1
|
Wu Y, Deng Q, Wei R, Chen S, Ding F, Yu H, Hu N, Hao S, Wang B. Unveiling the Hidden Impact: Hematoma Volumes Unravel Circuit Disruptions in Intracerebral Hemorrhage. Transl Stroke Res 2025; 16:757-774. [PMID: 38748378 DOI: 10.1007/s12975-024-01257-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2025]
Abstract
Intracerebral hemorrhage (ICH) imposes a significant burden on patients, and the volume of hematoma plays a crucial role in determining the severity and prognosis of ICH. Although significant recent progress has been made in understanding the cellular and molecular mechanisms of surrounding brain tissue in ICH, our current knowledge regarding the precise impact of hematoma volumes on neural circuit damage remains limited. Here, using a viral tracing technique in a mouse model of striatum ICH, two distinct patterns of injury response were observed in upstream connectivity, characterized by both linear and nonlinear trends in specific brain areas. Notably, even low-volume hematomas had a substantial impact on downstream connectivity. Neurons in the striatum-ICH region exhibited heightened excitability, evidenced by electrophysiological measurements and changes in metabolic markers. Furthermore, a strong linear relationship (R2 = 0.91) was observed between hematoma volumes and NFL damage, suggesting a novel biochemical index for evaluating changes in neural injury. RNA sequencing analysis revealed the activation of the MAPK signaling pathway following hematoma, and the addition of MAPK inhibitor revealed a decrease in neuronal circuit damage, leading to alleviation of motor dysfunction in mice. Taken together, our study highlights the crucial role of hematoma size as a determinant of circuit injury in ICH. These findings have important implications for clinical evaluations and treatment strategies, offering opportunities for precise therapeutic approaches to mitigate the detrimental effects of ICH and improve patient outcomes.
Collapse
Affiliation(s)
- Yingqing Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, China
| | - Qin Deng
- Analytical and Testing Center, Chongqing University, Chongqing, 400030, China
| | - Ranran Wei
- The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430000, Hubei, China
| | - Sen Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China
| | - Fusheng Ding
- School of Life Sciences, Anqing Normal University, Anqing, 246052, Anhui, China
| | - Haipeng Yu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400030, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, China.
| |
Collapse
|
2
|
Zhang X, Jeong H, Niu J, Holland SM, Rotanz BN, Gordon J, Einarson MB, Childers WE, Thomas GM. Inhibiting acute, axonal DLK palmitoylation is neuroprotective and avoids deleterious effects of cell-wide DLK inhibition. Nat Commun 2025; 16:3031. [PMID: 40180913 PMCID: PMC11968826 DOI: 10.1038/s41467-025-58036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Inhibiting dual leucine-zipper kinase (DLK) could potentially ameliorate diverse neuropathological conditions, but a direct inhibitor of DLK's kinase domain caused unintended side effects in human patients, indicative of neuronal cytoskeletal disruption. We sought a more precise intervention and show here that axon-to-soma pro-degenerative signaling requires acute, axonal palmitoylation of DLK. To identify potential modulators of this modification, we screened >28,000 compounds using a high-content imaging readout of DLK's palmitoylation-dependent subcellular localization. Several hits alter DLK localization in non-neuronal cells, reduce DLK retrograde signaling and protect cultured dorsal root ganglion neurons from neurodegeneration. Mechanistically, the two most neuroprotective compounds selectively prevent DLK's stimulus-dependent palmitoylation and subsequent recruitment to axonal vesicles, but do not affect palmitoylation of other axonal proteins assessed and avoid the cytoskeletal disruption associated with direct DLK inhibition. Our hit compounds also reduce pro-degenerative retrograde signaling in vivo, revealing a previously unrecognized neuroprotective strategy.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Heykyeong Jeong
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Jingwen Niu
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Sabrina M Holland
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Brittany N Rotanz
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - John Gordon
- Moulder Center for Drug Discovery, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Margret B Einarson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Wayne E Childers
- Moulder Center for Drug Discovery, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Gareth M Thomas
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
- Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Danos JA, Addemir M, McGettigan L, Summers DW. Nerve growth factor signaling tunes axon maintenance protein abundance and kinetics of Wallerian degeneration. Mol Biol Cell 2025; 36:ar46. [PMID: 39969989 PMCID: PMC12005098 DOI: 10.1091/mbc.e25-01-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Neurotrophic factors are critical for establishing functional connectivity in the nervous system and sustaining neuronal survival through adulthood. As the first neurotrophic factor purified, nerve growth factor (NGF) is extensively studied for its prolific role in axon outgrowth, pruning, and survival. Applying NGF to diseased neuronal tissue is an exciting therapeutic option and understanding how NGF regulates local axon susceptibility to pathological degeneration is critical for exploiting its full potential. Our study identifies surprising connections between NGF signaling and proteostasis of axon maintenance factors. NGF deprivation increases Nmnat2 and Stmn2 protein levels in axon segments with a corresponding delay in Wallerian degeneration. Conversely, acute NGF stimulation reduces local abundance of these axon maintenance factors and accelerates Wallerian degeneration. Pharmacological studies implicate phospholipase C as the key effector in tropomyosin-related kinase A (TrkA) activation, which drives degradation of palmitoylated Stmn2. While seemingly opposed to neuroprotective activities well-documented for NGF, downregulating Nmnat2 and Stmn2 favors axonal outgrowth over transient hypersusceptibility to Sarm1-dependent degeneration. This new facet of NGF biology has important implications for axonal remodeling during development and sustained integrity through adulthood.
Collapse
Affiliation(s)
- Joseph A. Danos
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Merve Addemir
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Lily McGettigan
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Daniel W. Summers
- Department of Biology, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
4
|
Deng X, Bradshaw G, Kalocsay M, Mitchison T. Tubulin Regulates the Stability and Localization of STMN2 by Binding Preferentially to Its Soluble Form. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640326. [PMID: 40060442 PMCID: PMC11888388 DOI: 10.1101/2025.02.27.640326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Loss of the tubulin-binding protein STMN2 is implicated in amyotrophic lateral sclerosis (ALS) but how it protects neurons is not known. STMN2 is known to turn over rapidly and accumulate at axotomy sites. We confirmed fast turnover of STMN2 in U2OS cells and iPSC-derived neurons and showed that degradation occurs mainly by the ubiquitin-proteasome system. The membrane targeting N-terminal domain of STMN2 promoted fast turnover, whereas its tubulin binding stathmin-like domain (SLD) promoted stabilization. Proximity labeling and imaging showed that STMN2 localizes to trans-Golgi network membranes and that tubulin binding reduces this localization. Pull-down assays showed that tubulin prefers to bind to soluble over membrane-bound STMN2. Our data suggest that STMN2 interconverts between a soluble form that is rapidly degraded unless bound to tubulin and a membrane-bound form that does not bind tubulin. We propose that STMN2 is sequestered and stabilized by tubulin binding, while its neuroprotective function depends on an unknown molecular activity of its membrane-bound form.
Collapse
Affiliation(s)
- Xiang Deng
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Gary Bradshaw
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Marian Kalocsay
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Timothy Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
5
|
Danos JA, Addemir M, McGettigan L, Summers DW. Nerve Growth Factor Signaling Tunes Axon Maintenance Protein Abundance and Kinetics of Wallerian Degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630780. [PMID: 39803444 PMCID: PMC11722262 DOI: 10.1101/2024.12.31.630780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Neurotrophic factors are critical for establishing functional connectivity in the nervous system and sustaining neuronal survival through adulthood. As the first neurotrophic factor purified, nerve growth factor (NGF) is extensively studied for its prolific role in axon outgrowth, pruning, and survival. Applying NGF to diseased neuronal tissue is an exciting therapeutic option and understanding how NGF regulates local axon susceptibility to pathological degeneration is critical for exploiting its full potential. Our study identifies surprising connections between NGF signaling and proteostasis of axon maintenance factors. NGF deprivation increases Nmnat2 and Stmn2 protein levels in axon segments with a corresponding delay in Wallerian degeneration. Conversely, acute NGF stimulation reduces local abundance of these axon maintenance factors and accelerates Wallerian degeneration. Pharmacological studies implicate phospholipase C as the key effector in TrkA activation, which drives degradation of palmitoylated Stmn2. While seemingly opposed to neuroprotective activities well-documented for NGF, downregulating Nmnat2 and Stmn2 favors axonal outgrowth over transient hyper-susceptibility to Sarm1-dependent degeneration. This new facet of NGF biology has important implications for axonal remodeling during development and sustained integrity through adulthood.
Collapse
Affiliation(s)
- Joseph A Danos
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
| | - Merve Addemir
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
| | - Lily McGettigan
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
| | - Daniel W Summers
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
6
|
Duncan GJ, Ingram SD, Emberley K, Hill J, Cordano C, Abdelhak A, McCane M, Jenks JE, Jabassini N, Ananth K, Ferrara SJ, Stedelin B, Sivyer B, Aicher SA, Scanlan TS, Watkins TA, Mishra A, Nelson JW, Green AJ, Emery B. Remyelination protects neurons from DLK-mediated neurodegeneration. Nat Commun 2024; 15:9148. [PMID: 39443516 PMCID: PMC11500002 DOI: 10.1038/s41467-024-53429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Chronic demyelination and oligodendrocyte loss deprive neurons of crucial support. It is the degeneration of neurons and their connections that drives progressive disability in demyelinating disease. However, whether chronic demyelination triggers neurodegeneration and how it may do so remain unclear. We characterize two genetic mouse models of inducible demyelination, one distinguished by effective remyelination and the other by remyelination failure and chronic demyelination. While both demyelinating lines feature axonal damage, mice with blocked remyelination have elevated neuronal apoptosis and altered microglial inflammation, whereas mice with efficient remyelination do not feature neuronal apoptosis and have improved functional recovery. Remyelination incapable mice show increased activation of kinases downstream of dual leucine zipper kinase (DLK) and phosphorylation of c-Jun in neuronal nuclei. Pharmacological inhibition or genetic disruption of DLK block c-Jun phosphorylation and the apoptosis of demyelinated neurons. Together, we demonstrate that remyelination is associated with neuroprotection and identify DLK inhibition as protective strategy for chronically demyelinated neurons.
Collapse
Affiliation(s)
- Greg J Duncan
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Sam D Ingram
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Katie Emberley
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jo Hill
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Christian Cordano
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Michael McCane
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jennifer E Jenks
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Nora Jabassini
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Kirtana Ananth
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Skylar J Ferrara
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Brittany Stedelin
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Benjamin Sivyer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Sue A Aicher
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Thomas S Scanlan
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Trent A Watkins
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Anusha Mishra
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jonathan W Nelson
- Division of Nephrology and Hypertension, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ari J Green
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Ben Emery
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
7
|
Thornburg-Suresh EJC, Summers DW. Microtubules, Membranes, and Movement: New Roles for Stathmin-2 in Axon Integrity. J Neurosci Res 2024; 102:e25382. [PMID: 39253877 PMCID: PMC11407747 DOI: 10.1002/jnr.25382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Neurons establish functional connections responsible for how we perceive and react to the world around us. Communication from a neuron to its target cell occurs through a long projection called an axon. Axon distances can exceed 1 m in length in humans and require a dynamic microtubule cytoskeleton for growth during development and maintenance in adulthood. Stathmins are microtubule-associated proteins that function as relays between kinase signaling and microtubule polymerization. In this review, we describe the prolific role of Stathmins in microtubule homeostasis with an emphasis on emerging roles for Stathmin-2 (Stmn2) in axon integrity and neurodegeneration. Stmn2 levels are altered in Amyotrophic Lateral Sclerosis and loss of Stmn2 provokes motor and sensory neuropathies. There is growing potential for employing Stmn2 as a disease biomarker or even a therapeutic target. Meeting this potential requires a mechanistic understanding of emerging complexity in Stmn2 function. In particular, Stmn2 palmitoylation has a surprising contribution to axon maintenance through undefined mechanisms linking membrane association, tubulin interaction, and axon transport. Exploring these connections will reveal new insight on neuronal cell biology and novel opportunities for disease intervention.
Collapse
Affiliation(s)
| | - Daniel W Summers
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Duncan GJ, Ingram SD, Emberley K, Hill J, Cordano C, Abdelhak A, McCane M, Jenks JE, Jabassini N, Ananth K, Ferrara SJ, Stedelin B, Sivyer B, Aicher SA, Scanlan T, Watkins TA, Mishra A, Nelson JW, Green AJ, Emery B. Remyelination protects neurons from DLK-mediated neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.30.560267. [PMID: 37873342 PMCID: PMC10592610 DOI: 10.1101/2023.09.30.560267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chronic demyelination and oligodendrocyte loss deprive neurons of crucial support. It is the degeneration of neurons and their connections that drives progressive disability in demyelinating disease. However, whether chronic demyelination triggers neurodegeneration and how it may do so remain unclear. We characterize two genetic mouse models of inducible demyelination, one distinguished by effective remyelination and the other by remyelination failure and chronic demyelination. While both demyelinating lines feature axonal damage, mice with blocked remyelination have elevated neuronal apoptosis and altered microglial inflammation, whereas mice with efficient remyelination do not feature neuronal apoptosis and have improved functional recovery. Remyelination incapable mice show increased activation of kinases downstream of dual leucine zipper kinase (DLK) and phosphorylation of c-Jun in neuronal nuclei. Pharmacological inhibition or genetic disruption of DLK block c-Jun phosphorylation and the apoptosis of demyelinated neurons. Together, we demonstrate that remyelination is associated with neuroprotection and identify DLK inhibition as protective strategy for chronically demyelinated neurons.
Collapse
Affiliation(s)
- Greg J. Duncan
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Sam D Ingram
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Katie Emberley
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jo Hill
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Christian Cordano
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Michael McCane
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jennifer E. Jenks
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Nora Jabassini
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Kirtana Ananth
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Skylar J. Ferrara
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Brittany Stedelin
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Benjamin Sivyer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Sue A. Aicher
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Thomas Scanlan
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Trent A. Watkins
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Anusha Mishra
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jonathan W. Nelson
- Division of Nephrology and Hypertension, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ari J. Green
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Ben Emery
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
9
|
McGuinness HY, Gu W, Shi Y, Kobe B, Ve T. SARM1-Dependent Axon Degeneration: Nucleotide Signaling, Neurodegenerative Disorders, Toxicity, and Therapeutic Opportunities. Neuroscientist 2024; 30:473-492. [PMID: 37002660 PMCID: PMC11282687 DOI: 10.1177/10738584231162508] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Axons are an essential component of the nervous system, and axon degeneration is an early feature of many neurodegenerative disorders. The NAD+ metabolome plays an essential role in regulating axonal integrity. Axonal levels of NAD+ and its precursor NMN are controlled in large part by the NAD+ synthesizing survival factor NMNAT2 and the pro-neurodegenerative NADase SARM1, whose activation triggers axon destruction. SARM1 has emerged as a promising axon-specific target for therapeutic intervention, and its function, regulation, structure, and role in neurodegenerative diseases have been extensively characterized in recent years. In this review, we first introduce the key molecular players involved in the SARM1-dependent axon degeneration program. Next, we summarize recent major advances in our understanding of how SARM1 is kept inactive in healthy neurons and how it becomes activated in injured or diseased neurons, which has involved important insights from structural biology. Finally, we discuss the role of SARM1 in neurodegenerative disorders and environmental neurotoxicity and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Helen Y. McGuinness
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| |
Collapse
|
10
|
Tribble JR, Jöe M, Varricchio C, Otmani A, Canovai A, Habchi B, Daskalakis E, Chaleckis R, Loreto A, Gilley J, Wheelock CE, Jóhannesson G, Wong RCB, Coleman MP, Brancale A, Williams PA. NMNAT2 is a druggable target to drive neuronal NAD production. Nat Commun 2024; 15:6256. [PMID: 39048544 PMCID: PMC11269627 DOI: 10.1038/s41467-024-50354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Maintenance of NAD pools is critical for neuronal survival. The capacity to maintain NAD pools declines in neurodegenerative disease. We identify that low NMNAT2, the critical neuronal NAD producing enzyme, drives retinal susceptibility to neurodegenerative insults. As proof of concept, gene therapy over-expressing full length human NMNAT2 is neuroprotective. To pharmacologically target NMNAT2, we identify that epigallocatechin gallate (EGCG) can drive NAD production in neurons through an NMNAT2 and NMN dependent mechanism. We confirm this by pharmacological and genetic inhibition of the NAD-salvage pathway. EGCG is neuroprotective in rodent (mixed sex) and human models of retinal neurodegeneration. As EGCG has poor drug-like qualities, we use it as a tool compound to generate novel small molecules which drive neuronal NAD production and provide neuroprotection. This class of NMNAT2 targeted small molecules could have an important therapeutic impact for neurodegenerative disease following further drug development.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital; Karolinska Institutet, Stockholm, Sweden
| | - Melissa Jöe
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital; Karolinska Institutet, Stockholm, Sweden
| | - Carmine Varricchio
- School of Pharmacy and Pharmaceutical Sciences; Cardiff University, Cardiff, Wales, UK
| | - Amin Otmani
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital; Karolinska Institutet, Stockholm, Sweden
| | - Alessio Canovai
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital; Karolinska Institutet, Stockholm, Sweden
- Department of Biology, University of Pisa, 56127, Pisa, Italy
| | - Baninia Habchi
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
- C2VN, INRAE, INSERM, Aix Marseille University, 13007, Marseille, France
| | - Evangelia Daskalakis
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Romanas Chaleckis
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
- Gunma Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences; University of Cambridge, Cambridge, UK
- School of Medical Sciences and Save Sight Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences; University of Cambridge, Cambridge, UK
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Gauti Jóhannesson
- Department of Clinical Sciences, Ophthalmology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre of Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Raymond C B Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences; University of Cambridge, Cambridge, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences; Cardiff University, Cardiff, Wales, UK
- Vysoká škola chemicko-technologická v Praze, Prague, Czech Republic
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital; Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Song M, Kang K, Wang S, Zhang C, Zhao X, Song F. Elevated intracellular Ca 2+ functions downstream of mitodysfunction to induce Wallerian-like degeneration and necroptosis in organophosphorus-induced delayed neuropathy. Toxicology 2024; 504:153812. [PMID: 38653376 DOI: 10.1016/j.tox.2024.153812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Neurotoxic organophosphorus compounds can induce a type of delayed neuropathy in humans and sensitive animals, known as organophosphorus-induced delayed neuropathy (OPIDN). OPIDN is characterized by axonal degeneration akin to Wallerian-like degeneration, which is thought to be caused by increased intra-axonal Ca2+ concentrations. This study was designed to investigate that deregulated cytosolic Ca2+ may function downstream of mitodysfunction in activating Wallerian-like degeneration and necroptosis in OPIDN. Adult hens were administrated a single dosage of 750 mg/kg tri-ortho-cresyl phosphate (TOCP), and then sacrificed at 1 day, 5 day, 10 day and 21 day post-exposure, respectively. Sciatic nerves and spinal cords were examined for pathological changes and proteins expression related to Wallerian-like degeneration and necroptosis. In vitro experiments using differentiated neuro-2a (N2a) cells were conducted to investigate the relationship among mitochondrial dysfunction, Ca2+ influx, axonal degeneration, and necroptosis. The cells were co-administered with the Ca2+-chelator BAPTA-AM, the TRPA1 channel inhibitor HC030031, the RIPK1 inhibitor Necrostatin-1, and the mitochondrial-targeted antioxidant MitoQ along with TOCP. Results demonstrated an increase in cytosolic calcium concentration and key proteins associated with Wallerian degeneration and necroptosis in both in vivo and in vitro models after TOCP exposure. Moreover, co-administration with BATPA-AM or HC030031 significantly attenuated the loss of NMNAT2 and STMN2 in N2a cells, as well as the upregulation of SARM1, RIPK1 and p-MLKL. In contrast, Necrostatin-1 treatment only inhibited the TOCP-induced elevation of p-MLKL. Notably, pharmacological protection of mitochondrial function with MitoQ effectively alleviated the increase in intracellular Ca2+ following TOCP and mitigated axonal degeneration and necroptosis in N2a cells, supporting mitochondrial dysfunction as an upstream event of the intracellular Ca2+ imbalance and neuronal damage in OPIDN. These findings suggest that mitochondrial dysfunction post-TOCP intoxication leads to an elevated intracellular Ca2+ concentration, which plays a pivotal role in the initiation and development of OPIDN through inducing SARM1-mediated axonal degeneration and activating the necroptotic signaling pathway.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Kang Kang
- Qingdao Municipal Center for Disease Control & Prevention, Qingdao, Shandong 266033, PR China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Cuiqin Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China.
| |
Collapse
|
12
|
Zhang X, Jeong H, Niu J, Holland SM, Rotanz BN, Gordon J, Einarson MB, Childers WE, Thomas GM. Novel inhibitors of acute, axonal DLK palmitoylation are neuroprotective and avoid the deleterious side effects of cell-wide DLK inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590310. [PMID: 38712276 PMCID: PMC11071345 DOI: 10.1101/2024.04.19.590310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Dual leucine-zipper kinase (DLK) drives acute and chronic forms of neurodegeneration, suggesting that inhibiting DLK signaling could ameliorate diverse neuropathological conditions. However, direct inhibition of DLK's kinase domain in human patients and conditional knockout of DLK in mice both cause unintended side effects, including elevated plasma neurofilament levels, indicative of neuronal cytoskeletal disruption. Indeed, we found that a DLK kinase domain inhibitor acutely disrupted the axonal cytoskeleton and caused vesicle aggregation in cultured dorsal root ganglion (DRG) neurons, further cautioning against this therapeutic strategy. In seeking a more precise intervention, we found that retrograde (axon-to-soma) pro-degenerative signaling requires acute, axonal palmitoylation of DLK and hypothesized that modulating this post-translational modification might be more specifically neuroprotective than cell-wide DLK inhibition. To address this possibility, we screened >28,000 compounds using a high-content imaging assay that quantitatively evaluates DLK's palmitoylation-dependent subcellular localization. Of the 33 hits that significantly altered DLK localization in non-neuronal cells, several reduced DLK retrograde signaling and protected cultured DRG neurons from DLK-dependent neurodegeneration. Mechanistically, the two most neuroprotective compounds selectively prevent stimulus-dependent palmitoylation of axonal pools of DLK, a process crucial for DLK's recruitment to axonal vesicles. In contrast, these compounds minimally impact DLK localization and signaling in healthy neurons and avoid the cytoskeletal disruption associated with direct DLK inhibition. Importantly, our hit compounds also reduce pro-degenerative retrograde signaling in vivo, suggesting that modulating DLK's palmitoylation-dependent localization could be a novel neuroprotective strategy.
Collapse
|
13
|
López-Erauskin J, Bravo-Hernandez M, Presa M, Baughn MW, Melamed Z, Beccari MS, Agra de Almeida Quadros AR, Arnold-Garcia O, Zuberi A, Ling K, Platoshyn O, Niño-Jara E, Ndayambaje IS, McAlonis-Downes M, Cabrera L, Artates JW, Ryan J, Hermann A, Ravits J, Bennett CF, Jafar-Nejad P, Rigo F, Marsala M, Lutz CM, Cleveland DW, Lagier-Tourenne C. Stathmin-2 loss leads to neurofilament-dependent axonal collapse driving motor and sensory denervation. Nat Neurosci 2024; 27:34-47. [PMID: 37996528 PMCID: PMC10842032 DOI: 10.1038/s41593-023-01496-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
The mRNA transcript of the human STMN2 gene, encoding for stathmin-2 protein (also called SCG10), is profoundly impacted by TAR DNA-binding protein 43 (TDP-43) loss of function. The latter is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Using a combination of approaches, including transient antisense oligonucleotide-mediated suppression, sustained shRNA-induced depletion in aging mice, and germline deletion, we show that stathmin-2 has an important role in the establishment and maintenance of neurofilament-dependent axoplasmic organization that is critical for preserving the caliber and conduction velocity of myelinated large-diameter axons. Persistent stathmin-2 loss in adult mice results in pathologies found in ALS, including reduced interneurofilament spacing, axonal caliber collapse that drives tearing within outer myelin layers, diminished conduction velocity, progressive motor and sensory deficits, and muscle denervation. These findings reinforce restoration of stathmin-2 as an attractive therapeutic approach for ALS and other TDP-43-dependent neurodegenerative diseases.
Collapse
Affiliation(s)
- Jone López-Erauskin
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Mariana Bravo-Hernandez
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
- Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | | | - Michael W Baughn
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ze'ev Melamed
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Melinda S Beccari
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ana Rita Agra de Almeida Quadros
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Olatz Arnold-Garcia
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | | | - Karen Ling
- Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Oleksandr Platoshyn
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Elkin Niño-Jara
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - I Sandra Ndayambaje
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa McAlonis-Downes
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Larissa Cabrera
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Jonathan W Artates
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | - Anita Hermann
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - John Ravits
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | | | - Frank Rigo
- Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Martin Marsala
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | - Don W Cleveland
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
14
|
Dogan EO, Bouley J, Zhong J, Harkins AL, Keeler AM, Bosco DA, Brown RH, Henninger N. Genetic ablation of Sarm1 attenuates expression and mislocalization of phosphorylated TDP-43 after mouse repetitive traumatic brain injury. Acta Neuropathol Commun 2023; 11:206. [PMID: 38124145 PMCID: PMC10731794 DOI: 10.1186/s40478-023-01709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Traumatic brain injury (TBI), particularly when moderate-to-severe and repetitive, is a strong environmental risk factor for several progressive neurodegenerative disorders. Mislocalization and deposition of transactive response DNA binding protein 43 (TDP-43) has been reported in both TBI and TBI-associated neurodegenerative diseases. It has been hypothesized that axonal pathology, an early event after TBI, may promote TDP-43 dysregulation and serve as a trigger for neurodegenerative processes. We sought to determine whether blocking the prodegenerative Sarm1 (sterile alpha and TIR motif containing 1) axon death pathway attenuates TDP-43 pathology after TBI. We subjected 111 male Sarm1 wild type, hemizygous, and knockout mice to moderate-to-severe repetitive TBI (rTBI) using a previously established injury paradigm. We conducted serial neurological assessments followed by histological analyses (NeuN, MBP, Iba-1, GFAP, pTDP-43, and AT8) at 1 month after rTBI. Genetic ablation of the Sarm1 gene attenuated the expression and mislocalization of phosphorylated TDP-43 (pTDP-43) and accumulation of pTau. In addition, Sarm1 knockout mice had significantly improved cortical neuronal and axonal integrity, functional deficits, and improved overall survival after rTBI. In contrast, removal of one Sarm1 allele delayed, but did not prevent, neurological deficits and neuroaxonal loss. Nevertheless, Sarm1 haploinsufficient mice showed significantly less microgliosis, pTDP-43 pathology, and pTau accumulation when compared to wild type mice. These data indicate that the Sarm1-mediated prodegenerative pathway contributes to pathogenesis in rTBI including the pathological accumulation of pTDP-43. This suggests that anti-Sarm1 therapeutics are a viable approach for preserving neurological function after moderate-to-severe rTBI.
Collapse
Affiliation(s)
- Elif O Dogan
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - James Bouley
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - Jianjun Zhong
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ashley L Harkins
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA.
- Department of Psychiatry, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA.
| |
Collapse
|
15
|
Alexandris AS, Koliatsos VE. NAD +, Axonal Maintenance, and Neurological Disease. Antioxid Redox Signal 2023; 39:1167-1184. [PMID: 37503611 PMCID: PMC10715442 DOI: 10.1089/ars.2023.0350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 07/29/2023]
Abstract
Significance: The remarkable geometry of the axon exposes it to unique challenges for survival and maintenance. Axonal degeneration is a feature of peripheral neuropathies, glaucoma, and traumatic brain injury, and an early event in neurodegenerative diseases. Since the discovery of Wallerian degeneration (WD), a molecular program that hijacks nicotinamide adenine dinucleotide (NAD+) metabolism for axonal self-destruction, the complex roles of NAD+ in axonal viability and disease have become research priority. Recent Advances: The discoveries of the protective Wallerian degeneration slow (WldS) and of sterile alpha and TIR motif containing 1 (SARM1) activation as the main instructive signal for WD have shed new light on the regulatory role of NAD+ in axonal degeneration in a growing number of neurological diseases. SARM1 has been characterized as a NAD+ hydrolase and sensor of NAD+ metabolism. The discovery of regulators of nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) proteostasis in axons, the allosteric regulation of SARM1 by NAD+ and NMN, and the existence of clinically relevant windows of action of these signals has opened new opportunities for therapeutic interventions, including SARM1 inhibitors and modulators of NAD+ metabolism. Critical Issues: Events upstream and downstream of SARM1 remain unclear. Furthermore, manipulating NAD+ metabolism, an overdetermined process crucial in cell survival, for preventing the degeneration of the injured axon may be difficult and potentially toxic. Future Directions: There is a need for clarification of the distinct roles of NAD+ metabolism in axonal maintenance as contrasted to WD. There is also a need to better understand the role of NAD+ metabolism in axonal endangerment in neuropathies, diseases of the white matter, and the early stages of neurodegenerative diseases of the central nervous system. Antioxid. Redox Signal. 39, 1167-1184.
Collapse
Affiliation(s)
| | - Vassilis E. Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Murata H, Phoo MTZ, Ochi T, Tomonobu N, Yamamoto KI, Kinoshita R, Miyazaki I, Nishibori M, Asanuma M, Sakaguchi M. Phosphorylated SARM1 is involved in the pathological process of rotenone-induced neurodegeneration. J Biochem 2023; 174:533-548. [PMID: 37725528 PMCID: PMC11033528 DOI: 10.1093/jb/mvad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023] Open
Abstract
Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) is a NAD+ hydrolase that plays a key role in axonal degeneration and neuronal cell death. We reported that c-Jun N-terminal kinase (JNK) activates SARM1 through phosphorylation at Ser-548. The importance of SARM1 phosphorylation in the pathological process of Parkinson's disease (PD) has not been determined. We thus conducted the present study by using rotenone (an inducer of PD-like pathology) and neurons derived from induced pluripotent stem cells (iPSCs) from healthy donors and a patient with familial PD PARK2 (FPD2). The results showed that compared to the healthy neurons, FPD2 neurons were more vulnerable to rotenone-induced stress and had higher levels of SARM1 phosphorylation. Similar cellular events were obtained when we used PARK2-knockdown neurons derived from healthy donor iPSCs. These events in both types of PD-model neurons were suppressed in neurons treated with JNK inhibitors, Ca2+-signal inhibitors, or by a SARM1-knockdown procedure. The degenerative events were enhanced in neurons overexpressing wild-type SARM1 and conversely suppressed in neurons overexpressing the SARM1-S548A mutant. We also detected elevated SARM1 phosphorylation in the midbrain of PD-model mice. The results indicate that phosphorylated SARM1 plays an important role in the pathological process of rotenone-induced neurodegeneration.
Collapse
Key Words
- JNK
- PARK2
- Parkinson’s disease
- Phosphorylation
- SARM1.Abbreviations: ARM, armadillo/HEAT motif; DMSO, dimethyl sulfoxide; EGTA, ethylene glycol-bis(2-aminoethelether)-N: N: N: N-tetraacetic acid; iPSC, induced pluripotent stem cell; JNK, c-Jun N-terminal kinase; NAD, nicotinamide adenine dinucleotide; NSC, neural stem cell; NF-L, neurofilament-L; NF-M, neurofilament-M; PD, Parkinson’s disease; PINK1, PTEN-induced kinase 1; ROS, reactive oxygen species; SAM, sterile alpha motif; SARM1, sterile alpha and Toll/interleukin receptor motif-containing protein 1; SNpc, substantia nigra pars compacta; TH, tyrosine hydroxylase; TIR, Toll/interleukin receptor; WT, wild type
Collapse
Affiliation(s)
- Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - May Tha Zin Phoo
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Toshiki Ochi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ken-ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masahiro Nishibori
- Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
17
|
Zuo Z, Zhang Z, Zhang S, Fan B, Li G. The Molecular Mechanisms Involved in Axonal Degeneration and Retrograde Retinal Ganglion Cell Death. DNA Cell Biol 2023; 42:653-667. [PMID: 37819746 DOI: 10.1089/dna.2023.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Axonal degeneration is a pathologic change common to multiple retinopathies and optic neuropathies. Various pathologic factors, such as mechanical injury, inflammation, and ischemia, can damage retinal ganglion cell (RGC) somas and axons, eventually triggering axonal degeneration and RGC death. The molecular mechanisms of somal and axonal degeneration are distinct but also overlap, and axonal degeneration can result in retrograde somal degeneration. While the mitogen-activated protein kinase pathway acts as a central node in RGC axon degeneration, several newly discovered molecules, such as sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 and nicotinamide mononucleotide adenylyltransferase 2, also play a critical role in this pathological process following different types of injury. Therefore, we summarize the types of injury that cause RGC axon degeneration and retrograde RGC death and important underlying molecular mechanisms, providing a reference for the identification of targets for protecting axons and RGCs.
Collapse
Affiliation(s)
- Zhaoyang Zuo
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Ziyuan Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Siming Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Guangyu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Yue W, Zhang K, Jiang M, Long W, Cui J, Li Y, Zhang Y, Li A, Fang Y. Deubiquitination of SARM1 by USP13 regulates SARM1 activation and axon degeneration. LIFE MEDICINE 2023; 2:lnad040. [PMID: 39872893 PMCID: PMC11749472 DOI: 10.1093/lifemedi/lnad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/24/2023] [Indexed: 01/30/2025]
Abstract
Sterile alpha and Toll/interleukin 1 receptor motif-containing protein 1 (SARM1) is regarded as a key protein and a central executor of the self-destruction of injured axons. To identify novel molecular players and understand the mechanisms regulating SARM1 function, we investigated the interactome of SARM1 by proximity labeling and proteomic profiling. Among the SARM1-associated proteins, we uncovered that overexpression (OE) of ubiquitin-specific peptidase 13 (USP13) delayed injury-induced axon degeneration. OE of an enzyme-dead USP13 failed to protect injured axons, indicating that the deubiquitinase activity of USP13 was required for its axonal protective effect. Further investigation revealed that USP13 deubiquitinated SARM1, which increased the inhibitory interaction between the N-terminal armadillo repeat motif (ARM) and C-terminal Toll/interleukin-1 receptor (TIR) domains of the SARM1 protein, thereby suppressing SARM1 activation in axon injury. Collectively, these findings suggest that increase of USP13 activity enhances the self-inhibition of SARM1, which may provide a strategy to mitigate axon degeneration in injury and disease.
Collapse
Affiliation(s)
- Wenkai Yue
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingsheng Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Long
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jihong Cui
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yunxia Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ang Li
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Thornburg-Suresh EJC, Richardson JE, Summers DW. The Stathmin-2 membrane-targeting domain is required for axon protection and regulated degradation by DLK signaling. J Biol Chem 2023; 299:104861. [PMID: 37236359 PMCID: PMC10404615 DOI: 10.1016/j.jbc.2023.104861] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Axon integrity is essential for functional connectivity in the nervous system. The degeneration of stressed or damaged axons is a common and sometimes initiating event in neurodegenerative disorders. Stathmin-2 (Stmn2) is an axon maintenance factor that is depleted in amyotrophic lateral sclerosis, and replenishment of Stmn2 can restore neurite outgrowth in diseased neurons. However, mechanisms responsible for Stmn2-mediated axon maintenance in injured neurons are not known. We used primary sensory neurons to interrogate the role of Stmn2 in the degeneration of severed axons. We discover that membrane association of Stmn2 is critical for its axon-protective activity. Structure-function studies revealed that axonal enrichment of Stmn2 is driven by palmitoylation as well as tubulin interaction. Using live imaging, we discover that another Stmn, Stmn3, comigrates with Stmn2-containing vesicles. We also demonstrate that Stmn3 undergoes regulated degradation through dual leucine zipper kinase (DLK)-c-Jun N-terminal kinase signaling. The Stmn2 membrane-targeting domain is both necessary and sufficient for localization to a specific vesicle population and confers sensitivity to DLK-dependent degradation. Our findings reveal a broader role for DLK in tuning the local abundance of palmitoylated Stmns in axon segments. Moreover, palmitoylation is a critical component of Stmn-mediated axon protection, and defining the Stmn2-containing vesicle population will provide important clues toward mechanisms of axon maintenance.
Collapse
Affiliation(s)
- Emma J C Thornburg-Suresh
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA; Department of Biology, University of Iowa, Iowa City, Iowa, USA
| | | | - Daniel W Summers
- Department of Biology, University of Iowa, Iowa City, Iowa, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
20
|
Murata H, Yasui Y, Oiso K, Ochi T, Tomonobu N, Yamamoto KI, Kinoshita R, Sakaguchi M. STAT1/3 signaling suppresses axon degeneration and neuronal cell death through regulation of NAD +-biosynthetic and consuming enzymes. Cell Signal 2023; 108:110717. [PMID: 37187216 DOI: 10.1016/j.cellsig.2023.110717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD)+-biosynthetic and consuming enzymes are involved in various intracellular events through the regulation of NAD+ metabolism. Recently, it has become clear that alterations in the expression of NAD+-biosynthetic and consuming enzymes contribute to the axonal stability of neurons. We explored soluble bioactive factor(s) that alter the expression of NAD+-metabolizing enzymes and found that cytokine interferon (IFN)-γ increased the expression of nicotinamide nucleotide adenylyltransferase 2 (NMNAT2), an NAD+-biosynthetic enzyme. IFN-γ activated signal transducers and activators of transcription 1 and 3 (STAT1/3) followed by c-Jun N-terminal kinase (JNK) suppression. As a result, STAT1/3 increased the expression of NMNAT2 at both mRNA and protein levels in a dose- and time-dependent manner and, at the same time, suppressed activation of sterile alpha and Toll/interleukin receptor motif-containing 1 (SARM1), an NAD+-consuming enzyme, and increased intracellular NAD+ levels. We examined the protective effect of STAT1/3 signaling against vincristine-mediated cell injury as a model of chemotherapy-induced peripheral neuropathy (CIPN), in which axonal degeneration is involved in disease progression. We found that IFN-γ-mediated STAT1/3 activation inhibited vincristine-induced downregulation of NMNAT2 and upregulation of SARM1 phosphorylation, resulting in modest suppression of subsequent neurite degradation and cell death. These results indicate that STAT1/3 signaling induces NMNAT2 expression while simultaneously suppressing SARM1 phosphorylation, and that both these actions contribute to suppression of axonal degeneration and cell death.
Collapse
Affiliation(s)
- Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Yu Yasui
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kazuma Oiso
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Toshiki Ochi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
21
|
Czech VL, O'Connor LC, Philippon B, Norman E, Byrne AB. TIR-1/SARM1 inhibits axon regeneration and promotes axon degeneration. eLife 2023; 12:80856. [PMID: 37083456 PMCID: PMC10121217 DOI: 10.7554/elife.80856] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
Growth and destruction are central components of the neuronal injury response. Injured axons that are capable of repair, including axons in the mammalian peripheral nervous system and in many invertebrate animals, often regenerate and degenerate on either side of the injury. Here we show that TIR-1/dSarm/SARM1, a key regulator of axon degeneration, also inhibits regeneration of injured motor axons. The increased regeneration in tir-1 mutants is not a secondary consequence of its effects on degeneration, nor is it determined by the NADase activity of TIR-1. Rather, we found that TIR-1 functions cell-autonomously to regulate each of the seemingly opposite processes through distinct interactions with two MAP kinase pathways. On one side of the injury, TIR-1 inhibits axon regeneration by activating the NSY-1/ASK1 MAPK signaling cascade, while on the other side of the injury, TIR-1 simultaneously promotes axon degeneration by interacting with the DLK-1 mitogen-activated protein kinase (MAPK) signaling cascade. In parallel, we found that the ability to cell-intrinsically inhibit axon regeneration is conserved in human SARM1. Our finding that TIR-1/SARM1 regulates axon regeneration provides critical insight into how axons coordinate a multidimensional response to injury, consequently informing approaches to manipulate the response toward repair.
Collapse
Affiliation(s)
- Victoria L Czech
- Department of Neurobiology, UMass Chan Massachusetts Medical School
| | | | | | - Emily Norman
- Department of Neurobiology, UMass Chan Massachusetts Medical School
| | | |
Collapse
|
22
|
Li W, Gao M, Hu C, Chen X, Zhou Y. NMNAT2: An important metabolic enzyme affecting the disease progression. Biomed Pharmacother 2023; 158:114143. [PMID: 36528916 DOI: 10.1016/j.biopha.2022.114143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is an evolutionarily conserved nicotinamide adenine dinucleotide (NAD+) synthase located in the cytoplasm and Golgi apparatus. NMNAT2 has an important role in neurodegenerative diseases, malignant tumors, and other diseases that seriously endanger human health. NMNAT2 exerts a neuroprotective function through its NAD synthase activity and chaperone function. Among them, the NMNAT2-NAD+-Sterile alpha and Toll/interleukin-1 receptor motif-containing 1 (SARM1) axis is closely related to Wallerian degeneration. Physical injury or pathological stimulation will cause a decrease in NMNAT2, which activates SARM1, leading to axonal degeneration and the occurrence of amyotrophic lateral sclerosis (ALS), Alzheimer's disease, peripheral neuropathy, and other neurodegenerative diseases. In addition, NMNAT2 exerts a cancer-promoting role in solid tumors, including colorectal cancer, lung cancer, ovarian cancer, and glioma, and is closely related to tumor occurrence and development. This paper reviews the chromosomal and subcellular localization of NMNAT2 and its basic biological functions. We also summarize the NMNAT2-related signal transduction pathway and the role of NMNAT2 in diseases. We aimed to provide a new perspective to comprehensively understand the relationship between NMNAT2 and its associated diseases.
Collapse
Affiliation(s)
- Wentao Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Mengxiang Gao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Chunhui Hu
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xiuwen Chen
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, Hunan 410013, China.
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
23
|
Traumatic axonopathy in spinal tracts after impact acceleration head injury: Ultrastructural observations and evidence of SARM1-dependent axonal degeneration. Exp Neurol 2023; 359:114252. [PMID: 36244414 DOI: 10.1016/j.expneurol.2022.114252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022]
Abstract
Traumatic axonal injury (TAI) and the associated axonopathy are common consequences of traumatic brain injury (TBI) and contribute to significant neurological morbidity. It has been previously suggested that TAI activates a highly conserved program of axonal self-destruction known as Wallerian degeneration (WD). In the present study, we utilize our well-established impact acceleration model of TBI (IA-TBI) to characterize the pathology of injured myelinated axons in the white matter tracks traversing the ventral, lateral, and dorsal spinal columns in the mouse and assess the effect of Sterile Alpha and TIR Motif Containing 1 (Sarm1) gene knockout on acute and subacute axonal degeneration and myelin pathology. In silver-stained preparations, we found that IA-TBI results in white matter pathology as well as terminal field degeneration across the rostrocaudal axis of the spinal cord. At the ultrastructural level, we found that traumatic axonopathy is associated with diverse types of axonal and myelin pathology, ranging from focal axoskeletal perturbations and focal disruption of the myelin sheath to axonal fragmentation. Several morphological features such as neurofilament compaction, accumulation of organelles and inclusions, axoskeletal flocculation, myelin degeneration and formation of ovoids are similar to profiles encountered in classical examples of WD. Other profiles such as excess myelin figures and inner tongue evaginations are more typical of chronic neuropathies. Stereological analysis of pathological axonal and myelin profiles in the ventral, lateral, and dorsal columns of the lower cervical cord (C6) segments from wild type and Sarm1 KO mice at 3 and 7 days post IA-TBI (n = 32) revealed an up to 90% reduction in the density of pathological profiles in Sarm1 KO mice after IA-TBI. Protection was evident across all white matter tracts assessed, but showed some variability. Finally, Sarm1 deletion ameliorated the activation of microglia associated with TAI. Our findings demonstrate the presence of severe traumatic axonopathy in multiple ascending and descending long tracts after IA-TBI with features consistent with some chronic axonopathies and models of WD and the across-tract protective effect of Sarm1 deletion.
Collapse
|
24
|
Axonal Regeneration: Underlying Molecular Mechanisms and Potential Therapeutic Targets. Biomedicines 2022; 10:biomedicines10123186. [PMID: 36551942 PMCID: PMC9775075 DOI: 10.3390/biomedicines10123186] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Axons in the peripheral nervous system have the ability to repair themselves after damage, whereas axons in the central nervous system are unable to do so. A common and important characteristic of damage to the spinal cord, brain, and peripheral nerves is the disruption of axonal regrowth. Interestingly, intrinsic growth factors play a significant role in the axonal regeneration of injured nerves. Various factors such as proteomic profile, microtubule stability, ribosomal location, and signalling pathways mark a line between the central and peripheral axons' capacity for self-renewal. Unfortunately, glial scar development, myelin-associated inhibitor molecules, lack of neurotrophic factors, and inflammatory reactions are among the factors that restrict axonal regeneration. Molecular pathways such as cAMP, MAPK, JAK/STAT, ATF3/CREB, BMP/SMAD, AKT/mTORC1/p70S6K, PI3K/AKT, GSK-3β/CLASP, BDNF/Trk, Ras/ERK, integrin/FAK, RhoA/ROCK/LIMK, and POSTN/integrin are activated after nerve injury and are considered significant players in axonal regeneration. In addition to the aforementioned pathways, growth factors, microRNAs, and astrocytes are also commendable participants in regeneration. In this review, we discuss the detailed mechanism of each pathway along with key players that can be potentially valuable targets to help achieve quick axonal healing. We also identify the prospective targets that could help close knowledge gaps in the molecular pathways underlying regeneration and shed light on the creation of more powerful strategies to encourage axonal regeneration after nervous system injury.
Collapse
|
25
|
Dai Y, Lin J, Ren J, Zhu B, Wu C, Yu L. NAD + metabolism in peripheral neuropathic pain. Neurochem Int 2022; 161:105435. [PMID: 36273706 DOI: 10.1016/j.neuint.2022.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an omnipresent metabolite that participates in redox reactions. Multiple NAD+-consuming enzymes are implicated in numerous biological processes, including transcription, signaling, and cell survival. Multiple pieces of evidence have demonstrated that NAD+-consuming enzymes, including poly(ADP-ribose) polymerases (PARPs), sirtuins (SIRTs), and sterile alpha and TIR motif-containing 1 (SARM1), play major roles in peripheral neuropathic pain of various etiologies. These NAD+ consumers primarily participate in peripheral neuropathic pain via mechanisms such as mitochondrial dysfunction, oxidative stress, and inflammation. Furthermore, NAD+ synthase and nicotinamide phosphoribosyltransferase (NAMPT) have recently been found to contribute to the regulation of pain. Here, we review the evidence indicating the involvement of NAD+ metabolism in the pathological mechanisms of peripheral neuropathic pain. Advanced understanding of the molecular and cellular mechanisms associated with NAD+ in peripheral neuropathic pain will facilitate the development of novel treatment options for diverse types of peripheral neuropathic pain.
Collapse
Affiliation(s)
- Yi Dai
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Jiaqi Lin
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Jinxuan Ren
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Bin Zhu
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Chengwei Wu
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Lina Yu
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China.
| |
Collapse
|
26
|
Autophagy protein ULK1 interacts with and regulates SARM1 during axonal injury. Proc Natl Acad Sci U S A 2022; 119:e2203824119. [PMID: 36375051 PMCID: PMC9704737 DOI: 10.1073/pnas.2203824119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Autophagy is a cellular catabolic pathway generally thought to be neuroprotective. However, autophagy and in particular its upstream regulator, the ULK1 kinase, can also promote axonal degeneration. We examined the role and the mechanisms of autophagy in axonal degeneration using a mouse model of contusive spinal cord injury (SCI). Consistent with activation of autophagy during axonal degeneration following SCI, autophagosome marker LC3, ULK1 kinase, and ULK1 target, phospho-ATG13, accumulated in the axonal bulbs and injured axons. SARM1, a TIR NADase with a pivotal role in axonal degeneration, colocalized with ULK1 within 1 h after SCI, suggesting possible interaction between autophagy and SARM1-mediated axonal degeneration. In our in vitro experiments, inhibition of autophagy, including Ulk1 knockdown and ULK1 inhibitor, attenuated neurite fragmentation and reduced accumulation of SARM1 puncta in neurites of primary cortical neurons subjected to glutamate excitotoxicity. Immunoprecipitation data demonstrated that ULK1 physically interacted with SARM1 in vitro and in vivo and that SAM domains of SARM1 were necessary for ULK1-SARM1 complex formation. Consistent with a role in regulation of axonal degeneration, in primary cortical neurons ULK1-SARM1 interaction increased upon neurite damage. Supporting a role for autophagy and ULK1 in regulation of SARM1 in axonal degeneration in vivo, axonal ULK1 activation and accumulation of SARM1 were both decreased after SCI in Becn1+/- autophagy hypomorph mice compared to wild-type (WT) controls. These findings suggest a regulatory crosstalk between autophagy and axonal degeneration pathways, which is mediated through ULK1-SARM1 interaction and contributes to the ability of SARM1 to accumulate in injured axons.
Collapse
|
27
|
Alexandris AS, Ryu J, Rajbhandari L, Harlan R, McKenney J, Wang Y, Aja S, Graham D, Venkatesan A, Koliatsos VE. Protective effects of NAMPT or MAPK inhibitors and NaR on Wallerian degeneration of mammalian axons. Neurobiol Dis 2022; 171:105808. [PMID: 35779777 PMCID: PMC10621467 DOI: 10.1016/j.nbd.2022.105808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 01/23/2023] Open
Abstract
Wallerian degeneration (WD) is a conserved axonal self-destruction program implicated in several neurological diseases. WD is driven by the degradation of the NAD+ synthesizing enzyme NMNAT2, the buildup of its substrate NMN, and the activation of the NAD+ degrading SARM1, eventually leading to axonal fragmentation. The regulation and amenability of these events to therapeutic interventions remain unclear. Here we explored pharmacological strategies that modulate NMN and NAD+ metabolism, namely the inhibition of the NMN-synthesizing enzyme NAMPT, activation of the nicotinic acid riboside (NaR) salvage pathway and inhibition of the NMNAT2-degrading DLK MAPK pathway in an axotomy model in vitro. Results show that NAMPT and DLK inhibition cause a significant but time-dependent delay of WD. These time-dependent effects are related to NMNAT2 degradation and changes in NMN and NAD+ levels. Supplementation of NAMPT inhibition with NaR has an enhanced effect that does not depend on timing of intervention and leads to robust protection up to 4 days. Additional DLK inhibition extends this even further to 6 days. Metabolite analyses reveal complex effects indicating that NAMPT and MAPK inhibition act by reducing NMN levels, ameliorating NAD+ loss and suppressing SARM1 activity. Finally, the axonal NAD+/NMN ratio is highly predictive of cADPR levels, extending previous cell-free evidence on the allosteric regulation of SARM1. Our findings establish a window of axon protection extending several hours following injury. Moreover, we show prolonged protection by mixed treatments combining MAPK and NAMPT inhibition that proceed via complex effects on NAD+ metabolism and inhibition of SARM1.
Collapse
Affiliation(s)
| | - Jiwon Ryu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Labchan Rajbhandari
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert Harlan
- The Molecular Determinants Center and Core, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - James McKenney
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiqing Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susan Aja
- The Molecular Determinants Center and Core, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - David Graham
- The Molecular Determinants Center and Core, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vassilis E Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Adula KP, Shorey M, Chauhan V, Nassman K, Chen SF, Rolls MM, Sagasti A. The MAP3Ks DLK and LZK Direct Diverse Responses to Axon Damage in Zebrafish Peripheral Neurons. J Neurosci 2022; 42:6195-6210. [PMID: 35840323 PMCID: PMC9374156 DOI: 10.1523/jneurosci.1395-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Mitogen-activated protein kinase kinase kinases (MAP3Ks) dual leucine kinase (DLK) and leucine zipper kinase (LZK) are essential mediators of axon damage responses, but their responses are varied, complex, and incompletely understood. To characterize their functions in axon injury, we generated zebrafish mutants of each gene, labeled motor neurons (MNs) and touch-sensing neurons in live zebrafish, precisely cut their axons with a laser, and assessed the ability of mutant axons to regenerate in larvae, before sex is apparent in zebrafish. DLK and LZK were required redundantly and cell autonomously for axon regeneration in MNs but not in larval Rohon-Beard (RB) or adult dorsal root ganglion (DRG) sensory neurons. Surprisingly, in dlk lzk double mutants, the spared branches of wounded RB axons grew excessively, suggesting that these kinases inhibit regenerative sprouting in damaged axons. Uninjured trigeminal sensory axons also grew excessively in mutants when neighboring neurons were ablated, indicating that these MAP3Ks are general inhibitors of sensory axon growth. These results demonstrate that zebrafish DLK and LZK promote diverse injury responses, depending on the neuronal cell identity and type of axonal injury.SIGNIFICANCE STATEMENT The MAP3Ks DLK and LZK are damage sensors that promote diverse outcomes to neuronal injury, including axon regeneration. Understanding their context-specific functions is a prerequisite to considering these kinases as therapeutic targets. To investigate DLK and LZK cell-type-specific functions, we created zebrafish mutants in each gene. Using mosaic cell labeling and precise laser injury we found that both proteins were required for axon regeneration in motor neurons but, unexpectedly, were not required for axon regeneration in Rohon-Beard or DRG sensory neurons and negatively regulated sprouting in the spared axons of touch-sensing neurons. These findings emphasize that animals have evolved distinct mechanisms to regulate injury site regeneration and collateral sprouting, and identify differential roles for DLK and LZK in these processes.
Collapse
Affiliation(s)
- Kadidia Pemba Adula
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Matthew Shorey
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Vasudha Chauhan
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Khaled Nassman
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Shu-Fan Chen
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Melissa M Rolls
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Alvaro Sagasti
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095,
| |
Collapse
|
29
|
Krus KL, Strickland A, Yamada Y, Devault L, Schmidt RE, Bloom AJ, Milbrandt J, DiAntonio A. Loss of Stathmin-2, a hallmark of TDP-43-associated ALS, causes motor neuropathy. Cell Rep 2022; 39:111001. [PMID: 35767949 PMCID: PMC9327139 DOI: 10.1016/j.celrep.2022.111001] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 12/03/2022] Open
Abstract
TDP-43 mediates proper Stathmin-2 (STMN2) mRNA splicing, and STMN2 protein is reduced in the spinal cord of most patients with amyotrophic lateral sclerosis (ALS). To test the hypothesis that STMN2 loss contributes to ALS pathogenesis, we generated constitutive and conditional STMN2 knockout mice. Constitutive STMN2 loss results in early-onset sensory and motor neuropathy featuring impaired motor behavior and dramatic distal neuromuscular junction (NMJ) denervation of fast-fatigable motor units, which are selectively vulnerable in ALS, without axon or motoneuron degeneration. Selective excision of STMN2 in motoneurons leads to similar NMJ pathology. STMN2 knockout heterozygous mice, which better model the partial loss of STMN2 protein found in patients with ALS, display a slowly progressive, motor-selective neuropathy with functional deficits and NMJ denervation. Thus, our findings strongly support the hypothesis that STMN2 reduction owing to TDP-43 pathology contributes to ALS pathogenesis.
Collapse
Affiliation(s)
- Kelsey L Krus
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yurie Yamada
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura Devault
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - A Joseph Bloom
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO 63110, USA.
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Niu J, Holland SM, Ketschek A, Collura KM, Hesketh NL, Hayashi T, Gallo G, Thomas GM. Palmitoylation couples the kinases DLK and JNK3 to facilitate prodegenerative axon-to-soma signaling. Sci Signal 2022; 15:eabh2674. [PMID: 35349303 PMCID: PMC12049159 DOI: 10.1126/scisignal.abh2674] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dual leucine-zipper kinase (DLK; a MAP3K) mediates neuronal responses to diverse injuries and insults through the c-Jun N-terminal kinase (JNK) family of mitogen-activated protein kinases (MAPKs). Here, we identified two ways through which DLK is coupled to the neural-specific isoform JNK3 to control prodegenerative signaling. JNK3 catalyzed positive feedback phosphorylation of DLK that further activated DLK and locked the DLK-JNK3 module in a highly active state. Neither homologous MAP3Ks nor a homologous MAPK could support this positive feedback loop. Unlike the related JNK1 isoform JNK2 and JNK3 promote prodegenerative axon-to-soma signaling and were endogenously palmitoylated. Moreover, palmitoylation targeted both DLK and JNK3 to the same axonal vesicles, and JNK3 palmitoylation was essential for axonal retrograde signaling in response to optic nerve crush injury in vivo. These findings provide previously unappreciated insights into DLK-JNK signaling relevant to neuropathological conditions and answer long-standing questions regarding the selective prodegenerative roles of JNK2 and JNK3.
Collapse
Affiliation(s)
- Jingwen Niu
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Sabrina M. Holland
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Andrea Ketschek
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Kaitlin M. Collura
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Natasha L. Hesketh
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Takashi Hayashi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central6 (6-10), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Gianluca Gallo
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
- Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St., Philadelphia, PA 19140, USA
| | - Gareth M. Thomas
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
- Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St., Philadelphia, PA 19140, USA
| |
Collapse
|
31
|
Lu Q, Botchway BOA, Zhang Y, Jin T, Liu X. SARM1 can be a potential therapeutic target for spinal cord injury. Cell Mol Life Sci 2022; 79:161. [PMID: 35224705 PMCID: PMC11072485 DOI: 10.1007/s00018-022-04195-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/26/2022] [Accepted: 02/05/2022] [Indexed: 01/03/2023]
Abstract
Injury to the spinal cord is devastating. Studies have implicated Wallerian degeneration as the main cause of axonal destruction in the wake of spinal cord injury. Therefore, the suppression of Wallerian degeneration could be beneficial for spinal cord injury treatment. Sterile alpha and armadillo motif-containing protein 1 (SARM1) is a key modulator of Wallerian degeneration, and its impediment can improve spinal cord injury to a significant degree. In this report, we analyze the various signaling domains of SARM1, the recent findings on Wallerian degeneration and its relation to axonal insults, as well as its connection to SARM1, the mitogen-activated protein kinase (MAPK) signaling, and the survival factor, nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2). We then elaborate on the possible role of SARM1 in spinal cord injury and explicate how its obstruction could potentially alleviate the injury.
Collapse
Affiliation(s)
- Qicheng Lu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Tian Jin
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China.
| |
Collapse
|
32
|
Bloom AJ, Mao X, Strickland A, Sasaki Y, Milbrandt J, DiAntonio A. Constitutively active SARM1 variants that induce neuropathy are enriched in ALS patients. Mol Neurodegener 2022; 17:1. [PMID: 34991663 PMCID: PMC8739729 DOI: 10.1186/s13024-021-00511-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/17/2021] [Indexed: 03/31/2023] Open
Abstract
Background In response to injury, neurons activate a program of organized axon self-destruction initiated by the NAD+ hydrolase, SARM1. In healthy neurons SARM1 is autoinhibited, but single amino acid changes can abolish autoinhibition leading to constitutively active SARM1 enzymes that promote degeneration when expressed in cultured neurons. Methods To investigate whether naturally occurring human variants might disrupt SARM1 autoinhibition and potentially contribute to risk for neurodegenerative disease, we assayed the enzymatic activity of all 42 rare SARM1 alleles identified among 8507 amyotrophic lateral sclerosis (ALS) patients and 9671 controls. We then intrathecally injected mice with virus expressing SARM1 constructs to test the capacity of an ALS-associated constitutively active SARM1 variant to promote neurodegeneration in vivo. Results Twelve out of 42 SARM1 missense variants or small in-frame deletions assayed exhibit constitutive NADase activity, including more than half of those that are unique to the ALS patients or that occur in multiple patients. There is a > 5-fold enrichment of constitutively active variants among patients compared to controls. Expression of constitutively active ALS-associated SARM1 alleles in cultured dorsal root ganglion (DRG) neurons is pro-degenerative and cytotoxic. Intrathecal injection of an AAV expressing the common SARM1 reference allele is innocuous to mice, but a construct harboring SARM1V184G, the constitutively active variant found most frequently among the ALS patients, causes axon loss, motor dysfunction, and sustained neuroinflammation. Conclusions These results implicate rare hypermorphic SARM1 alleles as candidate genetic risk factors for ALS and other neurodegenerative conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00511-x.
Collapse
Affiliation(s)
- A Joseph Bloom
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA.
| | - Xianrong Mao
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Amy Strickland
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Yo Sasaki
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Jeffrey Milbrandt
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA.
| | - Aaron DiAntonio
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Developmental Biology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
33
|
Fortunato C, Mazzola F, Raffaelli N. The key role of the NAD biosynthetic enzyme nicotinamide mononucleotide adenylyltransferase in regulating cell functions. IUBMB Life 2021; 74:562-572. [PMID: 34866305 PMCID: PMC9299865 DOI: 10.1002/iub.2584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 01/06/2023]
Abstract
The enzyme nicotinamide mononucleotide adenylyltransferase (NMNAT) catalyzes a reaction central to all known NAD biosynthetic routes. In mammals, three isoforms with distinct molecular and catalytic properties, different subcellular and tissue distribution have been characterized. Each isoform is essential for cell survival, with a critical role in modulating NAD levels in a compartment‐specific manner. Each isoform supplies NAD to specific NAD‐dependent enzymes, thus regulating their activity with impact on several biological processes, including DNA repair, proteostasis, cell differentiation, and neuronal maintenance. The nuclear NMNAT1 and the cytoplasmic NMNAT2 are also emerging as relevant targets in specific types of cancers and NMNAT2 has a key role in the activation of antineoplastic compounds. This review recapitulates the biochemical properties of the three isoforms and focuses on recent advances on their protective function, involvement in human diseases and role as druggable targets.
Collapse
Affiliation(s)
- Carlo Fortunato
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesca Mazzola
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
34
|
Petropavlovskiy A, Kogut J, Leekha A, Townsend C, Sanders S. A sticky situation: regulation and function of protein palmitoylation with a spotlight on the axon and axon initial segment. Neuronal Signal 2021; 5:NS20210005. [PMID: 34659801 PMCID: PMC8495546 DOI: 10.1042/ns20210005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
In neurons, the axon and axon initial segment (AIS) are critical structures for action potential initiation and propagation. Their formation and function rely on tight compartmentalisation, a process where specific proteins are trafficked to and retained at distinct subcellular locations. One mechanism which regulates protein trafficking and association with lipid membranes is the modification of protein cysteine residues with the 16-carbon palmitic acid, known as S-acylation or palmitoylation. Palmitoylation, akin to phosphorylation, is reversible, with palmitate cycling being mediated by substrate-specific enzymes. Palmitoylation is well-known to be highly prevalent among neuronal proteins and is well studied in the context of the synapse. Comparatively, how palmitoylation regulates trafficking and clustering of axonal and AIS proteins remains less understood. This review provides an overview of the current understanding of the biochemical regulation of palmitoylation, its involvement in various neurological diseases, and the most up-to-date perspective on axonal palmitoylation. Through a palmitoylation analysis of the AIS proteome, we also report that an overwhelming proportion of AIS proteins are likely palmitoylated. Overall, our review and analysis confirm a central role for palmitoylation in the formation and function of the axon and AIS and provide a resource for further exploration of palmitoylation-dependent protein targeting to and function at the AIS.
Collapse
Affiliation(s)
- Andrey A. Petropavlovskiy
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Jordan A. Kogut
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Arshia Leekha
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Charlotte A. Townsend
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Shaun S. Sanders
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| |
Collapse
|
35
|
Ma J, Goodwani S, Acton PJ, Buggia-Prevot V, Kesler SR, Jamal I, Mahant ID, Liu Z, Mseeh F, Roth BL, Chakraborty C, Peng B, Wu Q, Jiang Y, Le K, Soth MJ, Jones P, Kavelaars A, Ray WJ, Heijnen CJ. Inhibition of dual leucine zipper kinase prevents chemotherapy-induced peripheral neuropathy and cognitive impairments. Pain 2021; 162:2599-2612. [PMID: 33872235 PMCID: PMC8442742 DOI: 10.1097/j.pain.0000000000002256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chemotherapy-induced peripheral neuropathy (CIPN) and chemotherapy-induced cognitive impairments (CICI) are common, often severe neurotoxic side effects of cancer treatment that greatly reduce quality of life of cancer patients and survivors. Currently, there are no Food and Drug Administration-approved agents for the prevention or curative treatment of CIPN or CICI. The dual leucine zipper kinase (DLK) is a key mediator of axonal degeneration that is localized to axons and coordinates the neuronal response to injury. We developed a novel brain-penetrant DLK inhibitor, IACS'8287, which demonstrates potent and highly selective inhibition of DLK in vitro and in vivo. Coadministration of IACS'8287 with the platinum derivative cisplatin prevents mechanical allodynia, loss of intraepidermal nerve fibers in the hind paws, cognitive deficits, and impairments in brain connectivity in mice, all without interfering with the antitumor activity of cisplatin. The protective effects of IACS'8287 are associated with preservation of mitochondrial function in dorsal root ganglion neurons and in brain synaptosomes. In addition, RNA sequencing analysis of dorsal root ganglia reveals modulation of genes involved in neuronal activity and markers for immune cell infiltration by DLK inhibition. These data indicate that CIPN and CICI require DLK signaling in mice, and DLK inhibitors could become an attractive treatment in the clinic when coadministered with cisplatin, and potentially other chemotherapeutic agents, to prevent neurotoxicities as a result of cancer treatment.
Collapse
Affiliation(s)
- Jiacheng Ma
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sunil Goodwani
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Paul J. Acton
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Virginie Buggia-Prevot
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shelli R. Kesler
- Cancer Neuroscience Lab, School of Nursing, Department of Diagnostic Medicine, LIVESTRONG Cancer Institutes, University of Texas at Austin, Austin, TX, United States
| | - Imran Jamal
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Iteeben D. Mahant
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhen Liu
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Faika Mseeh
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Bruce L. Roth
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Chaitali Chakraborty
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Bo Peng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qi Wu
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yongying Jiang
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kang Le
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J. Soth
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Philip Jones
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - William J. Ray
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cobi J. Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
36
|
Arthur-Farraj P, Coleman MP. Lessons from Injury: How Nerve Injury Studies Reveal Basic Biological Mechanisms and Therapeutic Opportunities for Peripheral Nerve Diseases. Neurotherapeutics 2021; 18:2200-2221. [PMID: 34595734 PMCID: PMC8804151 DOI: 10.1007/s13311-021-01125-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Since Waller and Cajal in the nineteenth and early twentieth centuries, laboratory traumatic peripheral nerve injury studies have provided great insight into cellular and molecular mechanisms governing axon degeneration and the responses of Schwann cells, the major glial cell type of peripheral nerves. It is now evident that pathways underlying injury-induced axon degeneration and the Schwann cell injury-specific state, the repair Schwann cell, are relevant to many inherited and acquired disorders of peripheral nerves. This review provides a timely update on the molecular understanding of axon degeneration and formation of the repair Schwann cell. We discuss how nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha TIR motif containing protein 1 (SARM1) are required for axon survival and degeneration, respectively, how transcription factor c-JUN is essential for the Schwann cell response to nerve injury and what each tells us about disease mechanisms and potential therapies. Human genetic association with NMNAT2 and SARM1 strongly suggests aberrant activation of programmed axon death in polyneuropathies and motor neuron disorders, respectively, and animal studies suggest wider involvement including in chemotherapy-induced and diabetic neuropathies. In repair Schwann cells, cJUN is aberrantly expressed in a wide variety of human acquired and inherited neuropathies. Animal models suggest it limits axon loss in both genetic and traumatic neuropathies, whereas in contrast, Schwann cell secreted Neuregulin-1 type 1 drives onion bulb pathology in CMT1A. Finally, we discuss opportunities for drug-based and gene therapies to prevent axon loss or manipulate the repair Schwann cell state to treat acquired and inherited neuropathies and neuronopathies.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
| | - Michael P Coleman
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
| |
Collapse
|
37
|
Abstract
Significant advances have been made in recent years in identifying the genetic components of Wallerian degeneration, the process that brings the progressive destruction and removal of injured axons. It has now been accepted that Wallerian degeneration is an active and dynamic cellular process that is well regulated at molecular and cellular levels. In this review, we describe our current understanding of Wallerian degeneration, focusing on the molecular players and mechanisms that mediate the injury response, activate the degenerative program, transduce the death signal, execute the destruction order, and finally, clear away the debris. By highlighting the starring roles and sketching out the molecular script of Wallerian degeneration, we hope to provide a useful framework to understand Wallerian and Wallerian-like degeneration and to lay a foundation for developing new therapeutic strategies to treat axon degeneration in neural injury as well as in neurodegenerative disease. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kai Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; , , .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingsheng Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; , , .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; , , .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Fague L, Liu YA, Marsh-Armstrong N. The basic science of optic nerve regeneration. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1276. [PMID: 34532413 PMCID: PMC8421956 DOI: 10.21037/atm-20-5351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/15/2021] [Indexed: 12/25/2022]
Abstract
Diverse insults to the optic nerve result in partial to total vision loss as the axons of retinal ganglion cells are destroyed. In glaucoma, axons are injured at the optic nerve head; in other optic neuropathies, axons can be damaged along the entire visual pathway. In all cases, as mammals cannot regenerate injured central nervous system cells, once the axons are lost, vision loss is irreversible. However, much has been learned about how retinal ganglion cells respond to axon injuries, and many of these crucial discoveries offer hope for future regenerative therapies. Here we review the current understanding regarding the temporal progression of axonal degeneration. We summarize known survival and regenerative mechanisms in mammals, including specific signaling pathways, key transcription factors, and reprogramming genes. We cover mechanisms intrinsic to retinal ganglion cells as well as their interactions with myeloid and glial cell populations in the retina and optic nerve that affect survival and regeneration. Finally, we highlight some non-mammalian species that are able to regenerate their retinal ganglion cell axons after injury, as understanding these successful regenerative responses may be essential to the rational design of future clinical interventions to regrow the optic nerve. In the end, a combination of many different molecular and cellular interventions will likely be the only way to achieve functional recovery of vision and restore quality of life to millions of patients around the world.
Collapse
Affiliation(s)
- Lindsay Fague
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| | - Yin Allison Liu
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| | - Nicholas Marsh-Armstrong
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
39
|
Zhang C, Kang K, Chen Y, Shan S, Xie K, Song F. Atg7 Knockout Alleviated the Axonal Injury of Neuro-2a Cells Induced by Tri-Ortho-Cresyl Phosphate. Neurotox Res 2021; 39:1076-1086. [PMID: 33650059 DOI: 10.1007/s12640-021-00344-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
Autophagy is believed to be essential for the maintenance of axonal homeostasis in neurons. However, whether autophagy is causally related to the axon degeneration in organophosphorus-induced delayed neuropathy (OPIDN) still remains unclear. This research was designed to investigate the role of autophagy in axon degeneration following tri-ortho-cresyl phosphate (TOCP) in an in vitro model. Differentiated wild-type and Atg7-/- neuro-2a (N2a) cells were treated with TOCP for 24 h. Axonal degeneration in N2a cells was quantitatively analyzed; the key molecules responsible for axon degeneration and its upstream signaling pathway were determined by Western blotting and real-time PCR. The results found that Atg7-/- cells exhibited a higher resistance to TOCP insult than wild-type cells. Further study revealed that TOCP caused a significant decrease in pro-survival factors NMNATs and SCG10 and a significant increase in pro-degenerative factor SARM1 in both cells. Notably, Atg7-/- cells presented a higher level of pro-survival factors and a lower level of pro-degenerative factors than wild-type cells in the same setting of TOCP administration. Moreover, DLK-MAPK pathway was activated following TOCP. Altogether, our results suggest that autophagy is able to affect TOCP-induced axonal injury via regulating the balance between pro-survival and pro-degenerative factors, providing a promising avenue for the potential therapy for OPIDN patients.
Collapse
Affiliation(s)
- Cuiqin Zhang
- Institute of Toxicology, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Kang Kang
- Institute of Toxicology, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yisi Chen
- Institute of Toxicology, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Shulin Shan
- Institute of Toxicology, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Keqin Xie
- Institute of Toxicology, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Fuyong Song
- Institute of Toxicology, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
40
|
Hopkins EL, Gu W, Kobe B, Coleman MP. A Novel NAD Signaling Mechanism in Axon Degeneration and its Relationship to Innate Immunity. Front Mol Biosci 2021; 8:703532. [PMID: 34307460 PMCID: PMC8295901 DOI: 10.3389/fmolb.2021.703532] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Axon degeneration represents a pathological feature of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease where axons die before the neuronal soma, and axonopathies, such as Charcot-Marie-Tooth disease and hereditary spastic paraplegia. Over the last two decades, it has slowly emerged that a central signaling pathway forms the basis of this process in many circumstances. This is an axonal NAD-related signaling mechanism mainly regulated by the two key proteins with opposing roles: the NAD-synthesizing enzyme NMNAT2, and SARM1, a protein with NADase and related activities. The crosstalk between the axon survival factor NMNAT2 and pro-degenerative factor SARM1 has been extensively characterized and plays an essential role in maintaining the axon integrity. This pathway can be activated in necroptosis and in genetic, toxic or metabolic disorders, physical injury and neuroinflammation, all leading to axon pathology. SARM1 is also known to be involved in regulating innate immunity, potentially linking axon degeneration to the response to pathogens and intercellular signaling. Understanding this NAD-related signaling mechanism enhances our understanding of the process of axon degeneration and enables a path to the development of drugs for a wide range of neurodegenerative diseases.
Collapse
Affiliation(s)
- Eleanor L. Hopkins
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Michael P. Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
41
|
Ko KW, Milbrandt J, DiAntonio A. SARM1 acts downstream of neuroinflammatory and necroptotic signaling to induce axon degeneration. J Cell Biol 2021; 219:151915. [PMID: 32609299 PMCID: PMC7401797 DOI: 10.1083/jcb.201912047] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/29/2022] Open
Abstract
Neuroinflammation and necroptosis are major contributors to neurodegenerative disease, and axon dysfunction and degeneration is often an initiating event. SARM1 is the central executioner of pathological axon degeneration. Here, we demonstrate functional and mechanistic links among these three pro-degenerative processes. In a neuroinflammatory model of glaucoma, TNF-α induces SARM1-dependent axon degeneration, oligodendrocyte loss, and subsequent retinal ganglion cell death. TNF-α also triggers SARM1-dependent axon degeneration in sensory neurons via a noncanonical necroptotic signaling mechanism. MLKL is the final executioner of canonical necroptosis; however, in axonal necroptosis, MLKL does not directly trigger degeneration. Instead, MLKL induces loss of the axon survival factors NMNAT2 and STMN2 to activate SARM1 NADase activity, which leads to calcium influx and axon degeneration. Hence, these findings define a specialized form of axonal necroptosis. The demonstration that neuroinflammatory signals and necroptosis can act locally in the axon to stimulate SARM1-dependent axon degeneration identifies a therapeutically targetable mechanism by which neuroinflammation can stimulate axon loss in neurodegenerative disease.
Collapse
Affiliation(s)
- Kwang Woo Ko
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO.,Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, MO
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO.,Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
42
|
Duncan GJ, Simkins TJ, Emery B. Neuron-Oligodendrocyte Interactions in the Structure and Integrity of Axons. Front Cell Dev Biol 2021; 9:653101. [PMID: 33763430 PMCID: PMC7982542 DOI: 10.3389/fcell.2021.653101] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
The myelination of axons by oligodendrocytes is a highly complex cell-to-cell interaction. Oligodendrocytes and axons have a reciprocal signaling relationship in which oligodendrocytes receive cues from axons that direct their myelination, and oligodendrocytes subsequently shape axonal structure and conduction. Oligodendrocytes are necessary for the maturation of excitatory domains on the axon including nodes of Ranvier, help buffer potassium, and support neuronal energy metabolism. Disruption of the oligodendrocyte-axon unit in traumatic injuries, Alzheimer's disease and demyelinating diseases such as multiple sclerosis results in axonal dysfunction and can culminate in neurodegeneration. In this review, we discuss the mechanisms by which demyelination and loss of oligodendrocytes compromise axons. We highlight the intra-axonal cascades initiated by demyelination that can result in irreversible axonal damage. Both the restoration of oligodendrocyte myelination or neuroprotective therapies targeting these intra-axonal cascades are likely to have therapeutic potential in disorders in which oligodendrocyte support of axons is disrupted.
Collapse
Affiliation(s)
- Greg J. Duncan
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Tyrell J. Simkins
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- Vollum Institute, Oregon Health & Science University, Portland, OR, United States
- Department of Neurology, VA Portland Health Care System, Portland, OR, United States
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
43
|
Geisler S. Vincristine- and bortezomib-induced neuropathies - from bedside to bench and back. Exp Neurol 2021; 336:113519. [PMID: 33129841 PMCID: PMC11160556 DOI: 10.1016/j.expneurol.2020.113519] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Vincristine and bortezomib are effective chemotherapeutics widely used to treat hematological cancers. Vincristine blocks tubulin polymerization, whereas bortezomib is a proteasome inhibitor. Despite different mechanisms of action, the main non-hematological side effect of both is peripheral neuropathy that can last long after treatment has ended and cause permanent disability. Many different cellular and animal models of various aspects of vincristine and bortezomib-induced neuropathies have been generated to investigate underlying molecular mechanisms and serve as platforms to develop new therapeutics. These models revealed that bortezomib induces several transcriptional programs in dorsal root ganglia that result in the activation of different neuroinflammatory pathways and secondary central sensitization. In contrast, vincristine has direct toxic effects on the axon, which are accompanied by changes similar to those observed after nerve cut. Axon degeneration following both vincristine and bortezomib is mediated by a phylogenetically ancient, genetically encoded axon destruction program that leads to the activation of the Toll-like receptor adaptor SARM1 (sterile alpha and TIR motif containing protein 1) and local decrease of nicotinamide dinucleotide (NAD+). Here, I describe current in vitro and in vivo models of vincristine- and bortezomib induced neuropathies, present discoveries resulting from these models in the context of clinical findings and discuss how increased understanding of molecular mechanisms underlying different aspects of neuropathies can be translated to effective treatments to prevent, attenuate or reverse vincristine- and bortezomib-induced neuropathies. Such treatments could improve the quality of life of patients both during and after cancer therapy and, accordingly, have enormous societal impact.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Neurology, Washington University School of Medicine in St. Louis, MO, USA.
| |
Collapse
|
44
|
Upregulated Nmnat2 causes neuronal death and increases seizure susceptibility in temporal lobe epilepsy. Brain Res Bull 2020; 167:1-10. [PMID: 33248200 DOI: 10.1016/j.brainresbull.2020.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 10/28/2020] [Accepted: 11/24/2020] [Indexed: 11/23/2022]
Abstract
A significant pathological feature of refractory temporal lobe epilepsy (TLE) is neuronal loss. Oxidative stress caused by repeated seizures is an important mechanism leading to neuronal loss in hippocampus. Nicotinamide-adenine dinucleotide (NAD) a coenzyme that is involved in many biochemical oxidation-reduction reactions. Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2) catalyzes an essential step in NAD (NADP) biosynthetic pathwayhas and been considered as a neuronal maintenance factor that protect neurons against insults through context-dependent mechanism. However, it is unexpected that Nmnat2 does not play a neuroprotective role in epilepsy. We found that Nmnat2 was increased in mice model of TLE. Gain-of-function approach revealed that overexpression of Nmnat2 in CA1 area enhanced seizure susceptibility and caused neuronal loss in vivo. Moreover, we found that the chaperone function was essential to increased apoptosis through the function mutation of Nmnat2. Finally, Nmnat2 overexpression in vivo reduced in expression of SOD2 and increased FoxO3a. Overall, our study discloses a new biological function of Nmnat2 in epilepsy and provides novel insights into the molecular events underlying epilepsy.
Collapse
|
45
|
Collura KM, Niu J, Sanders SS, Montersino A, Holland SM, Thomas GM. The palmitoyl acyltransferases ZDHHC5 and ZDHHC8 are uniquely present in DRG axons and control retrograde signaling via the Gp130/JAK/STAT3 pathway. J Biol Chem 2020; 295:15427-15437. [PMID: 32958558 PMCID: PMC7667964 DOI: 10.1074/jbc.ra120.013815] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Palmitoylation, the modification of proteins with the lipid palmitate, is a key regulator of protein targeting and trafficking. However, knowledge of the roles of specific palmitoyl acyltransferases (PATs), which catalyze palmitoylation, is incomplete. For example, little is known about which PATs are present in neuronal axons, although long-distance trafficking of palmitoyl-proteins is important for axon integrity and for axon-to-soma retrograde signaling, a process critical for axon development and for responses to injury. Identifying axonally targeted PATs might thus provide insights into multiple aspects of axonal biology. We therefore comprehensively determined the subcellular distribution of mammalian PATs in dorsal root ganglion (DRG) neurons and, strikingly, found that only two PATs, ZDHHC5 and ZDHHC8, were enriched in DRG axons. Signals via the Gp130/JAK/STAT3 and DLK/JNK pathways are important for axonal injury responses, and we found that ZDHHC5 and ZDHHC8 were required for Gp130/JAK/STAT3, but not DLK/JNK, axon-to-soma signaling. ZDHHC5 and ZDHHC8 robustly palmitoylated Gp130 in cotransfected nonneuronal cells, supporting the possibility that Gp130 is a direct ZDHHC5/8 substrate. In DRG neurons, Zdhhc5/8 shRNA knockdown reduced Gp130 palmitoylation and even more markedly reduced Gp130 surface expression, potentially explaining the importance of these PATs for Gp130-dependent signaling. Together, these findings provide new insights into the subcellular distribution and roles of specific PATs and reveal a novel mechanism by which palmitoylation controls axonal retrograde signaling.
Collapse
Affiliation(s)
- Kaitlin M Collura
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Jingwen Niu
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Shaun S Sanders
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Audrey Montersino
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Sabrina M Holland
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Gareth M Thomas
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
46
|
Yong Y, Gamage K, Cushman C, Spano A, Deppmann C. Regulation of degenerative spheroids after injury. Sci Rep 2020; 10:15472. [PMID: 32963272 PMCID: PMC7508847 DOI: 10.1038/s41598-020-71906-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/05/2020] [Indexed: 12/26/2022] Open
Abstract
Neuronal injury leads to rapid, programmed disintegration of axons distal to the site of lesion. Much like other forms of axon degeneration (e.g. developmental pruning, toxic insult from neurodegenerative disorder), Wallerian degeneration associated with injury is preceded by spheroid formation along axons. The mechanisms by which injury leads to formation of spheroids and whether these spheroids have a functional role in degeneration remain elusive. Here, using neonatal mouse primary sympathetic neurons, we investigate the roles of players previously implicated in the progression of Wallerian degeneration in injury-induced spheroid formation. We find that intra-axonal calcium flux is accompanied by actin-Rho dependent growth of calcium rich axonal spheroids that eventually rupture, releasing material to the extracellular space prior to catastrophic axon degeneration. Importantly, after injury, Sarm1-/- and DR6-/-, but not Wlds (excess NAD+) neurons, are capable of forming spheroids that eventually rupture, releasing their contents to the extracellular space to promote degeneration. Supplementation of exogenous NAD+ or expressing WLDs suppresses Rho-dependent spheroid formation and degeneration in response to injury. Moreover, injured or trophically deprived Sarm1-/- and DR6-/-, but not Wlds neurons, are resistant to degeneration induced by conditioned media collected from wild-type axons after spheroid rupture. Taken together, these findings place Rho-actin and NAD+ upstream of spheroid formation and may suggest that other mediators of degeneration, such as DR6 and SARM1, mediate post-spheroid rupture events that lead to catastrophic axon disassembly.
Collapse
Affiliation(s)
- Yu Yong
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Kanchana Gamage
- Amgen, Massachusetts and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Courtny Cushman
- Department of Neuroscience and Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Anthony Spano
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Christopher Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA.
- Department of Neuroscience and Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904-4328, USA.
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA.
| |
Collapse
|
47
|
Russo A, DiAntonio A. Wnd/DLK Is a Critical Target of FMRP Responsible for Neurodevelopmental and Behavior Defects in the Drosophila Model of Fragile X Syndrome. Cell Rep 2020; 28:2581-2593.e5. [PMID: 31484070 PMCID: PMC6746345 DOI: 10.1016/j.celrep.2019.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/02/2019] [Accepted: 07/30/2019] [Indexed: 01/23/2023] Open
Abstract
Fragile X syndrome (FXS) is the leading heritable cause of intellectual disability and commonly co-occurs with autism spectrum disorder. Silencing of the Fmr1 gene leads to the absence of the protein product, fragile X mental retardation protein (FMRP), which represses translation of many target mRNAs. Excess translation of these targets is one cause of neuronal dysfunction in FXS. Utilizing the Drosophila model of FXS, we identified the mitogen-activated protein kinase kinase kinase (MAP3K) Wallenda/dual leucine zipper kinase (DLK) as a critical target of FMRP. dFMRP binds Wallenda mRNA and is required to limit Wallenda protein levels. In dFmr1 mutants, Wallenda signaling drives defects in synaptic development, neuronal morphology, and behavior. Pharmacological inhibition of Wallenda in larvae suppresses dFmr1 neurodevelopmental phenotypes, while adult administration prevents dFmr1 behavioral defects. We propose that in dFmr1 mutants chronic Wallenda/DLK signaling disrupts nervous system development and function and that inhibition of this kinase cascade might be a candidate therapeutic intervention for the treatment of FXS. Russo and DiAntonio identify a dysregulated MAPK signaling pathway in the fly model of fragile X syndrome. MAP3K Wnd/DLK drives dFmr1 mutant phenotypes, and pharmacological inhibition of Wnd/DLK prevents neural dysfunction in this model, thus highlighting a possible role for Wnd/DLK in the pathophysiology of fragile X syndrome.
Collapse
Affiliation(s)
- Alexandra Russo
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
48
|
Figley MD, DiAntonio A. The SARM1 axon degeneration pathway: control of the NAD + metabolome regulates axon survival in health and disease. Curr Opin Neurobiol 2020; 63:59-66. [PMID: 32311648 PMCID: PMC7483800 DOI: 10.1016/j.conb.2020.02.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Axons are essential for nervous system function and axonal pathology is a common hallmark of many neurodegenerative diseases. Over a century and a half after the original description of Wallerian axon degeneration, advances over the past five years have heralded the emergence of a comprehensive, mechanistic model of an endogenous axon degenerative process that can be activated by both injury and disease. Axonal integrity is maintained by the opposing actions of the survival factors NMNAT2 and STMN2 and pro-degenerative molecules DLK and SARM1. The balance between axon survival and self-destruction is intimately tied to axonal NAD+ metabolism. These mechanistic insights may enable axon-protective therapies for a variety of human neurodegenerative diseases including peripheral neuropathy, traumatic brain injury and potentially ALS and Parkinson's.
Collapse
Affiliation(s)
- Matthew D Figley
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, 660 Euclid Avenue, St. Louis, MO 63110, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, 660 Euclid Avenue, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
49
|
Jin Y, Zheng B. Multitasking: Dual Leucine Zipper-Bearing Kinases in Neuronal Development and Stress Management. Annu Rev Cell Dev Biol 2020; 35:501-521. [PMID: 31590586 DOI: 10.1146/annurev-cellbio-100617-062644] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The dual leucine zipper-bearing kinase (DLK) and leucine zipper-bearing kinase (LZK) are evolutionarily conserved MAPKKKs of the mixed-lineage kinase family. Acting upstream of stress-responsive JNK and p38 MAP kinases, DLK and LZK have emerged as central players in neuronal responses to a variety of acute and traumatic injuries. Recent studies also implicate their function in astrocytes, microglia, and other nonneuronal cells, reflecting their expanding roles in the multicellular response to injury and in disease. Of particular note is the potential link of these kinases to neurodegenerative diseases and cancer. It is thus critical to understand the physiological contexts under which these kinases are activated, as well as the signal transduction mechanisms that mediate specific functional outcomes. In this review we first provide a historical overview of the biochemical and functional dissection of these kinases. We then discuss recent findings on regulating their activity to enhance cellular protection following injury and in disease, focusing on but not limited to the nervous system.
Collapse
Affiliation(s)
- Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; .,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA; .,VA San Diego Healthcare System, San Diego, California 92161, USA
| |
Collapse
|
50
|
Lin M, Wang ZW, Zhu X. FBXO45 is a potential therapeutic target for cancer therapy. Cell Death Discov 2020; 6:55. [PMID: 32655893 PMCID: PMC7335190 DOI: 10.1038/s41420-020-0291-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
FBXO protein 45 (FBXO45), a substrate-recognition subunit of E3 ligases, has been characterised to have pivotal roles in many human diseases, including nervous system diseases, inflammatory diseases and human malignancies. In this article, we describe the expression of FBXO45 in several types of human tumour specimens and highlight the downstream substrates of FBXO45. Moreover, the biological functions of FBXO45 in the regulation of proliferation, apoptosis, the cell cycle and metastasis are mentioned. Furthermore, we describe that the expression level of FBXO45 is regulated by several upstream factors such as miR-27a, Hey1, m6A and the lncRNA RP11. As FBXO45 has a critical role in tumorigenesis and progression, FBXO45 might be a novel therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Min Lin
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 China
| | - Zhi-wei Wang
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 China
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 China
| | - Xueqiong Zhu
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 China
| |
Collapse
|