1
|
Steiger MB, Steinauer A, Gao D, Cerrejon DK, Krupke H, Heussi M, Merkl P, Klipp A, Burger M, Martin-Olmos C, Leroux JC. Enzymatic absorption promoters for non-invasive peptide delivery. J Control Release 2025; 382:113675. [PMID: 40164434 DOI: 10.1016/j.jconrel.2025.113675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Peptide drugs offer considerable potential for treating a diverse range of diseases. Yet, their clinical application is generally restricted to injectable therapies. The main challenge hindering their broader use through globally accessible, patient-friendly, and non-invasive delivery routes such as oral or buccal, lies in their poor ability to cross biological barriers effectively. Here, we demonstrate that enzymes can be harnessed to transiently reduce these barriers and improve absorption. As a proof of concept, we employ a mucin-specific protease (mucinase) and a phospholipase to increase mucus diffusivity and epithelial cell membrane permeability, respectively. In a canine model, we show that enteric capsules containing both enzymes, and the peptide drug desmopressin achieved a relative bioavailability of 155 % compared to the drug alone. Additionally, a buccal patch loaded with phospholipase and semaglutide displayed a 5-fold higher bioavailability and lower variability (71.5 % reduction in the coefficient of variation) compared to the commercially available oral tablet. These results suggest that enzymatic modulation of biological barriers holds promise as a strategy to improve non-invasive delivery of peptides and potentially other macromolecular drugs.
Collapse
Affiliation(s)
- Marilena Bohley Steiger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland; Laboratory of Biomolecular Engineering and Nanomedicine, EPFL, 1015 Lausanne, Switzerland
| | - Daniel Gao
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - David Klein Cerrejon
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Hanna Krupke
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Miguel Heussi
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Padryk Merkl
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Alexander Klipp
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Cristina Martin-Olmos
- Center for Advanced Surface Analysis, Institute of Earth Sciences, UNIL, 1015 Lausanne, Switzerland; School of Architecture, Civil and Environmental Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
2
|
Ye Q, Opoku G, Orlov M, Jaramillo AM, Holguin F, Vladar EK, Janssen WJ, Evans CM. Mucins and Their Roles in Asthma. Immunol Rev 2025; 331:e70034. [PMID: 40305069 DOI: 10.1111/imr.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Mucus is a crucial component of airway host defense. For optimal protection, its chief components-the mucins MUC5AC and MUC5B-need to be tightly regulated. Their expression localizes to specific secretory epithelial cell types capable of producing and secreting massive glycopolymers. In asthma, abnormal mucus is an important clinical problem that is effectively treated with therapies that directly target mucins. This review summarizes what is known about how mucin gene regulation, protein synthesis, and secretion are regulated in healthy and asthmatic lungs. Ultimately, a better understanding of these processes could help identify novel ways of preventing or reversing airway mucus dysfunction.
Collapse
Affiliation(s)
- Qihua Ye
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
- Immunology PhD Program, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Gilda Opoku
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
- Integrated Physiology PhD Program, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Marika Orlov
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Ana M Jaramillo
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Fernando Holguin
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Eszter K Vladar
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
| | - William J Janssen
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
- Immunology PhD Program, University of Colorado School of Medicine, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Christopher M Evans
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
- Immunology PhD Program, University of Colorado School of Medicine, Denver, Colorado, USA
- Integrated Physiology PhD Program, University of Colorado School of Medicine, Denver, Colorado, USA
- Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| |
Collapse
|
3
|
Leung K, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025; 125:4069-4110. [PMID: 40178992 PMCID: PMC12022999 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin
K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
4
|
Gray TE, Labasan KB, Daskhan GC, Bui DT, Joe M, Kumawat D, Schmidt EN, Klassen JS, Macauley MS. Synthesis of 4-azido sialic acid for testing against Siglec-7 and in metabolic oligosaccharide engineering. RSC Chem Biol 2025:d5cb00030k. [PMID: 40309065 PMCID: PMC12038855 DOI: 10.1039/d5cb00030k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
An important approach for tracking and visualizing sialic acid-containing glycans involves using sialic acid reporters functionalized with bioorthogonal handles. More specifically, metabolic oligosaccharide engineering (MOE) commonly employs monosaccharides with an alkyne or azide handle for incorporation into cellular glycans, followed by a subsequent click reaction to elaborate with a biotin or fluorophore handle. For sialic acid, this has been carried out extensively, with an azide or alkyne appended to the C5 N-acetamido group being the most common location for the handle. However, circumstances may require the handle to be at different positions and, to date, the C7 and C9 positions have been shown to work to varying degrees. Herein, we synthesized protected 4AzNeu5Ac that could be incorporated into cellular glycans nearly as efficiently as Neu5Az and targeted with DBCO-biotin through strain promoted azide-alkyne cycloaddition. Owing to the good incorporation of 4AzNeu5Ac into cellular glycans, we followed up this ability by first synthesizing the deprotected form of 4AzNeu5Ac, using a thioglycoside to lock the anomeric center during deprotection of the acetyl groups. Activation of 4AzNeu5Ac to CMP-4AzNeu5Ac then enabled the use of this donor by human sialyltransferase ST3GAL1 to transfer CMP-4AzNeu5Ac to β-Galp-(1→3)-α-GalpNAc. With purified α-4AzNeup5Ac-(2→3)-β-Galp-(1→3)-α-GalpNAc in hand, we tested it as a ligand for Siglec-7 and found that the C4-Az modification is tolerated, opening future possibilities to exploit this position to generate high affinity and selective ligands. These findings expand the repertoire of metabolic oligosaccharide engineering agents and show that azide modifications are tolerated at the C4 position of sialic acid.
Collapse
Affiliation(s)
- Taylor E Gray
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Kristin B Labasan
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Gour C Daskhan
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Duong T Bui
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Maju Joe
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Dhanraj Kumawat
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - John S Klassen
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
- Department of Medical Microbiology and Immunology, University of Alberta Edmonton T6G 2E1 Canada
| |
Collapse
|
5
|
Touhara KK, Rossen ND, Deng F, Castro J, Harrington AM, Chu T, Garcia-Caraballo S, Brizuela M, O'Donnell T, Xu J, Cil O, Brierley SM, Li Y, Julius D. Topological segregation of stress sensors along the gut crypt-villus axis. Nature 2025; 640:732-742. [PMID: 39939779 DOI: 10.1038/s41586-024-08581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/27/2024] [Indexed: 02/14/2025]
Abstract
The crypt-villus structure of the small intestine serves as an essential protective barrier. The integrity of this barrier is monitored by the complex sensory system of the gut, in which serotonergic enterochromaffin (EC) cells play an important part1,2. These rare sensory epithelial cells surveil the mucosal environment for luminal stimuli and transmit signals both within and outside the gut3-6. However, whether EC cells in crypts and villi detect different stimuli or produce distinct physiological responses is unknown. Here we address these questions by developing a reporter mouse model to quantitatively measure the release and propagation of serotonin from EC cells in live intestines. Crypt EC cells exhibit a tonic low-level mode that activates epithelial serotonin 5-HT4 receptors to modulate basal ion secretion and a stimulus-induced high-level mode that activates 5-HT3 receptors on sensory nerve fibres. Both these modes can be initiated by the irritant receptor TRPA1, which is confined to crypt EC cells. The activation of TRPA1 by luminal irritants is enhanced when the protective mucus layer is compromised. Villus EC cells also signal damage through a distinct mechanism, whereby oxidative stress activates TRPM2 channels, which leads to the release of both serotonin and ATP and consequent excitation of sensory nerve fibres. This topological segregation of EC cell functionality along the mucosal architecture constitutes a mechanism for the surveillance, maintenance and protection of gut integrity under diverse physiological conditions.
Collapse
Affiliation(s)
- Kouki K Touhara
- Department of Physiology, University of California San Franscisco, San Francisco, CA, USA.
| | - Nathan D Rossen
- Department of Physiology, University of California San Franscisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Fei Deng
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Joel Castro
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea M Harrington
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Tifany Chu
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Sonia Garcia-Caraballo
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Mariana Brizuela
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Tracey O'Donnell
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Jinhao Xu
- Department of Physiology, University of California San Franscisco, San Francisco, CA, USA
| | - Onur Cil
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Stuart M Brierley
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Yulong Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
| | - David Julius
- Department of Physiology, University of California San Franscisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Varanese L, Xu L, Peters CE, Pintilie G, Roberts DS, Raj S, Liu M, Ooi YS, Diep J, Qiao W, Richards CM, Callaway J, Bertozzi CR, Jabs S, de Vries E, van Kuppeveld FJM, Nagamine CM, Chiu W, Carette JE. MFSD6 is an entry receptor for enterovirus D68. Nature 2025:10.1038/s41586-025-08908-0. [PMID: 40132641 DOI: 10.1038/s41586-025-08908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
With the near eradication of poliovirus due to global vaccination campaigns, attention has shifted to other enteroviruses that can cause polio-like paralysis syndrome (now termed acute flaccid myelitis)1-3. In particular, enterovirus D68 (EV-D68) is believed to be the main driver of epidemic outbreaks of acute flaccid myelitis in recent years4, yet not much is known about EV-D68 host interactions. EV-D68 is a respiratory virus5 but, in rare cases, can spread to the central nervous system to cause severe neuropathogenesis. Here we use genome-scale CRISPR screens to identify the poorly characterized multipass membrane transporter MFSD6 as a host entry factor for EV-D68. Knockout of MFSD6 expression abrogated EV-D68 infection in cell lines and primary cells corresponding to respiratory and neural cells. MFSD6 localized to the plasma membrane and was required for viral entry into host cells. MFSD6 bound directly to EV-D68 particles through its extracellular, third loop (L3). We determined the cryo-electron microscopy structure of EV-D68 in a complex with MFSD6 L3, revealing the interaction interface. A decoy receptor, engineered by fusing MFSD6 L3 to Fc, blocked EV-D68 infection of human primary lung epithelial cells and provided near-complete protection in a lethal mouse model of EV-D68 infection. Collectively, our results reveal MFSD6 as an entry receptor for EV-D68, and support the targeting of MFSD6 as a potential mechanism to combat infections by this emerging pathogen with pandemic potential.
Collapse
Affiliation(s)
- Lauren Varanese
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lily Xu
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christine E Peters
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Grigore Pintilie
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - David S Roberts
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Suyash Raj
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mengying Liu
- Virology Group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Yaw Shin Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Jonathan Diep
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher M Richards
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeremy Callaway
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Sabrina Jabs
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Erik de Vries
- Virology Group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Virology Group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Claude M Nagamine
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Wah Chiu
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA.
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Haberman M, Kamyshinsky R, Reznik N, Yeshaya N, Khmelnitsky L, Plender EG, Eichler EE, Fass D. MUC5AC filaments illuminate the structural diversification of respiratory and intestinal mucins. Proc Natl Acad Sci U S A 2025; 122:e2419717122. [PMID: 40035770 PMCID: PMC11912381 DOI: 10.1073/pnas.2419717122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025] Open
Abstract
Secreted mucins are multimegadalton glycoprotein polymers that share the function of protecting mucosal tissues but diversified for activities in different organs of the body. Structural studies of secreted mucins are complicated by the enormous sizes, flexibility, and complex supramolecular assembly modes of these glycoproteins. The two major respiratory mucins are MUC5AC and MUC5B. Here, we present structures of a large amino-terminal segment of MUC5AC in the form of helical filaments. These filaments differ from filamentous and tubular structures observed previously for the intestinal mucin MUC2 and the partial mucin homolog VWF. Nevertheless, the MUC5AC helical filaments support the proposed mechanism, based on MUC2 and VWF, for how noncovalent interactions between mucin monomers guide disulfide crosslinking to form polymers. The high-resolution MUC5AC structures show how local and limited changes in amino acid sequence can profoundly affect higher-order assembly while preserving the overall folds and polymerization activity of mucin glycoproteins. Differences in supramolecular assembly are likely to be functionally significant considering the divergence of mechanical properties and physiological requirements between respiratory and intestinal mucins. Determining the high-resolution structures of respiratory mucins provides a foundation for understanding the mechanisms by which they clean and protect the lungs. Moreover, the MUC5AC structure enables visualization of the sites of human amino acid sequence variation and disease-associated mutations.
Collapse
Affiliation(s)
- Meital Haberman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Roman Kamyshinsky
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Nava Reznik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Noa Yeshaya
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Lev Khmelnitsky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Elizabeth G. Plender
- Department of Genome Sciences, University of Washington, School of Medicine, Seattle, WA98195
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, School of Medicine, Seattle, WA98195
- HHMI, University of Washington, Seattle, WA98195
| | - Deborah Fass
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
8
|
Vishwanath K, Su J, Colville MJ, Paszek M, Reesink HL, Bonassar LJ. Bioengineered lubricin alters the lubrication modes of cartilage in a dose-dependent manner. J Orthop Res 2025; 43:531-540. [PMID: 39521731 DOI: 10.1002/jor.26009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
The low friction nature of articular cartilage has been attributed to the synergistic interaction between lubricin and hyaluronic acid in the synovial fluid (SF). Lubricin is a mucinous glycoprotein that lowers the boundary mode coefficient of friction of articular cartilage in a dose-dependent manner. While there have been multiple attempts to produce recombinant lubricin and lubricin mimetic cartilage lubricants over the last two decades, these materials have not found clinical use due to challenges associated with large scale production, manufacturing, and purification. Recently, a novel method using codon scrambling was developed to produce a stable, full-length bioengineered equine lubricin (eLub) in large reproducible quantities. While preliminary frictional analysis of eLub and other recombinantly produced forms revealed they can lubricate cartilage, a complete tribological characterization is lacking, with previous studies evaluating the friction coefficient only at a single dose or a single speed. The objective of this study was to analyze the dose-dependent tribological properties of eLub using the Stribeck framework of tribological analysis. Recombinantly produced eLub at doses greater than 1.5 mg/mL exhibits friction coefficients on par with healthy bovine SF, and a maximal 5 mg/mL dose exhibits a nearly 50% lower friction coefficient than healthy SF. eLub also modulates the shift in lubrication mode of the cartilage from the high friction boundary mode to the low friction minimum mode at high concentrations.
Collapse
Affiliation(s)
- Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Marshall J Colville
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Matthew Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
Shi SM, Suh RJ, Shon DJ, Garcia FJ, Buff JK, Atkins M, Li L, Lu N, Sun B, Luo J, To NS, Cheung TH, McNerney MW, Heiman M, Bertozzi CR, Wyss-Coray T. Glycocalyx dysregulation impairs blood-brain barrier in ageing and disease. Nature 2025; 639:985-994. [PMID: 40011765 PMCID: PMC11946907 DOI: 10.1038/s41586-025-08589-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/03/2025] [Indexed: 02/28/2025]
Abstract
The blood-brain barrier (BBB) is highly specialized to protect the brain from harmful circulating factors in the blood and maintain brain homeostasis1,2. The brain endothelial glycocalyx layer, a carbohydrate-rich meshwork composed primarily of proteoglycans, glycoproteins and glycolipids that coats the BBB lumen, is a key structural component of the BBB3,4. This layer forms the first interface between the blood and brain vasculature, yet little is known about its composition and roles in supporting BBB function in homeostatic and diseased states. Here we find that the brain endothelial glycocalyx is highly dysregulated during ageing and neurodegenerative disease. We identify significant perturbation in an underexplored class of densely O-glycosylated proteins known as mucin-domain glycoproteins. We demonstrate that ageing- and disease-associated aberrations in brain endothelial mucin-domain glycoproteins lead to dysregulated BBB function and, in severe cases, brain haemorrhaging in mice. Finally, we demonstrate that we can improve BBB function and reduce neuroinflammation and cognitive deficits in aged mice by restoring core 1 mucin-type O-glycans to the brain endothelium using adeno-associated viruses. Cumulatively, our findings provide a detailed compositional and structural mapping of the ageing brain endothelial glycocalyx layer and reveal important consequences of ageing- and disease-associated glycocalyx dysregulation on BBB integrity and brain health.
Collapse
Affiliation(s)
- Sophia M Shi
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan J Suh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - D Judy Shon
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Francisco J Garcia
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Josephine K Buff
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Micaiah Atkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
| | - Lulin Li
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Nannan Lu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Bryan Sun
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Jian Luo
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Ning-Sum To
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Tom H Cheung
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - M Windy McNerney
- Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, USA
- MIRECC, Department of Veterans Affairs, Palo Alto, CA, USA
| | - Myriam Heiman
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Tony Wyss-Coray
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Zhou L, Ortega-Rodriguez U, Flores MJ, Matsumoto Y, Bettinger JQ, Wu WW, Zhang Y, Kim SR, Biel TG, Pritts JD, Shen RF, Rao VA, Ju T. Dual functional POGases from bacteria encompassing broader O-glycanase and adhesin activities. Nat Commun 2025; 16:1960. [PMID: 40000644 PMCID: PMC11861894 DOI: 10.1038/s41467-025-57143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Mucin-type O-glycans on glycoproteins are pivotal for biology and impact the quality of biotherapeutics. Furthermore, glycans on host cells serve as ligands for lectins/adhesins on bacteria for bacterium-host interactions in the colonization or attachment/invasion of bacteria. Defining the structure-function relationship of O-glycans is hindered by a lack of enzyme(s) to release sialylated O-glycans from glycoproteins. Here we show identification of endo-α-N-acetylgalactosaminidases (O-glycanases, GH101) with broad substrate specificities, termed Peptide:O-Glycosidase (POGase). In 5 POGase orthologs identified, we characterize one that releases sialylated O-glycans from glycopeptides, glycoproteins and biotherapeutics. Three peptide motifs differentiate the POGase existing in phylum Actinomycetota from known O-glycanases in other bacteria. While the GH101 domain classifies POGases, other domains confer the efficient enzyme activity and binding to major glycans decorating epithelial cells. The dual functional POGases encompassing broader O-glycanase and adhesin activities will facilitate the study of O-glycomics, quality assessment of biotherapeutics, and development of microbiology and medicine.
Collapse
Affiliation(s)
- Linjiao Zhou
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Uriel Ortega-Rodriguez
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Matthew J Flores
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Yasuyuki Matsumoto
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - John Q Bettinger
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Wells W Wu
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Yaqin Zhang
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Su-Ryun Kim
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Thomas G Biel
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Jordan D Pritts
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - V Ashutosh Rao
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Tongzhong Ju
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
11
|
Jung J, Schmidt EN, Chang HC, Jame-Chenarboo Z, Enterina JR, McCord KA, Gray TE, Kageler L, St Laurent CD, Wang C, Flynn RA, Wu P, Khoo KH, Macauley MS. Understanding the Glycosylation Pathways Involved in the Biosynthesis of the Sulfated Glycan Ligands for Siglecs. ACS Chem Biol 2025; 20:386-400. [PMID: 39836965 DOI: 10.1021/acschembio.4c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Carbohydrate sulfation plays a pivotal role in modulating the strength of Siglec-glycan interactions. Recently, new aspects of Siglec binding to sulfated cell surface carbohydrates have been discovered, but the class of glycan presenting these sulfated Siglec ligands has not been fully elucidated. In this study, the contribution of different classes of glycans to cis and trans Siglec ligands was investigated within cells expressing the carbohydrate sulfotransferase 1 (CHST1) or CHST2. For some Siglecs, the glycan class mediating binding was clear, such as O-glycans for Siglec-7 and N-glycans for Siglec-2 and Siglec-9. Both N-glycans and mucin-type O-glycans contributed to ligands for Siglec-3, -5, -8, and -15. However, significant levels of Siglec-3 and -8 ligands remained in CHST1-expressing cells lacking complex N-glycans and mucin-type O-glycans. A combination of genetic, pharmacological, and enzymatic treatment strategies ruled out heparan sulfates and glycoRNA as contributors, although Siglec-8 did exhibit some binding to glycolipids. Genetic disruption of O-mannose glycans within CHST1-expressing cells had a small but significant impact on Siglec-3 and -8 binding, demonstrating that this class of glycans can present sulfated Siglec ligands. We also investigated the ability of sulfated cis ligands to mask Siglec-3 and Siglec-7. For Siglec-7, cis ligands were again found to be mucin-type O-glycans. While N-glycans were the major sulfated trans ligands for Siglec-3, disruption of complex mucin-type O-glycans had the largest impact on Siglec-3 masking. Overall, this study enhances our knowledge of the types of sulfated glycans that can serve as Siglec ligands.
Collapse
Affiliation(s)
- Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton T6G 2R3, Canada
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton T6G 2R3, Canada
| | - Hua-Chien Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115024, Taiwan
| | | | - Jhon R Enterina
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2R3, Canada
| | - Kelli A McCord
- Department of Chemistry, University of Alberta, Edmonton T6G 2R3, Canada
| | - Taylor E Gray
- Department of Chemistry, University of Alberta, Edmonton T6G 2R3, Canada
| | - Lauren Kageler
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Chris D St Laurent
- Department of Chemistry, University of Alberta, Edmonton T6G 2R3, Canada
| | - Chao Wang
- Department of Molecular and Cellular Biology, Scripps Research Institute, La Jolla, California 92037-1000, United States
| | - Ryan A Flynn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02115-5724, United States
| | - Peng Wu
- Department of Molecular and Cellular Biology, Scripps Research Institute, La Jolla, California 92037-1000, United States
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei 115024, Taiwan
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton T6G 2R3, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2R3, Canada
| |
Collapse
|
12
|
Polasky DA, Lu L, Yu F, Li K, Shortreed MR, Smith LM, Nesvizhskii AI. Quantitative proteome-wide O-glycoproteomics analysis with FragPipe. Anal Bioanal Chem 2025; 417:921-930. [PMID: 38877149 PMCID: PMC11648966 DOI: 10.1007/s00216-024-05382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
Identification of O-glycopeptides from tandem mass spectrometry data is complicated by the near complete dissociation of O-glycans from the peptide during collisional activation and by the combinatorial explosion of possible glycoforms when glycans are retained intact in electron-based activation. The recent O-Pair search method provides an elegant solution to these problems, using a collisional activation scan to identify the peptide sequence and total glycan mass, and a follow-up electron-based activation scan to localize the glycosite(s) using a graph-based algorithm in a reduced search space. Our previous O-glycoproteomics methods with MSFragger-Glyco allowed for extremely fast and sensitive identification of O-glycopeptides from collisional activation data but had limited support for site localization of glycans and quantification of glycopeptides. Here, we report an improved pipeline for O-glycoproteomics analysis that provides proteome-wide, site-specific, quantitative results by incorporating the O-Pair method as a module within FragPipe. In addition to improved search speed and sensitivity, we add flexible options for oxonium ion-based filtering of glycans and support for a variety of MS acquisition methods and provide a comparison between all software tools currently capable of O-glycosite localization in proteome-wide searches.
Collapse
Affiliation(s)
- Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| | - Lei Lu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pharmaceutical Chemistry, University of San Francisco, San Francisco, CA, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kai Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Krishnamoorthy V, Daly J, Kim J, Piatnitca L, Yuen KA, Kumar B, Taherzadeh Ghahfarrokhi M, Bui TQT, Azadi P, Vu LP, Wisnovsky S. The glycosyltransferase ST3GAL4 drives immune evasion in acute myeloid leukemia by synthesizing ligands for the glyco-immune checkpoint receptor Siglec-9. Leukemia 2025; 39:346-359. [PMID: 39551873 PMCID: PMC11794148 DOI: 10.1038/s41375-024-02454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024]
Abstract
Immunotherapy has demonstrated promise as a treatment for acute myeloid leukemia (AML). However, there is still an urgent need to identify new molecules that inhibit the immune response to AML. Most prior research in this area has focused on protein-protein interaction interfaces. While carbohydrates also regulate immune recognition, the role of cell-surface glycans in driving AML immune evasion is comparatively understudied. The Siglecs, for example, are an important family of inhibitory, glycan-binding signaling receptors that have emerged as prime targets for cancer immunotherapy in recent years. In this study, we find that AML cells express ligands for the receptor Siglec-9 at high levels. Integrated CRISPR genomic screening and clinical bioinformatic analysis identified ST3GAL4 as a potential driver of Siglec-9 ligand expression in AML. Depletion of ST3GAL4 by CRISPR-Cas9 knockout (KO) dramatically reduced the expression of Siglec-9 ligands in AML cells. Mass spectrometry analysis of cell-surface glycosylation in ST3GAL4 KO cells revealed that Siglec-9 primarily binds N-linked sialoglycans on these cell types. Finally, we found that ST3GAL4 KO enhanced the sensitivity of AML cells to phagocytosis by Siglec-9-expressing macrophages. This work reveals a novel axis of immune evasion and implicates ST3GAL4 as a possible target for immunotherapy in AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Sialyltransferases/metabolism
- Sialyltransferases/genetics
- Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
- Ligands
- Immune Evasion
- Antigens, CD/metabolism
- beta-Galactoside alpha-2,3-Sialyltransferase
- Glycosylation
- Cell Line, Tumor
- CRISPR-Cas Systems
Collapse
Affiliation(s)
- Vignesh Krishnamoorthy
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - John Daly
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jimmy Kim
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lidia Piatnitca
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Katie A Yuen
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Bhoj Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | | | - Tom Q T Bui
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Ly P Vu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Simon Wisnovsky
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Jani P, Colville MJ, Park S, Ha Y, Paszek MJ, Abbott NL. Influence of the glycocalyx on the size and mechanical properties of plasma membrane-derived vesicles. SOFT MATTER 2025; 21:463-475. [PMID: 39717887 PMCID: PMC11667464 DOI: 10.1039/d4sm01317d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/30/2024] [Indexed: 12/25/2024]
Abstract
Recent studies have reported that the overexpression of MUC1 glycoproteins on cell surfaces changes the morphology of cell plasma membranes and increases the blebbing of vesicles from them, supporting the hypothesis that entropic forces exerted by MUC1 change the spontaneous curvature of cell membranes. However, how MUC1 is incorporated into and influences the size and biophysical properties of plasma-membrane-blebbed vesicles is not understood. Here we report single-vesicle-level characterization of giant plasma membrane vesicles (GPMVs) derived from cells overexpressing MUC1, revealing a 40× variation in MUC1 density between GPMVs from a single preparation and a strong correlation between GPMV size and MUC1 density. By dispersing GPMVs in aqueous liquid crystals (LCs), we show that the elasticity of the LC can be used to strain individual GPMVs into spindle-like shapes, consistent with the straining of fluid-like membranes. To quantify the influence of MUC1 on membrane mechanical properties, we analyze the shapes of strained GPMVs within a theoretical framework that integrates the effects of MUC1 density and GPMV size on strain. We measure the spontaneous curvature of GPMV membranes to be 2-10 μm-1 and weakly influenced by the 40× variation in MUC1 density, a conclusion we validate by performing independent experiments in which MUC1 is enzymatically removed from GPMVs. Overall, our study advances the understanding of heterogeneity in size and MUC1 density in GPMVs, and establishes single-vesicle-level methods for characterization of mechanical properties within a heterogeneous population of GPMVs. Furthermore, our measurements highlight differences between membrane properties of GPMVs and their parent cells.
Collapse
Affiliation(s)
- Purvil Jani
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Marshall J Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
| | - Sangwoo Park
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
| | - Youlim Ha
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Matthew J Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Nancy E. and Peter C. Meining School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Nicholas L Abbott
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
15
|
Jäverfelt S, Hellsén G, Kaji I, Goldenring JR, Pelaseyed T. The MYO1B and MYO5B motor proteins and the sorting nexin SNX27 regulate apical targeting of membrane mucin MUC17 in enterocytes. Biochem J 2025; 482:1-23. [PMID: 39661054 DOI: 10.1042/bcj20240204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
A dense glycocalyx, composed of the megaDalton-sized membrane mucin MUC17, coats the microvilli in the apical brush border of transporting intestinal epithelial cells, called enterocytes. The formation of the MUC17-based glycocalyx in the mouse small intestine occurs at the critical suckling-weaning transition. The glycocalyx extends 1 µm into the intestinal lumen and prevents the gut bacteria from directly attaching to the enterocytes. To date, the mechanism behind the positioning of MUC17 to the brush border is not known. Here, we show that the actin-based motor proteins MYO1B and MYO5B, and the sorting nexin SNX27, regulate apical targeting of MUC17 in enterocytes. We demonstrate that MUC17 turnover at the brush border is slow and controlled by MYO1B and SNX27. Furthermore, we report that MYO1B regulates MUC17 protein levels in enterocytes, whereas MYO5B specifically governs MUC17 levels at the brush border. Together, our results extend our understanding of the apical targeting of membrane mucins and provide mechanistic insights into how defective positioning of MUC17 renders enterocytes sensitive to bacterial challenges.
Collapse
Affiliation(s)
- Sofia Jäverfelt
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Gustaf Hellsén
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Izumi Kaji
- Epithelial Biology Center, Vanderbilt University Medical Center; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
- Nashville VA Medical Center, Nashville, TN 37232, U.S.A
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, U.S.A
| | - James R Goldenring
- Epithelial Biology Center, Vanderbilt University Medical Center; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
- Nashville VA Medical Center, Nashville, TN 37232, U.S.A
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, U.S.A
| | - Thaher Pelaseyed
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| |
Collapse
|
16
|
Helms A, Chang V, Malaker SA, Brodbelt JS. Unraveling O-Glycan Diversity of Mucins: Insights from SmE Mucinase and Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2024; 96:19230-19237. [PMID: 39576755 DOI: 10.1021/acs.analchem.4c02011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Deciphering the pattern and abundance of O-glycosylation of mucin domain proteins, glycoproteins heavily implicated in cancer and other diseases, remains an ongoing challenge. Both the macro- and microheterogeneity of glycosylation complicates the analysis, motivating the development of new strategies for structural characterization of this diverse class of glycoproteins. Here we combine digestion of mucin domain proteins using a targeted protease, Enhancin from Serratia marcescens (SmE), with ultraviolet photodissociation (UVPD) mass spectrometry to advance glycan mapping and elucidation of O-glycosylation trends of densely glycosylated mucin proteins. UVPD facilitates identification of O-glycoforms of mucin domain proteins TIM-1, MUC-1 and MUC-16. Additionally, UVPD elucidates several glycoforms of MUC-16 and contributes to the discovery of O-glycosylation across tandem repeats of MUC-1.
Collapse
Affiliation(s)
- Amanda Helms
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Vincent Chang
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Park S, Paek JH, Colville MJ, Huang LT, Struzyk AP, Womack SJ, Neelamegham S, Reesink HL, Paszek MJ. Leucine zipper-based SAIM imaging identifies therapeutic agents to disrupt the cancer cell glycocalyx for enhanced immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627089. [PMID: 39677754 PMCID: PMC11643053 DOI: 10.1101/2024.12.05.627089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The abnormally thick glycocalyx of cancer cells can provide a physical barrier to immune cell recognition and effective immunotherapy. Here, we demonstrate an optical method based on Scanning Angle Interference Microscopy (SAIM) for the screening of therapeutic agents that can disrupt the glycocalyx layer as a strategy to improve anti-cancer immune responses. We developed a new membrane labeling strategy utilizing leucine zipper pairs to fluorescently mark the glycocalyx layer boundary for precise and robust measurement of glycocalyx thickness with SAIM. Using this platform, we evaluated the effects of glycosylation inhibitors and targeted enzymatic degraders of the glycocalyx, with particular focus on strategies for cholangiocarcinoma (CCA), a highly lethal malignancy with limited therapeutic options. We found that CCA had the highest mean expression of the cancer-associated mucin, MUC1, across all cancers represented in the cancer cell line encyclopedia. Pharmacological inhibitors of mucin-type O-glycosylation and mucin-specific proteases, such as StcE, could dramatically reduce the glycocalyx layer in the YSCCC model of intrahepatic CCA. Motivated by these findings, we engineered Natural Killer (NK) cells tethered with StcE to enhance NK cell-mediated cytotoxicity against CCA. In a CCA xenograft model, these engineered NK cells demonstrated superior anti-tumor efficacy compared to wild-type NK cells, with no observable adverse effects. Our findings not only provide a reliable imaging-based screening platform for evaluating glycocalyx-targeting pharmacological interventions but also offer mechanistic insights into how CCA may avoid immune elimination through fortification of the glycocalyx layer with mucins. Additionally, this work presents a novel therapeutic strategy for mucin-overexpressing cancers, potentially improving immunotherapy efficacy across various cancer types.
Collapse
Affiliation(s)
- Sangwoo Park
- Graduate Field of Biophysics, Cornell University, Ithaca, NY, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Current address: Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- These authors contributed equally to this work
| | - Justin H. Paek
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- These authors contributed equally to this work
| | - Marshall J. Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Ling-Ting Huang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Audrey P. Struzyk
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Sydney J. Womack
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Heidi L. Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matthew J. Paszek
- Graduate Field of Biophysics, Cornell University, Ithaca, NY, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
18
|
Chongsaritsinsuk J, Rangel-Angarita V, Lucas TM, Mahoney KE, Enny OM, Katemauswa M, Malaker SA. Quantification and Site-Specific Analysis of Co-occupied N- and O-Glycopeptides. J Proteome Res 2024; 23:5449-5461. [PMID: 39498894 PMCID: PMC12057997 DOI: 10.1021/acs.jproteome.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Protein glycosylation is a complex post-translational modification that is generally classified as N- or O-linked. Site-specific analysis of glycopeptides is accomplished with a variety of fragmentation methods, depending on the type of glycosylation being investigated and the instrumentation available. For instance, collisional dissociation methods are frequently used for N-glycoproteomic analysis with the assumption that one N-sequon exists per tryptic peptide. Alternatively, electron-based methods are preferable for O-glycosite localization. However, the presence of simultaneously N- and O-glycosylated peptides could suggest the necessity of electron-based fragmentation methods for N-glycoproteomics, which is not commonly performed. Thus, we quantified the prevalence of N- and O-glycopeptides in mucins and other glycoproteins. A much higher frequency of co-occupancy within mucins was detected whereas only a negligible occurrence occurred within nonmucin glycoproteins. This was demonstrated from analyses of recombinant and/or purified proteins, as well as more complex samples. Where co-occupancy occurred, O-glycosites were frequently localized to the Ser/Thr within the N-sequon. Additionally, we found that O-glycans in close proximity to the occupied Asn were predominantly unelaborated core 1 structures, while those further away were more extended. Overall, we demonstrate electron-based methods are required for robust site-specific analysis of mucins, wherein co-occupancy is more prevalent. Conversely, collisional methods are generally sufficient for analyses of other types of glycoproteins.
Collapse
Affiliation(s)
| | | | - Taryn M. Lucas
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Keira E. Mahoney
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Olivia M. Enny
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Mitchelle Katemauswa
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Stacy A. Malaker
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
19
|
Prajapati M, Vishwanath K, Huang L, Colville M, Reesink H, Paszek M, Bonassar LJ. Specific Degradation of the Mucin Domain of Lubricin in Synovial Fluid Impairs Cartilage Lubrication. ACS Biomater Sci Eng 2024; 10:6915-6926. [PMID: 39425698 DOI: 10.1021/acsbiomaterials.4c00908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Progressive cartilage degradation, synovial inflammation, and joint lubrication dysfunction are key markers of osteoarthritis. The composition of synovial fluid (SF) is altered in OA, with changes to both hyaluronic acid and lubricin, the primary lubricating molecules in SF. Lubricin's distinct bottlebrush mucin domain has been speculated to contribute to its lubricating ability, but the relationship between its structure and mechanical function in SF is not well understood. Here, we demonstrate the application of a novel mucinase (StcE) to selectively degrade lubricin's mucin domain in SF to measure its impact on joint lubrication and friction. Notably, StcE effectively degraded the lubricating ability of SF in a dose-dependent manner starting at nanogram concentrations (1-3.2 ng/mL). Further, the highest StcE doses effectively degraded lubrication to levels on par with trypsin, suggesting that cleavage at the mucin domain of lubricin is sufficient to completely inhibit the lubrication mechanism of the collective protein component in SF. These findings demonstrate the value of mucin-specific experimental approaches to characterize the lubricating properties of SF and reveal key trends in joint lubrication that help us better understand cartilage function in lubrication-deficient joints.
Collapse
Affiliation(s)
- Megh Prajapati
- Meinig School of Biomedical Engineering, Cornell University, 273 Tower Road, Ithaca, New York 14850, United States
| | - Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, 210 Bard Hall, Ithaca, New York 14853, United States
| | - Lingting Huang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
| | - Marshall Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
- Dept. of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Toward Road, Ithaca, New York 14853, United States
| | - Heidi Reesink
- Dept. of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Toward Road, Ithaca, New York 14853, United States
| | - Matthew Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, 273 Tower Road, Ithaca, New York 14850, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, New York 14850, United States
| |
Collapse
|
20
|
Kearns F, Rosenfeld MA, Amaro RE. Breaking Down the Bottlebrush: Atomically Detailed Structural Dynamics of Mucins. J Chem Inf Model 2024; 64:7949-7965. [PMID: 39327869 PMCID: PMC11523070 DOI: 10.1021/acs.jcim.4c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Mucins, the biomolecular components of mucus, are glycoproteins that form a thick physical barrier at all tissue-air interfaces, forming a first line of defense against pathogens. Structural features of mucins and their interactions with other biomolecules remain largely unexplored due to the challenges associated with their high-resolution characterization. Combining limited mass spectrometry glycomics and protein sequencing data, we present all-atom, explicitly solvated molecular dynamics simulations of a major respiratory mucin, MUC5B. We detail key forces and degrees of freedom imposed by the extensive O-glycosylation, which imbue the canonically observed bottlebrush-like structures to these otherwise intrinsically disordered protein backbones. We compare our simulation results to static structures observed in recent scanning tunneling microscopy experiments as well as other published experimental efforts. Our work represents the demonstration of a workflow applied to a mucin example, which we hope will be employed by other groups to investigate the dynamics and interactions of other mucins, which can inform on structural details currently inaccessible to experimental techniques.
Collapse
Affiliation(s)
- Fiona
L. Kearns
- Department
of Molecular Biology, University of California
San Diego, La Jolla, California 92093-0340, United States
| | - Mia A. Rosenfeld
- National
Institute of Health, National Heart, Lung
& Blood Institute, Bethesda, Maryland 20892, United States
| | - Rommie E. Amaro
- Department
of Molecular Biology, University of California
San Diego, La Jolla, California 92093-0340, United States
| |
Collapse
|
21
|
Bondarenko K, Limoge F, Pedram K, Gissot M, Young JC. Enzymatically enhanced ultrastructure expansion microscopy unlocks expansion of in vitro Toxoplasma gondii cysts. mSphere 2024; 9:e0032224. [PMID: 39189782 PMCID: PMC11423595 DOI: 10.1128/msphere.00322-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Expansion microscopy (ExM) is an innovative approach to achieve super-resolution images without using super-resolution microscopes, based on the physical expansion of the sample. The advent of ExM has unlocked the detail of super-resolution images for a broader scientific circle, lowering the cost and entry skill requirements for the field. One of its branches, ultrastructure expansion microscopy (U-ExM), has become popular among research groups studying apicomplexan parasites, including the acute stage of Toxoplasma gondii infection. Here, we show that the chronic cyst-forming stage of Toxoplasma, however, resists U-ExM expansion, impeding precise protein localization. We then solve the in vitro cyst's resistance to denaturation required for successful U-ExM. As the cyst's main structural protein CST1 contains a mucin domain, we added an enzymatic digestion step using the pan-mucinase StcE prior to the expansion protocol. This allowed full expansion of the cysts in fibroblasts and primary neuronal cell culture without disrupting immunofluorescence analysis of parasite proteins. Using StcE-enhanced U-ExM, we clarified the localization of the GRA2 protein, which is important for establishing a normal cyst, observing GRA2 granules spanning across the CST1 cyst wall. The StcE-U-ExM protocol allows accurate pinpointing of proteins in the bradyzoite cyst, which will greatly facilitate investigation of the underlying biology of cyst formation and its vulnerabilities. IMPORTANCE Toxoplasma gondii is an intracellular parasite capable of establishing long-term chronic infection in nearly all warm-blooded animals. During the chronic stage, parasites encapsulate to form cysts predominantly in neurons and skeletal muscle. Current anti-Toxoplasma drugs do not eradicate chronic parasites, leaving a reservoir of infection. The cyst is critical for disease transmission and pathology, yet it is harder to study, with the function of many chronic-stage proteins still unknown. Ultrastructure expansion microscopy, a new method to overcome the light microscopy's diffraction limit by physically expanding the sample, allowed in-depth studies of acute Toxoplasma infection. We show that Toxoplasma cysts resist expansion using standard protocol, but an additional enzymatic digestion with the mucinase StcE allows full expansion. This protocol offers new avenues for examining the chronic stage, including precise spatial organization of cyst-specific proteins, linking these locations to morphological structures, and detailed investigations of components of the durable cyst wall.
Collapse
Affiliation(s)
- Kseniia Bondarenko
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Floriane Limoge
- U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Kayvon Pedram
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Mathieu Gissot
- U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Joanna C. Young
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth laboratories, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Ortega-Rodriguez U, Bettinger JQ, Zou G, Falkowski VM, Lehtimaki M, Matthews AM, Biel TG, Pritts JD, Wu WW, Shen RF, Agarabi C, Rao VA, Xie H, Ju T. A chemoenzymatic method for simultaneous profiling N- and O-glycans on glycoproteins using one-pot format. CELL REPORTS METHODS 2024; 4:100834. [PMID: 39116882 PMCID: PMC11384086 DOI: 10.1016/j.crmeth.2024.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/10/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Glycosylation is generally characterized and controlled as a critical quality attribute for therapeutic glycoproteins because glycans can impact protein drug-product efficacy, half-life, stability, and safety. Analytical procedures to characterize N-glycans are relatively well established, but the characterization of O-glycans is challenging due to the complex workflows and lack of enzymatic tools. Here, we present a simplified chemoenzymatic method to simultaneously profile N- and O-glycans from the same sample using a one-pot format by mass spectrometry (MS). N-glycans were first released by PNGase F, followed by O-glycopeptide generation by proteinase K, selective N-glycan reduction, and O-glycan release by β-elimination during permethylation of both N- and O-glycans. Glycan structural assignments and determination of N- to O-glycan ratio was obtained from the one-pot mass spectra. The streamlined, one-pot method is a reliable approach that will facilitate advanced characterizations for quality assessments of therapeutic glycoproteins.
Collapse
Affiliation(s)
- Uriel Ortega-Rodriguez
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - John Q Bettinger
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Guozhang Zou
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Vincent M Falkowski
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Mari Lehtimaki
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Alicia M Matthews
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Thomas G Biel
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jordan D Pritts
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Wells W Wu
- Facility for Biotechnology Resources, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Cyrus Agarabi
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - V Ashutosh Rao
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Hang Xie
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tongzhong Ju
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
23
|
Mohideen FI, Mahal LK. Infection and the Glycome─New Insights into Host Response. ACS Infect Dis 2024; 10:2540-2550. [PMID: 38990078 PMCID: PMC11320568 DOI: 10.1021/acsinfecdis.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Glycans play critical roles in the host-pathogen interactions leading to infection. However, we still understand very little about the dynamic nature of glycosylation in response to infection and its function in modulating host immunity. Many of the host proteins involved in immune defense are glycoproteins. Furthermore, the innate immune system recognizes glycans. The glycoform of a protein can impact proteolytic stability, receptor interactions, serum half-life, and other aspects. New, cutting-edge chemical biology tools are shedding light on the interplay between infection and the host glycome. In this review, we highlight new work on the importance of dynamic glycosylation of host proteins in the innate and adaptive immune pathways in response to infection. These include recent findings on altered glycoprofiles of mucins, complement components, and antibodies.
Collapse
Affiliation(s)
- F. Ifthiha Mohideen
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Lara K. Mahal
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
24
|
Xu Z, Zhang H, Tian J, Ku X, Wei R, Hou J, Zhang C, Yang F, Zou X, Li Y, Kaji H, Tao SC, Kuno A, Yan W, Da LT, Zhang Y. O-glycosylation of SARS-CoV-2 spike protein by host O-glycosyltransferase strengthens its trimeric structure. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1118-1129. [PMID: 39066577 PMCID: PMC11399440 DOI: 10.3724/abbs.2024127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Protein O-glycosylation, also known as mucin-type O-glycosylation, is one of the most abundant glycosylation in mammalian cells. It is initially catalyzed by a family of polypeptide GalNAc transferases (ppGalNAc-Ts). The trimeric spike protein (S) of SARS-CoV-2 is highly glycosylated and facilitates the virus's entry into host cells and membrane fusion of the virus. However, the functions and relationship between host ppGalNAc-Ts and O-glycosylation on the S protein remain unclear. Herein, we identify 15 O-glycosites and 10 distinct O-glycan structures on the S protein using an HCD-product-dependent triggered ETD mass spectrometric analysis. We observe that the isoenzyme T6 of ppGalNAc-Ts (ppGalNAc-T6) exhibits high O-glycosylation activity for the S protein, as demonstrated by an on-chip catalytic assay. Overexpression of ppGalNAc-T6 in HEK293 cells significantly enhances the O-glycosylation level of the S protein, not only by adding new O-glycosites but also by increasing O-glycan heterogeneity. Molecular dynamics simulations reveal that O-glycosylation on the protomer-interface regions, modified by ppGalNAc-T6, potentially stabilizes the trimeric S protein structure by establishing hydrogen bonds and non-polar interactions between adjacent protomers. Furthermore, mutation frequency analysis indicates that most O-glycosites of the S protein are conserved during the evolution of SARS-CoV-2 variants. Taken together, our finding demonstrate that host O-glycosyltransferases dynamically regulate the O-glycosylation of the S protein, which may influence the trimeric structural stability of the protein. This work provides structural insights into the functional role of specific host O-glycosyltransferases in regulating the O-glycosylation of viral envelope proteins.
Collapse
Affiliation(s)
- Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
- SCSB (China)-AIST (Japan) Joint Medical Glycomics LaboratoryShanghai200240China
| | - Han Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jiaqi Tian
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
- School of Medical Information and EngineeringXuzhou Medical UniversityXuzhou221000China
| | - Xin Ku
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Rumeng Wei
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jingli Hou
- Intrumental Analysis CenterShanghai Jiao Tong UniversityShanghai200240China
| | - Can Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Fang Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Xia Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Yang Li
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Hiroyuki Kaji
- SCSB (China)-AIST (Japan) Joint Medical Glycomics LaboratoryShanghai200240China
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Atsushi Kuno
- SCSB (China)-AIST (Japan) Joint Medical Glycomics LaboratoryShanghai200240China
- Molecular and Cellular Glycoproteomics Research GroupCellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)Tsukuba305-8577Japan
| | - Wei Yan
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
- SCSB (China)-AIST (Japan) Joint Medical Glycomics LaboratoryShanghai200240China
| |
Collapse
|
25
|
Yue S, Wang X, Wang L, Li J, Zhou Y, Chen Y, Zhou Z, Yang X, Shi X, Gao S, Wen Z, Zhu X, Wang Y, Yang S. MOTAI: A Novel Method for the Study of O-GalNAcylation and Complex O-Glycosylation in Cancer. Anal Chem 2024; 96:11137-11145. [PMID: 38953491 PMCID: PMC11257061 DOI: 10.1021/acs.analchem.3c05018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The Tn antigen, an immature truncated O-glycosylation, is a promising biomarker for cancer detection and diagnosis. However, reliable methods for analyzing O-GalNAcylation and complex O-glycosylation are lacking. Here, we develop a novel method, MOTAI, for the sequential analysis of O-glycosylation using different O-glycoproteases. MOTAI conjugates glycopeptides on a solid support and releases different types of O-glycosylation through sequential enzymatic digestion by O-glycoproteases, including OpeRATOR and IMPa. Because OpeRATOR has less activity on O-GalNAcylation, MOTAI enriches O-GalNAcylation for subsequent analysis. We demonstrate the effectiveness of MOTAI by analyzing fetuin O-glycosylation and Jurkat cell lines. We then apply MOTAI to analyze colorectal cancer and benign colorectal polyps. We identify 32 Tn/sTn-glycoproteins and 43 T/sT-glycoproteins that are significantly increased in tumor tissues. Gene Ontology analysis reveals that most of these proteins are ECM proteins involved in the adhesion process of the intercellular matrix. Additionally, the protein disulfide isomerase CRELD2 has a significant difference in Tn expression, and the abnormally glycosylated T345 and S349 O-glycosylation sites in cancer group samples may promote the secretion of CRELD2 and ultimately tumorigenesis through ECM reshaping. In summary, MOTAI provides a powerful new tool for the in-depth analysis of O-GalNAcylation and complex O-glycosylation. It also reveals the upregulation of Tn/sTn-glycoproteins in colorectal cancer, which may provide new insights into cancer biology and biomarker discovery.
Collapse
Affiliation(s)
- Shuang Yue
- Center
for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Xiaotong Wang
- Department
of Hepatology and Gastroenterology, The
Affiliated Infectious Hospital of Soochow University, Suzhou 215004, China
| | - Lei Wang
- Protein
Metrics LLC, Room 201-01,
Building A, Novasiot, 58 Xiangke Road, Zhangjiang, Shanghai 201203, China
| | - Jiajia Li
- Center
for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Yufeng Zhou
- Center
for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Yan Chen
- Center
for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Zeyang Zhou
- Department
of General Surgery, The Second Affiliated
Hospital of Soochow University, Suzhou 215004, China
| | - Xiaodong Yang
- Department
of General Surgery, The Second Affiliated
Hospital of Soochow University, Suzhou 215004, China
| | - Xiaofeng Shi
- New
England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts 01938, United States
| | - Song Gao
- Jiangsu Key
Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhongmin Wen
- Health
Management Center, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xiaojun Zhu
- Health
Management Center, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Yan Wang
- Mass
Spectrometry Facility, National Institute of Dental and Craniofacial
Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Shuang Yang
- Center
for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
- Health
Management Center, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
26
|
Chongsaritsinsuk J, Rangel-Angarita V, Mahoney KE, Lucas TM, Enny OM, Katemauswa M, Malaker SA. Quantification and site-specific analysis of co-occupied N- and O-glycopeptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602348. [PMID: 39005468 PMCID: PMC11245114 DOI: 10.1101/2024.07.06.602348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Protein glycosylation is a complex post-translational modification that is generally classified as N- or O-linked. Site-specific analysis of glycopeptides is accomplished with a variety of fragmentation methods, depending on the type of glycosylation being investigated and the instrumentation available. For instance, collisional dissociation methods are frequently used for N-glycoproteomic analysis with the assumption that one N-sequon exists per tryptic peptide. Alternatively, electron-based methods are indispensable for O-glycosite localization. However, the presence of simultaneously N- and O-glycosylated peptides could suggest the necessity of electron-based fragmentation methods for N-glycoproteomics, which is not commonly performed. Thus, we quantified the prevalence of N- and O-glycopeptides in mucins and other glycoproteins. A much higher frequency of co-occupancy within mucins was detected whereas only a negligible occurrence occurred within non-mucin glycoproteins. This was demonstrated from analyses of recombinant and/or purified proteins, as well as more complex samples. Where co-occupancy occurred, O-glycosites were frequently localized to the Ser/Thr within the N-sequon. Additionally, we found that O-glycans in close proximity to the occupied Asn were predominantly unelaborated core 1 structures, while those further away were more extended. Overall, we demonstrate electron-based methods are required for robust site-specific analysis of mucins, wherein co-occupancy is more prevalent. Conversely, collisional methods are generally sufficient for analyses of other types of glycoproteins.
Collapse
|
27
|
Mahoney KE, Malaker SA. Analysis of Mucin-Domain Glycoproteins Using Mass Spectrometry. Curr Protoc 2024; 4:e1100. [PMID: 38984456 PMCID: PMC11239139 DOI: 10.1002/cpz1.1100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Mucin-domain glycoproteins are characterized by their high density of glycosylated serine and threonine residues, which complicates their analysis by mass spectrometry. The dense glycosylation renders the protein backbone inaccessible to workhorse proteases like trypsin, the vast heterogeneity of glycosylation often results in ion suppression from unmodified peptides, and search algorithms struggle to confidently analyze and site-localize O-glycosites. We have made a number of advances to address these challenges, rendering mucinomics possible for the first time. Here, we summarize these contributions and provide a detailed protocol for mass spectrometric analysis of mucin-domain glycoproteins. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Enrichment of mucin-domain glycoproteins Basic Protocol 2: Enzymatic digestion of mucin-domain glycoprotein(s) Basic Protocol 3: Mass spectrometry data collection for O-glycopeptides Basic Protocol 4: Mass spectrometry data analysis of O-glycopeptides.
Collapse
|
28
|
Rivet-Noor CR, Merchak AR, Render C, Gay NM, Beiter RM, Brown RM, Keeler A, Moreau GB, Li S, Olgun DG, Steigmeyer AD, Ofer R, Phan T, Vemuri K, Chen L, Mahoney KE, Shin JB, Malaker SA, Deppmann C, Verzi MP, Gaultier A. Stress-induced mucin 13 reductions drive intestinal microbiome shifts and despair behaviors. Brain Behav Immun 2024; 119:665-680. [PMID: 38579936 PMCID: PMC11187485 DOI: 10.1016/j.bbi.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/26/2024] [Accepted: 03/17/2024] [Indexed: 04/07/2024] Open
Abstract
Depression is a prevalent psychological condition with limited treatment options. While its etiology is multifactorial, both chronic stress and changes in microbiome composition are associated with disease pathology. Stress is known to induce microbiome dysbiosis, defined here as a change in microbial composition associated with a pathological condition. This state of dysbiosis is known to feedback on depressive symptoms. While studies have demonstrated that targeted restoration of the microbiome can alleviate depressive-like symptoms in mice, translating these findings to human patients has proven challenging due to the complexity of the human microbiome. As such, there is an urgent need to identify factors upstream of microbial dysbiosis. Here we investigate the role of mucin 13 as an upstream mediator of microbiome composition changes in the context of stress. Using a model of chronic stress, we show that the glycocalyx protein, mucin 13, is selectively reduced after psychological stress exposure. We further demonstrate that the reduction of Muc13 is mediated by the Hnf4 transcription factor family. Finally, we determine that deleting Muc13 is sufficient to drive microbiome shifts and despair behaviors. These findings shed light on the mechanisms behind stress-induced microbial changes and reveal a novel regulator of mucin 13 expression.
Collapse
Affiliation(s)
- Courtney R Rivet-Noor
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA.
| | - Andrea R Merchak
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Caroline Render
- Undergraduate Department of Global Studies, University of Virginia College of Arts and Sciences, Charlottesville, VA 22904, USA
| | - Naudia M Gay
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Rebecca M Beiter
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ryan M Brown
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Austin Keeler
- Department of Biology, University of Virginia College of Arts and Sciences, Charlottesville, VA 22904, USA
| | - G Brett Moreau
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sihan Li
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Deniz G Olgun
- Undergraduate Department of Computer Science, University of Virginia School of Engineering and Applied Science, Charlottesville, VA 22904, USA; Undergraduate Department of Neuroscience Studies, University of Virginia College of Arts and Sciences, Charlottesville, VA 22904, USA
| | | | - Rachel Ofer
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers Center for Lipid Research, Division of Environmental & Population Health Biosciences, EOHSI, New Brunswick, NJ 08901, USA
| | - Tobey Phan
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers Center for Lipid Research, Division of Environmental & Population Health Biosciences, EOHSI, New Brunswick, NJ 08901, USA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Keira E Mahoney
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Jung-Bum Shin
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Chris Deppmann
- Department of Biology, University of Virginia College of Arts and Sciences, Charlottesville, VA 22904, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers Center for Lipid Research, Division of Environmental & Population Health Biosciences, EOHSI, New Brunswick, NJ 08901, USA
| | - Alban Gaultier
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
29
|
Jame-Chenarboo Z, Gray TE, Macauley MS. Advances in understanding and exploiting Siglec-glycan interactions. Curr Opin Chem Biol 2024; 80:102454. [PMID: 38631213 DOI: 10.1016/j.cbpa.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Sialic-acid-binding immunoglobulin-type lectins (Siglecs) are a family of cell-surface immunomodulatory receptors that recognize sialic-acid-containing glycans. The majority of Siglecs have an inhibitory motif in their intercellular domain and can regulate the cellular activation of immune cells. Importantly, the immunomodulatory role of Siglecs is regulated by engagement with distinct sialoglycan ligands. However, there are still many unanswered questions about the precise ligand(s) recognized by individual Siglec family members. New tools and approaches to study Siglec-ligand interactions are rapidly filling this knowledge gap. This review provides an overview of recent advances in discovering Siglec ligands as well as the development of approaches to modulate the function of Siglecs. In both aspects, chemical biology approaches are emphasized with a discussion on how these are complementing biochemical and genetic strategies.
Collapse
Affiliation(s)
| | - Taylor E Gray
- Department of Chemistry, University of Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Canada.
| |
Collapse
|
30
|
Elzinga J, Narimatsu Y, de Haan N, Clausen H, de Vos WM, Tytgat HLP. Binding of Akkermansia muciniphila to mucin is O-glycan specific. Nat Commun 2024; 15:4582. [PMID: 38811534 PMCID: PMC11137150 DOI: 10.1038/s41467-024-48770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
The intestinal anaerobic bacterium Akkermansia muciniphila is specialized in the degradation of mucins, which are heavily O-glycosylated proteins that constitute the major components of the mucus lining the intestine. Despite that adhesion to mucins is considered critical for the persistence of A. muciniphila in the human intestinal tract, our knowledge of how this intestinal symbiont recognizes and binds to mucins is still limited. Here, we first show that the mucin-binding properties of A. muciniphila are independent of environmental oxygen concentrations and not abolished by pasteurization. We then dissected the mucin-binding properties of pasteurized A. muciniphila by use of a recently developed cell-based mucin array that enables display of the tandem repeats of human mucins with distinct O-glycan patterns and structures. We found that A. muciniphila recognizes the unsialylated LacNAc (Galβ1-4GlcNAcβ1-R) disaccharide selectively on core2 and core3 O-glycans. This disaccharide epitope is abundantly found on human colonic mucins capped by sialic acids, and we demonstrated that endogenous A. muciniphila neuraminidase activity can uncover the epitope and promote binding. In summary, our study provides insights into the mucin-binding properties important for colonization of a key mucin-foraging bacterium.
Collapse
Affiliation(s)
- Janneke Elzinga
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- GlycoDisplay ApS, Copenhagen, Denmark
| | - Noortje de Haan
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hanne L P Tytgat
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland.
| |
Collapse
|
31
|
Goyette MA, Stevens LE, DePinho CR, Seehawer M, Nishida J, Li Z, Wilde CM, Li R, Qiu X, Pyke AL, Zhao S, Lim K, Tender GS, Northey JJ, Riley NM, Long HW, Bertozzi CR, Weaver VM, Polyak K. Cancer-stromal cell interactions in breast cancer brain metastases induce glycocalyx-mediated resistance to HER2-targeting therapies. Proc Natl Acad Sci U S A 2024; 121:e2322688121. [PMID: 38709925 PMCID: PMC11098130 DOI: 10.1073/pnas.2322688121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/27/2024] [Indexed: 05/08/2024] Open
Abstract
Brain metastatic breast cancer is particularly lethal largely due to therapeutic resistance. Almost half of the patients with metastatic HER2-positive breast cancer develop brain metastases, representing a major clinical challenge. We previously described that cancer-associated fibroblasts are an important source of resistance in primary tumors. Here, we report that breast cancer brain metastasis stromal cell interactions in 3D cocultures induce therapeutic resistance to HER2-targeting agents, particularly to the small molecule inhibitor of HER2/EGFR neratinib. We investigated the underlying mechanisms using a synthetic Notch reporter system enabling the sorting of cancer cells that directly interact with stromal cells. We identified mucins and bulky glycoprotein synthesis as top-up-regulated genes and pathways by comparing the gene expression and chromatin profiles of stroma-contact and no-contact cancer cells before and after neratinib treatment. Glycoprotein gene signatures were also enriched in human brain metastases compared to primary tumors. We confirmed increased glycocalyx surrounding cocultures by immunofluorescence and showed that mucinase treatment increased sensitivity to neratinib by enabling a more efficient inhibition of EGFR/HER2 signaling in cancer cells. Overexpression of truncated MUC1 lacking the intracellular domain as a model of increased glycocalyx-induced resistance to neratinib both in cell culture and in experimental brain metastases in immunodeficient mice. Our results highlight the importance of glycoproteins as a resistance mechanism to HER2-targeting therapies in breast cancer brain metastases.
Collapse
Affiliation(s)
- Marie-Anne Goyette
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Medicine, Harvard Medical School, Boston, MA02115
- Department of Medicine, Brigham and Women's Hospital, Boston, MA02115
| | - Laura E. Stevens
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Medicine, Harvard Medical School, Boston, MA02115
- Department of Medicine, Brigham and Women's Hospital, Boston, MA02115
| | - Carolyn R. DePinho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Medicine, Harvard Medical School, Boston, MA02115
- Department of Medicine, Brigham and Women's Hospital, Boston, MA02115
| | - Jun Nishida
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Medicine, Harvard Medical School, Boston, MA02115
- Department of Medicine, Brigham and Women's Hospital, Boston, MA02115
| | - Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Medicine, Harvard Medical School, Boston, MA02115
- Department of Medicine, Brigham and Women's Hospital, Boston, MA02115
| | - Callahan M. Wilde
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Rong Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA02215
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA02215
| | - Alanna L. Pyke
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Stephanie Zhao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Klothilda Lim
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA02215
| | | | - Jason J. Northey
- Center for Bioengineering and Tissue Regeneration, University of California San Francisco, San Francisco, CA94143
| | | | - Henry W. Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA02215
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA94305
- HHMI, Stanford University, Stanford, CA94305
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, University of California San Francisco, San Francisco, CA94143
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA94143
- Department of Surgery, University of California San Francisco, San Francisco, CA94143
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA94143
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA94143
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Medicine, Harvard Medical School, Boston, MA02115
- Department of Medicine, Brigham and Women's Hospital, Boston, MA02115
| |
Collapse
|
32
|
Zhang SZ, Lobo A, Li PF, Zhang YF. Sialylated glycoproteins and sialyltransferases in digestive cancers: Mechanisms, diagnostic biomarkers, and therapeutic targets. Crit Rev Oncol Hematol 2024; 197:104330. [PMID: 38556071 DOI: 10.1016/j.critrevonc.2024.104330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Sialic acid (SA), as the ultimate epitope of polysaccharides, can act as a cap at the end of polysaccharide chains to prevent their overextension. Sialylation is the enzymatic process of transferring SA residues onto polysaccharides and is catalyzed by a group of enzymes known as sialyltransferases (SiaTs). It is noteworthy that the sialylation level of glycoproteins is significantly altered when digestive cancer occurs. And this alteration exhibits a close correlation with the progression of these cancers. In this review, from the perspective of altered SiaTs expression levels and changed glycoprotein sialylation patterns, we summarize the pathogenesis of gastric cancer (GC), colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDAC), and hepatocellular carcinoma (HCC). Furthermore, we propose potential early diagnostic biomarkers and prognostic indicators for different digestive cancers. Finally, we summarize the therapeutic value of sialylation in digestive system cancers.
Collapse
Affiliation(s)
- Shao-Ze Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Amara Lobo
- Department of Critical Care Medicine Holy Family Hospital, St Andrew's Road, Bandra (West), Mumbai 400050, India
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
33
|
Hartig J, Young LEA, Grimsley G, Mehta AS, Ippolito JE, Leach RJ, Angel PM, Drake RR. The glycosylation landscape of prostate cancer tissues and biofluids. Adv Cancer Res 2024; 161:1-30. [PMID: 39032948 DOI: 10.1016/bs.acr.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
An overview of the role of glycosylation in prostate cancer (PCa) development and progression is presented, focusing on recent advancements in defining the N-glycome through glycomic profiling and glycoproteomic methodologies. Glycosylation is a common post-translational modification typified by oligosaccharides attached N-linked to asparagine or O-linked to serine or threonine on carrier proteins. These attached sugars have crucial roles in protein folding and cellular recognition processes, such that altered glycosylation is a hallmark of cancer pathogenesis and progression. In the past decade, advancements in N-glycan profiling workflows using Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) technology have been applied to define the spatial distribution of glycans in PCa tissues. Multiple studies applying N-glycan MALDI-MSI to pathology-defined PCa tissues have identified significant alterations in N-glycan profiles associated with PCa progression. N-glycan compositions progressively increase in number, and structural complexity due to increased fucosylation and sialylation. Additionally, significant progress has been made in defining the glycan and glycopeptide compositions of prostatic-derived glycoproteins like prostate-specific antigen in tissues and biofluids. The glycosyltransferases involved in these changes are potential drug targets for PCa, and new approaches in this area are summarized. These advancements will be discussed in the context of the further development of clinical diagnostics and therapeutics targeting glycans and glycoproteins associated with PCa progression. Integration of large scale spatial glycomic data for PCa with other spatial-omic methodologies is now feasible at the tissue and single-cell levels.
Collapse
Affiliation(s)
- Jordan Hartig
- Medical University of South Carolina, Charleston, SC, United States
| | | | - Grace Grimsley
- Medical University of South Carolina, Charleston, SC, United States
| | - Anand S Mehta
- Medical University of South Carolina, Charleston, SC, United States
| | - Joseph E Ippolito
- Washington University School of Medicine in Saint Louis, St. Louis, MO, United States
| | - Robin J Leach
- University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Peggi M Angel
- Medical University of South Carolina, Charleston, SC, United States
| | - Richard R Drake
- Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
34
|
Touhara KK, Rossen ND, Deng F, Chu T, Harrington AM, Garcia Caraballo S, Brizuela M, O'Donnell T, Cil O, Brierley SM, Li Y, Julius D. Crypt and Villus Enterochromaffin Cells are Distinct Stress Sensors in the Gut. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579180. [PMID: 38370814 PMCID: PMC10871270 DOI: 10.1101/2024.02.06.579180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The crypt-villus structure of the small intestine serves as an essential protective barrier, with its integrity monitored by the gut's sensory system. Enterochromaffin (EC) cells, which are rare sensory epithelial cells that release serotonin (5-HT), surveil the mucosal environment and signal both within and outside the gut. However, it remains unclear whether EC cells in intestinal crypts and villi respond to different stimuli and elicit distinct responses. In this study, we introduce a new reporter mouse model to observe the release and propagation of serotonin in live intestines. Using this system, we show that crypt EC cells exhibit two modes of serotonin release: transient receptor potential A1 (TRPA1)-dependent tonic serotonin release that controls basal ionic secretion, and irritant-evoked serotonin release that activates gut sensory neurons. Furthermore, we find that a thick protective mucus layer prevents TRPA1 receptors on crypt EC cells from responding to luminal irritants such as reactive electrophiles; if this mucus layer is compromised, then crypt EC cells become susceptible to activation by luminal irritants. On the other hand, villus EC cells detect oxidative stress through TRPM2 channels and co-release serotonin and ATP to activate nearby gut sensory fibers. Our work highlights the physiological importance of intestinal architecture and differential TRP channel expression in sensing noxious stimuli that elicit nausea and/or pain sensations in the gut.
Collapse
|
35
|
Kang T, Budhraja R, Kim J, Joshi N, Garapati K, Pandey A. Global O-glycoproteome enrichment and analysis enabled by a combinatorial enzymatic workflow. CELL REPORTS METHODS 2024; 4:100744. [PMID: 38582075 PMCID: PMC11046030 DOI: 10.1016/j.crmeth.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/25/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
A comprehensive analysis of site-specific protein O-glycosylation is hindered by the absence of a consensus O-glycosylation motif, the diversity of O-glycan structures, and the lack of a universal enzyme that cleaves attached O-glycans. Here, we report the development of a robust O-glycoproteomic workflow for analyzing complex biological samples by combining four different strategies: removal of N-glycans, complementary digestion using O-glycoprotease (IMPa) with/without another protease, glycopeptide enrichment, and mass spectrometry with fragmentation of glycopeptides using stepped collision energy. Using this workflow, we cataloged 474 O-glycopeptides on 189 O-glycosites derived from 79 O-glycoproteins from human plasma. These data revealed O-glycosylation of several abundant proteins that have not been previously reported. Because many of the proteins that contained unannotated O-glycosylation sites have been extensively studied, we wished to confirm glycosylation at these sites in a targeted fashion. Thus, we analyzed selected purified proteins (kininogen-1, fetuin-A, fibrinogen, apolipoprotein E, and plasminogen) in independent experiments and validated the previously unknown O-glycosites.
Collapse
Affiliation(s)
- Taewook Kang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jinyong Kim
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Neha Joshi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kishore Garapati
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
36
|
Hunter C, Derksen T, Makhsous S, Doll M, Perez SR, Scott NE, Willis LM. Site-specific immobilization of the endosialidase reveals QSOX2 is a novel polysialylated protein. Glycobiology 2024; 34:cwae026. [PMID: 38489772 PMCID: PMC11031136 DOI: 10.1093/glycob/cwae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024] Open
Abstract
Polysialic acid (polySia) is a linear polymer of α2,8-linked sialic acid residues that is of fundamental biological interest due to its pivotal roles in the regulation of the nervous, immune, and reproductive systems in healthy human adults. PolySia is also dysregulated in several chronic diseases, including cancers and mental health disorders. However, the mechanisms underpinning polySia biology in health and disease remain largely unknown. The polySia-specific hydrolase, endoneuraminidase NF (EndoN), and the catalytically inactive polySia lectin EndoNDM, have been extensively used for studying polySia. However, EndoN is heat stable and remains associated with cells after washing. When studying polySia in systems with multiple polysialylated species, the residual EndoN that cannot be removed confounds data interpretation. We developed a strategy for site-specific immobilization of EndoN on streptavidin-coated magnetic beads. We showed that immobilizing EndoN allows for effective removal of the enzyme from samples, while retaining hydrolase activity. We used the same strategy to immobilize the polySia lectin EndoNDM, which enabled the enrichment of polysialylated proteins from complex mixtures such as serum for their identification via mass spectrometry. We used this methodology to identify a novel polysialylated protein, QSOX2, which is secreted from the breast cancer cell line MCF-7. This method of site-specific immobilization can be utilized for other enzymes and lectins to yield insight into glycobiology.
Collapse
Affiliation(s)
- Carmanah Hunter
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Tahlia Derksen
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Sogand Makhsous
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Matt Doll
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Samantha Rodriguez Perez
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Lisa M Willis
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
37
|
Deleray AC, Saini SS, Wallberg AC, Kramer JR. Synthetic Antifreeze Glycoproteins with Potent Ice-Binding Activity. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:3424-3434. [PMID: 38699199 PMCID: PMC11064932 DOI: 10.1021/acs.chemmater.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Antifreeze glycoproteins (AFGPs) are produced by extremophiles to defend against tissue damage in freezing climates. Cumbersome isolation from polar fish has limited probing AFGP molecular mechanisms of action and limited development of bioinspired cryoprotectants for application in agriculture, foods, coatings, and biomedicine. Here, we present a rapid, scalable, and tunable route to synthetic AFGPs (sAFGPs) using N-carboxyanhydride polymerization. Our materials are the first mimics to harness the molecular size, chemical motifs, and long-range conformation of native AFGPs. We found that ice-binding activity increases with chain length, Ala is a key residue, and the native protein sequence is not required. The glycan structure had only minor effects, and all glycans examined displayed antifreeze activity. The sAFGPs are biodegradable, nontoxic, internalized into endocytosing cells, and bystanders in cryopreservation of human red blood cells. Overall, our sAFGPs functioned as surrogates for bona fide AFGPs, solving a long-standing challenge in accessing natural antifreeze materials.
Collapse
Affiliation(s)
- Anna C Deleray
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Simranpreet S Saini
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Alexander C Wallberg
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jessica R Kramer
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
38
|
Mahoney KE, Chang V, Lucas TM, Maruszko K, Malaker SA. Mass Spectrometry-Compatible Elution Technique Enables an Improved Mucin-Selective Enrichment Strategy to Probe the Mucinome. Anal Chem 2024; 96:5242-5250. [PMID: 38512228 PMCID: PMC12050071 DOI: 10.1021/acs.analchem.3c05762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of healthy and disease-driven biological functions. Previously, we developed a mucin-selective enrichment strategy by employing a catalytically inactive mucinase (StcE) conjugated to a solid support. While this method was effective, it suffered from low throughput and high sample requirements. Further, the elution step required boiling in SDS, thus necessitating an in-gel digest with trypsin. Here, we introduce innovative elution conditions amenable to mucinase digestion and downstream analysis using mass spectrometry. This increased throughput and lowered sample input while maintaining mucin selectivity and enhancing the glycopeptide signal. We then benchmarked this technique against different O-glycan binding moieties for their ability to enrich mucins from various cell lines and human serum. Overall, the new method outperformed our previous procedure and all of the other enrichment techniques tested. This allowed for the effective isolation of more mucin-domain glycoproteins, resulting in a high number of O-glycopeptides, thus enhancing our ability to analyze the mucinome.
Collapse
Affiliation(s)
- Keira E. Mahoney
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Vincent Chang
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Taryn M. Lucas
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Krystyna Maruszko
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Stacy A. Malaker
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
39
|
Pedram K, Shon DJ, Tender GS, Mantuano NR, Northey JJ, Metcalf KJ, Wisnovsky SP, Riley NM, Forcina GC, Malaker SA, Kuo A, George BM, Miller CL, Casey KM, Vilches-Moure JG, Ferracane MJ, Weaver VM, Läubli H, Bertozzi CR. Design of a mucin-selective protease for targeted degradation of cancer-associated mucins. Nat Biotechnol 2024; 42:597-607. [PMID: 37537499 PMCID: PMC11018308 DOI: 10.1038/s41587-023-01840-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 05/22/2023] [Indexed: 08/05/2023]
Abstract
Targeted protein degradation is an emerging strategy for the elimination of classically undruggable proteins. Here, to expand the landscape of targetable substrates, we designed degraders that achieve substrate selectivity via recognition of a discrete peptide and glycan motif and achieve cell-type selectivity via antigen-driven cell-surface binding. We applied this approach to mucins, O-glycosylated proteins that drive cancer progression through biophysical and immunological mechanisms. Engineering of a bacterial mucin-selective protease yielded a variant for fusion to a cancer antigen-binding nanobody. The resulting conjugate selectively degraded mucins on cancer cells, promoted cell death in culture models of mucin-driven growth and survival, and reduced tumor growth in mouse models of breast cancer progression. This work establishes a blueprint for the development of biologics that degrade specific protein glycoforms on target cells.
Collapse
Affiliation(s)
- Kayvon Pedram
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - D Judy Shon
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Gabrielle S Tender
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Natalia R Mantuano
- Cancer Immunotherapy Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Oncology, Department of Theragnostics, University Hospital, Basel, Switzerland
| | - Jason J Northey
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Kevin J Metcalf
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Simon P Wisnovsky
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicholas M Riley
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Giovanni C Forcina
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Stacy A Malaker
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Angel Kuo
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Benson M George
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Caitlyn L Miller
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Departments of Radiation Oncology and Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Helen Diller Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Heinz Läubli
- Cancer Immunotherapy Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Oncology, Department of Theragnostics, University Hospital, Basel, Switzerland
| | - Carolyn R Bertozzi
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford, CA, USA.
| |
Collapse
|
40
|
Lee J, Park JE, Lee D, Seo N, An HJ. Advancements in protein glycosylation biomarkers for ovarian cancer through mass spectrometry-based approaches. Expert Rev Mol Diagn 2024; 24:249-258. [PMID: 38112537 DOI: 10.1080/14737159.2023.2297933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Ovarian cancer, characterized by metastasis and reduced 5-year survival rates, stands as a substantial factor in the mortality of gynecological malignancies worldwide. The challenge of delayed diagnosis originates from vague early symptoms and the absence of efficient screening and diagnostic biomarkers for early cancer detection. Recent studies have explored the intricate interplay between ovarian cancer and protein glycosylation, unveiling the potential significance of glycosylation-oriented biomarkers. AREAS COVERED This review examines the progress in glycosylation biomarker research, with particular emphasis on advances driven by mass spectrometry-based technologies. We document milestones achieved, discuss encountered limitations, and also highlight potential areas for future research and development of protein glycosylation biomarkers for ovarian cancer. EXPERT OPINION The association of glycosylation in ovarian cancer is well known, but current research lacks desired sensitivity and specificity for early detection. Notably, investigations into protein-specific and site-specific glycoproteomics have the potential to significantly enhance our understanding of ovarian cancer and facilitate the identification of glycosylation-based biomarkers. Furthermore, the integration of advanced mass spectrometry techniques with AI-driven analysis and glycome databases holds the promise for revolutionizing biomarker discovery for ovarian cancer, ultimately transforming diagnosis and improving patient outcomes.
Collapse
Affiliation(s)
- Jua Lee
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Ji Eun Park
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia Glycomics Reference Site, Daejeon, Republic of Korea
| | - Daum Lee
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia Glycomics Reference Site, Daejeon, Republic of Korea
| | - Nari Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia Glycomics Reference Site, Daejeon, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia Glycomics Reference Site, Daejeon, Republic of Korea
| |
Collapse
|
41
|
He K, Baniasad M, Kwon H, Caval T, Xu G, Lebrilla C, Hommes DW, Bertozzi C. Decoding the glycoproteome: a new frontier for biomarker discovery in cancer. J Hematol Oncol 2024; 17:12. [PMID: 38515194 PMCID: PMC10958865 DOI: 10.1186/s13045-024-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Cancer early detection and treatment response prediction continue to pose significant challenges. Cancer liquid biopsies focusing on detecting circulating tumor cells (CTCs) and DNA (ctDNA) have shown enormous potential due to their non-invasive nature and the implications in precision cancer management. Recently, liquid biopsy has been further expanded to profile glycoproteins, which are the products of post-translational modifications of proteins and play key roles in both normal and pathological processes, including cancers. The advancements in chemical and mass spectrometry-based technologies and artificial intelligence-based platforms have enabled extensive studies of cancer and organ-specific changes in glycans and glycoproteins through glycomics and glycoproteomics. Glycoproteomic analysis has emerged as a promising tool for biomarker discovery and development in early detection of cancers and prediction of treatment efficacy including response to immunotherapies. These biomarkers could play a crucial role in aiding in early intervention and personalized therapy decisions. In this review, we summarize the significant advance in cancer glycoproteomic biomarker studies and the promise and challenges in integration into clinical practice to improve cancer patient care.
Collapse
Affiliation(s)
- Kai He
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA.
| | | | - Hyunwoo Kwon
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | | | - Gege Xu
- InterVenn Biosciences, South San Francisco, USA
| | - Carlito Lebrilla
- Department of Biochemistry and Molecular Medicine, UC Davis Health, Sacramento, USA
| | | | | |
Collapse
|
42
|
Garnham R, Geh D, Nelson R, Ramon-Gil E, Wilson L, Schmidt EN, Walker L, Adamson B, Buskin A, Hepburn AC, Hodgson K, Kendall H, Frame FM, Maitland N, Coffey K, Strand DW, Robson CN, Elliott DJ, Heer R, Macauley M, Munkley J, Gaughan L, Leslie J, Scott E. ST3 beta-galactoside alpha-2,3-sialyltransferase 1 (ST3Gal1) synthesis of Siglec ligands mediates anti-tumour immunity in prostate cancer. Commun Biol 2024; 7:276. [PMID: 38448753 PMCID: PMC10918101 DOI: 10.1038/s42003-024-05924-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Immune checkpoint blockade has yet to produce robust anti-cancer responses for prostate cancer. Sialyltransferases have been shown across several solid tumours, including breast, melanoma, colorectal and prostate to promote immune suppression by synthesising sialoglycans, which act as ligands for Siglec receptors. We report that ST3 beta-galactoside alpha-2,3-sialyltransferase 1 (ST3Gal1) levels negatively correlate with androgen signalling in prostate tumours. We demonstrate that ST3Gal1 plays an important role in modulating tumour immune evasion through the synthesises of sialoglycans with the capacity to engage the Siglec-7 and Siglec-9 immunoreceptors preventing immune clearance of cancer cells. Here, we provide evidence of the expression of Siglec-7/9 ligands and their respective immunoreceptors in prostate tumours. These interactions can be modulated by enzalutamide and may maintain immune suppression in enzalutamide treated tumours. We conclude that the activity of ST3Gal1 is critical to prostate cancer anti-tumour immunity and provide rationale for the use of glyco-immune checkpoint targeting therapies in advanced prostate cancer.
Collapse
Affiliation(s)
- Rebecca Garnham
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Daniel Geh
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Ryan Nelson
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Erik Ramon-Gil
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Laura Wilson
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Laura Walker
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Beth Adamson
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Adriana Buskin
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Anastasia C Hepburn
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Kirsty Hodgson
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Hannah Kendall
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Fiona M Frame
- Cancer Research Unit, Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | - Norman Maitland
- Cancer Research Unit, Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | - Kelly Coffey
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Craig N Robson
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - David J Elliott
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Rakesh Heer
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Matthew Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jennifer Munkley
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Luke Gaughan
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Jack Leslie
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Emma Scott
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK.
| |
Collapse
|
43
|
Park S, Colville MJ, Paek JH, Shurer CR, Singh A, Secor EJ, Sailer CJ, Huang LT, Kuo JCH, Goudge MC, Su J, Kim M, DeLisa MP, Neelamegham S, Lammerding J, Zipfel WR, Fischbach C, Reesink HL, Paszek MJ. Immunoengineering can overcome the glycocalyx armour of cancer cells. NATURE MATERIALS 2024; 23:429-438. [PMID: 38361041 PMCID: PMC11471287 DOI: 10.1038/s41563-024-01808-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
Cancer cell glycocalyx is a major line of defence against immune surveillance. However, how specific physical properties of the glycocalyx are regulated on a molecular level, contribute to immune evasion and may be overcome through immunoengineering must be resolved. Here we report how cancer-associated mucins and their glycosylation contribute to the nanoscale material thickness of the glycocalyx and consequently modulate the functional interactions with cytotoxic immune cells. Natural-killer-cell-mediated cytotoxicity is inversely correlated with the glycocalyx thickness of the target cells. Changes in glycocalyx thickness of approximately 10 nm can alter the susceptibility to immune cell attack. Enhanced stimulation of natural killer and T cells through equipment with chimeric antigen receptors can improve the cytotoxicity against mucin-bearing target cells. Alternatively, cytotoxicity can be enhanced through engineering effector cells to display glycocalyx-editing enzymes, including mucinases and sialidases. Together, our results motivate the development of immunoengineering strategies that overcome the glycocalyx armour of cancer cells.
Collapse
Affiliation(s)
- Sangwoo Park
- Field of Biophysics, Cornell University, Ithaca, NY, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Marshall J Colville
- Field of Biophysics, Cornell University, Ithaca, NY, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Justin H Paek
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Carolyn R Shurer
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Arun Singh
- State University of New York, Buffalo, NY, USA
| | - Erica J Secor
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Cooper J Sailer
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ling-Ting Huang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Joe Chin-Hun Kuo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Marc C Goudge
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | - Jan Lammerding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Warren R Zipfel
- Field of Biophysics, Cornell University, Ithaca, NY, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matthew J Paszek
- Field of Biophysics, Cornell University, Ithaca, NY, USA.
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
44
|
Kumar BS. Recent Developments and Application of Mass Spectrometry Imaging in N-Glycosylation Studies: An Overview. Mass Spectrom (Tokyo) 2024; 13:A0142. [PMID: 38435075 PMCID: PMC10904931 DOI: 10.5702/massspectrometry.a0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 03/05/2024] Open
Abstract
Among the most typical posttranslational modifications is glycosylation, which often involves the covalent binding of an oligosaccharide (glycan) to either an asparagine (N-linked) or a serine/threonine (O-linked) residue. Studies imply that the N-glycan portion of a glycoprotein could serve as a particular disease biomarker rather than the protein itself because N-linked glycans have been widely recognized to evolve with the advancement of tumors and other diseases. N-glycans found on protein asparagine sites have been especially significant. Since N-glycans play clearly defined functions in the folding of proteins, cellular transport, and transmission of signals, modifications to them have been linked to several illnesses. However, because these N-glycans' production is not template driven, they have a substantial morphological range, rendering it difficult to distinguish the species that are most relevant to biology and medicine using standard techniques. Mass spectrometry (MS) techniques have emerged as effective analytical tools for investigating the role of glycosylation in health and illness. This is due to developments in MS equipment, data collection, and sample handling techniques. By recording the spatial dimension of a glycan's distribution in situ, mass spectrometry imaging (MSI) builds atop existing methods while offering added knowledge concerning the structure and functionality of biomolecules. In this review article, we address the current development of glycan MSI, starting with the most used tissue imaging techniques and ionization sources before proceeding on to a discussion on applications and concluding with implications for clinical research.
Collapse
|
45
|
Helms A, Brodbelt JS. Mass Spectrometry Strategies for O-Glycoproteomics. Cells 2024; 13:394. [PMID: 38474358 PMCID: PMC10930906 DOI: 10.3390/cells13050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Glycoproteomics has accelerated in recent decades owing to numerous innovations in the analytical workflow. In particular, new mass spectrometry strategies have contributed to inroads in O-glycoproteomics, a field that lags behind N-glycoproteomics due to several unique challenges associated with the complexity of O-glycosylation. This review will focus on progress in sample preparation, enrichment strategies, and MS/MS techniques for the identification and characterization of O-glycoproteins.
Collapse
Affiliation(s)
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA;
| |
Collapse
|
46
|
Rhee K, Zhou X. Two in one: the emerging concept of bifunctional antibodies. Curr Opin Biotechnol 2024; 85:103050. [PMID: 38142645 PMCID: PMC10922881 DOI: 10.1016/j.copbio.2023.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 11/16/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
Therapeutic antibodies have become indispensable for treating a wide range of diseases, and their significance in drug discovery has expanded considerably over the past few decades. Bifunctional antibodies are now emerging as a promising new drug modality to address previously unmet needs in antibody therapeutics. Distinct from traditional antibodies that operate through an 'occupancy-based' inhibition mechanism, these innovative molecules recruit the protein of interest to a 'biological effector,' initiating specific downstream consequences such as targeted protein degradation or posttranslational modifications. In this review, we emphasize the potential of bifunctional antibodies to tackle diverse biomedical challenges.
Collapse
Affiliation(s)
- Kaitlin Rhee
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Xin Zhou
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Stewart N, Daly J, Drummond-Guy O, Krishnamoorthy V, Stark JC, Riley NM, Williams KC, Bertozzi CR, Wisnovsky S. The glycoimmune checkpoint receptor Siglec-7 interacts with T-cell ligands and regulates T-cell activation. J Biol Chem 2024; 300:105579. [PMID: 38141764 PMCID: PMC10831161 DOI: 10.1016/j.jbc.2023.105579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 12/25/2023] Open
Abstract
Siglec-7 (sialic acid-binding immunoglobulin-like lectin 7) is a glycan-binding immune receptor that is emerging as a significant target of interest for cancer immunotherapy. The physiological ligands that bind Siglec-7, however, remain incompletely defined. In this study, we characterized the expression of Siglec-7 ligands on peripheral immune cell subsets and assessed whether Siglec-7 functionally regulates interactions between immune cells. We found that disialyl core 1 O-glycans are the major immune ligands for Siglec-7 and that these ligands are particularly highly expressed on naïve T-cells. Densely glycosylated sialomucins are the primary carriers of these glycans, in particular a glycoform of the cell-surface marker CD43. Biosynthesis of Siglec-7-binding glycans is dynamically controlled on different immune cell subsets through a genetic circuit involving the glycosyltransferase GCNT1. Siglec-7 blockade was found to increase activation of both primary T-cells and antigen-presenting dendritic cells in vitro, indicating that Siglec-7 binds T-cell glycans to regulate intraimmune signaling. Finally, we present evidence that Siglec-7 directly activates signaling pathways in T-cells, suggesting a new biological function for this receptor. These studies conclusively demonstrate the existence of a novel Siglec-7-mediated signaling axis that physiologically regulates T-cell activity. Going forward, our findings have significant implications for the design and implementation of therapies targeting immunoregulatory Siglec receptors.
Collapse
Affiliation(s)
- Natalie Stewart
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Daly
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Olivia Drummond-Guy
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vignesh Krishnamoorthy
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica C Stark
- Department of Chemistry & Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Boston, Massachusetts, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Boston, Massachusetts, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Boston, Massachusetts, USA
| | - Nicholas M Riley
- Department of Chemistry & Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Karla C Williams
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolyn R Bertozzi
- Department of Chemistry & Sarafan ChEM-H, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Simon Wisnovsky
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
48
|
Hu W, Ge W, Xia P, Chen Y, Du J, Hu G, Wu Z, Zhang X, Yang C, Jiang J, Yang S, Xia J. Diagnostic Potential of Serum Glycome Analysis in Lung Cancer: A Glycopattern Study. J Proteome Res 2024; 23:500-509. [PMID: 38097511 DOI: 10.1021/acs.jproteome.3c00645] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Lung cancer is the leading cause of cancer-related death, with high morbidity and mortality rates due to the lack of reliable methods for diagnosing lung cancer at an early stage. Low-dose computed tomography can help detect abnormal areas in the lungs, but only 16% of cases are diagnosed early. Tests for lung cancer markers are often employed to determine genetic expression or mutations in lung carcinogenesis. Serum glycome analysis is a promising new method for early lung cancer diagnosis as glycopatterns exhibit significant differences in lung cancer patients. In this study, we employed a solid-phase chemoenzymatic method to systematically compare glycopatterns in benign cases, adenocarcinoma before and after surgery, and advanced stages of adenocarcinoma. Our findings indicate that serum high-mannose levels are elevated in both benign cases and adenocarcinoma, while complex N-glycans, including fucose and 2,6-linked sialic acid, are downregulated in the serum. Subsequently, we developed an algorithm that utilizes 16 altered N-glycans, 7 upregulated and 9 downregulated, to generate a score based on their intensity. This score can predict the stages of cancer progression in patients through glycan characterization. This methodology offers a potential means of diagnosing lung cancer through serum glycome analysis.
Collapse
Affiliation(s)
- Wenhua Hu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wei Ge
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Respiratory Medicine, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China
| | - Peng Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yan Chen
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Guangxu Hu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chuanlai Yang
- Health Examination Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Junhong Jiang
- Department of Respiratory Medicine, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Health Examination Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
49
|
Takada H, Katayama T, Katoh T. Cultivation of Microorganisms in Media Supplemented with Mucin Glycoproteins. Methods Mol Biol 2024; 2763:331-335. [PMID: 38347422 DOI: 10.1007/978-1-0716-3670-1_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
To examine the mucin-utilizing capacity of bacterial isolates from fecal samples, an in vitro cultivation method using mucins as a carbon source should be considered. This chapter describes a practical method for cultivating bacteria in media containing mucin glycoproteins; for this cultivation method, several factors are considered due to the physical nature of mucin glycoproteins.
Collapse
Affiliation(s)
- Hiromi Takada
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Toshihiko Katoh
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
50
|
Mahoney KE, Chang V, Lucas TM, Maruszko K, Malaker SA. Optimized mucin-selective enrichment strategy to probe the mucinome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572204. [PMID: 38187615 PMCID: PMC10769219 DOI: 10.1101/2023.12.18.572204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of healthy and disease-driven biological functions. Previously, we developed a mucin-selective enrichment strategy by employing a catalytically inactive mucinase (StcE) conjugated to solid support. While this method was effective, it suffered from low throughput and high sample requirements. Further, the elution step required boiling in SDS, thus necessitating an in-gel digest with trypsin. Here, we optimized our previous enrichment method to include elution conditions amenable to mucinase digestion and downstream analysis with mass spectrometry. This increased throughput and lowered sample input while maintaining mucin selectivity and enhancing glycopeptide signal. We then benchmarked this technique against different O-glycan binding moieties for their ability to enrich mucins from various cell lines and human serum. Overall, the new method outperformed our previous procedure and all other enrichment techniques tested. This allowed for effective isolation of more mucin-domain glycoproteins, resulting in a high number of O-glycopeptides, thus enhancing our ability to analyze the mucinome.
Collapse
Affiliation(s)
- Keira E. Mahoney
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Vincent Chang
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Taryn M. Lucas
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | | | - Stacy A. Malaker
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|