotherapy, epigenetically modifying agents, protein binding pro-anakoinotic drugs, such as COX-2 inhibitors, IMiDs etc., or for example differentiation inducing therapies. Data on 97 anakoinosis inducing schedules indicate a favorable toxicity profile: The combined administration of master modulators, frequently (with poor or no monoactivity) may even induce continuous complete remission in refractory metastatic neoplasia, irrespectively of the tumor type. That means recessive components of the tumor, successively developing during tumor ontogenesis, are accessible by regulatory active drug combinations in a therapeutically meaningful way. Drug selection is now dependent on situative systems characteristics, to less extent histology dependent. To sum up, anakoinosis represents a new substantive therapy principle besides novel targeted therapies.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Michael Rechenmacher
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Simone Thomas
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department Biology, Universita' di Roma Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Faculty Chemistry, Institut for Analytical Chemistry, University Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
34
|
Heudobler D, Rechenmacher M, Lüke F, Vogelhuber M, Pukrop T, Herr W, Ghibelli L, Gerner C, Reichle A. Peroxisome Proliferator-Activated Receptors (PPAR)γ Agonists as Master Modulators of Tumor Tissue. Int J Mol Sci 2018; 19:ijms19113540. [PMID: 30424016 PMCID: PMC6274845 DOI: 10.3390/ijms19113540] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/27/2018] [Accepted: 11/06/2018] [Indexed: 02/08/2023] Open
Abstract
In most clinical trials, thiazolidinediones do not show any relevant anti-cancer activity when used as mono-therapy. Clinical inefficacy contrasts ambiguous pre-clinical data either favoring anti-tumor activity or tumor promotion. However, if thiazolidinediones are combined with additional regulatory active drugs, so-called ‘master modulators’ of tumors, i.e., transcriptional modulators, metronomic low-dose chemotherapy, epigenetically modifying agents, protein binding pro-anakoinotic drugs, such as COX-2 inhibitors, IMiDs, etc., the results indicate clinically relevant communicative reprogramming of tumor tissues, i.e., anakoinosis, meaning ‘communication’ in ancient Greek. The concerted activity of master modulators may multifaceted diversify palliative care or even induce continuous complete remission in refractory metastatic tumor disease and hematologic neoplasia by establishing novel communicative behavior of tumor tissue, the hosting organ, and organism. Re-modulation of gene expression, for example, the up-regulation of tumor suppressor genes, may recover differentiation, apoptosis competence, and leads to cancer control—in contrast to an immediate, ‘poisoning’ with maximal tolerable doses of targeted/cytotoxic therapies. The key for uncovering the therapeutic potential of Peroxisome proliferator-activated receptor γ (PPARγ) agonists is selecting the appropriate combination of master modulators for inducing anakoinosis: Now, anakoinosis is trend setting by establishing a novel therapeutic pillar while overcoming classic obstacles of targeted therapies, such as therapy resistance and (molecular-)genetic tumor heterogeneity.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Michael Rechenmacher
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Florian Lüke
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Martin Vogelhuber
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Tobias Pukrop
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Lina Ghibelli
- Department Biology, Universita' di Roma Tor Vergata, 00173 Rome, Italy.
| | - Christopher Gerner
- Institut for Analytical Chemistry, Faculty Chemistry, University Vienna, Vienna A-1090, Austria.
| | - Albrecht Reichle
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| |
Collapse
|
35
|
Chang SN, Lee JM, Oh H, Kim U, Ryu B, Park JH. Troglitazone inhibits the migration and invasion of PC-3 human prostate cancer cells by upregulating E-cadherin and glutathione peroxidase 3. Oncol Lett 2018; 16:5482-5488. [PMID: 30250621 DOI: 10.3892/ol.2018.9278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 04/28/2017] [Indexed: 11/06/2022] Open
Abstract
Troglitazone (TGZ) is a synthetic peroxisome proliferator-activated receptor γ (PPARγ) ligand that exhibits potential antitumor effects on a number of cancer subtypes, including prostate cancer. However, little is known about the effect of TGZ on metastasis in prostate cancer. The aim of the present study was to determine the inhibitory effect and mechanism underlying TGZ on cell growth, migration and invasion using the prostate cancer PC-3 cell line. Cellular migration and invasion were evaluated by performing a wound healing assay and Matrigel assay, respectively. The expression levels of mRNA and protein were determined by reverse transcription-quantitative polymerase chain reaction and western blotting. The results demonstrated that TGZ dose-dependently inhibited cell migration and invasion of PC-3 cells. The present study also revealed that TGZ increased the mRNA and protein levels of E-cadherin and glutathione peroxidase 3 (GPx3) in human prostate cancer PC-3 cells. In addition, GW9662, a PPARγ antagonist, attenuated the increased mRNA and protein levels of E-cadherin and GPx3, suggesting that the PPARγ-dependent signaling pathway was involved. Taken together, these results suggested that the anti-migration and anti-invasion effect of TGZ on PC-3 prostate cancer cells is, at least in part, mediated via upregulation of E-cadherin and GPx3. The present study also concluded that PPARγ may be used as a potential remedial target for the prevention and treatment of prostate cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Seo-Na Chang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji Min Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hanseul Oh
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
36
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Opposite Interplay Between the Canonical WNT/β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas. Neurosci Bull 2018; 34:573-588. [PMID: 29582250 PMCID: PMC5960455 DOI: 10.1007/s12264-018-0219-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
In gliomas, the canonical Wingless/Int (WNT)/β-catenin pathway is increased while peroxisome proliferator-activated receptor gamma (PPAR-γ) is downregulated. The two systems act in an opposite manner. This review focuses on the interplay between WNT/β-catenin signaling and PPAR-γ and their metabolic implications as potential therapeutic target in gliomas. Activation of the WNT/β-catenin pathway stimulates the transcription of genes involved in proliferation, invasion, nucleotide synthesis, tumor growth, and angiogenesis. Activation of PPAR-γ agonists inhibits various signaling pathways such as the JAK/STAT, WNT/β-catenin, and PI3K/Akt pathways, which reduces tumor growth, cell proliferation, cell invasiveness, and angiogenesis. Nonsteroidal anti-inflammatory drugs, curcumin, antipsychotic drugs, adiponectin, and sulforaphane downregulate the WNT/β-catenin pathway through the upregulation of PPAR-γ and thus appear to provide an interesting therapeutic approach for gliomas. Temozolomide (TMZ) is an antiangiogenic agent. The downstream action of this opposite interplay may explain the TMZ-resistance often reported in gliomas.
Collapse
Affiliation(s)
- Alexandre Vallée
- Laboratory of Mathematics and Applications, Unités Mixtes de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France.
- Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, Suresnes, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications, Unités Mixtes de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France
- CHU Amiens Picardie, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
37
|
Galbraith L, Leung HY, Ahmad I. Lipid pathway deregulation in advanced prostate cancer. Pharmacol Res 2018; 131:177-184. [PMID: 29466694 DOI: 10.1016/j.phrs.2018.02.022] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/08/2018] [Accepted: 02/14/2018] [Indexed: 01/03/2023]
Abstract
The link between prostate cancer (PC) development and lipid metabolism is well established, with AR intimately involved in a number of lipogenic processes involving SREBP1, PPARG, FASN, ACC, ACLY and SCD1. Recently, there is growing evidence implicating the role of obesity and peri-prostatic adipose tissue (PPAT) in PC aggressiveness and related mortality, suggesting the importance of lipid pathways in both localised and disseminated disease. A number of promising agents are in development to target the lipogenic axis in PC, and the likelihood is that these agents will form part of combination drug strategies, with targeting of multiple metabolic pathways (e.g. FASN and CPT1), or in combination with AR pathway inhibitors (SCD1 and AR).
Collapse
Affiliation(s)
- Laura Galbraith
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Hing Y Leung
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Imran Ahmad
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| |
Collapse
|
38
|
Elix C, Pal SK, Jones JO. The role of peroxisome proliferator-activated receptor gamma in prostate cancer. Asian J Androl 2018; 20:238-243. [PMID: 28597850 PMCID: PMC5952477 DOI: 10.4103/aja.aja_15_17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022] Open
Abstract
Despite great progress in the detection and treatment of prostate cancer, this disease remains an incredible health and economic burden. Although androgen receptor (AR) signaling plays a key role in the development and progression of prostate cancer, aberrations in other molecular pathways also contribute to the disease, making it essential to identify and develop drugs against novel targets, both for the prevention and treatment of prostate cancer. One promising target is the peroxisome proliferator-activated receptor gamma (PPARγ) protein. PPARγ was originally thought to act as a tumor suppressor in prostate cells because agonist ligands inhibited the growth of prostate cancer cells; however, additional studies found that PPARγ agonists inhibit cell growth independent of PPARγ. Furthermore, PPARγ expression increases with cancer grade/stage, which would suggest that it is not a tumor suppressor but instead that PPARγ activity may play a role in prostate cancer development and/or progression. Indeed, two new studies, taking vastly different, unbiased approaches, have identified PPARγ as a target in prostate cancer and suggest that PPARγ inhibition might be useful in prostate cancer prevention and treatment. These findings could lead to a new therapeutic weapon in the fight against prostate cancer.
Collapse
Affiliation(s)
- Catherine Elix
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA91010, USA
| | - Sumanta K Pal
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA91010, USA
| | - Jeremy O Jones
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA91010, USA
| |
Collapse
|
39
|
Canto P, Granados JB, Feria-Bernal G, Coral-Vázquez RM, García-García E, Tejeda ME, Tapia A, Rojano-Mejía D, Méndez JP. PPARGC1A and ADIPOQ polymorphisms are associated with aggressive prostate cancer in Mexican-Mestizo men with overweight or obesity. Cancer Biomark 2018; 19:297-303. [PMID: 28453464 DOI: 10.3233/cbm-160467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Obesity constitutes a risk factor for the development of aggressive forms of prostate cancer. It has been proposed, that prostate cancer has a genetic predisposition and that PPARGC1A and ADIPOQ polymorphisms play a role in the development of this condition. OBJECTIVE To analyse the association of two PPARGC1A and ADIPOQ polymorphisms as well as their haplotypes, with the development of aggressive prostate cancer in Mexican-Mestizo men with overweight or obesity. SUBJECTS AND METHODS Two hundred fifty seven men with prostate cancer of Mexican-Mestizo origin were included. Body mass index (BMI) was determined and the degree of prostate cancer aggressiveness by the D'Amico classification. DNA was obtained. Rs7665116 and rs2970870 of PPARGC1A, and rs266729 and rs1501299 of ADIPOQ were studied by real-time PCR allelic discrimination. Pairwise linkage disequilibrium, between single nucleotide polymorphisms was calculated and haplotype analysis was performed. RESULTS A higher-risk (D'Amico classification) was observed in 21.8% of patients. An association of cancer aggressiveness with rs2970870 of PPARGC1A, and rs501299 of ADIPOQ, as well as with one haplotype of ADIPOQ was documented. CONCLUSIONS This is the first study regarding the relationship of PPARGC1A and ADIPOQ polymorphisms, and the aggressiveness of prostate cancer in men with overweight or obesity.
Collapse
Affiliation(s)
- Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, México, México.,Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", México, México
| | - Jesús Benítez Granados
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, México, México
| | - Guillermo Feria-Bernal
- Departamento de Urología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", México, México
| | - Ramón Mauricio Coral-Vázquez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, México.,Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, México, México
| | - Eduardo García-García
- Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", México, México
| | - María Elena Tejeda
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, México, México
| | - André Tapia
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, México, México
| | - David Rojano-Mejía
- Unidad de Medicina Física y Rehabilitación Centro, UMAE, Hospital de Traumatología y Ortopedia "Lomas Verdes", Instituto Mexicano del Seguro Social, México, México
| | - Juan Pablo Méndez
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, México, México.,Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", México, México
| |
Collapse
|
40
|
Vallée A, Lecarpentier Y. Crosstalk Between Peroxisome Proliferator-Activated Receptor Gamma and the Canonical WNT/β-Catenin Pathway in Chronic Inflammation and Oxidative Stress During Carcinogenesis. Front Immunol 2018; 9:745. [PMID: 29706964 PMCID: PMC5908886 DOI: 10.3389/fimmu.2018.00745] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Inflammation and oxidative stress are common and co-substantial pathological processes accompanying, promoting, and even initiating numerous cancers. The canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPARγ) generally work in opposition. If one of them is upregulated, the other one is downregulated and vice versa. WNT/β-catenin signaling is upregulated in inflammatory processes and oxidative stress and in many cancers, although there are some exceptions for cancers. The opposite is observed with PPARγ, which is generally downregulated during inflammation and oxidative stress and in many cancers. This helps to explain in part the opposite and unidirectional profile of the canonical WNT/β-catenin signaling and PPARγ in these three frequent and morbid processes that potentiate each other and create a vicious circle. Many intracellular pathways commonly involved downstream will help maintain and amplify inflammation, oxidative stress, and cancer. Thus, many WNT/β-catenin target genes such as c-Myc, cyclin D1, and HIF-1α are involved in the development of cancers. Nuclear factor-kappaB (NFκB) can activate many inflammatory factors such as TNF-α, TGF-β, interleukin-6 (IL-6), IL-8, MMP, vascular endothelial growth factor, COX2, Bcl2, and inducible nitric oxide synthase. These factors are often associated with cancerous processes and may even promote them. Reactive oxygen species (ROS), generated by cellular alterations, stimulate the production of inflammatory factors such as NFκB, signal transducer and activator transcription, activator protein-1, and HIF-α. NFκB inhibits glycogen synthase kinase-3β (GSK-3β) and therefore activates the canonical WNT pathway. ROS activates the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling in many cancers. PI3K/Akt also inhibits GSK-3β. Many gene mutations of the canonical WNT/β-catenin pathway giving rise to cancers have been reported (CTNNB1, AXIN, APC). Conversely, a significant reduction in the expression of PPARγ has been observed in many cancers. Moreover, PPARγ agonists promote cell cycle arrest, cell differentiation, and apoptosis and reduce inflammation, angiogenesis, oxidative stress, cell proliferation, invasion, and cell migration. All these complex and opposing interactions between the canonical WNT/β-catenin pathway and PPARγ appear to be fairly common in inflammation, oxidative stress, and cancers.
Collapse
Affiliation(s)
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|
41
|
De Lellis L, Cimini A, Veschi S, Benedetti E, Amoroso R, Cama A, Ammazzalorso A. The Anticancer Potential of Peroxisome Proliferator-Activated Receptor Antagonists. ChemMedChem 2018; 13:209-219. [PMID: 29276815 DOI: 10.1002/cmdc.201700703] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/17/2017] [Indexed: 12/13/2022]
Abstract
The effects on cancer-cell proliferation and differentiation mediated by peroxisome proliferator-activated receptors (PPARs) have been widely studied, and pleiotropic outcomes in different cancer models and under different experimental conditions have been obtained. Interestingly, few studies report and little preclinical evidence supports the potential antitumor activity of PPAR antagonists. This review focuses on recent findings on the antitumor in vitro and in vivo effects observed for compounds able to inhibit the three PPAR subtypes in different tumor models, providing a rationale for the use of PPAR antagonists in the treatment of tumors expressing the corresponding receptors.
Collapse
Affiliation(s)
- Laura De Lellis
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi (Aq), Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Serena Veschi
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rosa Amoroso
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | | |
Collapse
|
42
|
Noncanonical agonist PPARγ ligands modulate the response to DNA damage and sensitize cancer cells to cytotoxic chemotherapy. Proc Natl Acad Sci U S A 2018; 115:561-566. [PMID: 29295932 DOI: 10.1073/pnas.1717776115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The peroxisome-proliferator receptor-γ (PPARγ) is expressed in multiple cancer types. Recently, our group has shown that PPARγ is phosphorylated on serine 273 (S273), which selectively modulates the transcriptional program controlled by this protein. PPARγ ligands, including thiazolidinediones (TZDs), block S273 phosphorylation. This activity is chemically separable from the canonical activation of the receptor by agonist ligands and, importantly, these noncanonical agonist ligands do not cause some of the known side effects of TZDs. Here, we show that phosphorylation of S273 of PPARγ occurs in cancer cells on exposure to DNA damaging agents. Blocking this phosphorylation genetically or pharmacologically increases accumulation of DNA damage, resulting in apoptotic cell death. A genetic signature of PPARγ phosphorylation is associated with worse outcomes in response to chemotherapy in human patients. Noncanonical agonist ligands sensitize lung cancer xenografts and genetically induced lung tumors to carboplatin therapy. Moreover, inhibition of this phosphorylation results in deregulation of p53 signaling, and biochemical studies show that PPARγ physically interacts with p53 in a manner dependent on S273 phosphorylation. These data implicate a role for PPARγ in modifying the p53 response to cytotoxic therapy, which can be modulated for therapeutic gain using these compounds.
Collapse
|
43
|
Crosstalk between the Androgen Receptor and PPAR Gamma Signaling Pathways in the Prostate. PPAR Res 2017; 2017:9456020. [PMID: 29181019 PMCID: PMC5664321 DOI: 10.1155/2017/9456020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/29/2017] [Accepted: 09/14/2017] [Indexed: 01/07/2023] Open
Abstract
Nuclear receptors are a superfamily of ligand-activated transcription factors that play critical roles in the regulation of normal biological processes and several disease states. Of the nuclear receptors expressed within the prostate, the androgen receptor (AR) promotes the differentiation of prostatic epithelial cells and stimulates production of enzymes needed for liquefaction of semen. Multiple forms of AR also promote the growth of both early and late stage prostate cancers. As a result, drugs that target the AR signaling pathway are routinely used to treat patients with advanced forms of prostate cancer. Data also suggest that a second member of the nuclear receptor superfamily, the peroxisome proliferator activated receptor gamma (PPARγ), is a tumor suppressor that regulates growth of normal prostate and prostate cancers. Recent studies indicate there is a bidirectional interaction between AR and PPARγ, with each receptor influencing the expression and/or activity of the other within prostatic tissues. In this review, we examine how AR and PPARγ each regulate the growth and development of normal prostatic epithelial cells and prostate cancers. We also discuss interactions between the AR and PPARγ signaling pathways and how those interactions may influence prostate biology.
Collapse
|
44
|
Davidson MA, Mattison DR, Azoulay L, Krewski D. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Crit Rev Toxicol 2017; 48:52-108. [PMID: 28816105 DOI: 10.1080/10408444.2017.1351420] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thiazolidinedione (TZD) drugs used in the treatment of type 2 diabetes mellitus (T2DM) have proven effective in improving insulin sensitivity, hyperglycemia, and lipid metabolism. Though well tolerated by some patients, their mechanism of action as ligands of peroxisome proliferator-activated receptors (PPARs) results in the activation of several pathways in addition to those responsible for glycemic control and lipid homeostasis. These pathways, which include those related to inflammation, bone formation, and cell proliferation, may lead to adverse health outcomes. As treatment with TZDs has been associated with adverse hepatic, cardiovascular, osteological, and carcinogenic events in some studies, the role of TZDs in the treatment of T2DM continues to be debated. At the same time, new therapeutic roles for TZDs are being investigated, with new forms and isoforms currently in the pre-clinical phase for use in the prevention and treatment of some cancers, inflammatory diseases, and other conditions. The aims of this review are to provide an overview of the mechanism(s) of action of TZDs, a review of their safety for use in the treatment of T2DM, and a perspective on their current and future therapeutic roles.
Collapse
Affiliation(s)
- Melissa A Davidson
- a Faculty of Health Sciences , University of Ottawa , Ottawa , Canada.,b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada
| | - Donald R Mattison
- b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada.,c Risk Sciences International , Ottawa , Canada
| | - Laurent Azoulay
- d Center for Clinical Epidemiology , Lady Davis Research Institute, Jewish General Hospital , Montreal , Canada.,e Department of Oncology , McGill University , Montreal , Canada
| | - Daniel Krewski
- a Faculty of Health Sciences , University of Ottawa , Ottawa , Canada.,b McLaughlin Centre for Population Health Risk Assessment , Ottawa , Canada.,c Risk Sciences International , Ottawa , Canada.,f Faculty of Medicine , University of Ottawa , Ottawa , Canada
| |
Collapse
|
45
|
Shafiei-Irannejad V, Samadi N, Salehi R, Yousefi B, Zarghami N. New insights into antidiabetic drugs: Possible applications in cancer treatment. Chem Biol Drug Des 2017; 90:1056-1066. [DOI: 10.1111/cbdd.13013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/27/2017] [Accepted: 04/23/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Vahid Shafiei-Irannejad
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Nasser Samadi
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Roya Salehi
- Department of Medical Nanotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Nosratollah Zarghami
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Medical Biotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
46
|
Ishola IO, Tijani HK, Dosumu OO, Anunobi CC, Oshodi TO. Atorvastatin attenuates testosterone-induced benign prostatic hyperplasia in rats: role of peroxisome proliferator-activated receptor-γ and cyclo-oxygenase-2. Fundam Clin Pharmacol 2017. [PMID: 28636803 DOI: 10.1111/fcp.12301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Diabetes and obesity have been reported to alter sex steroid hormone metabolism. In this study, an attempt was made to investigate the protective effect of atorvastatin (ATR) in combination with celecoxib (CEL) or pioglitazone (PIO) on testosterone-induced BPH in rats. Male Wistar rats (200-250 g) were randomly divided into nine groups (n = 8) and orally treated as follows for 28 consecutive days: group 1: vehicle control (10 mL/kg); group 2: vehicle testosterone (10 mL/kg); groups 3 - 5: ATR (0.5, 2.5, and 5 mg/kg, respectively); group 6: CEL (20 mg/kg); group 7: PIO (20 mg/kg); and groups 8-9: ATR 0.5 mg/kg, and 15 min later, animals were given CEL (20 mg/kg) or PIO (20 mg/kg), respectively. One hour post-treatment, animals in groups 2-9 were given testosterone propionate (3 mg/kg, s.c.). Twenty-four hours after last treatment on day 28, blood was collected for serum testosterone and prostate-specific antigen (PSA) analysis. Prostate was harvested for biochemical and histological assays. Subcutaneous injection of testosterone increased serum levels of testosterone and PSA which was ameliorated by pretreatments of rat with ATR, celecoxib, or pioglitazone. Similarly, testosterone-induced increase in MDA and reduction in the activity of GSH, superoxide dismutase (SOD), and catalase were attenuated by ATR. Conversely, celecoxib or pioglitazone treatment failed to affect the activity of antioxidant enzymes. The histology of the prostate showed significant improvement in prostatic cells of ATR, celecoxib, or pioglitazone treated. Findings from the study showed that atorvastatin attenuated testosterone-induced BPH. Moreover, synergistic effect was observed when atorvastatin was combined with celecoxib.
Collapse
Affiliation(s)
- Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, 234, Lagos, Nigeria
| | - Habeeb K Tijani
- Department of Surgery, Urology Unit, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Olufunke O Dosumu
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Charles C Anunobi
- Department of Anatomic and Molecular Pathology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Tolulope O Oshodi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, 234, Lagos, Nigeria
| |
Collapse
|
47
|
Pro-apoptotic effect of Δ2-TGZ in “claudin-1-low” triple-negative breast cancer cells: involvement of claudin-1. Breast Cancer Res Treat 2017; 165:517-527. [DOI: 10.1007/s10549-017-4378-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/01/2017] [Indexed: 12/20/2022]
|
48
|
Holzapfel NP, Shokoohmand A, Wagner F, Landgraf M, Champ S, Holzapfel BM, Clements JA, Hutmacher DW, Loessner D. Lycopene reduces ovarian tumor growth and intraperitoneal metastatic load. Am J Cancer Res 2017; 7:1322-1336. [PMID: 28670494 PMCID: PMC5489781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 06/07/2023] Open
Abstract
Mutagens like oxidants cause lesions in the DNA of ovarian and fallopian tube epithelial cells, resulting in neoplastic transformation. Reduced exposure of surface epithelia to oxidative stress may prevent the onset or reduce the growth of ovarian cancer. Lycopene is well-known for its excellent antioxidant properties. In this study, the potential of lycopene in the prevention and treatment of ovarian cancer was investigated using an intraperitoneal animal model. Lycopene prevention significantly reduced the metastatic load of ovarian cancer-bearing mice, whereas treatment of already established ovarian tumors with lycopene significantly diminished the tumor burden. Lycopene treatment synergistically enhanced anti-tumorigenic effects of paclitaxel and carboplatin. Immunostaining of tumor and metastatic tissues for Ki67 revealed that lycopene reduced the number of proliferating cancer cells. Lycopene decreased the expression of the ovarian cancer biomarker, CA125. The anti-metastatic and anti-proliferative effects were accompanied by down-regulated expression of ITGA5, ITGB1, MMP9, FAK, ILK and EMT markers, decreased protein expression of integrin α5 and reduced activation of MAPK. These findings indicate that lycopene interferes with mechanisms involved in the development and progression of ovarian cancer and that its preventive and therapeutic use, combined with chemotherapeutics, reduces the tumor and metastatic burden of ovarian cancer in vivo.
Collapse
Affiliation(s)
- Nina Pauline Holzapfel
- Queensland University of Technology (QUT)60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Ali Shokoohmand
- Queensland University of Technology (QUT)60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute37 Kent Street, Woolloongabba, QLD 4102, Brisbane, Australia
| | - Ferdinand Wagner
- Queensland University of Technology (QUT)60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University MunichLindwurmstr. 4, 80337 Munich, Germany
| | - Marietta Landgraf
- Queensland University of Technology (QUT)60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| | - Simon Champ
- Human Nutrition, BASF SE, G-ENH/MB68623 Lampertheim, Germany
| | - Boris Michael Holzapfel
- Queensland University of Technology (QUT)60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
- Orthopaedic Center for Musculoskeletal Research, University of Wuerzburg, Koenig-Ludwig HausBrettreichstr. 11, 97074 Wuerzburg, Germany
| | - Judith Ann Clements
- Queensland University of Technology (QUT)60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute37 Kent Street, Woolloongabba, QLD 4102, Brisbane, Australia
| | - Dietmar Werner Hutmacher
- Queensland University of Technology (QUT)60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute37 Kent Street, Woolloongabba, QLD 4102, Brisbane, Australia
- George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology801 Ferst Drive Northwest, Atlanta 30332, GA, USA
- Institute for Advanced Study, Technical University of MunichLichtenbergstr. 2a, 85748 Munich, Germany
| | - Daniela Loessner
- Queensland University of Technology (QUT)60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia
| |
Collapse
|
49
|
Sertorio M, Du W, Amarachintha S, Wilson A, Pang Q. In Vivo RNAi Screen Unveils PPARγ as a Regulator of Hematopoietic Stem Cell Homeostasis. Stem Cell Reports 2017; 8:1242-1255. [PMID: 28416286 PMCID: PMC5425620 DOI: 10.1016/j.stemcr.2017.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cell (HSC) defects can cause repopulating impairment leading to hematologic diseases. To target HSC deficiency in a disease setting, we exploited the repopulating defect of Fanconi anemia (FA) HSCs to conduct an in vivo short hairpin RNA (shRNA) screen. We exposed Fancd2−/− HSCs to a lentiviral shRNA library targeting 947 genes. We found enrichment of shRNAs targeting genes involved in the PPARγ pathway that has not been linked to HSC homeostasis. PPARγ inhibition by shRNA or chemical compounds significantly improves the repopulating ability of Fancd2−/− HSCs. Conversely, activation of PPARγ in wild-type HSCs impaired hematopoietic repopulation. In mouse HSCs and patient-derived lymphoblasts, PPARγ activation is manifested in upregulating the p53 target p21. PPARγ and co-activators are upregulated in total bone marrow and stem/progenitor cells from FA patients. Collectively, this work illustrates the utility of RNAi technology coupled with HSC transplantation for the discovery of novel genes and pathways involved in stress hematopoiesis. In vivo screening identifies of deleterious Pparγ effect on HSCs Pharmacological activation of Pparγ impaired normal HSC repopulation Inhibition of Pparγ improves Fancd2-deficient HSC repopulation ability
Collapse
Affiliation(s)
- Mathieu Sertorio
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wei Du
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Surya Amarachintha
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrew Wilson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Qishen Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
50
|
Thermodynamics in cancers: opposing interactions between PPAR gamma and the canonical WNT/beta-catenin pathway. Clin Transl Med 2017; 6:14. [PMID: 28405929 PMCID: PMC5389954 DOI: 10.1186/s40169-017-0144-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/20/2017] [Indexed: 01/03/2023] Open
Abstract
Cancer cells are the site of numerous metabolic and thermodynamic abnormalities. We focus this review on the interactions between the canonical WNT/beta-catenin pathway and peroxisome proliferator-activated receptor gamma (PPAR gamma) in cancers and their implications from an energetic and metabolic point of view. In numerous tissues, PPAR gamma activation induces inhibition of beta-catenin pathway, while the activation of the canonical WNT/beta-catenin pathway inactivates PPAR gamma. In most cancers but not all, PPAR gamma is downregulated while the WNT/beta-catenin pathway is upregulated. In cancer cells, upregulation of the WNT/beta-catenin signaling induces dramatic changes in key metabolic enzymes that modify their thermodynamic behavior. This leads to activation of pyruvate dehydrogenase kinase1 (PDK-1) and monocarboxylate lactate transporter. Consequently, phosphorylation of PDK-1 inhibits the pyruvate dehydrogenase complex (PDH). Thus, a large part of pyruvate cannot be converted into acetyl-coenzyme A (acetyl-CoA) in mitochondria and only a part of acetyl-CoA can enter the tricarboxylic acid cycle. This leads to aerobic glycolysis in spite of the availability of oxygen. This phenomenon is referred to as the Warburg effect. Cytoplasmic pyruvate is converted into lactate. The WNT/beta-catenin pathway induces the transcription of genes involved in cell proliferation, i.e., MYC and CYCLIN D1. This ultimately promotes the nucleotide, protein and lipid synthesis necessary for cell growth and multiplication. In cancer, activation of the PI3K-AKT pathway induces an increase of the aerobic glycolysis. Moreover, prostaglandin E2 by activating the canonical WNT pathway plays also a role in cancer. In addition in many cancer cells, PPAR gamma is downregulated. Moreover, PPAR gamma contributes to regulate some key circadian genes. In cancers, abnormalities in the regulation of circadian rhythms (CRs) are observed. CRs are dissipative structures which play a key-role in far-from-equilibrium thermodynamics. In cancers, metabolism, thermodynamics and CRs are intimately interrelated.
Collapse
|