1
|
Cruz-Rodríguez M, Chevet E, Muñoz-Pinedo C. Glucose sensing and the unfolded protein response. FEBS J 2025. [PMID: 40272086 DOI: 10.1111/febs.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/17/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
The unfolded protein response (UPR) is activated primarily upon alteration of protein folding in the endoplasmic reticulum (ER). This occurs under physiological situations that cause an abrupt increase in protein synthesis, or under redox and metabolic stresses. Among the latter, hyperglycemia and glucose scarcity have been identified as major modulators of UPR signaling. Indeed, the first mammalian UPR effector, the glucose-regulated protein 78, also known as BiP, was identified in response to glucose deprivation. Tunicamycin, arguably the most commonly used drug to induce ER stress responses in vitro and in vivo, is an inhibitor of N-glycosylation. We compile here evidence that the UPR is activated upon physiological and pathological conditions that alter glucose levels and that this is mostly mediated by alterations of protein N-glycosylation, ATP levels, or redox balance. The three branches of the UPR transduced by PERK/ATF4, IRE1/XBP1s, and ATF6, as well as non-canonical ER sensors such as SCAP/SREBP, sense ER protein glycosylation status driven by glucose and other glucose-derived metabolites. The outcomes of UPR activation range from restoring protein N-glycosylation and protein folding flux to stimulating autophagy, organelle recycling, and mitochondrial respiration, and in some cases, cell death. Anabolic responses to glucose levels are also stimulated by glucose through components of the UPR. Therefore, the UPR should be further studied as a potential biomarker and mediator of glucose-associated diseases.
Collapse
Affiliation(s)
- Mabel Cruz-Rodríguez
- Preclinical and Experimental Research in Thoracic Tumors (PRETT) Group, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Eric Chevet
- INSERM U1242, Univ Rennes, Centre de Lutte contre le Cancer Eugène Marquis, France
| | - Cristina Muñoz-Pinedo
- Preclinical and Experimental Research in Thoracic Tumors (PRETT) Group, IDIBELL, L'Hospitalet de Llobregat, Spain
| |
Collapse
|
2
|
Chen K, Shoulders MD. Protein Glycosylation Patterns Shaped By the IRE1-XBP1s Arm of the Unfolded Protein Response. Isr J Chem 2024; 64:e202300162. [PMID: 40083477 PMCID: PMC11906193 DOI: 10.1002/ijch.202300162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 03/16/2025]
Abstract
The unfolded protein response (UPR) is a sensing and signaling pathway that surveys the endoplasmic reticulum (ER) for protein folding challenges and responds whenever issues are detected. UPR activation leads to upregulation of secretory pathway chaperones and quality control factors, as well as reduces the nascent protein load on the ER, thereby restoring and maintaining proteostasis. This paradigm-defining view of the role of the UPR is accurate, but it elides additional key functions of the UPR in cell biology. In particular, recent work has revealed that the UPR can shape the structure and function of N- and O-glycans installed on ER client proteins. This crosstalk between the UPR's response to protein misfolding and the regulation of glycosylation remains insufficiently understood. Still, emerging evidence makes it clear that the UPR, and particularly the IRE1-XBP1s arm of the UPR, may be a central regulator of protein glycosylation with important biological consequences. In this review, we discuss the crosstalk between proteostasis, the UPR, and glycosylation, present progress towards understanding biological functions of this crosstalk, and examine potential roles in diseases such as cancer.
Collapse
Affiliation(s)
- Kenny Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Van Pelt KM, Truttmann MC. Loss of FIC-1-mediated AMPylation activates the UPR ER and upregulates cytosolic HSP70 chaperones to suppress polyglutamine toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625751. [PMID: 39651313 PMCID: PMC11623694 DOI: 10.1101/2024.11.27.625751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Targeted regulation of cellular proteostasis machinery represents a promising strategy for the attenuation of pathological protein aggregation. Recent work suggests that the unfolded protein response in the endoplasmic reticulum (UPR ER ) directly regulates the aggregation and toxicity of expanded polyglutamine (polyQ) proteins. However, the mechanisms underlying this phenomenon remain poorly understood. In this study, we report that perturbing ER homeostasis in Caenorhabditis elegans through the depletion of either BiP ortholog, hsp-3 or hsp-4, causes developmental arrest in worms expressing aggregation-prone polyQ proteins. This phenotype is rescued by the genetic deletion of the conserved UPR ER regulator, FIC-1. We demonstrate that the beneficial effects of fic-1 knock-out (KO) extend into adulthood, where the loss of FIC-1-mediated protein AMPylation in polyQ-expressing animals is sufficient to prevent declines in fitness and lifespan. We further show that loss of hsp-3 and hsp-4 leads to distinct, but complementary transcriptomic responses to ER stress involving all three UPR ER stress sensors (IRE-1, PEK-1, and ATF-6). We identify the cytosolic HSP70 family chaperone F44E5.4 , whose expression is increased in fic-1 -deficient animals upon ER dysregulation, as a key effector suppressing polyQ toxicity. Over-expression of F44E5.4 , but not other HSP70 family chaperones, is sufficient to rescue developmental arrest in polyQ-expressing embryos upon hsp-3 knock-down. Finally, we show that knock-down of ire-1 , pek-1 , or atf-6 blocks the upregulation of F44E5.4 in fic-1 -deficient worms. Taken together, our findings support a model in which the loss of FIC-1-mediated AMPylation engages UPR ER signaling to upregulate cytosolic chaperone activity in response to polyQ toxicity.
Collapse
|
4
|
Matheny-Rabun C, Mokashi SS, Radenkovic S, Wiggins K, Dukes-Rimsky L, Angel P, Ghesquiere B, Kozicz T, Steet R, Morava E, Flanagan-Steet H. O-GlcNAcylation modulates expression and abundance of N-glycosylation machinery in an inherited glycosylation disorder. Cell Rep 2024; 43:114976. [PMID: 39561044 PMCID: PMC11656453 DOI: 10.1016/j.celrep.2024.114976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Core components of the N-glycosylation pathway are known, but the metabolic and post-translational mechanisms regulating this pathway in normal and disease states remain elusive. Using a multi-omic approach in zebrafish, we discovered a mechanism whereby O-GlcNAcylation directly impacts the expression and abundance of two rate-limiting proteins in the N-linked glycosylation pathway. We show in a model of an inherited glycosylation disorder PMM2-CDG, congenital disorders of glycosylation that phosphomannomutase deficiency is associated with increased levels of UDP-GlcNAc and protein O-GlcNAcylation. O-GlcNAc modification increases the transcript and protein abundance of both NgBR and Dpagt1 in pmm2m/m mutants. Modulating O-GlcNAc levels, NgBR abundance, or Dpagt1 activity exacerbated the cartilage phenotypes in pmm2 mutants, suggesting that O-GlcNAc-mediated increases in the N-glycosylation machinery are protective. These findings highlight nucleotide-sugar donors as metabolic sensors that regulate two spatially separated glycosylation pathways, demonstrating how their coordination is relevant to disease severity in the most common congenital disorder of glycosylation.
Collapse
Affiliation(s)
| | - Sneha S Mokashi
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Silvia Radenkovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Kali Wiggins
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Lynn Dukes-Rimsky
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Peggi Angel
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bart Ghesquiere
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard Steet
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
5
|
Tsui CK, Twells N, Durieux J, Doan E, Woo J, Khosrojerdi N, Brooks J, Kulepa A, Webster B, Mahal LK, Dillin A. CRISPR screens and lectin microarrays identify high mannose N-glycan regulators. Nat Commun 2024; 15:9970. [PMID: 39557836 PMCID: PMC11574202 DOI: 10.1038/s41467-024-53225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 11/20/2024] Open
Abstract
Glycans play critical roles in cellular signaling and function. Unlike proteins, glycan structures are not templated from genetic sequences but synthesized by the concerted activity of many genes, making them historically challenging to study. Here, we present a strategy that utilizes CRISPR screens and lectin microarrays to uncover and characterize regulators of glycosylation. We applied this approach to study the regulation of high mannose glycans - the starting structure of all asparagine(N)-linked-glycans. We used CRISPR screens to uncover the expanded network of genes controlling high mannose levels, followed by lectin microarrays to fully measure the complex effect of select regulators on glycosylation globally. Through this, we elucidated how two high mannose regulators - TM9SF3 and the CCC complex - control complex N-glycosylation via regulating Golgi morphology and function. Notably, this allows us to interrogate Golgi function in-depth and reveals that similar disruption to Golgi morphology can lead to drastically different glycosylation outcomes. Collectively, this work demonstrates a generalizable approach for systematically dissecting the regulatory network underlying glycosylation.
Collapse
Affiliation(s)
- C Kimberly Tsui
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Nicholas Twells
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Jenni Durieux
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Emma Doan
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Jacqueline Woo
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Noosha Khosrojerdi
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Janiya Brooks
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Ayodeji Kulepa
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Brant Webster
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Macauslane KL, Pegg CL, Short KR, Schulz BL. Modulation of endoplasmic reticulum stress response pathways by respiratory viruses. Crit Rev Microbiol 2024; 50:750-768. [PMID: 37934111 DOI: 10.1080/1040841x.2023.2274840] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023]
Abstract
Acute respiratory infections (ARIs) are amongst the leading causes of death and disability, and the greatest burden of disease impacts children, pregnant women, and the elderly. Respiratory viruses account for the majority of ARIs. The unfolded protein response (UPR) is a host homeostatic defence mechanism primarily activated in response to aberrant endoplasmic reticulum (ER) resident protein accumulation in cell stresses including viral infection. The UPR has been implicated in the pathogenesis of several respiratory diseases, as the respiratory system is particularly vulnerable to chronic and acute activation of the ER stress response pathway. Many respiratory viruses therefore employ strategies to modulate the UPR during infection, with varying effects on the host and the pathogens. Here, we review the specific means by which respiratory viruses affect the host UPR, particularly in association with the high production of viral glycoproteins, and the impact of UPR activation and subversion on viral replication and disease pathogenesis. We further review the activation of UPR in common co-morbidities of ARIs and discuss the therapeutic potential of modulating the UPR in virally induced respiratory diseases.
Collapse
Affiliation(s)
- Kyle L Macauslane
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
7
|
Mohideen FI, Mahal LK. Infection and the Glycome─New Insights into Host Response. ACS Infect Dis 2024; 10:2540-2550. [PMID: 38990078 PMCID: PMC11320568 DOI: 10.1021/acsinfecdis.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Glycans play critical roles in the host-pathogen interactions leading to infection. However, we still understand very little about the dynamic nature of glycosylation in response to infection and its function in modulating host immunity. Many of the host proteins involved in immune defense are glycoproteins. Furthermore, the innate immune system recognizes glycans. The glycoform of a protein can impact proteolytic stability, receptor interactions, serum half-life, and other aspects. New, cutting-edge chemical biology tools are shedding light on the interplay between infection and the host glycome. In this review, we highlight new work on the importance of dynamic glycosylation of host proteins in the innate and adaptive immune pathways in response to infection. These include recent findings on altered glycoprofiles of mucins, complement components, and antibodies.
Collapse
Affiliation(s)
- F. Ifthiha Mohideen
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Lara K. Mahal
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
8
|
Tsui CK, Twells N, Doan E, Woo J, Khosrojerdi N, Brooks J, Kulepa A, Webster B, Mahal LK, Dillin A. CRISPR screens and lectin microarrays identify novel high mannose N-glycan regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.23.563662. [PMID: 37961200 PMCID: PMC10634773 DOI: 10.1101/2023.10.23.563662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Glycans play critical roles in cellular signaling and function. Unlike proteins, glycan structures are not templated from genes but the concerted activity of many genes, making them historically challenging to study. Here, we present a strategy that utilizes pooled CRISPR screens and lectin microarrays to uncover and characterize regulators of cell surface glycosylation. We applied this approach to study the regulation of high mannose glycans - the starting structure of all asparagine(N)-linked-glycans. We used CRISPR screens to uncover the expanded network of genes controlling high mannose surface levels, followed by lectin microarrays to fully measure the complex effect of select regulators on glycosylation globally. Through this, we elucidated how two novel high mannose regulators - TM9SF3 and the CCC complex - control complex N-glycosylation via regulating Golgi morphology and function. Notably, this method allowed us to interrogate Golgi function in-depth and reveal that similar disruption to Golgi morphology can lead to drastically different glycosylation outcomes. Collectively, this work demonstrates a generalizable approach for systematically dissecting the regulatory network underlying glycosylation.
Collapse
Affiliation(s)
- C Kimberly Tsui
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas Twells
- Department of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2
| | - Emma Doan
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jacqueline Woo
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Noosha Khosrojerdi
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Janiya Brooks
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ayodeji Kulepa
- Department of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2
| | - Brant Webster
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Cabello AL, Wells K, Peng W, Feng HQ, Wang J, Meyer DF, Noroy C, Zhao ES, Zhang H, Li X, Chang H, Gomez G, Mao Y, Patrick KL, Watson RO, Russell WK, Yu A, Zhong J, Guo F, Li M, Zhou M, Qian X, Kobayashi KS, Song J, Panthee S, Mechref Y, Ficht TA, Qin QM, de Figueiredo P. Brucella-driven host N-glycome remodeling controls infection. Cell Host Microbe 2024; 32:588-605.e9. [PMID: 38531364 DOI: 10.1016/j.chom.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 08/28/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Many powerful methods have been employed to elucidate the global transcriptomic, proteomic, or metabolic responses to pathogen-infected host cells. However, the host glycome responses to bacterial infection remain largely unexplored, and hence, our understanding of the molecular mechanisms by which bacterial pathogens manipulate the host glycome to favor infection remains incomplete. Here, we address this gap by performing a systematic analysis of the host glycome during infection by the bacterial pathogen Brucella spp. that cause brucellosis. We discover, surprisingly, that a Brucella effector protein (EP) Rhg1 induces global reprogramming of the host cell N-glycome by interacting with components of the oligosaccharide transferase complex that controls N-linked protein glycosylation, and Rhg1 regulates Brucella replication and tissue colonization in a mouse model of brucellosis, demonstrating that Brucella exploits the EP Rhg1 to reprogram the host N-glycome and promote bacterial intracellular parasitism, thereby providing a paradigm for bacterial control of host cell infection.
Collapse
Affiliation(s)
- Ana-Lucia Cabello
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kelsey Wells
- Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65211, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Hui-Qiang Feng
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Damien F Meyer
- CIRAD, UMR ASTRE, 97170 Petit-Bourg, Guadeloupe, France; ASTRE, University Montpellier, CIRAD, INRAE, Montpellier, France
| | - Christophe Noroy
- CIRAD, UMR ASTRE, 97170 Petit-Bourg, Guadeloupe, France; ASTRE, University Montpellier, CIRAD, INRAE, Montpellier, France
| | - En-Shuang Zhao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Hao Zhang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Xueqing Li
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Haowu Chang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Gabriel Gomez
- Texas A&M Veterinary Medical Diagnostic Laboratory (TVMDL), Texas A&M University, College Station, TX 77843, USA
| | - Yuxin Mao
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - William K Russell
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0635, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Fengguang Guo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Mingqian Li
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 78843, USA
| | - Mingyuan Zhou
- Department of Information, Risk, and Operations Management, Department of Statistics and Data Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xiaoning Qian
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 78843, USA; TEES-AgriLife Center for Bioinformatics & Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA; Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan; Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo 060-8638, Japan
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Suresh Panthee
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Thomas A Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA.
| | - Qing-Ming Qin
- Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65211, USA.
| | - Paul de Figueiredo
- Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65211, USA; Department of Veterinary Pathobiology, The University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
10
|
Domma AJ, Henderson LA, Nurdin JA, Kamil JP. Uncloaking the viral glycocalyx: How do viruses exploit glycoimmune checkpoints? Adv Virus Res 2024; 119:63-110. [PMID: 38897709 PMCID: PMC11192240 DOI: 10.1016/bs.aivir.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The surfaces of cells and enveloped viruses alike are coated in carbohydrates that play multifarious roles in infection and immunity. Organisms across all kingdoms of life make use of a diverse set of monosaccharide subunits, glycosidic linkages, and branching patterns to encode information within glycans. Accordingly, sugar-patterning enzymes and glycan binding proteins play integral roles in cell and organismal biology, ranging from glycoprotein quality control within the endoplasmic reticulum to lymphocyte migration, coagulation, inflammation, and tissue homeostasis. Unsurprisingly, genes involved in generating and recognizing oligosaccharide patterns are playgrounds for evolutionary conflicts that abound in cross-species interactions, exemplified by the myriad plant lectins that function as toxins. In vertebrates, glycans bearing acidic nine-carbon sugars called sialic acids are key regulators of immune responses. Various bacterial and fungal pathogens adorn their cells in sialic acids that either mimic their hosts' or are stolen from them. Yet, how viruses commandeer host sugar-patterning enzymes to thwart immune responses remains poorly studied. Here, we review examples of viruses that interact with sialic acid-binding immunoglobulin-like lectins (Siglecs), a family of immune cell receptors that regulate toll-like receptor signaling and govern glycoimmune checkpoints, while highlighting knowledge gaps that merit investigation. Efforts to illuminate how viruses leverage glycan-dependent checkpoints may translate into new clinical treatments that uncloak viral antigens and infected cell surfaces by removing or masking immunosuppressive sialoglycans, or by inhibiting viral gene products that induce their biosynthesis. Such approaches may hold the potential to unleash the immune system to clear long intractable chronic viral infections.
Collapse
Affiliation(s)
- Anthony J Domma
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | | | - Jeffery A Nurdin
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Jeremy P Kamil
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States.
| |
Collapse
|
11
|
Rebelo AL, Drake RR, Marchetti-Deschmann M, Saldova R, Pandit A. Changes in tissue protein N-glycosylation and associated molecular signature occur in the human Parkinsonian brain in a region-specific manner. PNAS NEXUS 2024; 3:pgad439. [PMID: 38178977 PMCID: PMC10766401 DOI: 10.1093/pnasnexus/pgad439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024]
Abstract
Parkinson's disease (PD) associated state of neuroinflammation due to the aggregation of aberrant proteins is widely reported. One type of post-translational modification involved in protein stability is glycosylation. Here, we aimed to characterize the human Parkinsonian nigro-striatal N-glycome, and related transcriptome/proteome, and its correlation with endoplasmic reticulum (ER) stress and unfolded protein response (UPR), providing a comprehensive characterization of the PD molecular signature. Significant changes were seen upon a PD: a 3% increase in sialylation and 5% increase in fucosylation in both regions, and a 2% increase in oligomannosylated N-glycans in the substantia nigra. In the latter, a decrease in the mRNA expression of sialidases and an upregulation in the UPR pathway were also seen. To show the correlation between these, we also describe a small in vitro study where changes in specific glycosylation trait enzymes (inhibition of sialyltransferases) led to impairments in cell mitochondrial activity, changes in glyco-profile, and upregulation in UPR pathways. This complete characterization of the human nigro-striatal N-glycome provides an insight into the glycomic profile of PD through a transversal approach while combining the other PD "omics" pieces, which can potentially assist in the development of glyco-focused therapeutics.
Collapse
Affiliation(s)
- Ana Lúcia Rebelo
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 TK33, Galway, Ireland
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, SC 29425, Charleston, USA
| | | | - Radka Saldova
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 TK33, Galway, Ireland
- National Institute for Bioprocessing Research and Training (NIBRT), University College Dublin, A94 X099, Dublin, Ireland
- School of Medicine, College of Health and Agricultural Science, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 TK33, Galway, Ireland
| |
Collapse
|
12
|
Abstract
Understanding the factors that shape viral evolution is critical for developing effective antiviral strategies, accurately predicting viral evolution, and preventing pandemics. One fundamental determinant of viral evolution is the interplay between viral protein biophysics and the host machineries that regulate protein folding and quality control. Most adaptive mutations in viruses are biophysically deleterious, resulting in a viral protein product with folding defects. In cells, protein folding is assisted by a dynamic system of chaperones and quality control processes known as the proteostasis network. Host proteostasis networks can determine the fates of viral proteins with biophysical defects, either by assisting with folding or by targeting them for degradation. In this review, we discuss and analyze new discoveries revealing that host proteostasis factors can profoundly shape the sequence space accessible to evolving viral proteins. We also discuss the many opportunities for research progress proffered by the proteostasis perspective on viral evolution and adaptation.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Jessica E Patrick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - C Brandon Ogbunugafor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
13
|
Wuo M, Dugan AE, Halim M, Hauser BM, Feldman J, Caradonna TM, Zhang S, Pepi LE, Atyeo C, Fischinger S, Alter G, Garcia-Beltran WF, Azadi P, Hung D, Schmidt AG, Kiessling LL. Lectin Fingerprinting Distinguishes Antibody Neutralization in SARS-CoV-2. ACS CENTRAL SCIENCE 2023; 9:947-956. [PMID: 37252360 PMCID: PMC10214521 DOI: 10.1021/acscentsci.2c01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Indexed: 05/31/2023]
Abstract
Enveloped viruses co-opt host glycosylation pathways to decorate their surface proteins. As viruses evolve, emerging strains can modify their glycosylation patterns to influence host interactions and subvert immune recognition. Still, changes in viral glycosylation or their impact on antibody protection cannot be predicted from genomic sequences alone. Using the highly glycosylated SARS-CoV-2 Spike protein as a model system, we present a lectin fingerprinting method that rapidly reports on changes in variant glycosylation state, which are linked to antibody neutralization. In the presence of antibodies or convalescent and vaccinated patient sera, unique lectin fingerprints emerge that distinguish neutralizing versus non-neutralizing antibodies. This information could not be inferred from direct binding interactions between antibodies and the Spike receptor-binding domain (RBD) binding data alone. Comparative glycoproteomics of the Spike RBD of wild-type (Wuhan-Hu-1) and Delta (B.1.617.2) variants reveal O-glycosylation differences as a key determinant of immune recognition differences. These data underscore the interplay between viral glycosylation and immune recognition and reveal lectin fingerprinting to be a rapid, sensitive, and high-throughput assay to distinguish the neutralization potential of antibodies that target critical viral glycoproteins.
Collapse
Affiliation(s)
- Michael
G. Wuo
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Amanda E. Dugan
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Melanie Halim
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Blake M. Hauser
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Jared Feldman
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Timothy M. Caradonna
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Shuting Zhang
- The
Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02139, United States
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Lauren E. Pepi
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Caroline Atyeo
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Stephanie Fischinger
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Galit Alter
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | | | - Parastoo Azadi
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Deb Hung
- The
Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Boston, Massachusetts 02139, United States
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Aaron G. Schmidt
- Ragon
Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Laura L. Kiessling
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- The
Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Koch
Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Paneque A, Fortus H, Zheng J, Werlen G, Jacinto E. The Hexosamine Biosynthesis Pathway: Regulation and Function. Genes (Basel) 2023; 14:genes14040933. [PMID: 37107691 PMCID: PMC10138107 DOI: 10.3390/genes14040933] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The hexosamine biosynthesis pathway (HBP) produces uridine diphosphate-N-acetyl glucosamine, UDP-GlcNAc, which is a key metabolite that is used for N- or O-linked glycosylation, a co- or post-translational modification, respectively, that modulates protein activity and expression. The production of hexosamines can occur via de novo or salvage mechanisms that are catalyzed by metabolic enzymes. Nutrients including glutamine, glucose, acetyl-CoA, and UTP are utilized by the HBP. Together with availability of these nutrients, signaling molecules that respond to environmental signals, such as mTOR, AMPK, and stress-regulated transcription factors, modulate the HBP. This review discusses the regulation of GFAT, the key enzyme of the de novo HBP, as well as other metabolic enzymes that catalyze the reactions to produce UDP-GlcNAc. We also examine the contribution of the salvage mechanisms in the HBP and how dietary supplementation of the salvage metabolites glucosamine and N-acetylglucosamine could reprogram metabolism and have therapeutic potential. We elaborate on how UDP-GlcNAc is utilized for N-glycosylation of membrane and secretory proteins and how the HBP is reprogrammed during nutrient fluctuations to maintain proteostasis. We also consider how O-GlcNAcylation is coupled to nutrient availability and how this modification modulates cell signaling. We summarize how deregulation of protein N-glycosylation and O-GlcNAcylation can lead to diseases including cancer, diabetes, immunodeficiencies, and congenital disorders of glycosylation. We review the current pharmacological strategies to inhibit GFAT and other enzymes involved in the HBP or glycosylation and how engineered prodrugs could have better therapeutic efficacy for the treatment of diseases related to HBP deregulation.
Collapse
Affiliation(s)
- Alysta Paneque
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Harvey Fortus
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Julia Zheng
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Guy Werlen
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
15
|
Yung HW, Zhao X, Glover L, Burrin C, Pang PC, Jones CJ, Gill C, Duhig K, Olovsson M, Chappell LC, Haslam SM, Dell A, Burton GJ, Charnock-Jones DS. Perturbation of placental protein glycosylation by endoplasmic reticulum stress promotes maladaptation of maternal hepatic glucose metabolism. iScience 2023; 26:105911. [PMID: 36660474 PMCID: PMC9843443 DOI: 10.1016/j.isci.2022.105911] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Placental hormones orchestrate maternal metabolic adaptations to support pregnancy. We hypothesized that placental ER stress, which characterizes early-onset pre-eclampsia (ePE), compromises glycosylation, reducing hormone bioactivity and these maladaptations predispose the mother to metabolic disease in later life. We demonstrate ER stress reduces the complexity and sialylation of trophoblast protein N-glycosylation, while aberrant glycosylation of vascular endothelial growth factor reduced its bioactivity. ER stress alters the expression of 66 of the 146 genes annotated with "protein glycosylation" and reduces the expression of sialyltransferases. Using mouse placental explants, we show ER stress promotes the secretion of mis-glycosylated glycoproteins. Pregnant mice carrying placentas with junctional zone-specific ER stress have reduced blood glucose, anomalous hepatic glucose metabolism, increased cellular stress and elevated DNA methyltransferase 3A. Using pregnancy-specific glycoproteins as a readout, we also demonstrate aberrant glycosylation of placental proteins in women with ePE, thus providing a mechanistic link between ePE and subsequent maternal metabolic disorders.
Collapse
Affiliation(s)
- Hong Wa Yung
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Xiaohui Zhao
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Luke Glover
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Charlotte Burrin
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Poh-Choo Pang
- Department of Life Sciences, Imperial College London, London, UK
| | - Carolyn J.P. Jones
- Maternal and Fetal Health Centre, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Carolyn Gill
- Department of Women and Children’s Health, King’s College London, London, UK
| | - Kate Duhig
- Maternal and Fetal Health Centre, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Department of Women and Children’s Health, King’s College London, London, UK
| | - Matts Olovsson
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Lucy C. Chappell
- Department of Women and Children’s Health, King’s College London, London, UK
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Graham J. Burton
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - D. Stephen Charnock-Jones
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge CB2 0SW, UK
| |
Collapse
|
16
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Jain K, Tyagi T, Du J, Hu X, Patell K, Martin KA, Hwa J. Unfolded Protein Response Differentially Modulates the Platelet Phenotype. Circ Res 2022; 131:290-307. [PMID: 35862006 PMCID: PMC9357223 DOI: 10.1161/circresaha.121.320530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Unfolded protein response (UPR) is a multifaceted signaling cascade that alleviates protein misfolding. Although well studied in nucleated cells, UPR in absence of transcriptional regulation has not been described. Intricately associated with cardiovascular diseases, platelets, despite being anucleate, respond rapidly to stressors in blood. We investigate the UPR in anucleate platelets and explore its role, if any, on platelet physiology and function. METHODS Human and mouse platelets were studied using a combination of ex vivo and in vivo experiments. Platelet lineage-specific knockout mice were generated independently for each of the 3 UPR pathways, PERK (protein kinase RNA [PKR]-like endoplasmic reticulum kinase), XBP1 (X-binding protein), and ATF6 (activating transcription factor 6). Diabetes patients were prospectively recruited, and platelets were evaluated for activation of UPR under chronic pathophysiological disease conditions. RESULTS Tunicamycin induced the IRE1α (inositol-requiring enzyme-1alpha)-XBP1 pathway in human and mouse platelets, while oxidative stress predominantly activated the PERK pathway. PERK deletion significantly increased platelet aggregation and apoptosis and phosphorylation of PLCγ2, PLCβ3, and p38 MAPK. Deficiency of XBP1 increased platelet aggregation, with higher PLCβ3 and PKCδ activation. ATF6 deletion mediated a relatively modest effect on platelet phenotype with increased PKA (protein kinase A). Platelets from diabetes patients exhibited a positive correlation between disease severity, platelet activation, and protein aggregation, with only IRE1α-XBP1 activation. Moreover, IRE1α inhibition increased platelet aggregation, while clinically approved chemical chaperone, sodium 4-phenylbutyrate reduced the platelet hyperactivation. CONCLUSIONS We show for the first time, that UPR activation occurs in platelets and can be independent of genomic regulation, with selective induction being specific to the source and severity of stress. Each UPR pathway plays a key role and can differentially modulate the platelet activation pathways and phenotype. Targeting the specific arms of UPR may provide a new antiplatelet strategy to mitigate thrombotic risk in diabetes and other cardiovascular diseases.
Collapse
Affiliation(s)
- Kanika Jain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Tarun Tyagi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Jing Du
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Xiaoyue Hu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Kanchi Patell
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - Kathleen A. Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 759, New Haven, CT 06511
| |
Collapse
|
18
|
Gabius H, Cudic M, Diercks T, Kaltner H, Kopitz J, Mayo KH, Murphy PV, Oscarson S, Roy R, Schedlbauer A, Toegel S, Romero A. What is the Sugar Code? Chembiochem 2022; 23:e202100327. [PMID: 34496130 PMCID: PMC8901795 DOI: 10.1002/cbic.202100327] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Indexed: 12/18/2022]
Abstract
A code is defined by the nature of the symbols, which are used to generate information-storing combinations (e. g. oligo- and polymers). Like nucleic acids and proteins, oligo- and polysaccharides are ubiquitous, and they are a biochemical platform for establishing molecular messages. Of note, the letters of the sugar code system (third alphabet of life) excel in coding capacity by making an unsurpassed versatility for isomer (code word) formation possible by variability in anomery and linkage position of the glycosidic bond, ring size and branching. The enzymatic machinery for glycan biosynthesis (writers) realizes this enormous potential for building a large vocabulary. It includes possibilities for dynamic editing/erasing as known from nucleic acids and proteins. Matching the glycome diversity, a large panel of sugar receptors (lectins) has developed based on more than a dozen folds. Lectins 'read' the glycan-encoded information. Hydrogen/coordination bonding and ionic pairing together with stacking and C-H/π-interactions as well as modes of spatial glycan presentation underlie the selectivity and specificity of glycan-lectin recognition. Modular design of lectins together with glycan display and the nature of the cognate glycoconjugate account for the large number of post-binding events. They give an entry to the glycan vocabulary its functional, often context-dependent meaning(s), hereby building the dictionary of the sugar code.
Collapse
Affiliation(s)
- Hans‐Joachim Gabius
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Maré Cudic
- Department of Chemistry and BiochemistryCharles E. Schmidt College of ScienceFlorida Atlantic University777 Glades RoadBoca RatonFlorida33431USA
| | - Tammo Diercks
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Herbert Kaltner
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Jürgen Kopitz
- Institute of PathologyDepartment of Applied Tumor BiologyFaculty of MedicineRuprecht-Karls-University HeidelbergIm Neuenheimer Feld 22469120HeidelbergGermany
| | - Kevin H. Mayo
- Department of BiochemistryMolecular Biology & BiophysicsUniversity of MinnesotaMinneapolisMN 55455USA
| | - Paul V. Murphy
- CÚRAM – SFI Research Centre for Medical Devices and theSchool of ChemistryNational University of Ireland GalwayUniversity RoadGalwayH91 TK33Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical BiologyUniversity College DublinBelfieldDublin 4Ireland
| | - René Roy
- Département de Chimie et BiochimieUniversité du Québec à MontréalCase Postale 888Succ. Centre-Ville MontréalQuébecH3C 3P8Canada
| | - Andreas Schedlbauer
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Antonio Romero
- Department of Structural and Chemical BiologyCIB Margarita Salas, CSICRamiro de Maeztu 928040MadridSpain
| |
Collapse
|
19
|
Golay J, Andrea AE, Cattaneo I. Role of Fc Core Fucosylation in the Effector Function of IgG1 Antibodies. Front Immunol 2022; 13:929895. [PMID: 35844552 PMCID: PMC9279668 DOI: 10.3389/fimmu.2022.929895] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of fucose on IgG1 Asn-297 N-linked glycan is the modification of the human IgG1 Fc structure with the most significant impact on FcɣRIII affinity. It also significantly enhances the efficacy of antibody dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells in vitro, induced by IgG1 therapeutic monoclonal antibodies (mAbs). The effect of afucosylation on ADCC or antibody dependent phagocytosis (ADCP) mediated by macrophages or polymorphonuclear neutrophils (PMN) is less clear. Evidence for enhanced efficacy of afucosylated therapeutic mAbs in vivo has also been reported. This has led to the development of several therapeutic antibodies with low Fc core fucose to treat cancer and inflammatory diseases, seven of which have already been approved for clinical use. More recently, the regulation of IgG Fc core fucosylation has been shown to take place naturally during the B-cell immune response: A decrease in α-1,6 fucose has been observed in polyclonal, antigen-specific IgG1 antibodies which are generated during alloimmunization of pregnant women by fetal erythrocyte or platelet antigens and following infection by some enveloped viruses and parasites. Low IgG1 Fc core fucose on antigen-specific polyclonal IgG1 has been linked to disease severity in several cases, such as SARS-CoV 2 and Dengue virus infection and during alloimmunization, highlighting the in vivo significance of this phenomenon. This review aims to summarize the current knowledge about human IgG1 Fc core fucosylation and its regulation and function in vivo, in the context of both therapeutic antibodies and the natural immune response. The parallels in these two areas are informative about the mechanisms and in vivo effects of Fc core fucosylation, and may allow to further exploit the desired properties of this modification in different clinical contexts.
Collapse
Affiliation(s)
- Josée Golay
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
- *Correspondence: Josée Golay,
| | - Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - Irene Cattaneo
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
20
|
Oh YJ, Dent MW, Freels AR, Zhou Q, Lebrilla CB, Merchant ML, Matoba N. Antitumor activity of a lectibody targeting cancer-associated high-mannose glycans. Mol Ther 2022; 30:1523-1535. [PMID: 35077861 PMCID: PMC9077314 DOI: 10.1016/j.ymthe.2022.01.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/17/2021] [Accepted: 01/20/2022] [Indexed: 10/19/2022] Open
Abstract
Aberrant protein glycosylation is a hallmark of cancer, but few drugs targeting cancer glycobiomarkers are currently available. Here, we showed that a lectibody consisting of the high-mannose glycan-binding lectin Avaren and human immunoglobulin G1 (IgG1) Fc (AvFc) selectively recognizes a range of cell lines derived from lung, breast, colon, and blood cancers at nanomolar concentrations. Binding of AvFc to the non-small cell lung cancer (NSCLC) cell lines A549 and H460 was characterized in detail. Co-immunoprecipitation proteomics analysis revealed that epidermal growth factor receptor (EGFR) and insulin-like growth factor 1 receptor (IGF1R) are among the lectibody's common targets in these cells. AvFc blocked the activation of EGFR and IGF1R by their respective ligands in A549 cells and inhibited the migration of A549 and H460 cells upon stimulation with EGF and IGF1. Furthermore, AvFc induced potent Fc-mediated cytotoxic effects and significantly restricted A549 and H460 tumor growth in severe combined immunodeficiency (SCID) mice. Immunohistochemistry analysis of primary lung tissues from NSCLC patients demonstrated that AvFc preferentially binds to tumors over adjacent non-tumor tissues. Our findings provide evidence that increased abundance of high-mannose glycans in the glycocalyx of cancer cells can be a druggable target, and AvFc may provide a new tool to probe and target this tumor-associated glycobiomarker.
Collapse
Affiliation(s)
- Young Jun Oh
- UofL Health - Brown Cancer Center, University of Louisville School of Medicine, 505 S. Hancock Street, Louisville, KY 40202, USA
| | - Matthew W Dent
- UofL Health - Brown Cancer Center, University of Louisville School of Medicine, 505 S. Hancock Street, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Angela R Freels
- UofL Health - Brown Cancer Center, University of Louisville School of Medicine, 505 S. Hancock Street, Louisville, KY 40202, USA
| | - Qingwen Zhou
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Michael L Merchant
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, KY, USA
| | - Nobuyuki Matoba
- UofL Health - Brown Cancer Center, University of Louisville School of Medicine, 505 S. Hancock Street, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
21
|
Dugan AE, Peiffer AL, Kiessling LL. Advances in glycoscience to understand viral infection and colonization. Nat Methods 2022; 19:384-387. [PMID: 35396476 PMCID: PMC11194102 DOI: 10.1038/s41592-022-01451-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interactions between carbohydrates and the proteins that bind them, (i.e., lectins), are often some of the first between a host cell and a viral invader. With its highly glycosylated spike protein, SARS-CoV2 is no exception. Interrogating glycosylation is vital for understanding viral infection, yet it has been a challenge. Improvement in methods ranging from mass spectrometry to glycan arrays and modeling simulations are yielding atomic-level information about the glycans that decorate viruses and host cells alike. Through these developments, we are unmasking the sophisticated glycan trickery viruses use. These advances and insights can lead to new types of antiviral agents.
Collapse
Affiliation(s)
- Amanda E Dugan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amanda L Peiffer
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- The Koch Integrative Cancer Research Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
22
|
Bertok T, Bertokova A, Jane E, Hires M, Aguedo J, Potocarova M, Lukac L, Vikartovska A, Kasak P, Borsig L, Tkac J. Identification of Whole-Serum Glycobiomarkers for Colorectal Carcinoma Using Reverse-Phase Lectin Microarray. Front Oncol 2021; 11:735338. [PMID: 34956866 PMCID: PMC8695905 DOI: 10.3389/fonc.2021.735338] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer among men and women worldwide. Efforts are currently underway to find novel and more cancer-specific biomarkers that could be detected in a non-invasive way. The analysis of aberrant glycosylation of serum glycoproteins is a way to discover novel diagnostic and prognostic CRC biomarkers. The present study investigated a whole-serum glycome with a panel of 16 different lectins in search for age-independent and CRC-specific glycomarkers using receiver operating characteristic (ROC) curve analyses and glycan heat matrices. Glycosylation changes present in the whole serum were identified, which could lead to the discovery of novel biomarkers for CRC diagnostics. In particular, the change in the bisecting glycans (recognized by Phaseolus vulgaris erythroagglutinin) had the highest discrimination potential for CRC diagnostics in combination with human L selectin providing area under the ROC curve (AUC) of 0.989 (95% CI 0.950-1.000), specificity of 1.000, sensitivity of 0.900, and accuracy of 0.960. We also implemented novel tools for identification of lectins with strong discrimination power.
Collapse
Affiliation(s)
- Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Aniko Bertokova
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Juvissan Aguedo
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Ludovit Lukac
- University Hospital Bratislava, Bratislava, Slovakia
| | - Alica Vikartovska
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | - Lubor Borsig
- Department of Physiology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center, Zurich, Switzerland
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
23
|
Conroy LR, Hawkinson TR, Young LEA, Gentry MS, Sun RC. Emerging roles of N-linked glycosylation in brain physiology and disorders. Trends Endocrinol Metab 2021; 32:980-993. [PMID: 34756776 PMCID: PMC8589112 DOI: 10.1016/j.tem.2021.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022]
Abstract
N-linked glycosylation is a complex, co- and post-translational series of events that connects metabolism to signaling in almost all cells. Metabolic assembly of N-linked glycans spans multiple cellular compartments, and early N-linked glycan biosynthesis is a central mediator of protein folding and the unfolded protein response (UPR). In the brain, N-linked glycosylated proteins participate in a myriad of processes, from electrical gradients to neurotransmission. However, it is less clear how perturbations in N-linked glycosylation impact and even potentially drive aspects of neurological disorders. In this review, we discuss our current understanding of the metabolic origins of N-linked glycans in the brain, their role in modulating neuronal function, and how aberrant N-linked glycosylation can drive neurological disorders.
Collapse
Affiliation(s)
- Lindsey R Conroy
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA
| | - Tara R Hawkinson
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA; Sanders Brown Center for Aging, Lexington, KY 40508-0536, USA.
| |
Collapse
|
24
|
Sun L, Lv S, Song T. O-GlcNAcylation links oncogenic signals and cancer epigenetics. Discov Oncol 2021; 12:54. [PMID: 35201498 PMCID: PMC8777512 DOI: 10.1007/s12672-021-00450-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Prevalent dysregulation of epigenetic modifications plays a pivotal role in cancer. Targeting epigenetic abnormality is a new strategy for cancer therapy. Understanding how conventional oncogenic factors cause epigenetic abnormality is of great basic and translational value. O-GlcNAcylation is a protein modification which affects physiology and pathophysiology. In mammals, O-GlcNAcylation is catalyzed by one single enzyme OGT and removed by one single enzyme OGA. O-GlcNAcylation is affected by the availability of the donor, UDP-GlcNAc, generated by the serial enzymatic reactions in the hexoamine biogenesis pathway (HBP). O-GlcNAcylation regulates a wide spectrum of substrates including many proteins involved in epigenetic modification. Like epigenetic modifications, abnormality of O-GlcNAcylation is also common in cancer. Studies have revealed substantial impact on HBP enzymes and OGT/OGA by oncogenic signals. In this review, we will first summarize how oncogenic signals regulate HBP enzymes, OGT and OGA in cancer. We will then integrate this knowledge with the up to date understanding how O-GlcNAcylation regulates epigenetic machinery. With this, we propose a signal axis from oncogenic signals through O-GlcNAcylation dysregulation to epigenetic abnormality in cancer. Further elucidation of this axis will not only advance our understanding of cancer biology but also provide new revenues towards cancer therapy.
Collapse
Affiliation(s)
- Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
25
|
Glycans in autophagy, endocytosis and lysosomal functions. Glycoconj J 2021; 38:625-647. [PMID: 34390447 PMCID: PMC8497297 DOI: 10.1007/s10719-021-10007-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Glycans have been shown to function as versatile molecular signals in cells. This prompted us to look at their roles in endocytosis, endolysosomal system and autophagy. We start by introducing the cell biological aspects of these pathways, the concept of the sugar code, and provide an overview on the role of glycans in the targeting of lysosomal proteins and in lysosomal functions. Moreover, we review evidence on the regulation of endocytosis and autophagy by glycans. Finally, we discuss the emerging concept that cytosolic exposure of luminal glycans, and their detection by endogenous lectins, provides a mechanism for the surveillance of the integrity of the endolysosomal compartments, and serves their eventual repair or disposal.
Collapse
|
26
|
Mathur B, Shajahan A, Arif W, Chen Q, Hand NJ, Abramowitz LK, Schoonjans K, Rader DJ, Kalsotra A, Hanover JA, Azadi P, Anakk S. Nuclear receptors FXR and SHP regulate protein N-glycan modifications in the liver. SCIENCE ADVANCES 2021; 7:7/17/eabf4865. [PMID: 33883138 PMCID: PMC8059921 DOI: 10.1126/sciadv.abf4865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/04/2021] [Indexed: 05/04/2023]
Abstract
Nuclear receptors farnesoid X receptor (FXR) and small heterodimer partner (SHP) are key regulators of metabolism. Here, we report a previously unknown function for the hepatic FXR-SHP axis in controlling protein N-linked glycosylation. Transcriptome analysis in liver-specific Fxr-Shp double knockout (LDKO) livers revealed induction of genes encoding enzymes in the N-glycosylation pathway, including Mgat5, Fut8, St3gal6, and St6gal1 FXR activation suppressed Mgat5, while Shp deletion induced St3gal6 and St6gal1 Increased percentages of core-fucosylated and triantennary glycan moieties were seen in LDKO livers, and proteins with the "hyperglycoforms" preferentially localized to exosomes and lysosomes. This up-regulation of N-glycosylation machinery was specific to the Golgi apparatus and not the endoplasmic reticulum. The increased glycan complexity in the LDKO correlated well with dilated unstacked Golgi ribbons and alterations in the secretion of albumin, cholesterol, and triglycerides. Our findings demonstrate a role for the FXR-SHP axis in maintaining glycoprotein diversity in the liver.
Collapse
Affiliation(s)
- Bhoomika Mathur
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Waqar Arif
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Qiushi Chen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Nicholas J Hand
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lara K Abramowitz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Daniel J Rader
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John A Hanover
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
27
|
Qin R, Mahal LK. The host glycomic response to pathogens. Curr Opin Struct Biol 2021; 68:149-156. [PMID: 33529786 DOI: 10.1016/j.sbi.2020.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/28/2022]
Abstract
Glycans play important roles in the biology of infectious diseases. Although glycans are expressed on both the pathogens and the host, the functions and dynamics of the host glycome during infection are not well understood. Recent years have witnessed new discoveries on the host glycome respsonse to infection, as well as related mechanisms and their implications. Herein, we present a brief review on the latest findings in this field and put them in the context of host immunity.
Collapse
Affiliation(s)
- Rui Qin
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| |
Collapse
|
28
|
A mass spectrometry-based glycotope-centric cellular glycomics is the more fruitful way forward to see the forest for the trees. Biochem Soc Trans 2021; 49:55-69. [PMID: 33492355 DOI: 10.1042/bst20190861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023]
Abstract
The nature of protein glycosylation renders cellular glycomics a very challenging task in having to deal with all the disparate glycans carried on membrane glycoproteins. Rapid mapping by mass spectrometry analysis provides only a coarse sketch of the glycomic complexity based primarily on glycosyl compositions, whereby the missing high-resolution structural details require a combination of multi-mode separations and multi-stages of induced fragmentation to gain sufficiently discriminative precision, often at the expenses of throughput and sensitivity. Given the available technology and foreseeable advances in the near future, homing in on resolving the terminal fucosylated, sialylated and/or sulfated structural units, or glycotopes, maybe a more pragmatic and ultimately more rewarding approach to gain insights into myriad biological processes mediated by these terminal coding units carried on important glycoproteins, to be decoded by a host of endogenous glycan-binding proteins and antibodies. A broad overview of recent technical advances and limitations in cellular glycomics is first provided as a backdrop to the propounded glycotope-centric approach based on advanced nanoLC-MS2/MS3 analysis of permethylated glycans. To prioritize analytical focus on the more tangible glycotopes is akin to first identifying the eye-catching and characteristic-defining flowers and fruits of the glyco-forest, to see the forest for the trees. It has the best prospects of attaining the much-needed balance in sensitivity, structural precision and analytical throughput to match advances in other omics.
Collapse
|
29
|
Chen S, Kasper B, Zhang B, Lashua LP, Ross TM, Ghedin E, Mahal LK. Age-Dependent Glycomic Response to the 2009 Pandemic H1N1 Influenza Virus and Its Association with Disease Severity. J Proteome Res 2020; 19:4486-4495. [PMID: 32981324 PMCID: PMC7640967 DOI: 10.1021/acs.jproteome.0c00455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 01/05/2023]
Abstract
Influenza A viruses cause a spectrum of responses, from mild coldlike symptoms to severe respiratory illness and death. Intrinsic host factors, such as age, can influence disease severity. Glycosylation plays a critical role in influenza pathogenesis; however, the molecular drivers of influenza outcomes remain unknown. In this work, we characterized the host glycomic response to the H1N1 2009 pandemic influenza A virus (H1N1pdm09) as a function of age-dependent severity in a ferret model. Using our dual-color lectin microarray technology, we examined baseline glycosylation and glycomic response to infection in newly weaned and aged animals, models for young children and the elderly, respectively. Compared to adult uninfected ferrets, we observed higher levels of α-2,6-sialosides, the receptor for H1N1pdm09, in newly weaned and aged animals. We also observed age-dependent loss of O-linked α-2,3-sialosides. The loss of these highly charged groups may impact viral clearance by mucins, which corresponds to the lower clearance rates observed in aged animals. Upon infection, we observed dramatic changes in the glycomes of aged animals, a population severely impacted by the virus. In contrast, no significant alterations were observed in the newly weaned animals, which show mild to moderate responses to the H1N1pdm09. High mannose, a glycan recently identified as a marker of severity in adult animals, increased with severity in the aged population. However, the response was delayed, in line with the delayed development of pneumonia observed. Overall, our results may help explain the differential susceptibility to influenza A infection and severity observed as a function of age.
Collapse
Affiliation(s)
- Shuhui Chen
- Biomedical Research Institute, Department of Chemistry, New York University, NY, 10003, USA
| | - Brian Kasper
- Biomedical Research Institute, Department of Chemistry, New York University, NY, 10003, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Lauren P. Lashua
- Center for Genomics & Systems Biology, Department of Biology, New York University, NY, 10003, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, GA, 30602, USA
| | - Elodie Ghedin
- Center for Genomics & Systems Biology, Department of Biology, New York University, NY, 10003, USA
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID/NIH, Bethesda, MD, 20894, USA
| | - Lara K. Mahal
- Biomedical Research Institute, Department of Chemistry, New York University, NY, 10003, USA
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, CANADA
| |
Collapse
|
30
|
Glycomic analysis of host response reveals high mannose as a key mediator of influenza severity. Proc Natl Acad Sci U S A 2020; 117:26926-26935. [PMID: 33046650 PMCID: PMC7604487 DOI: 10.1073/pnas.2008203117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Influenza virus infection causes a range of outcomes from mild illness to death. The molecular mechanisms leading to these differential host responses are currently unknown. Herein, we identify the induction of high mannose, a glycan epitope, as a key mediator of severe disease outcome. We propose a mechanism in which activation of the unfolded protein response (UPR) upon influenza virus infection induces cell surface high mannose, which is then recognized by the innate immune lectin MBL2, activating the complement cascade and leading to subsequent inflammation. This work is the first to systematically study host glycomic changes in response to influenza virus infection, identifying high mannose as a key feature of differential host response. Influenza virus infections cause a wide variety of outcomes, from mild disease to 3 to 5 million cases of severe illness and ∼290,000 to 645,000 deaths annually worldwide. The molecular mechanisms underlying these disparate outcomes are currently unknown. Glycosylation within the human host plays a critical role in influenza virus biology. However, the impact these modifications have on the severity of influenza disease has not been examined. Herein, we profile the glycomic host responses to influenza virus infection as a function of disease severity using a ferret model and our lectin microarray technology. We identify the glycan epitope high mannose as a marker of influenza virus-induced pathogenesis and severity of disease outcome. Induction of high mannose is dependent upon the unfolded protein response (UPR) pathway, a pathway previously shown to associate with lung damage and severity of influenza virus infection. Also, the mannan-binding lectin (MBL2), an innate immune lectin that negatively impacts influenza outcomes, recognizes influenza virus-infected cells in a high mannose-dependent manner. Together, our data argue that the high mannose motif is an infection-associated molecular pattern on host cells that may guide immune responses leading to the concomitant damage associated with severity.
Collapse
|
31
|
Grandjean JMD, Madhavan A, Cech L, Seguinot BO, Paxman RJ, Smith E, Scampavia L, Powers ET, Cooley CB, Plate L, Spicer TP, Kelly JW, Wiseman RL. Pharmacologic IRE1/XBP1s activation confers targeted ER proteostasis reprogramming. Nat Chem Biol 2020; 16:1052-1061. [PMID: 32690944 PMCID: PMC7502540 DOI: 10.1038/s41589-020-0584-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Activation of the IRE1/XBP1s signaling arm of the unfolded protein response (UPR) is a promising strategy to correct defects in endoplasmic reticulum (ER) proteostasis implicated in diverse diseases. However, no pharmacologic activators of this pathway identified to date are suitable for ER proteostasis remodeling through selective activation of IRE1/XBP1s signaling. Here, we use high-throughput screening to identify non-toxic compounds that induce ER proteostasis remodeling through IRE1/XBP1s activation. We employ transcriptional profiling to stringently confirm that our prioritized compounds selectively activate IRE1/XBP1s signaling without activating other cellular stress-responsive signaling pathways. Furthermore, we demonstrate that our compounds improve ER proteostasis of destabilized variants of amyloid precursor protein (APP) through an IRE1-dependent mechanism and reduce APP-associated mitochondrial toxicity in cellular models. These results establish highly selective IRE1/XBP1s activating compounds that can be widely employed to define the functional importance of IRE1/XBP1s activity for ER proteostasis regulation in the context of health and disease.
Collapse
Affiliation(s)
- Julia M D Grandjean
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Aparajita Madhavan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Lauren Cech
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Bryan O Seguinot
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Ryan J Paxman
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Emery Smith
- Scripps Research Molecular Screening Center, The Scripps Research Institute, Jupiter, FL, USA
| | - Louis Scampavia
- Scripps Research Molecular Screening Center, The Scripps Research Institute, Jupiter, FL, USA
| | - Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Lars Plate
- Departments of Chemistry and Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Timothy P Spicer
- Scripps Research Molecular Screening Center, The Scripps Research Institute, Jupiter, FL, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
32
|
Formas‐Oliveira AS, Basílio JS, Rodrigues AF, Coroadinha AS. Overexpression of ER Protein Processing and Apoptosis Regulator Genes in Human Embryonic Kidney 293 Cells Improves Gene Therapy Vectors Production. Biotechnol J 2020; 15:e1900562. [DOI: 10.1002/biot.201900562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/22/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Ana S. Formas‐Oliveira
- iBET Instituto de Biologia Experimental e Tecnológica Apartado 12 2781‐901 Oeiras Portugal
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780‐157 Oeiras Portugal
| | - João S. Basílio
- iBET Instituto de Biologia Experimental e Tecnológica Apartado 12 2781‐901 Oeiras Portugal
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780‐157 Oeiras Portugal
| | - Ana F. Rodrigues
- iBET Instituto de Biologia Experimental e Tecnológica Apartado 12 2781‐901 Oeiras Portugal
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780‐157 Oeiras Portugal
| | - Ana S. Coroadinha
- iBET Instituto de Biologia Experimental e Tecnológica Apartado 12 2781‐901 Oeiras Portugal
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780‐157 Oeiras Portugal
- The Discoveries centre for Regenerative and Precision Medicine Nova University Lisbon Oeiras Campus, Av. da República 2780‐157 Oeiras Portugal
| |
Collapse
|
33
|
Nekongo EE, Ponomarenko AI, Dewal MB, Butty VL, Browne EP, Shoulders MD. HSF1 Activation Can Restrict HIV Replication. ACS Infect Dis 2020; 6:1659-1666. [PMID: 32502335 DOI: 10.1021/acsinfecdis.0c00166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Host protein folding stress responses can play important roles in RNA virus replication and evolution. Prior work suggested a complicated interplay between the cytosolic proteostasis stress response, controlled by the transcriptional master regulator heat shock factor 1 (HSF1), and human immunodeficiency virus-1 (HIV-1). We sought to uncouple HSF1 transcription factor activity from cytotoxic proteostasis stress and thereby better elucidate the proposed role(s) of HSF1 in the HIV-1 lifecycle. To achieve this objective, we used chemical genetic, stress-independent control of HSF1 activity to establish whether and how HSF1 influences HIV-1 replication. Stress-independent HSF1 induction decreased both the total quantity and infectivity of HIV-1 virions. Moreover, HIV-1 was unable to escape HSF1-mediated restriction over the course of several serial passages. These results clarify the interplay between the host's heat shock response and HIV-1 infection and motivate continued investigation of chaperones as potential antiviral therapeutic targets.
Collapse
Affiliation(s)
- Emmanuel E. Nekongo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anna I. Ponomarenko
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mahender B. Dewal
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vincent L. Butty
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Edward P. Browne
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27516, United States
| | - Matthew D. Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
34
|
Metcalf MG, Higuchi-Sanabria R, Garcia G, Tsui CK, Dillin A. Beyond the cell factory: Homeostatic regulation of and by the UPR ER. SCIENCE ADVANCES 2020; 6:eabb9614. [PMID: 32832649 PMCID: PMC7439504 DOI: 10.1126/sciadv.abb9614] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/02/2020] [Indexed: 05/02/2023]
Abstract
The endoplasmic reticulum (ER) is commonly referred to as the factory of the cell, as it is responsible for a large amount of protein and lipid synthesis. As a membrane-bound organelle, the ER has a distinct environment that is ideal for its functions in synthesizing these primary cellular components. Many different quality control machineries exist to maintain ER stability under the stresses associated with synthesizing, folding, and modifying complex proteins and lipids. The best understood of these mechanisms is the unfolded protein response of the ER (UPRER), in which transmembrane proteins serve as sensors, which trigger a coordinated transcriptional response of genes dedicated for mitigating the stress. As the name suggests, the UPRER is most well described as a functional response to protein misfolding stress. Here, we focus on recent findings and emerging themes in additional roles of the UPRER outside of protein homeostasis, including lipid homeostasis, autophagy, apoptosis, and immunity.
Collapse
|
35
|
Doan ND, Hosseini AS, Bikovtseva AA, Huang MS, DiChiara AS, Papa LJ, Koller A, Shoulders MD. Elucidation of proteostasis defects caused by osteogenesis imperfecta mutations in the collagen-α2(I) C-propeptide domain. J Biol Chem 2020; 295:9959-9973. [PMID: 32482890 DOI: 10.1074/jbc.ra120.014071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Indexed: 01/07/2023] Open
Abstract
Intracellular collagen assembly begins with the oxidative folding of ∼30-kDa C-terminal propeptide (C-Pro) domains. Folded C-Pro domains then template the formation of triple helices between appropriate partner strands. Numerous C-Pro missense variants that disrupt or delay triple-helix formation are known to cause disease, but our understanding of the specific proteostasis defects introduced by these variants remains immature. Moreover, it is unclear whether or not recognition and quality control of misfolded C-Pro domains is mediated by recognizing stalled assembly of triple-helical domains or by direct engagement of the C-Pro itself. Here, we integrate biochemical and cellular approaches to illuminate the proteostasis defects associated with osteogenesis imperfecta-causing mutations within the collagen-α2(I) C-Pro domain. We first show that "C-Pro-only" constructs recapitulate key aspects of the behavior of full-length Colα2(I) constructs. Of the variants studied, perhaps the most severe assembly defects are associated with C1163R C-Proα2(I), which is incapable of forming stable trimers and is retained within cells. We find that the presence or absence of an unassembled triple-helical domain is not the key feature driving cellular retention versus secretion. Rather, the proteostasis network directly engages the misfolded C-Pro domain itself to prevent secretion and initiate clearance. Using MS-based proteomics, we elucidate how the endoplasmic reticulum (ER) proteostasis network differentially engages misfolded C1163R C-Proα2(I) and targets it for ER-associated degradation. These results provide insights into collagen folding and quality control with the potential to inform the design of proteostasis network-targeted strategies for managing collagenopathies.
Collapse
Affiliation(s)
- Ngoc-Duc Doan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Azade S Hosseini
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Agata A Bikovtseva
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michelle S Huang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Andrew S DiChiara
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Louis J Papa
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Antonius Koller
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
36
|
Wang S, Qin H, Mao J, Fang Z, Chen Y, Zhang X, Hu L, Ye M. Profiling of Endogenously Intact N-Linked and O-Linked Glycopeptides from Human Serum Using an Integrated Platform. J Proteome Res 2020; 19:1423-1434. [PMID: 32090575 DOI: 10.1021/acs.jproteome.9b00592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endogenous glycopeptides in serum are an invaluable resource for biomarker discovery. Due to the low abundance and the poor fragmentation in tandem mass spectrometry, the identification of endogenously intact glycopeptides still faces many challenges. Herein, an integrated platform is fabricated for the identification of N-linked and O-linked endogenously intact glycopeptides. In this platform, the high-temperature acid denaturation, ultrafiltration, and hydrophilic interaction chromatography steps are combined together for the highly efficient extraction of the endogenously intact glycopeptides from a small amount of serum. Additionally, the twin-spectra scheme and in silico deglycosylation strategy were applied for the identification of N-linked and O-linked endogenous glycopeptides, respectively. In total, 223 intact N-glycopeptides and 51 intact O-glycopeptides are identified from only 40 μL of the human serum sample. This is the first study reporting the identification of endogenously intact N-linked and O-linked glycopeptide and is also the largest data set of endogenously intact glycopeptides reported so far. The distributions of glycans among peptides and proteins and cleavage sites on peptides are further analyzed to seek the regulation of endogenous glycosylation for disease mechanism. The developed strategy provides a novel platform for the disease biomarker discovery.
Collapse
Affiliation(s)
- Shuyue Wang
- Key Laboratory Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130023, China.,CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Hongqiang Qin
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Jiawei Mao
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Zheng Fang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Chen
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolei Zhang
- Key Laboratory Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130023, China.,CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Lianghai Hu
- Key Laboratory Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Mingliang Ye
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| |
Collapse
|
37
|
Abstract
Protein folding in the cell is mediated by an extensive network of >1,000 chaperones, quality control factors, and trafficking mechanisms collectively termed the proteostasis network. While the components and organization of this network are generally well established, our understanding of how protein-folding problems are identified, how the network components integrate to successfully address challenges, and what types of biophysical issues each proteostasis network component is capable of addressing remains immature. We describe a chemical biology-informed framework for studying cellular proteostasis that relies on selection of interesting protein-folding problems and precise researcher control of proteostasis network composition and activities. By combining these methods with multifaceted strategies to monitor protein folding, degradation, trafficking, and aggregation in cells, researchers continue to rapidly generate new insights into cellular proteostasis.
Collapse
Affiliation(s)
- Rebecca M Sebastian
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
38
|
Regal-McDonald K, Patel RP. Selective Recruitment of Monocyte Subsets by Endothelial N-Glycans. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:947-957. [PMID: 32084367 DOI: 10.1016/j.ajpath.2020.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 12/26/2022]
Abstract
Monocyte rolling, adhesion, and transmigration across the endothelium are mediated by specific interactions between surface adhesion molecules. This process is fundamental to innate immunity and to inflammatory disease, including atherosclerosis, where monocyte egress into the intimal space is central to formation of fatty plaques. Monocytes are a heterogeneous population of three distinct subsets of cells, all of which play different roles in atherosclerosis progression. However, it is not well understood how interactions between different monocyte subsets and the endothelium are regulated. Furthermore, it is appreciated that endothelial adhesion molecules are heavily N-glycosylated, but beyond regulating protein trafficking to the cell surface, whether and if so how these N-glycans contribute to monocyte recruitment is not known. This review discusses how changes in endothelial N-glycosylation may impact vascular and monocytic inflammation. It will also discuss how regulating N-glycoforms on the endothelial surface may allow for the recruitment of specific monocyte subsets to sites of inflammation, and how further understanding in this area may lead to the development of glyco-specific therapeutics in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Kellie Regal-McDonald
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
39
|
Blundell PA, Lu D, Dell A, Haslam S, Pleass RJ. Choice of Host Cell Line Is Essential for the Functional Glycosylation of the Fc Region of Human IgG1 Inhibitors of Influenza B Viruses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1022-1034. [PMID: 31907284 PMCID: PMC6994840 DOI: 10.4049/jimmunol.1901145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
Abs are glycoproteins that carry a conserved N-linked carbohydrate attached to the Fc whose presence and fine structure profoundly impacts on their in vivo immunogenicity, pharmacokinetics, and functional attributes. The host cell line used to produce IgG plays a major role in this glycosylation, as different systems express different glycosylation enzymes and transporters that contribute to the specificity and heterogeneity of the final IgG-Fc glycosylation profile. In this study, we compare two panels of glycan-adapted IgG1-Fc mutants expressed in either the human endothelial kidney 293-F or Chinese hamster ovary-K1 systems. We show that the types of N-linked glycans between matched pairs of Fc mutants vary greatly and in particular, with respect, to sialylation. These cell line effects on glycosylation profoundly influence the ability of the engineered Fcs to interact with either human or pathogen receptors. For example, we describe Fc mutants that potently disrupted influenza B-mediated agglutination of human erythrocytes when expressed in Chinese hamster ovary-K1, but not in human endothelial kidney 293-F cells.
Collapse
Affiliation(s)
- Patricia A Blundell
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; and
| | - Dongli Lu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stuart Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard J Pleass
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; and
| |
Collapse
|
40
|
Turiák L, Sugár S, Ács A, Tóth G, Gömöry Á, Telekes A, Vékey K, Drahos L. Site-specific N-glycosylation of HeLa cell glycoproteins. Sci Rep 2019; 9:14822. [PMID: 31616032 PMCID: PMC6794373 DOI: 10.1038/s41598-019-51428-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/23/2019] [Indexed: 01/28/2023] Open
Abstract
We have characterized site-specific N-glycosylation of the HeLa cell line glycoproteins, using a complex workflow based on high and low energy tandem mass spectrometry of glycopeptides. The objective was to obtain highly reliable data on common glycoforms, so rigorous data evaluation was performed. The analysis revealed the presence of a high amount of bovine serum contaminants originating from the cell culture media - nearly 50% of all glycans were of bovine origin. Unaccounted, the presence of bovine serum components causes major bias in the human cellular glycosylation pattern; as is shown when literature results using released glycan analysis are compared. We have reliably identified 43 (human) glycoproteins, 69 N-glycosylation sites, and 178 glycoforms. HeLa glycoproteins were found to be highly (68.7%) fucosylated. A medium degree of sialylation was observed, on average 46.8% of possible sialylation sites were occupied. High-mannose sugars were expressed in large amounts, as expected in the case of a cancer cell line. Glycosylation in HeLa cells is highly variable. It is markedly different not only on various proteins but also at the different glycosylation sites of the same protein. Our method enabled the detailed characterization of site-specific N-glycosylation of several glycoproteins expressed in HeLa cell line.
Collapse
Affiliation(s)
- Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary.
| | - Simon Sugár
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - András Ács
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
- Semmelweis University, Ph.D. School of Pharmaceutical Sciences, Üllői út 26, H-1085, Budapest, Hungary
| | - Gábor Tóth
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Műegyetem rakpart 3, H-1111, Budapest, Hungary
| | - Ágnes Gömöry
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - András Telekes
- Department of Oncology, St Lazarus County Hospital, Füleki út 54-56, H-3100, Salgótarján, Hungary
| | - Károly Vékey
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| |
Collapse
|