1
|
Xue W, Fan X, Hui Y, Yu J. Active compounds of licorice ameliorate microplastics-induced intestinal damage by targeting FADD. Food Chem Toxicol 2025:115570. [PMID: 40412644 DOI: 10.1016/j.fct.2025.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/15/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
Microplastics (MPs), as a novel type of environmental pollutant, have the potential to impact human health. This study aims to investigate the protective efficacy of active compounds in licorice on microplastics-injured rats and reveal the underlying mechanisms. The MPs-injured rat model was established by orally administrated with MPs. After the treatment with different doses of a combination of liquiritigenin, isoliquiritigenin and glycyrrhetinic acid, the tissue injury, oxidative stress, inflammation and expressions of tight junction proteins in colon and liver were evaluated. Our data showed that active compounds of licorice significantly ameliorate colonic and liver damage caused by MPs, improving function colonic barrier and liver function, reducing oxidative stress and systemic inflammatory factors. Then, a total of 29 differentially expressed proteins were identified by label-free proteomics analysis, among which the down-regulated Fas-associating protein with a novel death domain (FADD) was found to be the most related with the protective effects of licorice. What's more, this protein target also interacts directly with active compounds of licorice, through hydrogen bounds and hydrophobic interactions involving 11 residues. This study suggested that licorice exerts protective effects against MPs on rats, through down-regulating as well as directly interacting with FADD.
Collapse
Affiliation(s)
- Wen Xue
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Xiuhe Fan
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Yujing Hui
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Jingao Yu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| |
Collapse
|
2
|
Daly AE, Chang AB, Purbey PK, Williams KJ, Li S, Redelings BD, Yeh G, Wu Y, Pope SD, Venkatesh B, Li S, Nguyen K, Rodrigues J, Jorgensen K, Dasgupta A, Siggers T, Chen L, Smale ST. Stepwise neofunctionalization of the NF-κB family member Rel during vertebrate evolution. Nat Immunol 2025; 26:760-774. [PMID: 40307452 PMCID: PMC12043515 DOI: 10.1038/s41590-025-02138-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025]
Abstract
Adaptive immunity and the five vertebrate NF-κB family members first emerged in cartilaginous fish, suggesting that NF-κB family divergence helped to facilitate adaptive immunity. One specialized function of the NF-κB Rel protein in macrophages is activation of Il12b, which encodes a key regulator of T cell development. We found that Il12b exhibits much greater Rel dependence than inducible innate immunity genes in macrophages, with the unique function of Rel dimers depending on a heightened intrinsic DNA-binding affinity. Chromatin immunoprecipitation followed by sequencing experiments defined differential DNA-binding preferences of NF-κB family members genome-wide, and X-ray crystallography revealed a key residue that supports the heightened DNA-binding affinity of Rel dimers. Unexpectedly, this residue, the heightened affinity of Rel dimers, and the portion of the Il12b promoter bound by Rel dimers were largely restricted to mammals. Our findings reveal major structural transitions in an NF-κB family member and one of its key target promoters at a late stage of vertebrate evolution that apparently contributed to immunoregulatory rewiring in mammalian species.
Collapse
Affiliation(s)
- Allison E Daly
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Abraham B Chang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Prabhat K Purbey
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Department of Medicine, UCLA, Los Angeles, CA, USA
| | - Kevin J Williams
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Shuxing Li
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Benjamin D Redelings
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - George Yeh
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Yongqing Wu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Scott D Pope
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Byrappa Venkatesh
- Comparative Genomics Lab, Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Sibon Li
- Department of Human Genetics, UCLA, Los Angeles, CA, USA
| | - Kaylin Nguyen
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Joseph Rodrigues
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Kelsey Jorgensen
- Department of Anthropology, University of Kansas, Lawrence, KS, USA
| | - Ananya Dasgupta
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Trevor Siggers
- Department of Biology, Boston University, Boston, MA, USA
| | - Lin Chen
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- Department of Medicine, UCLA, Los Angeles, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
3
|
Wang ZX, Jiao WJ, Yang Y, Liu HL, Wang HL. Role of inflammasomes in Toxoplasma and Plasmodium infections. Parasit Vectors 2024; 17:466. [PMID: 39548522 PMCID: PMC11566176 DOI: 10.1186/s13071-024-06529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/08/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND The detection of pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) by multimeric protein complexes, known as inflammasomes, triggers an inflammatory response, which is a critical component of the innate immune system. This inflammatory response plays a pivotal role in host resistance against parasitic infections, presenting a significant global health challenge. METHODS We systematically searched for relevant articles from the Pubmed and the Web of Science database to summarize current insights into how inflammasomes function in preventing infections caused by the apicomplexan parasites Toxoplasma and Plasmodium. RESULTS In vivo and in vitro studies have extensively explored inflammasomes such as the absent in melanoma 2 (AIM2), NLR family pyrin-containing protein 1 (NLRP1), NLRP3, and NLRP12 inflammasomes, alongside noncanonical inflammasomes, with particular emphasis on the NLRP1 and the NLRP3 inflammasome during Toxoplasma gondii infection or the AIM2 and the NLRP3 inflammasome at various stages of Plasmodium infection. Toxoplasma gondii interacts with inflammasomes to activate or inhibit immune responses. CONCLUSIONS Inflammasomes control parasite burden and parasite-induced cell death, contribute to immune recognition and inflammatory responses and thus influence apicomplexan parasite-associated pathogenesis and the severity of clinical outcomes. Hence, inflammasomes play crucial roles in the progression and outcomes of toxoplasmosis and malaria. A comprehensive understanding of how parasitic infections modulate inflammasome activity enhances insight into host immune responses against parasites.
Collapse
Affiliation(s)
- Zhi-Xin Wang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
| | - Wan-Jun Jiao
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
| | - Yong Yang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
| | - Hong-Li Liu
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China.
| | - Hai-Long Wang
- School of Basic Medicine, Basic Medical Sciences Center, Shanxi Medical University, Jinzhong, 030600, Shanxi, China.
| |
Collapse
|
4
|
Wu LY, Zhang JL, Zeeshan M, Zhou Y, Zhang YT, He WT, Jin N, Dai Y, Chi W, Ou Z, Dong GH, Lin LZ. Caspase-8 promotes NLRP3 inflammasome activation mediates eye development defects in zebrafish larvae exposed to perfulorooctane sulfonate (PFOS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124252. [PMID: 38815886 DOI: 10.1016/j.envpol.2024.124252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
Epidemiological evidence showed that serum high perfluorooctane sulfonate (PFOS) levels are associated with multiple eye related diseases, but the potential underlying molecular mechanisms remain poorly understood. Zebrafish and photoreceptor cell (661w) models were used to investigate the molecular mechanism of PFOS induced eye development defects. Our results showed a novel molecular mechanism of PFOS-induced inflammation response-mediated photoreceptor cell death associated with eye development defects. Inhibition of Caspase-8 activation significantly decreased photoreceptor cell death in PFOS exposure. Mechanistically, Toll-like receptor 4 (TLR4) mediates activation of Caspase-8 promote activation of NLR family pyrin domain-containing 3 (NLRP3) inflammasome to elicit maturation of interleukin-1 beta (IL-1β) via Caspase-1 activation, facilitating photoreceptor cell inflammation damage in PFOS exposure. In addition, we also made a novel finding that Caspase-3 activation was increased via Caspase-8 activation and directly intensified cell death. Our results show the important role of Caspase-8 activation in PFOS induced eye development defects and highlight Caspase-8 mediated activation of the NLRP3 inflammation triggers activation of Caspase-1 and promote the maturation of IL-1β in retinal inflammatory injury.
Collapse
Affiliation(s)
- Lu-Yin Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing-Lin Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mohammed Zeeshan
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Yun-Ting Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wan-Ting He
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Nanxiang Jin
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70210, Kuopio, Finland
| | - Ye Dai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Wei Chi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Zejin Ou
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Zhou Y, Xiang Y, Liu S, Li C, Dong J, Kong X, Ji X, Cheng X, Zhang L. RIPK3 signaling and its role in regulated cell death and diseases. Cell Death Discov 2024; 10:200. [PMID: 38684668 PMCID: PMC11059363 DOI: 10.1038/s41420-024-01957-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Receptor-interacting protein kinase 3 (RIPK3), a member of the receptor-interacting protein kinase (RIPK) family with serine/threonine protein kinase activity, interacts with RIPK1 to generate necrosomes, which trigger caspase-independent programmed necrosis. As a vital component of necrosomes, RIPK3 plays an indispensable role in necroptosis, which is crucial for human life and health. In addition, RIPK3 participates in the pathological process of several infections, aseptic inflammatory diseases, and tumors (including tumor-promoting and -suppressive activities) by regulating autophagy, cell proliferation, and the metabolism and production of chemokines/cytokines. This review summarizes the recent research progress of the regulators of the RIPK3 signaling pathway and discusses the potential role of RIPK3/necroptosis in the aetiopathogenesis of various diseases. An in-depth understanding of the mechanisms and functions of RIPK3 may facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yaqi Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Pathology, the Second People's Hospital of Jiaozuo; The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, 454000, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, No. 6 Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan, 450064, China
| | - Yaxuan Xiang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Sijie Liu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Chenyao Li
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Jiaheng Dong
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Xiangrui Kong
- Wushu College, Henan University, Kaifeng, 475004, China
| | - Xinying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, No. 6 Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan, 450064, China
| | - Xiaoxia Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Pandori WJ, Matsuno SY, Shin JH, Kim SC, Kao TH, Mallya S, Batarseh SN, Lodoen MB. Role for Caspase-8 in the Release of IL-1β and Active Caspase-1 from Viable Human Monocytes during Toxoplasma gondii Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1161-1171. [PMID: 38372637 PMCID: PMC11410338 DOI: 10.4049/jimmunol.2200513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Monocytes are actively recruited to sites of infection and produce the potent proinflammatory cytokine IL-1β. We previously showed that IL-1β release during Toxoplasma gondii infection of primary human monocytes requires the NLRP3 inflammasome and caspase-1 but is independent of gasdermin D and pyroptosis. To investigate mechanisms of IL-1β release, we generated caspase-1, -4, -5, or -8 knockout (KO) THP-1 monocytic cells. Genetic ablation of caspase-1 or -8, but not caspase-4 or -5, decreased IL-1β release during T. gondii infection without affecting cell death. In contrast, TNF-α and IL-6 secretion were unperturbed in caspase-8 KO cells during T. gondii infection. Dual pharmacological inhibition of caspase-8 and RIPK1 in primary monocytes also decreased IL-1β release without affecting cell viability or parasite infection. Caspase-8 was also required for the release of active caspase-1 from T. gondii-infected cells and for IL-1β release during infection with the related apicomplexan parasite Neospora caninum. Surprisingly, caspase-8 deficiency did not impair synthesis or cleavage of pro-IL-1β, but resulted in the retention of mature IL-1β within cells. Generation of gasdermin E KO and ATG7 KO THP-1 cells revealed that the release of IL-1β was not dependent on gasdermin E or ATG7. Collectively, our data indicate that during T. gondii Infection of human monocytes, caspase-8 functions in a novel gasdermin-independent mechanism controlling IL-1β release from viable cells. This study expands on the molecular pathways that promote IL-1β in human immune cells and provides evidence of a role for caspase-8 in the mechanism of IL-1β release during infection.
Collapse
Affiliation(s)
- William J. Pandori
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, 92617, USA
| | - Stephanie Y. Matsuno
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, 92617, USA
| | - Ji-Hun Shin
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, 92617, USA
| | - Samuel C. Kim
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, 92617, USA
| | - Tiffany H. Kao
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, 92617, USA
| | - Sharmila Mallya
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, 92617, USA
| | - Sarah N. Batarseh
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, 92617, USA
| | - Melissa B. Lodoen
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, 92617, USA
| |
Collapse
|
7
|
Shkarina K, Broz P. Selective induction of programmed cell death using synthetic biology tools. Semin Cell Dev Biol 2024; 156:74-92. [PMID: 37598045 DOI: 10.1016/j.semcdb.2023.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
Collapse
Affiliation(s)
- Kateryna Shkarina
- Institute of Innate Immunity, University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Switzerland.
| |
Collapse
|
8
|
Pang J, Vince JE. The role of caspase-8 in inflammatory signalling and pyroptotic cell death. Semin Immunol 2023; 70:101832. [PMID: 37625331 DOI: 10.1016/j.smim.2023.101832] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
The programmed cell death machinery exhibits surprising flexibility, capable of crosstalk and non-apoptotic roles. Much of this complexity arises from the diverse functions of caspase-8, a cysteine-aspartic acid protease typically associated with activating caspase-3 and - 7 to induce apoptosis. However, recent research has revealed that caspase-8 also plays a role in regulating the lytic gasdermin cell death machinery, contributing to pyroptosis and immune responses in contexts such as infection, autoinflammation, and T-cell signalling. In mice, loss of caspase-8 results in embryonic lethality from unrestrained necroptotic killing, while in humans caspase-8 deficiency can lead to an autoimmune lymphoproliferative syndrome, immunodeficiency, inflammatory bowel disease or, when it can't cleave its substrate RIPK1, early onset periodic fevers. This review focuses on non-canonical caspase-8 signalling that drives immune responses, including its regulation of inflammatory gene transcription, activation within inflammasome complexes, and roles in pyroptotic cell death. Ultimately, a deeper understanding of caspase-8 function will aid in determining whether, and when, targeting caspase-8 pathways could be therapeutically beneficial in human diseases.
Collapse
Affiliation(s)
- Jiyi Pang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
9
|
Lentini G, Famà A, De Gaetano GV, Coppolino F, Mahjoub AK, Ryan L, Lien E, Espevik T, Beninati C, Teti G. Caspase-8 inhibition improves the outcome of bacterial infections in mice by promoting neutrophil activation. Cell Rep Med 2023:101098. [PMID: 37390829 PMCID: PMC10394171 DOI: 10.1016/j.xcrm.2023.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/07/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023]
Abstract
During differentiation, neutrophils undergo a spontaneous pro-inflammatory program that is hypothesized here to be under caspase-8 control. In mice, intraperitoneal administration of the caspase-8 inhibitor z-IETD-fmk is sufficient to unleash the production of pro-inflammatory cytokines and neutrophil influx in the absence of cell death. These effects are due to selective inhibition of caspase-8 and require tonic interferon-β (IFN-β) production and RIPK3 but not MLKL, the essential downstream executioner of necroptotic cell death. In vitro, stimulation with z-IETD-fmk is sufficient to induce significant cytokine production in murine neutrophils but not in macrophages. Therapeutic administration of z-IETD-fmk improves clinical outcome in models of lethal bacterial peritonitis and pneumonia by augmenting cytokine release, neutrophil influx, and bacterial clearance. Moreover, the inhibitor protects mice against high-dose endotoxin shock. Collectively, our data unveil a RIPK3- and IFN-β-dependent pathway that is constitutively activated in neutrophils and can be harnessed therapeutically using caspase-8 inhibition.
Collapse
Affiliation(s)
- Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | - Francesco Coppolino
- Department of Chemical, Biological and Pharmaceutical Sciences, University of Messina, Messina, Italy
| | | | - Liv Ryan
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Egil Lien
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy; Scylla Biotech Srl, Messina, Italy
| | | |
Collapse
|
10
|
Pollock TY, Vázquez Marrero VR, Brodsky IE, Shin S. TNF licenses macrophages to undergo rapid caspase-1, -11, and -8-mediated cell death that restricts Legionella pneumophila infection. PLoS Pathog 2023; 19:e1010767. [PMID: 37279255 DOI: 10.1371/journal.ppat.1010767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
The inflammatory cytokine tumor necrosis factor (TNF) is necessary for host defense against many intracellular pathogens, including Legionella pneumophila. Legionella causes the severe pneumonia Legionnaires' disease and predominantly affects individuals with a suppressed immune system, including those receiving therapeutic TNF blockade to treat autoinflammatory disorders. TNF induces pro-inflammatory gene expression, cellular proliferation, and survival signals in certain contexts, but can also trigger programmed cell death in others. It remains unclear, however, which of the pleiotropic functions of TNF mediate control of intracellular bacterial pathogens like Legionella. In this study, we demonstrate that TNF signaling licenses macrophages to die rapidly in response to Legionella infection. We find that TNF-licensed cells undergo rapid gasdermin-dependent, pyroptotic death downstream of inflammasome activation. We also find that TNF signaling upregulates components of the inflammasome response, and that the caspase-11-mediated non-canonical inflammasome is the first inflammasome to be activated, with caspase-1 and caspase-8 mediating delayed pyroptotic death. We find that all three caspases are collectively required for optimal TNF-mediated restriction of bacterial replication in macrophages. Furthermore, caspase-8 is required for control of pulmonary Legionella infection. These findings reveal a TNF-dependent mechanism in macrophages for activating rapid cell death that is collectively mediated by caspases-1, -8, and -11 and subsequent restriction of Legionella infection.
Collapse
Affiliation(s)
- Tzvi Y Pollock
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Víctor R Vázquez Marrero
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
11
|
Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Aqeilan RI, Arama E, Baehrecke EH, Balachandran S, Bano D, Barlev NA, Bartek J, Bazan NG, Becker C, Bernassola F, Bertrand MJM, Bianchi ME, Blagosklonny MV, Blander JM, Blandino G, Blomgren K, Borner C, Bortner CD, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard RB, Calin GA, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chen GQ, Chen Q, Chen YH, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Daugaard M, Dawson TM, Dawson VL, De Maria R, De Strooper B, Debatin KM, Deberardinis RJ, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon SJ, Dynlacht BD, El-Deiry WS, Elrod JW, Engeland K, Fimia GM, Galassi C, Ganini C, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green DR, Greene LA, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick JM, Haupt Y, He S, Heery DM, Hengartner MO, Hetz C, Hildeman DA, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost PJ, Kanneganti TD, et alVitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Aqeilan RI, Arama E, Baehrecke EH, Balachandran S, Bano D, Barlev NA, Bartek J, Bazan NG, Becker C, Bernassola F, Bertrand MJM, Bianchi ME, Blagosklonny MV, Blander JM, Blandino G, Blomgren K, Borner C, Bortner CD, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard RB, Calin GA, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chen GQ, Chen Q, Chen YH, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Daugaard M, Dawson TM, Dawson VL, De Maria R, De Strooper B, Debatin KM, Deberardinis RJ, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon SJ, Dynlacht BD, El-Deiry WS, Elrod JW, Engeland K, Fimia GM, Galassi C, Ganini C, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green DR, Greene LA, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick JM, Haupt Y, He S, Heery DM, Hengartner MO, Hetz C, Hildeman DA, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost PJ, Kanneganti TD, Karin M, Kashkar H, Kaufmann T, Kelly GL, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Kluck R, Krysko DV, Kulms D, Kumar S, Lavandero S, Lavrik IN, Lemasters JJ, Liccardi G, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Luedde T, MacFarlane M, Madeo F, Malorni W, Manic G, Mantovani R, Marchi S, Marine JC, Martin SJ, Martinou JC, Mastroberardino PG, Medema JP, Mehlen P, Meier P, Melino G, Melino S, Miao EA, Moll UM, Muñoz-Pinedo C, Murphy DJ, Niklison-Chirou MV, Novelli F, Núñez G, Oberst A, Ofengeim D, Opferman JT, Oren M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pentimalli F, Pereira DM, Pervaiz S, Peter ME, Pinton P, Porta G, Prehn JHM, Puthalakath H, Rabinovich GA, Rajalingam K, Ravichandran KS, Rehm M, Ricci JE, Rizzuto R, Robinson N, Rodrigues CMP, Rotblat B, Rothlin CV, Rubinsztein DC, Rudel T, Rufini A, Ryan KM, Sarosiek KA, Sawa A, Sayan E, Schroder K, Scorrano L, Sesti F, Shao F, Shi Y, Sica GS, Silke J, Simon HU, Sistigu A, Stephanou A, Stockwell BR, Strapazzon F, Strasser A, Sun L, Sun E, Sun Q, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Troy CM, Turk B, Urbano N, Vandenabeele P, Vanden Berghe T, Vander Heiden MG, Vanderluit JL, Verkhratsky A, Villunger A, von Karstedt S, Voss AK, Vousden KH, Vucic D, Vuri D, Wagner EF, Walczak H, Wallach D, Wang R, Wang Y, Weber A, Wood W, Yamazaki T, Yang HT, Zakeri Z, Zawacka-Pankau JE, Zhang L, Zhang H, Zhivotovsky B, Zhou W, Piacentini M, Kroemer G, Galluzzi L. Apoptotic cell death in disease-Current understanding of the NCCD 2023. Cell Death Differ 2023; 30:1097-1154. [PMID: 37100955 PMCID: PMC10130819 DOI: 10.1038/s41418-023-01153-w] [Show More Authors] [Citation(s) in RCA: 173] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023] Open
Abstract
Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.
Collapse
Affiliation(s)
- Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy.
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institut für Immunologie, Kiel University, Kiel, Germany
| | - Massimiliano Agostini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patrizia Agostinis
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- BIOGEM, Avellino, Italy
| | - Ivano Amelio
- Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - David W Andrews
- Sunnybrook Research Institute, Toronto, ON, Canada
- Departments of Biochemistry and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Rami I Aqeilan
- Hebrew University of Jerusalem, Lautenberg Center for Immunology & Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniele Bano
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Nickolai A Barlev
- Department of Biomedicine, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Mathieu J M Bertrand
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marco E Bianchi
- Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy and Ospedale San Raffaele IRCSS, Milan, Italy
| | | | - J Magarian Blander
- Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Medical Faculty, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Carl D Bortner
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Pierluigi Bove
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patricia Boya
- Centro de Investigaciones Biologicas Margarita Salas, CSIC, Madrid, Spain
| | - Catherine Brenner
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l'oncogénèse pour de nouvelles approches thérapeutiques, Villejuif, France
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Thomas Brunner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- UCL Consortium for Mitochondrial Research, London, UK
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Francesco Cecconi
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francis K-M Chan
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Guo-Qiang Chen
- State Key Lab of Oncogene and its related gene, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Youhai H Chen
- Shenzhen Institute of Advanced Technology (SIAT), Shenzhen, Guangdong, China
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Aaron Ciechanover
- The Technion-Integrated Cancer Center, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Marcus Conrad
- Helmholtz Munich, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Mads Daugaard
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Ted M Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruggero De Maria
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bart De Strooper
- VIB Centre for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J Deberardinis
- Howard Hughes Medical Institute and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Marc Diederich
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Division of Hematology/Oncology, Brown University and the Lifespan Cancer Institute, Providence, RI, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - John W Elrod
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Kurt Engeland
- Molecular Oncology, University of Leipzig, Leipzig, Germany
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Carlo Ganini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
| | - Ana J Garcia-Saez
- CECAD, Institute of Genetics, University of Cologne, Cologne, Germany
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM, UMR, 1231, Dijon, France
- Faculty of Medicine, Université de Bourgogne Franche-Comté, Dijon, France
- Anti-cancer Center Georges-François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler school of Medicine, Tel Aviv university, Tel Aviv, Israel
| | - Sourav Ghosh
- Department of Neurology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Hinrich Gronemeyer
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Georg Häcker
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Departments of Molecular Microbiology and Immunology, Pharmacology, Oncology and Neurology, Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Ygal Haupt
- VITTAIL Ltd, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sudan He
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, The University of Tokyo, Tokyo, Japan
| | - Satoshi Inoue
- National Cancer Center Research Institute, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ana Janic
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Bertrand Joseph
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Philipp J Jost
- Clinical Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Michael Karin
- Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Hamid Kashkar
- CECAD Research Center, Institute for Molecular Immunology, University of Cologne, Cologne, Germany
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Ruth Kluck
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dagmar Kulms
- Department of Dermatology, Experimental Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumor Diseases Dresden, TU-Dresden, Dresden, Germany
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sergio Lavandero
- Universidad de Chile, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - John J Lemasters
- Departments of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Gianmaria Liccardi
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Richard A Lockshin
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA
- St. John's University, Jamaica, NY, USA
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Marion MacFarlane
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Walter Malorni
- Center for Global Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gwenola Manic
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Jean-Christophe Marine
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Rotterdam, the Netherlands
- IFOM-ETS The AIRC Institute for Molecular Oncology, Milan, Italy
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer, and Development Laboratory, Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Ute M Moll
- Department of Pathology and Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Daniel J Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Flavia Novelli
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Dimitry Ofengeim
- Rare and Neuroscience Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine and Howard Hughes Medical Institute, New York, NY, USA
| | - Theocharis Panaretakis
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, YLL School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
- National University Cancer Institute, NUHS, Singapore, Singapore
- ISEP, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Marcus E Peter
- Department of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Porta
- Center of Genomic Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina. Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Cell Clearance, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Barak Rotblat
- Department of Life sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- The NIBN, Beer Sheva, Israel
| | - Carla V Rothlin
- Department of Immunobiology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Thomas Rudel
- Microbiology Biocentre, University of Würzburg, Würzburg, Germany
| | - Alessandro Rufini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- University of Leicester, Leicester Cancer Research Centre, Leicester, UK
| | - Kevin M Ryan
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA, USA
- Department of Systems Biology, Lab of Systems Pharmacology, Harvard Program in Therapeutics Science, Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA
| | - Akira Sawa
- Johns Hopkins Schizophrenia Center, Johns Hopkins University, Baltimore, MD, USA
| | - Emre Sayan
- Faculty of Medicine, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, NJ, USA
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, PR China
| | - Yufang Shi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Giuseppe S Sica
- Department of Surgical Science, University Tor Vergata, Rome, Italy
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Flavie Strapazzon
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Univ Lyon, Univ Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyogène CNRS, INSERM, Lyon, France
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Liming Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | - Stephen W G Tait
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Daolin Tang
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Carol M Troy
- Departments of Pathology & Cell Biology and Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Nicoletta Urbano
- Department of Oncohaematology, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Methusalem Program, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
- School of Forensic Medicine, China Medical University, Shenyang, China
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences (OeAW), Vienna, Austria
- The Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Silvia von Karstedt
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Daniela Vuri
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Henning Walczak
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Achim Weber
- University of Zurich and University Hospital Zurich, Department of Pathology and Molecular Pathology, Zurich, Switzerland
- University of Zurich, Institute of Molecular Cancer Research, Zurich, Switzerland
| | - Will Wood
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Huang-Tian Yang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Queens College and Graduate Center, City University of New York, Flushing, NY, USA
| | - Joanna E Zawacka-Pankau
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Biochemistry, Laboratory of Biophysics and p53 protein biology, Medical University of Warsaw, Warsaw, Poland
| | - Lin Zhang
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Wenzhao Zhou
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Eeckhout E, Hamerlinck L, Jonckheere V, Van Damme P, van Loo G, Wullaert A. Gasdermin D independent canonical inflammasome responses cooperate with caspase-8 to establish host defense against gastrointestinal Citrobacter rodentium infection. Cell Death Dis 2023; 14:282. [PMID: 37080966 PMCID: PMC10119323 DOI: 10.1038/s41419-023-05801-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
Citrobacter rodentium is an enteropathogen that causes intestinal inflammatory responses in mice reminiscent of the pathology provoked by enteropathogenic and enterohemorrhagic Escherichia coli infections in humans. C. rodentium expresses various virulence factors that target specific signaling proteins involved in executing apoptotic, necroptotic and pyroptotic cell death, suggesting that each of these distinct cell death modes performs essential host defense functions that the pathogen aims to disturb. However, the relative contributions of apoptosis, necroptosis and pyroptosis in protecting the host against C. rodentium have not been elucidated. Here we used mice with single or combined deficiencies in essential signaling proteins controlling apoptotic, necroptotic or pyroptotic cell death to reveal the roles of these cell death modes in host defense against C. rodentium. Gastrointestinal C. rodentium infections in mice lacking GSDMD and/or MLKL showed that both pyroptosis and necroptosis were dispensable for pathogen clearance. In contrast, while RIPK3-deficient mice showed normal C. rodentium clearance, mice with combined caspase-8 and RIPK3 deficiencies failed to clear intestinal pathogen loads. Although this demonstrated a crucial role for caspase-8 signaling in establishing intestinal host defense, Casp8-/-Ripk3-/- mice remained capable of preventing systemic pathogen persistence. This systemic host defense relied on inflammasome signaling, as Casp8-/-Ripk3-/- mice with combined caspase-1 and -11 deletion succumbed to C. rodentium infection. Interestingly, although it is known that C. rodentium can activate the non-canonical caspase-11 inflammasome, selectively disabling canonical inflammasome signaling by single caspase-1 deletion sufficed to render Casp8-/-Ripk3-/- mice vulnerable to C. rodentium-induced lethality. Moreover, Casp8-/-Ripk3-/- mice lacking GSDMD survived a C. rodentium infection, suggesting that pyroptosis was not crucial for the protective functions of canonical inflammasomes in these mice. Taken together, our mouse genetic experiments revealed an essential cooperation between caspase-8 signaling and GSDMD-independent canonical inflammasome signaling to establish intestinal and systemic host defense against gastrointestinal C. rodentium infection.
Collapse
Affiliation(s)
- Elien Eeckhout
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Lisa Hamerlinck
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Veronique Jonckheere
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Geert van Loo
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Andy Wullaert
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium.
- Laboratory of Proteinscience, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
13
|
Matsuno SY, Pandori WJ, Lodoen MB. Capers with caspases: Toxoplasma gondii tales of inflammation and survival. Curr Opin Microbiol 2023; 72:102264. [PMID: 36791673 DOI: 10.1016/j.mib.2023.102264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 02/15/2023]
Abstract
Intracellular pathogens strike a delicate balance between maintaining their survival within infected cells, while also activating host defense mechanisms. Toxoplasma gondii is a protozoan parasite that initiates a variety of host signaling pathways as it invades host cells and establishes residence in a parasitophorous vacuole. Recent work has highlighted the interplay between T. gondii infection and innate immune pathways that lead to inflammation, several of which converge on caspases. This family of cysteine proteases function at the crossroads of inflammation and cell death and serve as a key target for parasite manipulation. This review focuses on the interaction of T. gondii with caspase-dependent inflammatory and cell death pathways and the role of parasite effector proteins in modulating these processes.
Collapse
Affiliation(s)
- Stephanie Y Matsuno
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92617 USA
| | - William J Pandori
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92617 USA
| | - Melissa B Lodoen
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92617 USA.
| |
Collapse
|
14
|
Chen KW, Brodsky IE. Yersinia interactions with regulated cell death pathways. Curr Opin Microbiol 2023; 71:102256. [PMID: 36584489 DOI: 10.1016/j.mib.2022.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022]
Abstract
Cell death in response to infection is conserved across all kingdoms of life. In metazoans, cell death upon bacterial infection is primarily carried out by the cysteine and aspartate protease and receptor-interacting serine/threonine protein kinase families. The Gram-negative bacterial genus Yersinia includes pathogens that cause disease in humans and other animals ranging from plague to gastrointestinal infections. Pathogenic Yersiniae express a type-III secretion system (T3SS), which translocates effectors that disrupt phagocytosis and innate immune signaling to evade immune defenses and replicate extracellularly in infected tissues. Blockade of innate immune signaling, disruption of the actin cytoskeleton, and the membrane-disrupting activity of the T3SS translocon pore, are all sensed by innate immune cells. Here, we discuss recent advances in understanding the pathways that regulate Yersinia-induced cell death, and how manipulation of these cell death pathways over the course of infection promotes bacterial dissemination or host defense.
Collapse
Affiliation(s)
- Kaiwen W Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, United States; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, United States.
| |
Collapse
|
15
|
Schmacke NA, O'Duill F, Gaidt MM, Szymanska I, Kamper JM, Schmid-Burgk JL, Mädler SC, Mackens-Kiani T, Kozaki T, Chauhan D, Nagl D, Stafford CA, Harz H, Fröhlich AL, Pinci F, Ginhoux F, Beckmann R, Mann M, Leonhardt H, Hornung V. IKKβ primes inflammasome formation by recruiting NLRP3 to the trans-Golgi network. Immunity 2022; 55:2271-2284.e7. [PMID: 36384135 PMCID: PMC7614333 DOI: 10.1016/j.immuni.2022.10.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/17/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022]
Abstract
The NLRP3 inflammasome plays a central role in antimicrobial defense as well as in the context of sterile inflammatory conditions. NLRP3 activity is governed by two independent signals: the first signal primes NLRP3, rendering it responsive to the second signal, which then triggers inflammasome formation. Our understanding of how NLRP3 priming contributes to inflammasome activation remains limited. Here, we show that IKKβ, a kinase activated during priming, induces recruitment of NLRP3 to phosphatidylinositol-4-phosphate (PI4P), a phospholipid enriched on the trans-Golgi network. NEK7, a mitotic spindle kinase that had previously been thought to be indispensable for NLRP3 activation, was redundant for inflammasome formation when IKKβ recruited NLRP3 to PI4P. Studying iPSC-derived human macrophages revealed that the IKKβ-mediated NEK7-independent pathway constitutes the predominant NLRP3 priming mechanism in human myeloid cells. Our results suggest that PI4P binding represents a primed state into which NLRP3 is brought by IKKβ activity.
Collapse
Affiliation(s)
- Niklas A Schmacke
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Fionan O'Duill
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Moritz M Gaidt
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Inga Szymanska
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Julia M Kamper
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Jonathan L Schmid-Burgk
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sophia C Mädler
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Timur Mackens-Kiani
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Tatsuya Kozaki
- Singapore Immunology Network (SIgN), Agency for Science, Technology & Research (A∗STAR), 8A Biomedical Grove, Immunos Building #3-4, Biopolis, Singapore 138648, Singapore
| | - Dhruv Chauhan
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Dennis Nagl
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Che A Stafford
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Hartmann Harz
- Faculty of Biology, Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Adrian L Fröhlich
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Francesca Pinci
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology & Research (A∗STAR), 8A Biomedical Grove, Immunos Building #3-4, Biopolis, Singapore 138648, Singapore; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Heinrich Leonhardt
- Faculty of Biology, Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
16
|
RIPK1 and RIPK3 in antibacterial defence. Biochem Soc Trans 2022; 50:1583-1594. [DOI: 10.1042/bst20211242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Upon sensing pathogenic bacterial infection, host cells activate a multitude of inflammatory and immunogenic responses to promote bacterial clearance and restore tissue homeostasis. RIPK1 and RIPK3 are two key players in antimicrobial defence, by either driving inflammatory signalling or inducing programmed cell death activation, ranging from apoptosis, pyroptosis to necroptosis. In this review, we first discuss the mechanisms by which RIPK1 and RIPK3 promote the assembly of death-inducing complexes and how these cell death pathways are activated as host responses to counteract pathogenic bacteria. We further outline the immunological importance of cell death in antibacterial defence and highlight outstanding questions in the field.
Collapse
|
17
|
Saxena V, Arregui S, Kamocka MM, Hains DS, Schwaderer A. MAP3K7 is an innate immune regulatory gene with increased expression in human and murine kidney intercalated cells following uropathogenic Escherichia coli exposure. J Cell Biochem 2022; 123:1817-1826. [PMID: 35959632 PMCID: PMC9671826 DOI: 10.1002/jcb.30318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/28/2022] [Accepted: 08/01/2022] [Indexed: 01/09/2023]
Abstract
Understanding the mechanisms responsible for the kidney's defense against ascending uropathogen is critical to devise novel treatment strategies against increasingly antibiotic resistant uropathogen. Growing body of evidence indicate Intercalated cells of the kidney as the key innate immune epithelial cells against uropathogen. The aim of this study was to find orthologous and differentially expressed bacterial defense genes in human versus murine intercalated cells. We simultaneously analyzed 84 antibacterial genes in intercalated cells enriched from mouse and human kidney samples. Intercalated cell "reporter mice" were exposed to saline versus uropathogenic Escherichia coli (UPEC) transurethrally for 1 h in vivo, and intercalated cells were flow sorted. Human kidney intercalated cells were enriched from kidney biopsy using magnetic-activated cell sorting and exposed to UPEC in vitro for 1 h. RT2 antibacterial PCR array was performed. Mitogen-activated protein kinase kinase kinase 7 (MAP3K7) messenger RNA (mRNA) expression increased in intercalated cells of both humans and mice following UPEC exposure. Intercalated cell MAP3K7 protein expression was defined by immunofluorescence and confocal imaging analysis, was consistent with the increased MAP3K7 mRNA expression profiles defined by PCR. The presence of the orthologous innate immune gene MAP3K7/TAK1 suggests that it may be a key regulator of the intercalated cell antibacterial response and demands further investigation of its role in urinary tract infection pathogenesis.
Collapse
Affiliation(s)
- Vijay Saxena
- Department of Pediatric NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Samuel Arregui
- Department of Pediatric NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Malgorzata Maria Kamocka
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - David S. Hains
- Department of Pediatric NephrologyIndiana University School of MedicineIndianapolisIndianaUSA,Department of Pediatrics, Division of NephrologyRiley Hospital for ChildrenIndianapolisIndianaUSA
| | - Andrew Schwaderer
- Department of Pediatric NephrologyIndiana University School of MedicineIndianapolisIndianaUSA,Department of Pediatrics, Division of NephrologyRiley Hospital for ChildrenIndianapolisIndianaUSA
| |
Collapse
|
18
|
Zhang G, Wang J, Zhao Z, Xin T, Fan X, Shen Q, Raheem A, Lee CR, Jiang H, Ding J. Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections. Cell Death Dis 2022; 13:637. [PMID: 35869043 PMCID: PMC9307826 DOI: 10.1038/s41419-022-05066-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023]
Abstract
Since the discovery of cell apoptosis, other gene-regulated cell deaths are gradually appreciated, including pyroptosis, ferroptosis, and necroptosis. Necroptosis is, so far, one of the best-characterized regulated necrosis. In response to diverse stimuli (death receptor or toll-like receptor stimulation, pathogenic infection, or other factors), necroptosis is initiated and precisely regulated by the receptor-interacting protein kinase 3 (RIPK3) with the involvement of its partners (RIPK1, TRIF, DAI, or others), ultimately leading to the activation of its downstream substrate, mixed lineage kinase domain-like (MLKL). Necroptosis plays a significant role in the host's defense against pathogenic infections. Although much has been recognized regarding modulatory mechanisms of necroptosis during pathogenic infection, the exact role of necroptosis at different stages of infectious diseases is still being unveiled, e.g., how and when pathogens utilize or evade necroptosis to facilitate their invasion and how hosts manipulate necroptosis to counteract these detrimental effects brought by pathogenic infections and further eliminate the encroaching pathogens. In this review, we summarize and discuss the recent progress in the role of necroptosis during a series of viral, bacterial, and parasitic infections with zoonotic potentials, aiming to provide references and directions for the prevention and control of infectious diseases of both human and animals.
Collapse
Affiliation(s)
- Guangzhi Zhang
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jinyong Wang
- grid.508381.70000 0004 0647 272XShenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen, 518000 China ,grid.258164.c0000 0004 1790 3548Institute of Respiratory Diseases, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, 518020 Guangdong China
| | - Zhanran Zhao
- grid.47840.3f0000 0001 2181 7878Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, CA 94720-3200 USA
| | - Ting Xin
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xuezheng Fan
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Qingchun Shen
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Abdul Raheem
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China ,grid.35155.370000 0004 1790 4137Present Address: Huazhong Agricultural University, Wuhan, China
| | - Chae Rhim Lee
- grid.47840.3f0000 0001 2181 7878Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, CA 94720-3200 USA ,grid.266093.80000 0001 0668 7243Present Address: University of California, Irvine, CA USA
| | - Hui Jiang
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jiabo Ding
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
19
|
Wang S, Moreau F, Chadee K. Gasdermins in Innate Host Defense Against Entamoeba histolytica and Other Protozoan Parasites. Front Immunol 2022; 13:900553. [PMID: 35795683 PMCID: PMC9251357 DOI: 10.3389/fimmu.2022.900553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Gasdermins (GSDMs) are a group of proteins that are cleaved by inflammatory caspases to induce pore formation in the plasma membrane to cause membrane permeabilization and lytic cell death or pyroptosis. All GSDMs share a conserved structure, containing a cytotoxic N-terminal (NT) pore-forming domain and a C-terminal (CT) repressor domain. Entamoeba histolytica (Eh) in contact with macrophages, triggers outside-in signaling to activate inflammatory caspase-4/1 via the noncanonical and canonical pathway to promote cleavage of gasdermin D (GSDMD). Cleavage of GSDMD removes the auto-inhibition that masks the active pore-forming NT domain in the full-length protein by interactions with GSDM-CT. The cleaved NT-GSDMD monomers then oligomerize to form pores in the plasma membrane to facilitate the release of IL-1β and IL-18 with a measured amount of pyroptosis. Pyroptosis is an effective way to counteract intracellular parasites, which exploit replicative niche to avoid killing. To date, most GSDMs have been verified to perform pore-forming activity and GSDMD-induced pyroptosis is rapidly emerging as a mechanism of anti-microbial host defence. Here, we review our comprehensive and current knowledge on the expression, activation, biological functions, and regulation of GSDMD cleavage with emphases on physiological scenario and related dysfunctions of each GSDM member as executioner of cell death, cytokine secretion and inflammation against Eh and other protozoan parasitic infections.
Collapse
Affiliation(s)
| | | | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Abstract
Like many intracellular pathogens, the protozoan parasite Toxoplasma gondii has evolved sophisticated mechanisms to promote its transmission and persistence in a variety of hosts by injecting effector proteins that manipulate many processes in the cells it invades. Specifically, the parasite diverts host epigenetic modulators and modifiers from their native functions to rewire host gene expression to counteract the innate immune response and to limit its strength. The arms race between the parasite and its hosts has led to accelerated adaptive evolution of effector proteins and the unconventional secretion routes they use. This review provides an up-to-date overview of how T. gondii effectors, through the evolution of intrinsically disordered domains, the formation of supramolecular complexes, and the use of molecular mimicry, target host transcription factors that act as coordinating nodes, as well as chromatin-modifying enzymes, to control the fate of infected cells and ultimately the outcome of infection. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France;
| |
Collapse
|
21
|
Alfian I, Chakraborty A, Yong HEJ, Saini S, Lau RWK, Kalionis B, Dimitriadis E, Alfaidy N, Ricardo SD, Samuel CS, Murthi P. The Placental NLRP3 Inflammasome and Its Downstream Targets, Caspase-1 and Interleukin-6, Are Increased in Human Fetal Growth Restriction: Implications for Aberrant Inflammation-Induced Trophoblast Dysfunction. Cells 2022; 11:1413. [PMID: 35563719 PMCID: PMC9102093 DOI: 10.3390/cells11091413] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Fetal growth restriction (FGR) is commonly associated with placental insufficiency and inflammation. Nonetheless, the role played by inflammasomes in the pathogenesis of FGR is poorly understood. We hypothesised that placental inflammasomes are differentially expressed and contribute to the aberrant trophoblast function. Inflammasome gene expression profiles were characterised by real-time PCR on human placental tissues collected from third trimester FGR and gestation-matched control pregnancies (n = 25/group). The functional significance of a candidate inflammasome was then investigated using lipopolysaccharide (LPS)-induced models of inflammation in human trophoblast organoids, BeWo cells in vitro, and a murine model of FGR in vivo. Placental mRNA expression of NLRP3, caspases 1, 3, and 8, and interleukin 6 increased (>2-fold), while that of the anti-inflammatory cytokine, IL-10, decreased (<2-fold) in FGR compared with control pregnancies. LPS treatment increased NLRP3 and caspase-1 expression (>2-fold) in trophoblast organoids and BeWo cell cultures in vitro, and in the spongiotrophoblast and labyrinth in the murine model of FGR. However, the LPS-induced rise in NLRP3 was attenuated by its siRNA-induced down-regulation in BeWo cell cultures, which correlated with reduced activity of the apoptotic markers, caspase-3 and 8, compared to the control siRNA-treated cells. Our findings support the role of the NLRP3 inflammasome in the inflammation-induced aberrant trophoblast function, which may contribute to FGR.
Collapse
Affiliation(s)
- Irvan Alfian
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
- Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya 6, Jakarta Pusat 10160, Indonesia
| | - Amlan Chakraborty
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Hannah E. J. Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore;
| | - Sheetal Saini
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Ricky W. K. Lau
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC 3052, Australia;
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Gynaecology Research Centre, The Royal Women’s Hospital, Melbourne, VIC 3052, Australia
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France;
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Sharon D. Ricardo
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Chrishan S. Samuel
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC 3052, Australia;
| |
Collapse
|
22
|
Demarco B, Danielli S, Fischer FA, Bezbradica JS. How Pyroptosis Contributes to Inflammation and Fibroblast-Macrophage Cross-Talk in Rheumatoid Arthritis. Cells 2022; 11:1307. [PMID: 35455985 PMCID: PMC9028325 DOI: 10.3390/cells11081307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
About thirty years ago, a new form of pro-inflammatory lytic cell death was observed and termed pyroptosis. Only in 2015, gasdermins were defined as molecules that create pores at the plasma membrane and drive pyroptosis. Today, we know that gasdermin-mediated death is an important antimicrobial defence mechanism in bacteria, yeast and mammals as it destroys the intracellular niche for pathogen replication. However, excessive and uncontrolled cell death also contributes to immunopathology in several chronic inflammatory diseases, including arthritis. In this review, we discuss recent findings where pyroptosis contributes to tissue damage and inflammation with a main focus on injury-induced and autoimmune arthritis. We also review novel functions and regulatory mechanisms of the pyroptotic executors gasdermins. Finally, we discuss possible models of how pyroptosis may contribute to the cross-talk between fibroblast and macrophages, and also how this cross-talk may regulate inflammation by modulating inflammasome activation and pyroptosis induction.
Collapse
Affiliation(s)
- Benjamin Demarco
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (S.D.); (F.A.F.)
| | | | | | - Jelena S. Bezbradica
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (S.D.); (F.A.F.)
| |
Collapse
|
23
|
Simpson DS, Pang J, Weir A, Kong IY, Fritsch M, Rashidi M, Cooney JP, Davidson KC, Speir M, Djajawi TM, Hughes S, Mackiewicz L, Dayton M, Anderton H, Doerflinger M, Deng Y, Huang AS, Conos SA, Tye H, Chow SH, Rahman A, Norton RS, Naderer T, Nicholson SE, Burgio G, Man SM, Groom JR, Herold MJ, Hawkins ED, Lawlor KE, Strasser A, Silke J, Pellegrini M, Kashkar H, Feltham R, Vince JE. Interferon-γ primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway. Immunity 2022; 55:423-441.e9. [PMID: 35139355 PMCID: PMC8822620 DOI: 10.1016/j.immuni.2022.01.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/19/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022]
Abstract
Cell death plays an important role during pathogen infections. Here, we report that interferon-γ (IFNγ) sensitizes macrophages to Toll-like receptor (TLR)-induced death that requires macrophage-intrinsic death ligands and caspase-8 enzymatic activity, which trigger the mitochondrial apoptotic effectors, BAX and BAK. The pro-apoptotic caspase-8 substrate BID was dispensable for BAX and BAK activation. Instead, caspase-8 reduced pro-survival BCL-2 transcription and increased inducible nitric oxide synthase (iNOS), thus facilitating BAX and BAK signaling. IFNγ-primed, TLR-induced macrophage killing required iNOS, which licensed apoptotic caspase-8 activity and reduced the BAX and BAK inhibitors, A1 and MCL-1. The deletion of iNOS or caspase-8 limited SARS-CoV-2-induced disease in mice, while caspase-8 caused lethality independent of iNOS in a model of hemophagocytic lymphohistiocytosis. These findings reveal that iNOS selectively licenses programmed cell death, which may explain how nitric oxide impacts disease severity in SARS-CoV-2 infection and other iNOS-associated inflammatory conditions.
Collapse
Affiliation(s)
- Daniel S. Simpson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jiyi Pang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia,College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ashley Weir
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Isabella Y. Kong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Melanie Fritsch
- Institute for Molecular Immunology, Centre for Molecular Medicine Cologne and Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, 50931, Germany
| | - Maryam Rashidi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - James P. Cooney
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kathryn C. Davidson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Tirta M. Djajawi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Sebastian Hughes
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Liana Mackiewicz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Merle Dayton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Holly Anderton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Marcel Doerflinger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yexuan Deng
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Allan Shuai Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Stephanie A. Conos
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Hazel Tye
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Seong H. Chow
- The Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Arfatur Rahman
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia,ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia
| | - Thomas Naderer
- The Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Sandra E. Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Si Ming Man
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Joanna R. Groom
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Marco J. Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Edwin D. Hawkins
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kate E. Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hamid Kashkar
- Institute for Molecular Immunology, Centre for Molecular Medicine Cologne and Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, 50931, Germany
| | - Rebecca Feltham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - James E. Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia,The Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia,Corresponding author
| |
Collapse
|
24
|
Zhou L. Caspase-8: Friend or Foe in Bortezomib/Lenalidomide-Based Therapy for Myeloma. Front Oncol 2022; 12:861709. [PMID: 35321428 PMCID: PMC8936587 DOI: 10.3389/fonc.2022.861709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
Antiproliferation and proapoptosis are two major molecular mechanisms of action of drugs used for the treatment of multiple myeloma. Proteasome inhibitors, such as bortezomib (PS-341), and immunomodulatory drugs (IMiDs), such as lenalidomide, are the two drug types approved for the treatment of myeloma. Bortezomib and lenalidomide activate caspase-8 and promote the apoptosis of myeloma cells. However, caspase-8 inhibition potentiated the antiproliferative effect of lenalidomide and bortezomib in myeloma cells, suggesting that caspase-8 could regulate proliferation and apoptosis in the opposite pathway. In this mini-review, I summarized recent advances in determining the molecular mechanisms of caspase-8 in bortezomib–lenalidomide-based therapy for myeloma and explored the possible functions of caspase-8 in the proliferation and apoptosis of myeloma cells. Furthermore, future directions of caspase-8-based therapy for myeloma have been discussed.
Collapse
Affiliation(s)
- Liang Zhou
- *Correspondence: Liang Zhou, ; orcid.org/0000-0003-0820-1520
| |
Collapse
|
25
|
Focus on the Mechanisms and Functions of Pyroptosis, Inflammasomes, and Inflammatory Caspases in Infectious Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2501279. [PMID: 35132346 PMCID: PMC8817853 DOI: 10.1155/2022/2501279] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022]
Abstract
Eukaryotic cells can initiate several distinct self-destruction mechanisms to display essential roles for the homeostasis maintenance, development, and survival of an organism. Pyroptosis, a key response mode in innate immunity, also referred to as caspase-1-dependent proinflammatory programmed necrotic cell death activated by human caspase-1/4/5, or mouse caspase-1/11, plays indispensable roles in response to cytoplasmic insults and immune defense against infectious diseases. These inflammatory caspases are employed by the host to eliminate pathogen infections such as bacteria, viruses, protozoans, and fungi. Gasdermin D requires to be cleaved and activated by these inflammatory caspases to trigger the pyroptosis process. Physiological rupture of cells results in the release of proinflammatory cytokines, the alarmins IL-1β and IL-18, symbolizing the inflammatory potential of pyroptosis. Moreover, long noncoding RNAs play direct or indirect roles in the upstream of the pyroptosis trigger pathway. Here, we review in detail recently acquired insights into the central roles of inflammatory caspases, inflammasomes, and pyroptosis, as well as the crosstalk between pyroptosis and long noncoding RNAs in mediating infection immunity and pathogen clearance.
Collapse
|
26
|
Frickel EM, Hunter CA. Lessons from Toxoplasma: Host responses that mediate parasite control and the microbial effectors that subvert them. J Exp Med 2021; 218:212714. [PMID: 34670268 PMCID: PMC8532566 DOI: 10.1084/jem.20201314] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/29/2021] [Indexed: 11/15/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii has long provided a tractable experimental system to investigate how the immune system deals with intracellular infections. This review highlights the advances in defining how this organism was first detected and the studies with T. gondii that contribute to our understanding of how the cytokine IFN-γ promotes control of vacuolar pathogens. In addition, the genetic tractability of this eukaryote organism has provided the foundation for studies into the diverse strategies that pathogens use to evade antimicrobial responses and now provides the opportunity to study the basis for latency. Thus, T. gondii remains a clinically relevant organism whose evolving interactions with the host immune system continue to teach lessons broadly relevant to host–pathogen interactions.
Collapse
Affiliation(s)
- Eva-Maria Frickel
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
27
|
Bjanes E, Sillas RG, Matsuda R, Demarco B, Fettrelet T, DeLaney AA, Kornfeld OS, Lee BL, Rodríguez López EM, Grubaugh D, Wynosky-Dolfi MA, Philip NH, Krespan E, Tovar D, Joannas L, Beiting DP, Henao-Mejia J, Schaefer BC, Chen KW, Broz P, Brodsky IE. Genetic targeting of Card19 is linked to disrupted NINJ1 expression, impaired cell lysis, and increased susceptibility to Yersinia infection. PLoS Pathog 2021; 17:e1009967. [PMID: 34648590 PMCID: PMC8547626 DOI: 10.1371/journal.ppat.1009967] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/26/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Cell death plays a critical role in inflammatory responses. During pyroptosis, inflammatory caspases cleave Gasdermin D (GSDMD) to release an N-terminal fragment that generates plasma membrane pores that mediate cell lysis and IL-1 cytokine release. Terminal cell lysis and IL-1β release following caspase activation can be uncoupled in certain cell types or in response to particular stimuli, a state termed hyperactivation. However, the factors and mechanisms that regulate terminal cell lysis downstream of GSDMD cleavage remain poorly understood. In the course of studies to define regulation of pyroptosis during Yersinia infection, we identified a line of Card19-deficient mice (Card19lxcn) whose macrophages were protected from cell lysis and showed reduced apoptosis and pyroptosis, yet had wild-type levels of caspase activation, IL-1 secretion, and GSDMD cleavage. Unexpectedly, CARD19, a mitochondrial CARD-containing protein, was not directly responsible for this, as an independently-generated CRISPR/Cas9 Card19 knockout mouse line (Card19Null) showed no defect in macrophage cell lysis. Notably, Card19 is located on chromosome 13, immediately adjacent to Ninj1, which was recently found to regulate cell lysis downstream of GSDMD activation. RNA-seq and western blotting revealed that Card19lxcn BMDMs have significantly reduced NINJ1 expression, and reconstitution of Ninj1 in Card19lxcn immortalized BMDMs restored their ability to undergo cell lysis in response to caspase-dependent cell death stimuli. Card19lxcn mice exhibited increased susceptibility to Yersinia infection, whereas independently-generated Card19Null mice did not, demonstrating that cell lysis itself plays a key role in protection against bacterial infection, and that the increased infection susceptibility of Card19lxcn mice is attributable to loss of NINJ1. Our findings identify genetic targeting of Card19 being responsible for off-target effects on the adjacent gene Ninj1, disrupting the ability of macrophages to undergo plasma membrane rupture downstream of gasdermin cleavage and impacting host survival and bacterial control during Yersinia infection.
Collapse
Affiliation(s)
- Elisabet Bjanes
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Reyna Garcia Sillas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Rina Matsuda
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Benjamin Demarco
- Department of Biochemistry, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Timothée Fettrelet
- Department of Biochemistry, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Alexandra A. DeLaney
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Opher S. Kornfeld
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, California, United States of America
| | - Bettina L. Lee
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, California, United States of America
| | - Eric M. Rodríguez López
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Immunology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Daniel Grubaugh
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Meghan A. Wynosky-Dolfi
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Naomi H. Philip
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Immunology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Elise Krespan
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Host Microbial Interactions, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Dorothy Tovar
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Leonel Joannas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- CRISPR/Cas9 Mouse Targeting Core, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Daniel P. Beiting
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Host Microbial Interactions, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jorge Henao-Mejia
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian C. Schaefer
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Kaiwen W. Chen
- Department of Biochemistry, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Igor E. Brodsky
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Immunology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
28
|
Niedziela DA, Naranjo-Lucena A, Molina-Hernández V, Browne JA, Martínez-Moreno Á, Pérez J, MacHugh DE, Mulcahy G. Timing of Transcriptomic Peripheral Blood Mononuclear Cell Responses of Sheep to Fasciola hepatica Infection Differs From Those of Cattle, Reflecting Different Disease Phenotypes. Front Immunol 2021; 12:729217. [PMID: 34616397 PMCID: PMC8488161 DOI: 10.3389/fimmu.2021.729217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 01/17/2023] Open
Abstract
Infection with the zoonotic trematode Fasciola hepatica, common in many regions with a temperate climate, leads to delayed growth and loss of productivity in cattle, while infection in sheep can have more severe effects, potentially leading to death. Previous transcriptomic analyses revealed upregulation of TGFB1, cell death and Toll-like receptor signalling, T-cell activation, and inhibition of nitric oxide production in macrophages in response to infection. However, the differences between ovine and bovine responses have not yet been explored. The objective of this study was to further investigate the transcriptomic response of ovine peripheral blood mononuclear cells (PBMC) to F. hepatica infection, and to elucidate the differences between ovine and bovine PBMC responses. Sixteen male Merino sheep were randomly assigned to infected or control groups (n = 8 per group) and orally infected with 120 F. hepatica metacercariae. Transcriptomic data was generated from PBMC at 0, 2 and 16 weeks post-infection (wpi), and analysed for differentially expressed (DE) genes between infected and control animals at each time point (analysis 1), and for each group relative to time 0 (analysis 2). Analysis 2 was then compared to a similar study performed previously on bovine PBMC. A total of 453 DE genes were found at 2 wpi, and 2 DE genes at 16 wpi (FDR < 0.1, analysis 1). Significantly overrepresented biological pathways at 2 wpi included role of PKR in interferon induction and anti-viral response, death receptor signalling and RIG-I-like receptor signalling, which suggested that an activation of innate response to intracellular nucleic acids and inhibition of cellular apoptosis were taking place. Comparison of analysis 2 with the previous bovine transcriptomic study revealed that anti-inflammatory response pathways which were significantly overrepresented in the acute phase in cattle, including IL-10 signalling, Th2 pathway, and Th1 and Th2 activation were upregulated only in the chronic phase in sheep. We propose that the earlier activation of anti-inflammatory responses in cattle, as compared with sheep, may be related to the general absence of acute clinical signs in cattle. These findings offer scope for "smart vaccination" strategies for this important livestock parasite.
Collapse
Affiliation(s)
| | | | - Verónica Molina-Hernández
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - John A. Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Álvaro Martínez-Moreno
- Departamento de Sanidad Animal (Parasitología), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - David E. MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Grace Mulcahy
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Rosenberg A, Sibley LD. Toxoplasma gondii secreted effectors co-opt host repressor complexes to inhibit necroptosis. Cell Host Microbe 2021; 29:1186-1198.e8. [PMID: 34043960 PMCID: PMC8711274 DOI: 10.1016/j.chom.2021.04.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/22/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Toxoplasma gondii translocates effector proteins into its host cell to subvert various host pathways. T. gondii effector TgIST blocks the transcription of interferon-stimulated genes to reduce immune defense. Interferons upregulate numerous genes, including protein kinase R (PKR), which induce necrosome formation to activate mixed-lineage-kinase-domain-like (MLKL) pseudokinase and induce necroptosis. Whether these interferon functions are targeted by Toxoplasma is unknown. Here, we examine secreted effectors that localize to the host cell nucleus and find that the chronic bradyzoite stage secretes effector TgNSM that targets the NCoR/SMRT complex, a repressor for various transcription factors, to inhibit interferon-regulated genes involved in cell death. TgNSM acts with TgIST to block IFN-driven expression of PKR and MLKL, thus preventing host cell necroptotic death and protecting the parasite's intracellular niche. The mechanism of action of TgNSM uncovers a role of NCoR/SMRT in necroptosis, assuring survival of intracellular cysts and chronic infection.
Collapse
Affiliation(s)
- Alex Rosenberg
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63130, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
30
|
Cai X, He L, Zhou G, Li S, Liao X. Mogroside IIe Ameliorates Cardiomyopathy by Suppressing Cardiomyocyte Apoptosis in a Type 2 Diabetic Model. Front Pharmacol 2021; 12:650193. [PMID: 34012399 PMCID: PMC8128068 DOI: 10.3389/fphar.2021.650193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/06/2021] [Indexed: 01/15/2023] Open
Abstract
Mogroside IIe is primarily present in the unripe fruit of Siraitia grosvenorii (Swingle) C. Jeffrey, and it is the predominant saponin component. The purpose of this study was to investigate the effects of mogroside IIe (MGE IIe) on myocardial cell apoptosis in diabetic cardiomyopathy (DCM) rats by establishing a high-sugar and high-fat diet–induced model of type 2 diabetes (T2D) in SD rats and a homocysteine (Hcy)-induced apoptotic model in rat H9c2 cardiomyocytes. The results showed that MGE IIe decreased the levels of fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL) levels, but increased the levels of high-density lipoprotein (HDL) in the SD rat model. Furthermore, MGE IIe decreased the levels of lactate dehydrogenase 2 (LDH2), creatine phosphokinase isoenzyme (CKMB), and creatine kinase (CK), and improved heart function. Additionally, MGE IIe inhibited the secretion of interleukin-1 (IL-1), IL-6, and tumor necrosis factor-α (TNF-α), improved myocardial morphology, and reduced myocardial apoptosis in the SD rat model. Furthermore, MGE IIe inhibited the mRNA and protein expression of active-caspase-3, -8, -9, -12, and Bax and Cyt-C, and promoted the mRNA and protein expression of Bcl-2 in the SD rat model. Furthermore, MGE IIe suppressed homocysteine-induced apoptosis of H9c2 cells by inhibiting the activity of caspases-3, -8, -9, and -12. In conclusion, MGE IIe inhibits the apoptotic pathway, thereby relieving DCM in vivo and in vitro.
Collapse
Affiliation(s)
- Xin Cai
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.,School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Lingmin He
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Guoao Zhou
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shenghua Li
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xinghua Liao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Clark JT, Christian DA, Gullicksrud JA, Perry JA, Park J, Jacquet M, Tarrant JC, Radaelli E, Silver J, Hunter CA. IL-33 promotes innate lymphoid cell-dependent IFN-γ production required for innate immunity to Toxoplasma gondii. eLife 2021; 10:e65614. [PMID: 33929319 PMCID: PMC8121546 DOI: 10.7554/elife.65614] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/29/2021] [Indexed: 12/29/2022] Open
Abstract
IL-33 is an alarmin required for resistance to the parasite Toxoplasma gondii, but its role in innate resistance to this organism is unclear. Infection with T. gondii promotes increased stromal cell expression of IL-33, and levels of parasite replication correlate with release of IL-33 in affected tissues. In response to infection, a subset of innate lymphoid cells (ILC) emerges composed of IL-33R+ NK cells and ILC1s. In Rag1-/-mice, where NK cells and ILC1 production of IFN-γ mediate innate resistance to T. gondii, the loss of the IL-33R resulted in reduced ILC responses and increased parasite replication. Furthermore, administration of IL-33 to Rag1-/- mice resulted in a marked decrease in parasite burden, increased production of IFN-γ, and the recruitment and expansion of inflammatory monocytes associated with parasite control. These protective effects of exogenous IL-33 were dependent on endogenous IL-12p40 and the ability of IL-33 to enhance ILC production of IFN-γ. These results highlight that IL-33 synergizes with IL-12 to promote ILC-mediated resistance to T. gondii.
Collapse
Affiliation(s)
- Joseph T Clark
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - David A Christian
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Jodi A Gullicksrud
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Joseph A Perry
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Jeongho Park
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
- Kangwon National University College of Veterinary Medicine and Institute of Veterinary ScienceChuncheonRepublic of Korea
| | - Maxime Jacquet
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
- Liver Immunology, Department of Biomedicine, University Hospital of Basel and University of BaselBaselSwitzerland
| | - James C Tarrant
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Enrico Radaelli
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Jonathan Silver
- Department of Respiratory Inflammation and Autoimmunity, AstraZenecaGaithersburgUnited States
| | - Christopher A Hunter
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| |
Collapse
|
32
|
Han JH, Park J, Kang TB, Lee KH. Regulation of Caspase-8 Activity at the Crossroads of Pro-Inflammation and Anti-Inflammation. Int J Mol Sci 2021; 22:ijms22073318. [PMID: 33805003 PMCID: PMC8036737 DOI: 10.3390/ijms22073318] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/14/2022] Open
Abstract
Caspase-8 has been classified as an apoptotic caspase, and its initial definition was an initiator of extrinsic cell death. During the past decade, the concept of caspase-8 functioning has been changed by findings of its additional roles in diverse biological processes. Although caspase-8 was not originally thought to be involved in the inflammation process, many recent works have determined that caspase-8 plays an important role in the regulatory functions of inflammatory processes. In this review, we describe the recent advances in knowledge regarding the manner in which caspase-8 modulates the inflammatory responses concerning inflammasome activation, cell death, and cytokine induction.
Collapse
Affiliation(s)
- Jun-Hyuk Han
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (J.-H.H.); (J.P.); (K.-H.L.)
| | - Jooho Park
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (J.-H.H.); (J.P.); (K.-H.L.)
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27487, Korea
| | - Tae-Bong Kang
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (J.-H.H.); (J.P.); (K.-H.L.)
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju 27487, Korea
- Correspondence: ; Tel.: +82-43-840-3904
| | - Kwang-Ho Lee
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (J.-H.H.); (J.P.); (K.-H.L.)
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju 27487, Korea
| |
Collapse
|
33
|
Demarco B, Grayczyk JP, Bjanes E, Le Roy D, Tonnus W, Assenmacher CA, Radaelli E, Fettrelet T, Mack V, Linkermann A, Roger T, Brodsky IE, Chen KW, Broz P. Caspase-8-dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. SCIENCE ADVANCES 2020; 6:6/47/eabc3465. [PMID: 33208362 PMCID: PMC7673803 DOI: 10.1126/sciadv.abc3465] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/30/2020] [Indexed: 05/12/2023]
Abstract
Gasdermin D (GSDMD) is a pore-forming protein that promotes pyroptosis and release of proinflammatory cytokines. Recent studies revealed that apoptotic caspase-8 directly cleaves GSDMD to trigger pyroptosis. However, the molecular requirements for caspase-8-dependent GSDMD cleavage and the physiological impact of this signaling axis are unresolved. Here, we report that caspase-8-dependent GSDMD cleavage confers susceptibility to tumor necrosis factor (TNF)-induced lethality independently of caspase-1 and that GSDMD activation provides host defense against Yersinia infection. We further demonstrate that GSDMD inactivation by apoptotic caspases at aspartate 88 (D88) suppresses TNF-induced lethality but promotes anti-Yersinia defense. Last, we show that caspase-8 dimerization and autoprocessing are required for GSDMD cleavage, and provide evidence that the caspase-8 autoprocessing and activity on various complexes correlate with its ability to directly cleave GSDMD. These findings reveal GSDMD as a potential therapeutic target to reduce inflammation associated with mutations in the death receptor signaling machinery.
Collapse
Affiliation(s)
- Benjamin Demarco
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - James P Grayczyk
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Elisabet Bjanes
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | | | - Enrico Radaelli
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Timothée Fettrelet
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Vanessa Mack
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kaiwen W Chen
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland.
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland.
| |
Collapse
|
34
|
Brodsky IE. Caspase-8 protein cuts a brake on immune defences. Nature 2020; 587:201-203. [PMID: 33106621 DOI: 10.1038/d41586-020-02994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Integration of innate immune signalling by caspase-8 cleavage of N4BP1. Nature 2020; 587:275-280. [PMID: 32971525 DOI: 10.1038/s41586-020-2796-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Mutations in the death receptor FAS1,2 or its ligand FASL3 cause autoimmune lymphoproliferative syndrome, whereas mutations in caspase-8 or its adaptor FADD-which mediate cell death downstream of FAS and FASL-cause severe immunodeficiency in addition to autoimmune lymphoproliferative syndrome4-6. Mouse models have corroborated a role for FADD-caspase-8 in promoting inflammatory responses7-12, but the mechanisms that underlie immunodeficiency remain undefined. Here we identify NEDD4-binding protein 1 (N4BP1) as a suppressor of cytokine production that is cleaved and inactivated by caspase-8. N4BP1 deletion in mice increased the production of select cytokines upon stimulation of the Toll-like receptor (TLR)1-TLR2 heterodimer (referred to herein as TLR1/2), TLR7 or TLR9, but not upon engagement of TLR3 or TLR4. N4BP1 did not suppress TLR3 or TLR4 responses in wild-type macrophages, owing to TRIF- and caspase-8-dependent cleavage of N4BP1. Notably, the impaired production of cytokines in response to TLR3 and TLR4 stimulation of caspase-8-deficient macrophages13 was largely rescued by co-deletion of N4BP1. Thus, the persistence of intact N4BP1 in caspase-8-deficient macrophages impairs their ability to mount robust cytokine responses. Tumour necrosis factor (TNF), like TLR3 or TLR4 agonists, also induced caspase-8-dependent cleavage of N4BP1, thereby licensing TRIF-independent TLRs to produce higher levels of inflammatory cytokines. Collectively, our results identify N4BP1 as a potent suppressor of cytokine responses; reveal N4BP1 cleavage by caspase-8 as a point of signal integration during inflammation; and offer an explanation for immunodeficiency caused by mutations of FADD and caspase-8.
Collapse
|
36
|
Mercer HL, Snyder LM, Doherty CM, Fox BA, Bzik DJ, Denkers EY. Toxoplasma gondii dense granule protein GRA24 drives MyD88-independent p38 MAPK activation, IL-12 production and induction of protective immunity. PLoS Pathog 2020; 16:e1008572. [PMID: 32413093 PMCID: PMC7255617 DOI: 10.1371/journal.ppat.1008572] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/28/2020] [Accepted: 04/23/2020] [Indexed: 11/19/2022] Open
Abstract
The apicomplexan Toxoplasma gondii induces strong protective immunity dependent upon recognition by Toll-like receptors (TLR)11 and 12 operating in conjunction with MyD88 in the murine host. However, TLR11 and 12 proteins are not present in humans, inspiring us to investigate MyD88-independent pathways of resistance. Using bicistronic IL-12-YFP reporter mice on MyD88+/+ and MyD88-/- genetic backgrounds, we show that CD11c+MHCII+F4/80- dendritic cells, F4/80+ macrophages, and Ly6G+ neutrophils were the dominant cellular sources of IL-12 in both wild type and MyD88 deficient mice after parasite challenge. Parasite dense granule protein GRA24 induces p38 MAPK activation and subsequent IL-12 production in host macrophages. We show that Toxoplasma triggers an early and late p38 MAPK phosphorylation response in MyD88+/+ and MyD88-/- bone marrow-derived macrophages. Using the uracil auxotrophic Type I T. gondii strain cps1-1, we demonstrate that the late response does not require active parasite proliferation, but strictly depends upon GRA24. By i. p. inoculation with cps1-1 and cps1-1:Δgra24, we identified unique subsets of chemokines and cytokines that were up and downregulated by GRA24. Finally, we demonstrate that cps1-1 triggers a strong host-protective GRA24-dependent Th1 response in the absence of MyD88. Our data identify GRA24 as a major mediator of p38 MAPK activation, IL-12 induction and protective immunity that operates independently of the TLR/MyD88 cascade.
Collapse
Affiliation(s)
- Heather L. Mercer
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lindsay M. Snyder
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Claire M. Doherty
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Eric Y. Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|