1
|
Spence J, Devereaux PJ, Bashir S, Brady K, Sun T, Chan MTV, Wang CY, Lamy A, Whitlock RP, McIntyre WF, Belley-Côté E, Paré G, Chong M. Protein Alterations in Patients with Delirium after Cardiac Surgery: An Exploratory Case-Control Substudy of the VISION Cardiac Surgery Biobank. Anesthesiology 2025; 142:716-725. [PMID: 39786937 DOI: 10.1097/aln.0000000000005368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
BACKGROUND Delirium is an acute state of confusion associated with adverse postoperative outcomes. Delirium is diagnosed clinically using screening tools; most cases go undetected. Identifying a delirium biomarker would allow for accurate diagnosis, application of therapies, and insight into causal pathways. To agnostically discover novel biomarkers of delirium, a case-control substudy was conducted using the Vascular Events in Surgery Patients Cohort Evaluation (VISION) Cardiac Surgery Biobank. The objective was to identify candidate biomarkers to investigate in future studies. METHODS The study gathered a convenience sample of 30 patients with delirium on postoperative day 1 matched to 30 controls by age, sex, ethnicity, center, and cardiopulmonary bypass time. The Olink Explore 3K platform was used to identify blood protein alterations on postoperative day 3. Protein concentrations were expressed as normalized protein expression units (log 2 fold scale). Protein expression was compared between cases and controls using a paired t test and identified significantly different biomarkers based on a false discovery rate-adjusted P value of less than 0.05. RESULTS Of 2,865 unique serum proteins, 26 (0.9%) were significantly associated with delirium status; all were elevated in cases versus controls at a false discovery rate of less than 0.05. Pathway analysis identified calcium-release channel activity ( Padj = 0.02) and GTP-binding ( Padj = 0.005) functions as characteristic of proteins associated with delirium. The top three differentially expressed biomarkers were FKBP1B ( Padj = 0.003), C2CD2L ( Padj = 0.004), and RAB6B ( Padj = 0.004). The inflammatory biomarker interleukin-8 (CXCL8; mean difference = 2.36; P = 3.6 × 10- 4 ) was also associated with delirium. CONCLUSIONS The study identified 26 biomarkers significantly associated with delirium; all are novel except for interleukin-8. An association between delirium and recognized neuroinflammatory proteins or markers of brain injury was not identifed, which supports using biomarkers to differentiate between delirium and other neurologic conditions. While exploratory, the study's findings support using biomarkers to diagnose postoperative delirium and validate using agnostic screens to identify potential delirium biomarkers.
Collapse
Affiliation(s)
- Jessica Spence
- Population Health Research Institute, Hamilton, Ontario, Canada; World Health Research Trust, Hamilton, Ontario, Canada; Departments of Anesthesia, Critical Care, and Health Research Methods, Evaluation, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - P J Devereaux
- Population Health Research Institute, Hamilton, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada; World Health Research Trust, Hamilton, Ontario, Canada; Department of Medicine (Cardiology), McMaster University, Hamilton, Ontario, Canada
| | - Shaheena Bashir
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Katheryn Brady
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Tao Sun
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chew Yin Wang
- Department of Anaesthesiology, University of Malaya, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Andre Lamy
- Population Health Research Institute, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada; World Health Research Trust, Hamilton, Ontario, Canada; Department of Surgery (Cardiac Surgery), McMaster University, Hamilton, Ontario, Canada
| | - Richard P Whitlock
- Population Health Research Institute, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada; World Health Research Trust, Hamilton, Ontario, Canada; Department of Surgery (Cardiac Surgery), McMaster University, Hamilton, Ontario, Canada
| | - William F McIntyre
- Population Health Research Institute, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada; World Health Research Trust, Hamilton, Ontario, Canada; Department of Medicine (Cardiology), McMaster University, Hamilton, Ontario, Canada
| | - Emilie Belley-Côté
- Population Health Research Institute, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada; World Health Research Trust, Hamilton, Ontario, Canada; Department of Medicine (Cardiology and Critical Care), McMaster University, Hamilton, Ontario, Canada
| | - Guillaume Paré
- Population Health Research Institute, Hamilton, Ontario, Canada; World Health Research Trust, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Michael Chong
- Population Health Research Institute, Hamilton, Canada; World Health Research Trust, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Ferns M, van der List D, Vierra NC, Lacey T, Murray K, Kirmiz M, Stewart RG, Sack JT, Trimmer JS. The Electrically Silent Kv5.1 Subunit Forms Heteromeric Kv2 Channels in Cortical Neurons and Confers Distinct Functional Properties. J Neurosci 2025; 45:e2293232025. [PMID: 39933932 PMCID: PMC11949482 DOI: 10.1523/jneurosci.2293-23.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Voltage-gated K+ channels of the Kv2 family are highly expressed in brain and play dual roles in regulating neuronal excitability and in organizing endoplasmic reticulum-plasma membrane (ER-PM) junctions. Studies in heterologous cells suggest that Kv2.1 and Kv2.2 co-assemble with "electrically silent" KvS subunits to form heterotetrameric channels with distinct biophysical properties, but the prevalence and localization of these channels in native neurons are unknown. Here, using mass spectrometry-based proteomics, we identified five KvS subunits as components of native Kv2.1 channels immunopurified from mouse brain of both sexes, the most abundant being Kv5.1. We found that Kv5.1 co-immunoprecipitates with Kv2.1 and to a lesser extent with Kv2.2 from brain lysates and that Kv5.1 protein levels are decreased by 70% in Kv2.1 knock-out mice and 95% in Kv2.1/Kv2.2 double knock-out mice. RNAscope and immunolabeling revealed that Kv5.1 is prominently expressed in neocortex, where it is detected in a substantial fraction of Kv2.1/Kv2.2 positive neurons in layers 2/3, 5, and 6. At the subcellular level, Kv5.1 protein is coclustered with Kv2.1 and Kv2.2 at presumptive ER-PM junctions on the soma and proximal dendrites of cortical neurons. Moreover, in addition to modifying channel conductance, we found that Kv2/Kv5.1 channels are less phosphorylated and insensitive to RY785, a potent and selective Kv2 channel inhibitor. Together, these findings demonstrate that KvS subunits create multiple Kv2 channel subtypes in brain. Most notably, Kv2/Kv5.1 channels are highly expressed in cortical neurons, where their unique properties likely modulate the critical conducting and nonconducting roles of Kv2 channels.
Collapse
Affiliation(s)
- Michael Ferns
- Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, California 95616
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California 95616
| | - Deborah van der List
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California 95616
| | - Nicholas C Vierra
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California 95616
| | - Taylor Lacey
- Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, California 95616
| | - Karl Murray
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California 95616
| | - Michael Kirmiz
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California 95616
| | - Robert G Stewart
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California 95616
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California 95616
| | - James S Trimmer
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California 95616
| |
Collapse
|
3
|
Kaier A, Ntefidou M. The Extended Synaptotagmins of Physcomitrium patens. PLANTS (BASEL, SWITZERLAND) 2025; 14:1027. [PMID: 40219095 PMCID: PMC11990657 DOI: 10.3390/plants14071027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
Membrane contact sites (MCSs) between the endoplasmic reticulum and the plasma membrane enable the transport of lipids without membrane fusion. Extended Synaptotagmins (ESYTs) act at MCSs, functioning as tethers between two membrane compartments. In plants, ESYTs have been mainly investigated in A. thaliana and shown to maintain the integrity of the plasma membrane, especially during stress responses like cold acclimatization, mechanical trauma, and salt stress. ESYTs are present at the MCSs of plasmodesmata, where they regulate defense responses by modulating cell-to-cell transfer of pathogens. Here, the analysis of ESYTs was expanded to the bryophyte Physcomitrium patens, an extant representative of the earliest land plant lineages. P. patens was found to contain a large number of ESYTs, distributed over all previously established classes and an additional class not present in A. thaliana. Motif discovery identified regions in the Synaptotagmin-like mitochondrial (SMP) domain that may explain phylogenetic relationships as well as protein function. The adaptation mechanisms of P. patens necessary to conquer land and its simple tissue structure make it highly suitable as a model organism to study ESYT functions in tip growth, stress responses, and plasmodesmata-mediated transport, and open new directions of research regarding the function of MCSs in cellular processes and plant evolution.
Collapse
Affiliation(s)
- Alexander Kaier
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany;
| | - Maria Ntefidou
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
4
|
Benedetti L, Fan R, Weigel AV, Moore AS, Houlihan PR, Kittisopikul M, Park G, Petruncio A, Hubbard PM, Pang S, Xu CS, Hess HF, Saalfeld S, Rangaraju V, Clapham DE, De Camilli P, Ryan TA, Lippincott-Schwartz J. Periodic ER-plasma membrane junctions support long-range Ca 2+ signal integration in dendrites. Cell 2025; 188:484-500.e22. [PMID: 39708809 DOI: 10.1016/j.cell.2024.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024]
Abstract
Neuronal dendrites must relay synaptic inputs over long distances, but the mechanisms by which activity-evoked intracellular signals propagate over macroscopic distances remain unclear. Here, we discovered a system of periodically arranged endoplasmic reticulum-plasma membrane (ER-PM) junctions tiling the plasma membrane of dendrites at ∼1 μm intervals, interlinked by a meshwork of ER tubules patterned in a ladder-like array. Populated with Junctophilin-linked plasma membrane voltage-gated Ca2+ channels and ER Ca2+-release channels (ryanodine receptors), ER-PM junctions are hubs for ER-PM crosstalk, fine-tuning of Ca2+ homeostasis, and local activation of the Ca2+/calmodulin-dependent protein kinase II. Local spine stimulation activates the Ca2+ modulatory machinery, facilitating signal transmission and ryanodine-receptor-dependent Ca2+ release at ER-PM junctions over 20 μm away. Thus, interconnected ER-PM junctions support signal propagation and Ca2+ release from the spine-adjacent ER. The capacity of this subcellular architecture to modify both local and distant membrane-proximal biochemistry potentially contributes to dendritic computations.
Collapse
Affiliation(s)
| | - Ruolin Fan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | | | | | | | | | - Grace Park
- HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | | | | | - Song Pang
- Yale School of Medicine, New Haven, CT 06510, USA
| | - C Shan Xu
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Harald F Hess
- HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | | | - Vidhya Rangaraju
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | | | - Pietro De Camilli
- Department of Neuroscience, Department of Cell Biology, Program in Cellular Neuroscience Neurodegeneration and Repair, Howard Hughes Medical Institute, New Haven, CT 06510, USA
| | - Timothy A Ryan
- HHMI Janelia Research Campus, Ashburn, VA 20147, USA; Weill Cornell Medicine, Department of Biochemistry, New York, NY 10065, USA.
| | | |
Collapse
|
5
|
Ma P, Kang S, Li H, Li M, Zhao Y, Yuan H, Pang J, Tang W, Sheng M. A novel lncRNA AC112721.1 promotes the progression of triple-negative breast cancer by directly binding to THBS1 and regulating miR-491-5p/C2CD2L axis. Sci Rep 2024; 14:32056. [PMID: 39738500 PMCID: PMC11685780 DOI: 10.1038/s41598-024-83665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Triple-negative breast cancer (TNBC) seriously threatens women's health, and long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression and play fundamental roles in TNBC. This study aimed to identify lncRNAs that represent effective targets for the early diagnosis or treatment of TNBC. Here, we utilized the TCGA database to analyze differentially expressed genes, and survival analysis and ROC curve analysis were also performed. Notably, we identified a novel lncRNA, AC112721.1, that is significantly overexpressed in TNBC and is associated with poor overall survival in TNBC patients. Loss- and gain-of-function experiments revealed that AC112721.1 significantly promoted cell proliferation and migration, suppressed cell apoptosis in vitro and inhibited tumorigenesis in vivo. Further study of the mechanisms underlying these effects revealed that AC112721.1 regulates the Ras pathway by directly binding to THBS1 protein and functions as a ceRNA by sponging miR-491-5p to increase the expression of C2CD2L, thereby influencing the progression of TNBC. Our findings indicate that AC112721.1 may represent a new biomarker for evaluating TNBC prognosis and treating TNBC.
Collapse
Affiliation(s)
- Ping Ma
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, 650500, Yunnan, China
| | - Shiyao Kang
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, 650500, Yunnan, China
| | - Huimin Li
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, 650500, Yunnan, China
| | - Ming Li
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, 650500, Yunnan, China
| | - Yuan Zhao
- Department of Oncology, Puer People's Hospital, Puer, 665000, Yunnan, China
| | - Hongjun Yuan
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, 650500, Yunnan, China
| | - Jianyu Pang
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, 650500, Yunnan, China
| | - Wenru Tang
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, 650500, Yunnan, China.
| | - Miaomiao Sheng
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, 650500, Yunnan, China.
| |
Collapse
|
6
|
Johnson B, Iuliano M, Lam TT, Biederer T, De Camilli PV. A complex of the lipid transport ER proteins TMEM24 and C2CD2 with band 4.1 at cell-cell contacts. J Cell Biol 2024; 223:e202311137. [PMID: 39158698 PMCID: PMC11334333 DOI: 10.1083/jcb.202311137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/23/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024] Open
Abstract
Junctions between the ER and plasma membrane (PM) are implicated in calcium homeostasis, non-vesicular lipid transfer, and other cellular functions. Two ER proteins that function both as tethers to the PM via a polybasic C-terminus motif and as phospholipid transporters are brain-enriched TMEM24 (C2CD2L) and its paralog C2CD2. We report that both proteins also form a complex with band 4.1 family members, which in turn bind PM proteins including cell adhesion molecules such as SynCAM 1. This complex enriches TMEM24 and C2CD2 containing ER/PM junctions at sites of cell contacts. Dynamic properties of TMEM24-dependent ER/PM junctions are impacted when band 4.1 is part of the junction, as TMEM24 at cell-adjacent ER/PM junctions is not shed from the PM by calcium rise, unlike TMEM24 at non-cell adjacent junctions. Lipid transport between the ER and the PM by TMEM24 and C2CD2 at sites where cells, including neurons, contact other cells may participate in adaptive responses to cell contact-dependent signaling.
Collapse
Affiliation(s)
- Ben Johnson
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Iuliano
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
- Department of Keck MS and Proteomics Resource, Yale University School of Medicine, New Haven, CT, USA
| | - Thomas Biederer
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | - Pietro V De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
7
|
Maciąg F, Chhikara A, Heine M. Calcium channel signalling at neuronal endoplasmic reticulum-plasma membrane junctions. Biochem Soc Trans 2024; 52:1617-1629. [PMID: 38934485 PMCID: PMC11668288 DOI: 10.1042/bst20230819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Neurons are highly specialised cells that need to relay information over long distances and integrate signals from thousands of synaptic inputs. The complexity of neuronal function is evident in the morphology of their plasma membrane (PM), by far the most intricate of all cell types. Yet, within the neuron lies an organelle whose architecture adds another level to this morphological sophistication - the endoplasmic reticulum (ER). Neuronal ER is abundant in the cell body and extends to distant axonal terminals and postsynaptic dendritic spines. It also adopts specialised structures like the spine apparatus in the postsynapse and the cisternal organelle in the axon initial segment. At membrane contact sites (MCSs) between the ER and the PM, the two membranes come in close proximity to create hubs of lipid exchange and Ca2+ signalling called ER-PM junctions. The development of electron and light microscopy techniques extended our knowledge on the physiological relevance of ER-PM MCSs. Equally important was the identification of ER and PM partners that interact in these junctions, most notably the STIM-ORAI and VAP-Kv2.1 pairs. The physiological functions of ER-PM junctions in neurons are being increasingly explored, but their molecular composition and the role in the dynamics of Ca2+ signalling are less clear. This review aims to outline the current state of research on the topic of neuronal ER-PM contacts. Specifically, we will summarise the involvement of different classes of Ca2+ channels in these junctions, discuss their role in neuronal development and neuropathology and propose directions for further research.
Collapse
Affiliation(s)
- Filip Maciąg
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Hanns-Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Arun Chhikara
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Hanns-Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Martin Heine
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Hanns-Dieter Hüsch Weg 15, 55128 Mainz, Germany
| |
Collapse
|
8
|
Weesner JA, Annunziata I, van de Vlekkert D, Robinson CG, Campos Y, Mishra A, Fremuth LE, Gomero E, Hu H, d'Azzo A. Altered GM1 catabolism affects NMDAR-mediated Ca 2+ signaling at ER-PM junctions and increases synaptic spine formation in a GM1-gangliosidosis model. Cell Rep 2024; 43:114117. [PMID: 38630590 PMCID: PMC11244331 DOI: 10.1016/j.celrep.2024.114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/31/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to β-galactosidase deficiency drastically alters neuronal Ca2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated N-methyl D-aspartate receptor (NMDAR) Ca2+ channel, thereby increasing Ca2+ flux, activating extracellular signal-regulated kinase (ERK) signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and worsens the generalized neuronal cell death characteristic of GM1-gangliosidosis.
Collapse
Affiliation(s)
- Jason A Weesner
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Ida Annunziata
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA; St. Jude Children's Research Hospital, Compliance Office, Memphis, TN 38105, USA
| | | | - Camenzind G Robinson
- St. Jude Children's Research Hospital, Cellular Imaging Shared Resource, Memphis, TN 38105, USA
| | - Yvan Campos
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Ashutosh Mishra
- St. Jude Children's Research Hospital, Center for Proteomics and Metabolomics, Memphis, TN 38105, USA
| | - Leigh E Fremuth
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Elida Gomero
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Huimin Hu
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Alessandra d'Azzo
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA; University of Tennessee Health Science Center, Department of Anatomy and Physiology, Memphis, TN 38163, USA.
| |
Collapse
|
9
|
Wang Y, Yang J. ER-organelle contacts: A signaling hub for neurological diseases. Pharmacol Res 2024; 203:107149. [PMID: 38518830 DOI: 10.1016/j.phrs.2024.107149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Neuronal health is closely linked to the homeostasis of intracellular organelles, and organelle dysfunction affects the pathological progression of neurological diseases. In contrast to isolated cellular compartments, a growing number of studies have found that organelles are largely interdependent structures capable of communicating through membrane contact sites (MCSs). MCSs have been identified as key pathways mediating inter-organelle communication crosstalk in neurons, and their alterations have been linked to neurological disease pathology. The endoplasmic reticulum (ER) is a membrane-bound organelle capable of forming an extensive network of pools and tubules with important physiological functions within neurons. There are multiple MCSs between the ER and other organelles and the plasma membrane (PM), which regulate a variety of cellular processes. In this review, we focus on ER-organelle MCSs and their role in a variety of neurological diseases. We compared the biological effects between different tethering proteins and the effects of their respective disease counterparts. We also discuss how altered ER-organelle contacts may affect disease pathogenesis. Therefore, understanding the molecular mechanisms of ER-organelle MCSs in neuronal homeostasis will lay the foundation for the development of new therapies targeting ER-organelle contacts.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jinghua Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
10
|
Ferns M, van der List D, Vierra NC, Lacey T, Murray K, Kirmiz M, Stewart RG, Sack JT, Trimmer JS. Electrically silent KvS subunits associate with native Kv2 channels in brain and impact diverse properties of channel function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577135. [PMID: 38328147 PMCID: PMC10849721 DOI: 10.1101/2024.01.25.577135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Voltage-gated K+ channels of the Kv2 family are highly expressed in brain and play dual roles in regulating neuronal excitability and in organizing endoplasmic reticulum - plasma membrane (ER-PM) junctions. Studies in heterologous cells suggest that the two pore-forming alpha subunits Kv2.1 and Kv2.2 assemble with "electrically silent" KvS subunits to form heterotetrameric channels with distinct biophysical properties. Here, using mass spectrometry-based proteomics, we identified five KvS subunits as components of native Kv2.1 channels immunopurified from mouse brain, the most abundant being Kv5.1. We found that Kv5.1 co-immunoprecipitates with Kv2.1 and to a lesser extent with Kv2.2 from brain lysates, and that Kv5.1 protein levels are decreased by 70% in Kv2.1 knockout mice and 95% in Kv2.1/2.2 double knockout mice. Multiplex immunofluorescent labelling of rodent brain sections revealed that in neocortex Kv5.1 immunolabeling is apparent in a large percentage of Kv2.1 and Kv2.2-positive layer 2/3 neurons, and in a smaller percentage of layer 5 and 6 neurons. At the subcellular level, Kv5.1 is co-clustered with Kv2.1 and Kv2.2 at ER-PM junctions in cortical neurons, although clustering of Kv5.1-containing channels is reduced relative to homomeric Kv2 channels. We also found that in heterologous cells coexpression with Kv5.1 reduces the clustering and alters the pharmacological properties of Kv2.1 channels. Together, these findings demonstrate that the Kv5.1 electrically silent subunit is a component of a substantial fraction of native brain Kv2 channels, and that its incorporation into heteromeric channels can impact diverse aspects of Kv2 channel function.
Collapse
Affiliation(s)
- Michael Ferns
- Dept. of Anesthesiology and Pain Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Deborah van der List
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Nicholas C. Vierra
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Taylor Lacey
- Dept. of Anesthesiology and Pain Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Karl Murray
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
- Dept. of Psychiatry and Behavioral Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Michael Kirmiz
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Robert G. Stewart
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Jon T. Sack
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - James S. Trimmer
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
11
|
Hu X, Cai Y, Ji WK. Recent Advances on Synaptotagmin-Like Mitochondrial-Lipid Binding Protein Domain Containing Lipid Transfer Proteins. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241273646. [PMID: 39139576 PMCID: PMC11320393 DOI: 10.1177/25152564241273646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
The Synaptotagmin-like mitochondrial-lipid binding protein (SMP) domain is found in a group of ER-resident lipid transfer proteins that are recruited to membrane contact sites (MCSs) by adaptors. Deciphering the molecular basis underlying the recruitment of SMP proteins to specific MCS sheds light not only on their cellular localization but also on their biological functions at these sites. Here we summarize recent advances in SMP domain-containing lipid transfer proteins, focusing on a recent study showing the localization, regulation and cellular function of a specific SMP protein named testis expressed protein 2 (Tex2). TMEM55, a potential PIP phosphatase on late endosome/lysosomal (LE/lys) membranes, was identified as an adaptor that enables the recruitment of Tex2 to ER- LE/lys MCS. In addition, we have summarized several important questions about the regulation and physiological functions of Tex2 that remained unanswered.
Collapse
Affiliation(s)
- Xuewen Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Yirui Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Ke Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center; Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
12
|
Johnson B, Iuliano M, Lam T, Biederer T, De Camilli P. A complex of the lipid transport ER proteins TMEM24 and C2CD2 with band 4.1 at cell-cell contacts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570396. [PMID: 38106008 PMCID: PMC10723409 DOI: 10.1101/2023.12.06.570396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Junctions between the ER and the plasma membrane (ER/PM junctions) are implicated in calcium homeostasis, non-vesicular lipid transfer and other cellular functions. Two ER proteins that function both as membrane tethers to the PM via a polybasic motif in their C-terminus and as phospholipid transporters are brain-enriched TMEM24 (C2CD2L) and its paralog C2CD2. Based on an unbiased proximity ligation analysis, we found that both proteins can also form a complex with band 4.1 family members, which in turn can bind a variety of plasma membrane proteins including cell adhesion molecules such as SynCAM 1. This complex results in the enrichment of TMEM24 and C2CD2 containing ER/PM junctions at sites of cell contacts. Dynamic properties of TMEM24-dependent ER/PM contacts are impacted when in complex as TMEM24 present at cell adjacent junctions is not shed by calcium rise, unlike TMEM24 at non-cell adjacent junctions. These findings suggest that cell-contact interactions control ER/PM junctions via TMEM24 complexes involving band 4.1 proteins.
Collapse
Affiliation(s)
- Ben Johnson
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Maria Iuliano
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
| | - TuKiet Lam
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Keck MS and Proteomics Resource, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Thomas Biederer
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
13
|
Hoffmann C, Rentsch J, Tsunoyama TA, Chhabra A, Aguilar Perez G, Chowdhury R, Trnka F, Korobeinikov AA, Shaib AH, Ganzella M, Giannone G, Rizzoli SO, Kusumi A, Ewers H, Milovanovic D. Synapsin condensation controls synaptic vesicle sequestering and dynamics. Nat Commun 2023; 14:6730. [PMID: 37872159 PMCID: PMC10593750 DOI: 10.1038/s41467-023-42372-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Neuronal transmission relies on the regulated secretion of neurotransmitters, which are packed in synaptic vesicles (SVs). Hundreds of SVs accumulate at synaptic boutons. Despite being held together, SVs are highly mobile, so that they can be recruited to the plasma membrane for their rapid release during neuronal activity. However, how such confinement of SVs corroborates with their motility remains unclear. To bridge this gap, we employ ultrafast single-molecule tracking (SMT) in the reconstituted system of native SVs and in living neurons. SVs and synapsin 1, the most highly abundant synaptic protein, form condensates with liquid-like properties. In these condensates, synapsin 1 movement is slowed in both at short (i.e., 60-nm) and long (i.e., several hundred-nm) ranges, suggesting that the SV-synapsin 1 interaction raises the overall packing of the condensate. Furthermore, two-color SMT and super-resolution imaging in living axons demonstrate that synapsin 1 drives the accumulation of SVs in boutons. Even the short intrinsically-disordered fragment of synapsin 1 was sufficient to restore the native SV motility pattern in synapsin triple knock-out animals. Thus, synapsin 1 condensation is sufficient to guarantee reliable confinement and motility of SVs, allowing for the formation of mesoscale domains of SVs at synapses in vivo.
Collapse
Affiliation(s)
- Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Jakob Rentsch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST); Onna-son, Okinawa, 904-0495, Japan
| | - Akshita Chhabra
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Gerard Aguilar Perez
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Rajdeep Chowdhury
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
| | - Franziska Trnka
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Aleksandr A Korobeinikov
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Ali H Shaib
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
| | - Marcelo Ganzella
- Department of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Gregory Giannone
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, UMR 5297, F-33000, Bordeaux, France
| | - Silvio O Rizzoli
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
| | - Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST); Onna-son, Okinawa, 904-0495, Japan
| | - Helge Ewers
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany.
| |
Collapse
|
14
|
Casas M, Murray KD, Hino K, Vierra NC, Simó S, Trimmer JS, Dixon RE, Dickson EJ. NPC1-dependent alterations in K V2.1-Ca V1.2 nanodomains drive neuronal death in models of Niemann-Pick Type C disease. Nat Commun 2023; 14:4553. [PMID: 37507375 PMCID: PMC10382591 DOI: 10.1038/s41467-023-39937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Lysosomes communicate through cholesterol transfer at endoplasmic reticulum (ER) contact sites. At these sites, the Niemann Pick C1 cholesterol transporter (NPC1) facilitates the removal of cholesterol from lysosomes, which is then transferred to the ER for distribution to other cell membranes. Mutations in NPC1 result in cholesterol buildup within lysosomes, leading to Niemann-Pick Type C (NPC) disease, a progressive and fatal neurodegenerative disorder. The molecular mechanisms connecting NPC1 loss to NPC-associated neuropathology remain unknown. Here we show both in vitro and in an animal model of NPC disease that the loss of NPC1 function alters the distribution and activity of voltage-gated calcium channels (CaV). Underlying alterations in calcium channel localization and function are KV2.1 channels whose interactions drive calcium channel clustering to enhance calcium entry and fuel neurotoxic elevations in mitochondrial calcium. Targeted disruption of KV2-CaV interactions rescues aberrant CaV1.2 clustering, elevated mitochondrial calcium, and neurotoxicity in vitro. Our findings provide evidence that NPC is a nanostructural ion channel clustering disease, characterized by altered distribution and activity of ion channels at membrane contacts, which contribute to neurodegeneration.
Collapse
Affiliation(s)
- Maria Casas
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Karl D Murray
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, University of California, Davis, CA, USA
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA, USA
| | - Nicholas C Vierra
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA, USA
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Rose E Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Eamonn J Dickson
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
15
|
Weesner JA, Annunziata I, van de Vlekkert D, Robinson CG, Campos Y, Mishra A, Fremuth LE, Gomero E, Hu H, d'Azzo A. Altered GM1 catabolism affects NMDAR-mediated Ca 2+ signaling at ER-PM junctions and increases synaptic spine formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548446. [PMID: 37503265 PMCID: PMC10369868 DOI: 10.1101/2023.07.10.548446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca 2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca 2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to β-galactosidase deficiency drastically alters neuronal Ca 2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated NMDAR Ca 2+ channel, thereby increasing Ca 2+ flux, activating ERK signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and exacerbates the generalized neuronal cell death characteristic of GM1-gangliosidosis.
Collapse
|
16
|
Konietzny A, Wegmann S, Mikhaylova M. The endoplasmic reticulum puts a new spin on synaptic tagging. Trends Neurosci 2023; 46:32-44. [PMID: 36428191 DOI: 10.1016/j.tins.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The heterogeneity of the endoplasmic reticulum (ER) makes it a versatile platform for a broad range of homeostatic processes, ranging from calcium regulation to synthesis and trafficking of proteins and lipids. It is not surprising that neurons use this organelle to fine-tune synaptic properties and thereby provide specificity to synaptic inputs. In this review, we discuss the mechanisms that enable activity-dependent ER recruitment into dendritic spines, with a focus on molecular mechanisms that mediate transport and retention of the ER in spines. The role of calcium signaling in spine ER, synaptopodin 'tagging' of active synapses, and the formation of the spine apparatus (SA) are highlighted. Finally, we discuss the role of liquid-liquid phase separation as a possible driving force in these processes.
Collapse
Affiliation(s)
- Anja Konietzny
- AG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany; Guest Group 'Neuronal Protein Transport', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Marina Mikhaylova
- AG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany; Guest Group 'Neuronal Protein Transport', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
17
|
Overduin M, Tran A, Eekels DM, Overduin F, Kervin TA. Transmembrane Membrane Readers form a Novel Class of Proteins That Include Peripheral Phosphoinositide Recognition Domains and Viral Spikes. MEMBRANES 2022; 12:1161. [PMID: 36422153 PMCID: PMC9692390 DOI: 10.3390/membranes12111161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Membrane proteins are broadly classified as transmembrane (TM) or peripheral, with functions that pertain to only a single bilayer at a given time. Here, we explicate a class of proteins that contain both transmembrane and peripheral domains, which we dub transmembrane membrane readers (TMMRs). Their transmembrane and peripheral elements anchor them to one bilayer and reversibly attach them to another section of bilayer, respectively, positioning them to tether and fuse membranes while recognizing signals such as phosphoinositides (PIs) and modifying lipid chemistries in proximity to their transmembrane domains. Here, we analyze full-length models from AlphaFold2 and Rosetta, as well as structures from nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography, using the Membrane Optimal Docking Area (MODA) program to map their membrane-binding surfaces. Eukaryotic TMMRs include phospholipid-binding C1, C2, CRAL-TRIO, FYVE, GRAM, GTPase, MATH, PDZ, PH, PX, SMP, StART and WD domains within proteins including protrudin, sorting nexins and synaptotagmins. The spike proteins of SARS-CoV-2 as well as other viruses are also TMMRs, seeing as they are anchored into the viral membrane while mediating fusion with host cell membranes. As such, TMMRs have key roles in cell biology and membrane trafficking, and include drug targets for diseases such as COVID-19.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Anh Tran
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | - Finn Overduin
- Institute of Nutritional Science, University of Potsdam, 14476 Potsdam, Germany
| | - Troy A. Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
18
|
Kors S, Kurian SM, Costello JL, Schrader M. Controlling contacts-Molecular mechanisms to regulate organelle membrane tethering. Bioessays 2022; 44:e2200151. [PMID: 36180400 DOI: 10.1002/bies.202200151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
In recent years, membrane contact sites (MCS), which mediate interactions between virtually all subcellular organelles, have been extensively characterized and shown to be essential for intracellular communication. In this review essay, we focus on an emerging topic: the regulation of MCS. Focusing on the tether proteins themselves, we discuss some of the known mechanisms which can control organelle tethering events and identify apparent common regulatory hubs, such as the VAP interface at the endoplasmic reticulum (ER). We also highlight several currently hypothetical concepts, including the idea of tether oligomerization and redox regulation playing a role in MCS formation. We identify gaps in our current understanding, such as the identity of the majority of kinases/phosphatases involved in tether modification and conclude that a holistic approach-incorporating the formation of multiple MCS, regulated by interconnected regulatory modulators-may be required to fully appreciate the true complexity of these fascinating intracellular communication systems.
Collapse
Affiliation(s)
- Suzan Kors
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Smija M Kurian
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Joseph L Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
19
|
Chung GHC, Lorvellec M, Gissen P, Pichaud F, Burden JJ, Stefan CJ. The ultrastructural organization of endoplasmic reticulum-plasma membrane contacts is conserved in epithelial cells. Mol Biol Cell 2022; 33:ar113. [PMID: 35947498 PMCID: PMC9635291 DOI: 10.1091/mbc.e21-11-0534-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022] Open
Abstract
Contacts between the endoplasmic reticulum and the plasma membrane (ER-PM contacts) have important roles in membrane lipid and calcium dynamics, yet their organization in polarized epithelial cells has not been thoroughly described. Here we examine ER-PM contacts in hepatocytes in mouse liver using electron microscopy, providing the first comprehensive ultrastructural study of ER-PM contacts in a mammalian epithelial tissue. Our quantitative analyses reveal strikingly distinct ER-PM contact architectures spatially linked to apical, lateral, and basal PM domains. Notably, we find that an extensive network of ER-PM contacts exists at lateral PM domains that form intercellular junctions between hepatocytes. Moreover, the spatial organization of ER-PM contacts is conserved in epithelial spheroids, suggesting that ER-PM contacts may serve conserved roles in epithelial cell architecture. Consistent with this notion, we show that ORP5 activity at ER-PM contacts modulates the apical-basolateral aspect ratio in HepG2 cells. Thus ER-PM contacts have a conserved distribution and crucial roles in PM domain architecture across epithelial cell types.
Collapse
Affiliation(s)
- Gary Hong Chun Chung
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Maëlle Lorvellec
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Paul Gissen
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Franck Pichaud
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Jemima J. Burden
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Christopher J. Stefan
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
20
|
Lario S, Ramírez-Lázaro MJ, Brunet-Vega A, Vila-Casadesús M, Aransay AM, Lozano JJ, Calvet X. Coding and non-coding co-expression network analysis identifies key modules and driver genes associated with precursor lesions of gastric cancer. Genomics 2022; 114:110370. [PMID: 35430283 DOI: 10.1016/j.ygeno.2022.110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Helicobacter pylori infection is the most important risk factor for gastric cancer (GC). Human gastric adenocarcinoma develops after long-term H. pylori infection via the Correa cascade. This carcinogenic pathway describes the progression from gastritis to atrophy, intestinal metaplasia (IM), dysplasia and GC. Patients with atrophy and intestinal metaplasia are considered to have precancerous lesions of GC (PLGC). H. pylori eradication and endoscopy surveillance are currently the only interventions for preventing GC. Better knowledge of the biology of human PLGC may help find stratification markers and contribute to better understanding of biological mechanisms. One way to achieve this is by using co-expression network analysis. Weighted gene co-expression network analysis (WGCNA) is often used to identify modules from co-expression networks and relate them to clinical traits. It also allows identification of driver genes that may be critical for PLGC. AIM The purpose of this study was to identify co-expression modules and differential gene expression in dyspeptic patients at different stages of the Correa pathway. METHODS We studied 96 gastric biopsies from 78 patients that were clinically classified as: non-active (n = 10) and chronic-active gastritis (n = 20), atrophy (n = 12), and IM (n = 36). Gene expression of coding RNAs was determined by microarrays and non-coding RNAs by RNA-seq. The WGCNA package was used for network construction, module detection, module preservation and hub and driver gene selection. RESULTS WGCNA identified 20 modules for coding RNAs and 4 for each miRNA and small RNA class. Modules were associated with antrum and corpus gastric locations, chronic gastritis and IM. Notably, coding RNA modules correlated with the Correa cascade. One was associated with the presence of H. pylori. In three modules, the module eigengene (ME) gradually increased in the stages toward IM, while in three others the inverse relationship was found. One miRNA module was negatively correlated to IM and was used for a mRNA-miRNA integration analysis. WGCNA also uncovered driver genes. Driver genes show both high connectivity within a module and are significantly associated with clinical traits. Some of those genes have been previously involved in H. pylori carcinogenesis, but others are new. Lastly, using similar external transcriptomic data, we confirmed that the discovered mRNA modules were highly preserved. CONCLUSION Our analysis captured co-expression modules that provide valuable information to understand the pathogenesis of the progression of PLGC.
Collapse
Affiliation(s)
- Sergio Lario
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain; Digestive Diseases Unit, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.
| | - María J Ramírez-Lázaro
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain; Digestive Diseases Unit, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Anna Brunet-Vega
- Oncology Unit, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Maria Vila-Casadesús
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain; Bioinformatics Platform, CIBEREHD, Barcelona, Spain
| | - Ana M Aransay
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain; Genome Analysis Platform, CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Juan J Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain; Bioinformatics Platform, CIBEREHD, Barcelona, Spain
| | - Xavier Calvet
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain; Digestive Diseases Unit, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain; Departament de Medicina, UAB, Sabadell, Spain
| |
Collapse
|
21
|
Qian T, Li C, Liu F, Xu K, Wan C, Liu Y, Yu H. Arabidopsis synaptotagmin 1 mediates lipid transport in a lipid composition-dependent manner. Traffic 2022; 23:346-356. [PMID: 35451158 DOI: 10.1111/tra.12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022]
Abstract
The endoplasmic reticulum (ER) - plasma membrane (PM) contact sites (EPCSs) are structurally conserved in eukaryotes. The Arabidopsis ER-anchored synaptotagmin 1 (SYT1), enriched in EPCSs, plays a critical role in plant abiotic stress tolerance. It has become clear that SYT1 interacts with PM to mediate ER-PM connectivity. However, whether SYT1 performs additional functions at EPCSs remains unknown. Here, we reported that SYT1 efficiently transfers phospholipids between membranes. The lipid transfer activity of SYT1 is highly dependent on PI(4,5)P2 , a signal lipid accumulated at the PM under abiotic stress. Mechanically, while SYT1 transfers lipids fundamentally through the synaptotagmin-like mitochondrial-lipid-binding protein (SMP) domain, the efficient lipid transport requires the C2A domain-mediated membrane tethering. Interestingly, we observed that Ca2+ could stimulate SYT1-mediated lipid transport. In addition to PI(4,5)P2 , the Ca2+ activation requires the phosphatidylserine, another negatively charged lipid on the opposed membrane. Together, our studies identified Arabidopsis SYT1 as a lipid transfer protein at EPCSs and demonstrated it takes conserved as well as divergent mechanisms with other extend-synaptotagmins. The critical role of lipid composition and Ca2+ reveals SYT1-mediated lipid transport is highly regulated by signals in response to abiotic stresses.
Collapse
Affiliation(s)
- Tiantian Qian
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chenlu Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Furong Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
22
|
Xie B, Panagiotou S, Cen J, Gilon P, Bergsten P, Idevall-Hagren O. The endoplasmic reticulum-plasma membrane tethering protein TMEM24 is a regulator of cellular Ca2+ homeostasis. J Cell Sci 2022; 135:273526. [PMID: 34821358 PMCID: PMC8729788 DOI: 10.1242/jcs.259073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/13/2021] [Indexed: 11/20/2022] Open
Abstract
Endoplasmic reticulum (ER)–plasma membrane (PM) contacts are sites of lipid exchange and Ca2+ transport, and both lipid transport proteins and Ca2+ channels specifically accumulate at these locations. In pancreatic β-cells, both lipid and Ca2+ signaling are essential for insulin secretion. The recently characterized lipid transfer protein TMEM24 (also known as C2CD2L) dynamically localizes to ER–PM contact sites and provides phosphatidylinositol, a precursor of phosphatidylinositol-4-phosphate [PI(4)P] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], to the PM. β-cells lacking TMEM24 exhibit markedly suppressed glucose-induced Ca2+ oscillations and insulin secretion, but the underlying mechanism is not known. We now show that TMEM24 only weakly interacts with the PM, and dissociates in response to both diacylglycerol and nanomolar elevations of cytosolic Ca2+. Loss of TMEM24 results in hyper-accumulation of Ca2+ in the ER and in excess Ca2+ entry into mitochondria, with resulting impairment in glucose-stimulated ATP production. Summary: TMEM24 reversibly localizes to ER–PM contact sites and participates in the regulation of both ER and mitochondrial Ca2+ homeostasis and in glucose-dependent ATP production in insulin-secreting cells.
Collapse
Affiliation(s)
- Beichen Xie
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 75123 Uppsala, Sweden
| | - Styliani Panagiotou
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 75123 Uppsala, Sweden
| | - Jing Cen
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 75123 Uppsala, Sweden
| | - Patrick Gilon
- Pole of Endocrinology, Diabetes and Nutrition (EDIN), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Avenue Hippocrate 55, B1.55.06 B-1200 Brussels, Belgium
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 75123 Uppsala, Sweden
| | - Olof Idevall-Hagren
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, 75123 Uppsala, Sweden
| |
Collapse
|
23
|
Dickson EJ. Phosphoinositide transport and metabolism at membrane contact sites. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159107. [PMID: 34995791 PMCID: PMC9662651 DOI: 10.1016/j.bbalip.2021.159107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022]
Abstract
Phosphoinositides are a family of signaling lipids that play a profound role in regulating protein function at the membrane-cytosol interface of all cellular membranes. Underscoring their importance, mutations or alterations in phosphoinositide metabolizing enzymes lead to host of developmental, neurodegenerative, and metabolic disorders that are devastating for human health. In addition to lipid enzymes, phosphoinositide metabolism is regulated and controlled at membrane contact sites (MCS). Regions of close opposition typically between the ER and other cellular membranes, MCS are non-vesicular lipid transport portals that engage in extensive communication to influence organelle homeostasis. This review focuses on lipid transport, specifically phosphoinositide lipid transport and metabolism at MCS.
Collapse
Affiliation(s)
- Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, United States of America.
| |
Collapse
|
24
|
Zhang N, Pan H, Liang X, Xie J, Han W. The roles of transmembrane family proteins in the regulation of store-operated Ca 2+ entry. Cell Mol Life Sci 2022; 79:118. [PMID: 35119538 PMCID: PMC11071953 DOI: 10.1007/s00018-021-04034-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022]
Abstract
Store-operated Ca2+ entry (SOCE) is a major pathway for calcium signaling, which regulates almost every biological process, involving cell proliferation, differentiation, movement and death. Stromal interaction molecule (STIM) and ORAI calcium release-activated calcium modulator (ORAI) are the two major proteins involved in SOCE. With the deepening of studies, more and more proteins are found to be able to regulate SOCE, among which the transmembrane (TMEM) family proteins are worth paying more attention. In addition, the ORAI proteins belong to the TMEM family themselves. As the name suggests, TMEM family is a type of proteins that spans biological membranes including plasma membrane and membrane of organelles. TMEM proteins are in a large family with more than 300 proteins that have been already identified, while the functional knowledge about the proteins is preliminary. In this review, we mainly summarized the TMEM proteins that are involved in SOCE, to better describe a picture of the interaction between STIM and ORAI proteins during SOCE and its downstream signaling pathways, as well as to provide an idea for the study of the TMEM family proteins.
Collapse
Affiliation(s)
- Ningxia Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaojing Liang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiansheng Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
25
|
Sun J, Harion R, Naito T, Saheki Y. INPP5K and Atlastin-1 maintain the nonuniform distribution of ER-plasma membrane contacts in neurons. Life Sci Alliance 2021; 4:4/11/e202101092. [PMID: 34556534 PMCID: PMC8507493 DOI: 10.26508/lsa.202101092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 02/04/2023] Open
Abstract
In neurons, the ER extends throughout all cellular processes, forming multiple contacts with the plasma membrane (PM) to fine-tune neuronal physiology. However, the mechanisms that regulate the distribution of neuronal ER-PM contacts are not known. Here, we used the Caenorhabditis elegans DA9 motor neuron as our model system and found that neuronal ER-PM contacts are enriched in soma and dendrite and mostly absent in axons. Using forward genetic screen, we identified that the inositol 5-phosphatase, CIL-1 (human INPP5K), and the dynamin-like GTPase, ATLN-1 (human Atlastin-1), help to maintain the non-uniform, somatodendritic enrichment of neuronal ER-PM contacts. Mechanistically, CIL-1 acts upstream of ATLN-1 to maintain the balance between ER tubules and sheets. In mutants of CIL-1 or ATLN-1, ER sheets expand and invade into the axon. This is accompanied by the ectopic formation of axonal ER-PM contacts and defects in axon regeneration following laser-induced axotomy. As INPP5K and Atlastin-1 have been linked to neurological disorders, the unique distribution of neuronal ER-PM contacts maintained by these proteins may support neuronal resilience during the onset and progression of these diseases.
Collapse
Affiliation(s)
- Jingbo Sun
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Raihanah Harion
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore .,Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
26
|
Malik S, Valdebenito S, D'Amico D, Prideaux B, Eugenin EA. HIV infection of astrocytes compromises inter-organelle interactions and inositol phosphate metabolism: A potential mechanism of bystander damage and viral reservoir survival. Prog Neurobiol 2021; 206:102157. [PMID: 34455020 DOI: 10.1016/j.pneurobio.2021.102157] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 02/02/2023]
Abstract
HIV-associated neurological dysfunction is observed in more than half of the HIV-infected population, even in the current antiretroviral era. The mechanisms by which HIV mediates CNS dysfunction are not well understood but have been associated with the presence of long-lasting HIV reservoirs. In the CNS, macrophage/microglia and a small population of astrocytes harbor the virus. However, the low number of HIV-infected cells does not correlate with the high degree of damage, suggesting that mechanisms of damage amplification may be involved. Here, we demonstrate that the survival mechanism of HIV-infected cells and the apoptosis of surrounding uninfected cells is regulated by inter-organelle interactions among the mitochondria/Golgi/endoplasmic reticulum system and the associated signaling mediated by IP3 and calcium. We identified that latently HIV-infected astrocytes had elevated intracellular levels of IP3, a master regulator second messenger, which diffuses via gap junctions into neighboring uninfected astrocytes resulting in their apoptosis. In addition, using laser capture microdissection, we confirmed that bystander apoptosis of uninfected astrocytes and the survival of HIV-infected astrocytes were dependent on mitochondrial function, intracellular calcium, and IP3 signaling. Blocking gap junction channels did not prevent an increase in IP3 or inter-organelle dysfunction in HIV-infected cells but reduced the amplification of apoptosis into uninfected neighboring cells. Our data provide a mechanistic explanation for bystander damage induced by surviving infected cells that serve as viral reservoirs and provide potential targets for interventions to reduce the devastating consequences of HIV within the brain.
Collapse
Affiliation(s)
- Shaily Malik
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA; Public Health Research Institute (PHRI), Newark, NJ, USA
| | - Silvana Valdebenito
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Daniela D'Amico
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Brendan Prideaux
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Eliseo A Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA.
| |
Collapse
|
27
|
Jamecna D, Antonny B. Intrinsically disordered protein regions at membrane contact sites. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159020. [PMID: 34352388 DOI: 10.1016/j.bbalip.2021.159020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
Membrane contact sites (MCS) are regions of close apposition between membrane-bound organelles. Proteins that occupy MCS display various domain organisation. Among them, lipid transfer proteins (LTPs) frequently contain both structured domains as well as regions of intrinsic disorder. In this review, we discuss the various roles of intrinsically disordered protein regions (IDPRs) in LTPs as well as in other proteins that are associated with organelle contact sites. We distinguish the following functions: (i) to act as flexible tethers between two membranes; (ii) to act as entropic barriers to prevent protein crowding and regulate membrane tethering geometry; (iii) to define the action range of catalytic domains. These functions are added to other functions of IDPRs in membrane environments, such as mediating protein-protein and protein-membrane interactions. We suggest that the overall efficiency and fidelity of contact sites might require fine coordination between all these IDPR activities.
Collapse
Affiliation(s)
- Denisa Jamecna
- Université Côte d'Azur et CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France; Biochemistry Center (BZH), Heidelberg, Germany
| | - Bruno Antonny
- Université Côte d'Azur et CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France.
| |
Collapse
|
28
|
Qian T, Li C, He R, Wan C, Liu Y, Yu H. Calcium-dependent and -independent lipid transfer mediated by tricalbins in yeast. J Biol Chem 2021; 296:100729. [PMID: 33933446 PMCID: PMC8163979 DOI: 10.1016/j.jbc.2021.100729] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 11/12/2022] Open
Abstract
Membrane contact sites (MCSs) formed between the endoplasmic reticulum (ER) and the plasma membrane (PM) provide a platform for nonvesicular lipid exchange. The ER-anchored tricalbins (Tcb1, Tcb2, and Tcb3) are critical tethering factors at ER–PM MCSs in yeast. Tricalbins possess a synaptotagmin-like mitochondrial-lipid-binding protein (SMP) domain and multiple Ca2+-binding C2 domains. Although tricalbins have been suggested to be involved in lipid exchange at the ER–PM MCSs, it remains unclear whether they directly mediate lipid transport. Here, using in vitro lipid transfer assays, we discovered that tricalbins are capable of transferring phospholipids between membranes. Unexpectedly, while its lipid transfer activity was markedly elevated by Ca2+, Tcb3 constitutively transferred lipids even in the absence of Ca2+. The stimulatory activity of Ca2+ on Tcb3 required intact Ca2+-binding sites on both the C2C and C2D domains of Tcb3, while Ca2+-independent lipid transport was mediated by the SMP domain that transferred lipids via direct interactions with phosphatidylserine and other negatively charged lipid molecules. These findings establish tricalbins as lipid transfer proteins, and reveal Ca2+-dependent and -independent lipid transfer activities mediated by these tricalbins, providing new insights into their mechanism in maintaining PM integrity at ER–PM MCSs.
Collapse
Affiliation(s)
- Tiantian Qian
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chenlu Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ruyue He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
29
|
Guillén-Samander A, Leonzino M, Hanna MG, Tang N, Shen H, De Camilli P. VPS13D bridges the ER to mitochondria and peroxisomes via Miro. J Cell Biol 2021; 220:e202010004. [PMID: 33891013 PMCID: PMC8077184 DOI: 10.1083/jcb.202010004] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/08/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria, which are excluded from the secretory pathway, depend on lipid transport proteins for their lipid supply from the ER, where most lipids are synthesized. In yeast, the outer mitochondrial membrane GTPase Gem1 is an accessory factor of ERMES, an ER-mitochondria tethering complex that contains lipid transport domains and that functions, partially redundantly with Vps13, in lipid transfer between the two organelles. In metazoa, where VPS13, but not ERMES, is present, the Gem1 orthologue Miro was linked to mitochondrial dynamics but not to lipid transport. Here we show that Miro, including its peroxisome-enriched splice variant, recruits the lipid transport protein VPS13D, which in turn binds the ER in a VAP-dependent way and thus could provide a lipid conduit between the ER and mitochondria. These findings reveal a so far missing link between function(s) of Gem1/Miro in yeast and higher eukaryotes, where Miro is a Parkin substrate, with potential implications for Parkinson's disease pathogenesis.
Collapse
Affiliation(s)
- Andrés Guillén-Samander
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Marianna Leonzino
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Michael G. Hanna
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Ni Tang
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Hongying Shen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
- Systems Biology Institute, Yale West Campus, West Haven, CT
| | - Pietro De Camilli
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
30
|
Crul T, Maléth J. Endoplasmic Reticulum-Plasma Membrane Contact Sites as an Organizing Principle for Compartmentalized Calcium and cAMP Signaling. Int J Mol Sci 2021; 22:4703. [PMID: 33946838 PMCID: PMC8124356 DOI: 10.3390/ijms22094703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 01/14/2023] Open
Abstract
In eukaryotic cells, ultimate specificity in activation and action-for example, by means of second messengers-of the myriad of signaling cascades is primordial. In fact, versatile and ubiquitous second messengers, such as calcium (Ca2+) and cyclic adenosine monophosphate (cAMP), regulate multiple-sometimes opposite-cellular functions in a specific spatiotemporal manner. Cells achieve this through segregation of the initiators and modulators to specific plasma membrane (PM) subdomains, such as lipid rafts and caveolae, as well as by dynamic close contacts between the endoplasmic reticulum (ER) membrane and other intracellular organelles, including the PM. Especially, these membrane contact sites (MCSs) are currently receiving a lot of attention as their large influence on cell signaling regulation and cell physiology is increasingly appreciated. Depletion of ER Ca2+ stores activates ER membrane STIM proteins, which activate PM-residing Orai and TRPC Ca2+ channels at ER-PM contact sites. Within the MCS, Ca2+ fluxes relay to cAMP signaling through highly interconnected networks. However, the precise mechanisms of MCS formation and the influence of their dynamic lipid environment on their functional maintenance are not completely understood. The current review aims to provide an overview of our current understanding and to identify open questions of the field.
Collapse
Affiliation(s)
- Tim Crul
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| |
Collapse
|
31
|
Venditti R, Wilson C, De Matteis MA. Regulation and physiology of membrane contact sites. Curr Opin Cell Biol 2021; 71:148-157. [PMID: 33932623 DOI: 10.1016/j.ceb.2021.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Membrane contact sites (MCSs) in addition to impacting the functions of membrane-limited organelles also have a role in the spatial and functional organization of cells, tissues and whole organisms. MCSs have been identified between all organelles and the identification of their molecular composition has progressed significantly in recent years. Equally important is how MCSs respond dynamically to physiological stimuli, how this is regulated, and the physiological roles of MCSs in tissues and at the organismal level, an area that still remains relatively unexplored. In the present review, we focus on the regulation of MCSs, considerations of their function at the organismal level, and how mutations of MCS components linked to genetic diseases might inform us about their physiological relevance.
Collapse
Affiliation(s)
- Rossella Venditti
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II-Medical School, Naples, Italy
| | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II-Medical School, Naples, Italy.
| |
Collapse
|
32
|
Hewlett B, Singh NP, Vannier C, Galli T. ER-PM Contact Sites - SNARING Actors in Emerging Functions. Front Cell Dev Biol 2021; 9:635518. [PMID: 33681218 PMCID: PMC7928305 DOI: 10.3389/fcell.2021.635518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
The compartmentalisation achieved by confining cytoplasm into membrane-enclosed organelles in eukaryotic cells is essential for maintaining vital functions including ATP production, synthetic and degradative pathways. While intracellular organelles are highly specialised in these functions, the restricting membranes also impede exchange of molecules responsible for the synchronised and responsive cellular activities. The initial identification of contact sites between the ER and plasma membrane (PM) provided a potential candidate structure for communication between organelles without mixing by fusion. Over the past decades, research has revealed a far broader picture of the events. Membrane contact sites (MCSs) have been recognized as increasingly important actors in cell differentiation, plasticity and maintenance, and, upon dysfunction, responsible for pathological conditions such as cancer and neurodegenerative diseases. Present in multiple organelles and cell types, MCSs promote transport of lipids and Ca2+ homoeostasis, with a range of associated protein families. Interestingly, each MCS displays a unique molecular signature, adapted to organelle functions. This review will explore the literature describing the molecular components and interactions taking place at ER-PM contact sites, their functions, and implications in eukaryotic cells, particularly neurons, with emphasis on lipid transfer proteins and emerging function of SNAREs.
Collapse
Affiliation(s)
- Bailey Hewlett
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| | - Neha Pratap Singh
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| | - Christian Vannier
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| | - Thierry Galli
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,GHU PARIS Psychiatrie and Neurosciences, Paris, France
| |
Collapse
|
33
|
Li C, Qian T, He R, Wan C, Liu Y, Yu H. Endoplasmic Reticulum-Plasma Membrane Contact Sites: Regulators, Mechanisms, and Physiological Functions. Front Cell Dev Biol 2021; 9:627700. [PMID: 33614657 PMCID: PMC7889955 DOI: 10.3389/fcell.2021.627700] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER) forms direct membrane contact sites with the plasma membrane (PM) in eukaryotic cells. These ER-PM contact sites play essential roles in lipid homeostasis, ion dynamics, and cell signaling, which are carried out by protein-protein or protein-lipid interactions. Distinct tethering factors dynamically control the architecture of ER-PM junctions in response to intracellular signals or external stimuli. The physiological roles of ER-PM contact sites are dependent on a variety of regulators that individually or cooperatively perform functions in diverse cellular processes. This review focuses on proteins functioning at ER-PM contact sites and highlights the recent progress in their mechanisms and physiological roles.
Collapse
Affiliation(s)
- Chenlu Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Tiantian Qian
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ruyue He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
34
|
Alt-RPL36 downregulates the PI3K-AKT-mTOR signaling pathway by interacting with TMEM24. Nat Commun 2021; 12:508. [PMID: 33479206 PMCID: PMC7820019 DOI: 10.1038/s41467-020-20841-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Thousands of human small and alternative open reading frames (smORFs and alt-ORFs, respectively) have recently been annotated. Many alt-ORFs are co-encoded with canonical proteins in multicistronic configurations, but few of their functions are known. Here, we report the detection of alt-RPL36, a protein co-encoded with human RPL36. Alt-RPL36 partially localizes to the endoplasmic reticulum, where it interacts with TMEM24, which transports the phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) precursor phosphatidylinositol from the endoplasmic reticulum to the plasma membrane. Knock-out of alt-RPL36 increases plasma membrane PI(4,5)P2 levels, upregulates PI3K-AKT-mTOR signaling, and increases cell size. Alt-RPL36 contains four phosphoserine residues, point mutations of which abolish interaction with TMEM24 and, consequently, alt-RPL36 effects on PI3K signaling and cell size. These results implicate alt-RPL36 as an upstream regulator of PI3K-AKT-mTOR signaling. More broadly, the RPL36 transcript encodes two sequence-independent polypeptides that co-regulate translation via different molecular mechanisms, expanding our knowledge of multicistronic human gene functions. Many alternative ORFs are co-encoded with characterized proteins, but their function is often not understood. Here, the authors discover that ribosomal protein L36 is co-encoded with alternative protein, which they identify as an upstream regulator of PI3K-AKT-mTOR signaling.
Collapse
|
35
|
TSUBOI M, HIRABAYASHI Y. New insights into the regulation of synaptic transmission and plasticity by the endoplasmic reticulum and its membrane contacts. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:559-572. [PMID: 34897182 PMCID: PMC8687855 DOI: 10.2183/pjab.97.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/18/2021] [Indexed: 06/14/2023]
Abstract
Mammalian neurons are highly compartmentalized yet very large cells. To provide each compartment with its distinct properties, metabolic homeostasis and molecular composition need to be precisely coordinated in a compartment-specific manner. Despite the importance of the endoplasmic reticulum (ER) as a platform for various biochemical reactions, such as protein synthesis, protein trafficking, and intracellular calcium control, the contribution of the ER to neuronal compartment-specific functions and plasticity remains elusive. Recent advances in the development of live imaging and serial scanning electron microscopy (sSEM) analysis have revealed that the neuronal ER is a highly dynamic organelle with compartment-specific structures. sSEM studies also revealed that the ER forms contacts with other membranes, such as the mitochondria and plasma membrane, although little is known about the functions of these ER-membrane contacts. In this review, we discuss the mechanisms and physiological roles of the ER structure and ER-mitochondria contacts in synaptic transmission and plasticity, thereby highlighting a potential link between organelle ultrastructure and neuronal functions.
Collapse
Affiliation(s)
- Masafumi TSUBOI
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
36
|
Lin S, Meng T, Huang H, Zhuang H, He Z, Yang H, Feng D. Molecular machineries and physiological relevance of ER-mediated membrane contacts. Theranostics 2021; 11:974-995. [PMID: 33391516 PMCID: PMC7738843 DOI: 10.7150/thno.51871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Membrane contact sites (MCSs) are defined as regions where two organelles are closely apposed, and most MCSs associated with each other via protein-protein or protein-lipid interactions. A number of key molecular machinery systems participate in mediating substance exchange and signal transduction, both of which are essential processes in terms of cellular physiology and pathophysiology. The endoplasmic reticulum (ER) is the largest reticulum network within the cell and has extensive communication with other cellular organelles, including the plasma membrane (PM), mitochondria, Golgi, endosomes and lipid droplets (LDs). The contacts and reactions between them are largely mediated by various protein tethers and lipids. Ions, lipids and even proteins can be transported between the ER and neighboring organelles or recruited to the contact site to exert their functions. This review focuses on the key molecules involved in the formation of different contact sites as well as their biological functions.
Collapse
Affiliation(s)
- Shiyin Lin
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Tian Meng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Haofeng Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Haixia Zhuang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Zhengjie He
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Huan Yang
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410021, China
| | - Du Feng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| |
Collapse
|
37
|
Balla T, Gulyas G, Kim YJ, Pemberton J. PHOSPHOINOSITIDES AND CALCIUM SIGNALING. A MARRIAGE ARRANGED IN ER-PM CONTACT SITES. CURRENT OPINION IN PHYSIOLOGY 2020; 17:149-157. [PMID: 32944676 DOI: 10.1016/j.cophys.2020.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium (Ca2+) ions are critically important in orchestrating countless regulatory processes in eukaryotic cells. Consequently, cells tightly control cytoplasmic Ca2+ concentrations using a complex array of Ca2+-selective ion channels, transporters, and signaling effectors. Ca2+ transport through various cellular membranes is highly dependent on the intrinsic properties of specific membrane compartments and conversely, local Ca2+ changes have profound effects on the membrane lipid composition of such membrane sub-domains. In particular, inositol phospholipids are a minor class of phospholipids that play pivotal roles in the control of Ca2+-dependent signaling pathways. In this review, we will highlight some of the recent advances in this field as well as their impact in defining future research directions.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Gergo Gulyas
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
38
|
Bohnert M. Tether Me, Tether Me Not—Dynamic Organelle Contact Sites in Metabolic Rewiring. Dev Cell 2020; 54:212-225. [DOI: 10.1016/j.devcel.2020.06.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 02/04/2023]
|
39
|
Endoplasmic reticulum-plasma membrane contacts: Principals of phosphoinositide and calcium signaling. Curr Opin Cell Biol 2020; 63:125-134. [PMID: 32088611 DOI: 10.1016/j.ceb.2020.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/29/2022]
Abstract
The endoplasmic reticulum (ER) forms an extensive network of membrane contact sites with intra-cellular organelles and the plasma membrane (PM). Interorganelle contacts have vital roles in membrane lipid and ion dynamics. In particular, ER-PM contacts are integral to numerous inter-cellular and intra-cellular signaling pathways including phosphoinositide lipid and calcium signaling, mechanotransduction, metabolic regulation, and cell stress responses. Accordingly, ER-PM contacts serve important signaling functions in excitable cells including neurons and muscle and endocrine cells. This review highlights recent advances in our understanding of the vital roles for ER-PM contacts in phosphoinositide and calcium signaling and how signaling pathways in turn regulate proteins that form and function at ER-PM contacts.
Collapse
|
40
|
Öztürk Z, O’Kane CJ, Pérez-Moreno JJ. Axonal Endoplasmic Reticulum Dynamics and Its Roles in Neurodegeneration. Front Neurosci 2020; 14:48. [PMID: 32116502 PMCID: PMC7025499 DOI: 10.3389/fnins.2020.00048] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
The physical continuity of axons over long cellular distances poses challenges for their maintenance. One organelle that faces this challenge is endoplasmic reticulum (ER); unlike other intracellular organelles, this forms a physically continuous network throughout the cell, with a single membrane and a single lumen. In axons, ER is mainly smooth, forming a tubular network with occasional sheets or cisternae and low amounts of rough ER. It has many potential roles: lipid biosynthesis, glucose homeostasis, a Ca2+ store, protein export, and contacting and regulating other organelles. This tubular network structure is determined by ER-shaping proteins, mutations in some of which are causative for neurodegenerative disorders such as hereditary spastic paraplegia (HSP). While axonal ER shares many features with the tubular ER network in other contexts, these features must be adapted to the long and narrow dimensions of axons. ER appears to be physically continuous throughout axons, over distances that are enormous on a subcellular scale. It is therefore a potential channel for long-distance or regional communication within neurons, independent of action potentials or physical transport of cargos, but involving its physiological roles such as Ca2+ or organelle homeostasis. Despite its apparent stability, axonal ER is highly dynamic, showing features like anterograde and retrograde transport, potentially reflecting continuous fusion and breakage of the network. Here we discuss the transport processes that must contribute to this dynamic behavior of ER. We also discuss the model that these processes underpin a homeostatic process that ensures both enough ER to maintain continuity of the network and repair breaks in it, but not too much ER that might disrupt local cellular physiology. Finally, we discuss how failure of ER organization in axons could lead to axon degenerative diseases, and how a requirement for ER continuity could make distal axons most susceptible to degeneration in conditions that disrupt ER continuity.
Collapse
Affiliation(s)
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
41
|
Pemberton JG, Kim YJ, Balla T. Integrated regulation of the phosphatidylinositol cycle and phosphoinositide-driven lipid transport at ER-PM contact sites. Traffic 2019; 21:200-219. [PMID: 31650663 DOI: 10.1111/tra.12709] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
Abstract
Among the structural phospholipids that form the bulk of eukaryotic cell membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the common precursor for low-abundance regulatory lipids, collectively referred to as polyphosphoinositides (PPIn). The metabolic turnover of PPIn species has received immense attention because of the essential functions of these lipids as universal regulators of membrane biology and their dysregulation in numerous human pathologies. The diverse functions of PPIn lipids occur, in part, by orchestrating the spatial organization and conformational dynamics of peripheral or integral membrane proteins within defined subcellular compartments. The emerging role of stable contact sites between adjacent membranes as specialized platforms for the coordinate control of ion exchange, cytoskeletal dynamics, and lipid transport has also revealed important new roles for PPIn species. In this review, we highlight the importance of membrane contact sites formed between the endoplasmic reticulum (ER) and plasma membrane (PM) for the integrated regulation of PPIn metabolism within the PM. Special emphasis will be placed on non-vesicular lipid transport during control of the PtdIns biosynthetic cycle as well as toward balancing the turnover of the signaling PPIn species that define PM identity.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
42
|
Fowler PC, Garcia-Pardo ME, Simpson JC, O'Sullivan NC. NeurodegenERation: The Central Role for ER Contacts in Neuronal Function and Axonopathy, Lessons From Hereditary Spastic Paraplegias and Related Diseases. Front Neurosci 2019; 13:1051. [PMID: 31680803 PMCID: PMC6801308 DOI: 10.3389/fnins.2019.01051] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
Abstract
The hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative conditions whose characteristic feature is degeneration of the longest axons within the corticospinal tract which leads to progressive spasticity and weakness of the lower limbs. Though highly genetically heterogeneous, the majority of HSP cases are caused by mutations in genes encoding proteins that are responsible for generating and organizing the tubular endoplasmic reticulum (ER). Despite this, the role of the ER within neurons, particularly the long axons affected in HSP, is not well understood. Throughout axons, ER tubules make extensive contacts with other organelles, the cytoskeleton and the plasma membrane. At these ER contacts, protein complexes work in concert to perform specialized functions including organelle shaping, calcium homeostasis and lipid biogenesis, all of which are vital for neuronal survival and may be disrupted by HSP-causing mutations. In this article we summarize the proteins which mediate ER contacts, review the functions these contacts are known to carry out within neurons, and discuss the potential contribution of disruption of ER contacts to axonopathy in HSP.
Collapse
Affiliation(s)
- Philippa C Fowler
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - M Elena Garcia-Pardo
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Jeremy C Simpson
- UCD School of Biology and Environmental Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Niamh C O'Sullivan
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
43
|
Kirmiz M, Gillies TE, Dickson EJ, Trimmer JS. Neuronal ER-plasma membrane junctions organized by Kv2-VAP pairing recruit Nir proteins and affect phosphoinositide homeostasis. J Biol Chem 2019; 294:17735-17757. [PMID: 31594866 DOI: 10.1074/jbc.ra119.007635] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 10/02/2019] [Indexed: 12/21/2022] Open
Abstract
The association of plasma membrane (PM)-localized voltage-gated potassium (Kv2) channels with endoplasmic reticulum (ER)-localized vesicle-associated membrane protein-associated proteins VAPA and VAPB defines ER-PM junctions in mammalian brain neurons. Here, we used proteomics to identify proteins associated with Kv2/VAP-containing ER-PM junctions. We found that the VAP-interacting membrane-associated phosphatidylinositol (PtdIns) transfer proteins PYK2 N-terminal domain-interacting receptor 2 (Nir2) and Nir3 specifically associate with Kv2.1 complexes. When coexpressed with Kv2.1 and VAPA in HEK293T cells, Nir2 colocalized with cell-surface-conducting and -nonconducting Kv2.1 isoforms. This was enhanced by muscarinic-mediated PtdIns(4,5)P2 hydrolysis, leading to dynamic recruitment of Nir2 to Kv2.1 clusters. In cultured rat hippocampal neurons, exogenously expressed Nir2 did not strongly colocalize with Kv2.1, unless exogenous VAPA was also expressed, supporting the notion that VAPA mediates the spatial association of Kv2.1 and Nir2. Immunolabeling signals of endogenous Kv2.1, Nir2, and VAP puncta were spatially correlated in cultured neurons. Fluorescence-recovery-after-photobleaching experiments revealed that Kv2.1, VAPA, and Nir2 have comparable turnover rates at ER-PM junctions, suggesting that they form complexes at these sites. Exogenous Kv2.1 expression in HEK293T cells resulted in significant differences in the kinetics of PtdIns(4,5)P2 recovery following repetitive muscarinic stimulation, with no apparent impact on resting PtdIns(4,5)P2 or PtdIns(4)P levels. Finally, the brains of Kv2.1-knockout mice had altered composition of PtdIns lipids, suggesting a crucial role for native Kv2.1-containing ER-PM junctions in regulating PtdIns lipid metabolism in brain neurons. These results suggest that ER-PM junctions formed by Kv2 channel-VAP pairing regulate PtdIns lipid homeostasis via VAP-associated PtdIns transfer proteins.
Collapse
Affiliation(s)
- Michael Kirmiz
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616
| | - Taryn E Gillies
- Department of Bioengineering, Stanford University, Stanford, California 94305
| | - Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, California 95616
| | - James S Trimmer
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616 .,Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, California 95616
| |
Collapse
|
44
|
A programmable DNA-origami platform for studying lipid transfer between bilayers. Nat Chem Biol 2019; 15:830-837. [PMID: 31320758 PMCID: PMC6650167 DOI: 10.1038/s41589-019-0325-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
Abstract
Non-vesicular lipid transport between bilayers at membrane contact sites plays important physiological roles. Mechanistic insight into the action of lipid transport proteins localized at these sites (bridge/tunnel versus shuttle models) requires a determination of the distance between bilayers at which this transport can occur. Here, we developed DNA-origami nanostructures to organize size-defined liposomes at precise distances and used them to study lipid transfer by the SMP domain of E-Syt1. Pairs of DNA-ring-templated donor and acceptor liposomes were docked through DNA pillars, which determined their distance. The SMP domain was anchored to donor liposomes via an unstructured linker and lipid transfer was assessed via a FRET-based assay. We show that lipid transfer can occur over distances that exceed the length of SMP dimer, compatible with a shuttle model. The DNA nanostructures developed here can be adapted to study other processes occurring where two membranes are closely apposed to each other.
Collapse
|