1
|
Johnson ST, Grabenhorst F. The amygdala and the pursuit of future rewards. Front Neurosci 2025; 18:1517231. [PMID: 39911407 PMCID: PMC11794525 DOI: 10.3389/fnins.2024.1517231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/27/2024] [Indexed: 02/07/2025] Open
Abstract
The successful pursuit of future rewards requires forming an internal goal, followed by planning, decision-making, and progress-tracking over multiple steps. The initial step-forming goals and the plans for obtaining them-involves the subjective valuation of an anticipated reward, considering both the reward's properties and associated delay and physical-effort costs. Recent findings indicate individuals similarly evaluate cognitive effort over time (Johnson and Most, 2023). Success and failure in these processes have been linked to differential life outcomes and psychiatric conditions. Here we review evidence from single-neuron recordings and neuroimaging studies that implicate the amygdala-a brain structure long associated with cue-reactivity and emotion-in decision-making and the planned pursuit of future rewards (Grabenhorst et al., 2012, 2016, 2019, 2023;Hernadi et al., 2015;Zangemeister et al., 2016). The main findings are that, in behavioral tasks in which future rewards can be pursued through planning and stepwise decision-making, amygdala neurons prospectively encode the value of anticipated rewards and related behavioral plans. Moreover, amygdala neurons predict the stepwise choices to pursue these rewards, signal progress toward goals, and distinguish internally generated (i.e., self-determined) choices from externally imposed actions. Importantly, amygdala neurons integrate the subjective value of a future reward with delay and effort costs inherent in pursuing it. This neural evidence identifies three key computations of the primate amygdala that underlie the pursuit of future rewards: (1) forming a self-determined internal goal based on subjective reward-cost valuations, (2) defining a behavioral plan for obtaining the goal, (3) executing this plan through stepwise decision-making and progress-tracking. Based on this framework, we suggest that amygdala neurons constitute vulnerabilities for dysfunction that contribute to maladaptive reward pursuit in psychiatric and behavioral conditions. Consequently, amygdala neurons may also represent potential targets for behavioral-change interventions that aim to improve individual decision-making.
Collapse
Affiliation(s)
| | - Fabian Grabenhorst
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Zhao M, Xin Y, Deng H, Zuo Z, Wang X, Bi Y, Liu N. Object color knowledge representation occurs in the macaque brain despite the absence of a developed language system. PLoS Biol 2024; 22:e3002863. [PMID: 39466847 PMCID: PMC11542842 DOI: 10.1371/journal.pbio.3002863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/07/2024] [Accepted: 09/21/2024] [Indexed: 10/30/2024] Open
Abstract
Animals guide their behaviors through internal representations of the world in the brain. We aimed to understand how the macaque brain stores such general world knowledge, focusing on object color knowledge. Three functional magnetic resonance imaging (fMRI) experiments were conducted in macaque monkeys: viewing chromatic and achromatic gratings, viewing grayscale images of their familiar fruits and vegetables (e.g., grayscale strawberry), and viewing true- and false-colored objects (e.g., red strawberry and green strawberry). We observed robust object knowledge representations in the color patches, especially the one located around TEO: the activity patterns could classify grayscale pictures of objects based on their memory color and response patterns in these regions could translate between chromatic grating viewing and grayscale object viewing (e.g., red grating-grayscale images of strawberry), such that classifiers trained by viewing chromatic gratings could successfully classify grayscale object images according to their memory colors. Our results showed direct positive evidence of object color memory in macaque monkeys. These results indicate the perceptually grounded knowledge representation as a conservative memory mechanism and open a new avenue to study this particular (semantic) memory representation with macaque models.
Collapse
Affiliation(s)
- Minghui Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yumeng Xin
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haoyun Deng
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Ning Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Asaad WF, Sheth SA. What's the n? On sample size vs. subject number for brain-behavior neurophysiology and neuromodulation. Neuron 2024; 112:2086-2090. [PMID: 38781973 DOI: 10.1016/j.neuron.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Neurophysiology and neuromodulation strive to understand the neural basis of behavior through a one-to-one correspondence between a particular brain and its behavioral output. Within this framework, studies with few subjects but sufficient sample sizes can be both rigorous and impactful.
Collapse
Affiliation(s)
- Wael F Asaad
- Department of Neuroscience, Brown University, Providence, RI, USA; Department of Neurosurgery, Brown University Alpert Medical School, Providence, RI, USA; Carney Institute for Brain Science, Brown University, Providence, RI, USA; Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, USA.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Murai T, Bailey L, Schultz L, Mongeau L, DeSana A, Silva AC, Roberts AC, Sukoff Rizzo SJ. Improving preclinical to clinical translation of cognitive function for aging-related disorders: the utility of comprehensive touchscreen testing batteries in common marmosets. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:325-348. [PMID: 38200282 PMCID: PMC11039501 DOI: 10.3758/s13415-023-01144-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Concerns about poor animal to human translation have come increasingly to the fore, in particular with regards to cognitive improvements in rodent models, which have failed to translate to meaningful clinical benefit in humans. This problem has been widely acknowledged, most recently in the field of Alzheimer's disease, although this issue pervades the spectrum of central nervous system (CNS) disorders, including neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. Consequently, recent efforts have focused on improving preclinical to clinical translation by incorporating more clinically analogous outcome measures of cognition, such as touchscreen-based assays, which can be employed across species, and have great potential to minimize the translational gap. For aging-related research, it also is important to incorporate model systems that facilitate the study of the long prodromal phase in which cognitive decline begins to emerge and which is a major limitation of short-lived species, such as laboratory rodents. We posit that to improve translation of cognitive function and dysfunction, nonhuman primate models, which have conserved anatomical and functional organization of the primate brain, are necessary to move the field of translational research forward and to bridge the translational gaps. The present studies describe the establishment of a comprehensive battery of touchscreen-based tasks that capture a spectrum of domains sensitive to detecting aging-related cognitive decline, which will provide the greatest benefit through longitudinal evaluation throughout the prolonged lifespan of the marmoset.
Collapse
Affiliation(s)
- Takeshi Murai
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lauren Bailey
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Laura Schultz
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lauren Mongeau
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andrew DeSana
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh School of Medicine, 514A Bridgeside Point 1, 100 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Stacey J Sukoff Rizzo
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Neurobiology, University of Pittsburgh School of Medicine, 514A Bridgeside Point 1, 100 Technology Drive, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
5
|
Zhai R, Tong G, Li Z, Song W, Hu Y, Xu S, Wei Q, Zhang X, Li Y, Liao B, Yuan C, Fan Y, Song G, Ouyang Y, Zhang W, Tang Y, Jin M, Zhang Y, Li H, Yang Z, Lin GN, Stein DJ, Xiong ZQ, Wang Z. Rhesus monkeys exhibiting spontaneous ritualistic behaviors resembling obsessive-compulsive disorder. Natl Sci Rev 2023; 10:nwad312. [PMID: 38152386 PMCID: PMC10751879 DOI: 10.1093/nsr/nwad312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a chronic and debilitating psychiatric disorder that affects ∼2%-3% of the population globally. Studying spontaneous OCD-like behaviors in non-human primates may improve our understanding of the disorder. In large rhesus monkey colonies, we found 10 monkeys spontaneously exhibiting persistent sequential motor behaviors (SMBs) in individual-specific sequences that were repetitive, time-consuming and stable over prolonged periods. Genetic analysis revealed severely damaging mutations in genes associated with OCD risk in humans. Brain imaging showed that monkeys with SMBs had larger gray matter (GM) volumes in the left caudate nucleus and lower fractional anisotropy of the corpus callosum. The GM volume of the left caudate nucleus correlated positively with the daily duration of SMBs. Notably, exposure to a stressor (human presence) significantly increased SMBs. In addition, fluoxetine, a serotonergic medication commonly used for OCD, decreased SMBs in these monkeys. These findings provide a novel foundation for developing better understanding and treatment of OCD.
Collapse
Affiliation(s)
- Rongwei Zhai
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Lingang Laboratory, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Geya Tong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zheqin Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Weichen Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yang Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Sha Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Lingang Laboratory, Shanghai 200031, China
| | - Qiqi Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Lingang Laboratory, Shanghai 200031, China
| | - Xiaocheng Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Lingang Laboratory, Shanghai 200031, China
| | - Yi Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Bingbing Liao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chenyu Yuan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yinqing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ge Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yinyin Ouyang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wenxuan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yaqiu Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Minghui Jin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yuxian Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - He Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhi Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Guan Ning Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Dan J Stein
- Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Zhi-Qi Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
6
|
Tsuda B, Richmond BJ, Sejnowski TJ. Exploring strategy differences between humans and monkeys with recurrent neural networks. PLoS Comput Biol 2023; 19:e1011618. [PMID: 37983250 PMCID: PMC10695363 DOI: 10.1371/journal.pcbi.1011618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 12/04/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
Animal models are used to understand principles of human biology. Within cognitive neuroscience, non-human primates are considered the premier model for studying decision-making behaviors in which direct manipulation experiments are still possible. Some prominent studies have brought to light major discrepancies between monkey and human cognition, highlighting problems with unverified extrapolation from monkey to human. Here, we use a parallel model system-artificial neural networks (ANNs)-to investigate a well-established discrepancy identified between monkeys and humans with a working memory task, in which monkeys appear to use a recency-based strategy while humans use a target-selective strategy. We find that ANNs trained on the same task exhibit a progression of behavior from random behavior (untrained) to recency-like behavior (partially trained) and finally to selective behavior (further trained), suggesting monkeys and humans may occupy different points in the same overall learning progression. Surprisingly, what appears to be recency-like behavior in the ANN, is in fact an emergent non-recency-based property of the organization of the neural network's state space during its development through training. We find that explicit encouragement of recency behavior during training has a dual effect, not only causing an accentuated recency-like behavior, but also speeding up the learning process altogether, resulting in an efficient shaping mechanism to achieve the optimal strategy. Our results suggest a new explanation for the discrepency observed between monkeys and humans and reveal that what can appear to be a recency-based strategy in some cases may not be recency at all.
Collapse
Affiliation(s)
- Ben Tsuda
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Medical Scientist Training Program, University of California San Diego, La Jolla, California, United States of America
| | - Barry J. Richmond
- Section on Neural Coding and Computation, National Institute of Mental Health, Bethesda, Maryland, United States of America
| | - Terrence J. Sejnowski
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Institute for Neural Computation, University of California San Diego, La Jolla, California, United States of America
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
7
|
Méndez JC, Perry BAL, Premereur E, Pelekanos V, Ramadan T, Mitchell AS. Variable cardiac responses in rhesus macaque monkeys after discrete mediodorsal thalamus manipulations. Sci Rep 2023; 13:16913. [PMID: 37805650 PMCID: PMC10560229 DOI: 10.1038/s41598-023-42752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 09/14/2023] [Indexed: 10/09/2023] Open
Abstract
The control of some physiological parameters, such as the heart rate, is known to have a role in cognitive and emotional processes. Cardiac changes are also linked to mental health issues and neurodegeneration. Thus, it is not surprising that many of the brain structures typically associated with cognition and emotion also comprise a circuit-the central automatic network-responsible for the modulation of cardiovascular output. The mediodorsal thalamus (MD) is involved in higher cognitive processes and is also known to be connected to some of the key neural structures that regulate cardiovascular function. However, it is unclear whether the MD has any role in this circuitry. Here, we show that discrete manipulations (microstimulation during anaesthetized functional neuroimaging or localized cytotoxin infusions) to either the magnocellular or the parvocellular MD subdivisions led to observable and variable changes in the heart rate of female and male rhesus macaque monkeys. Considering the central positions that these two MD subdivisions have in frontal cortico-thalamocortical circuits, our findings suggest that MD contributions to autonomic regulation may interact with its identified role in higher cognitive processes, representing an important physiological link between cognition and emotion.
Collapse
Affiliation(s)
- Juan Carlos Méndez
- Department of Clinical and Biomedical Sciences, University of Exeter, College House, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Brook A L Perry
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford, OX1 3TH, UK
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
| | | | - Tamara Ramadan
- Department of Biological Sciences, University of Oxford, Oxford, UK
| | - Anna S Mitchell
- Department of Psychology, Speech and Hearing, University of Canterbury, Christchurch, 8041, New Zealand.
| |
Collapse
|
8
|
Mahmoudian B, Dalal H, Lau J, Corrigan B, Abbas M, Barker K, Rankin A, Chen ECS, Peters T, Martinez-Trujillo JC. A method for chronic and semi-chronic microelectrode array implantation in deep brain structures using image guided neuronavigation. J Neurosci Methods 2023; 397:109948. [PMID: 37572883 DOI: 10.1016/j.jneumeth.2023.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Accurate targeting of brain structures for in-vivo electrophysiological recordings is essential for basic as well as clinical neuroscience research. Although methodologies for precise targeting and recording from the cortical surface are abundant, such protocols are scarce for deep brain structures. NEW METHOD We have incorporated stable fiducial markers within a custom cranial cap for improved image-guided neuronavigation targeting of subcortical structures in macaque monkeys. Anchor bolt chambers allowed for a minimally invasive entrance into the brain for chronic recordings. A 3D-printed microdrive allowed for semi-chronic applications. RESULTS We achieved an average Euclidean targeting error of 1.6 mm and a radial error of 1.2 mm over three implantations in two animals. Chronic and semi-chronic implantations allowed for recording of extracellular neuronal activity, with single-neuron activity examples shown from one macaque monkey. COMPARISON WITH EXISTING METHOD(S) Traditional stereotactic methods ignore individual anatomical variability. Our targeting approach allows for a flexible, subject-specific surgical plan with targeting errors lower than what is reported in humans, and equal to or lower than animal models using similar methods. Utilizing an anchor bolt as a chamber reduced the craniotomy size needed for electrode implantation, compared to conventional large access chambers which are prone to infection. Installation of an in-house, 3D-printed, screw-to-mount mechanical microdrive is in contrast to existing semi-chronic methods requiring fabrication, assembly, and installation of complex parts. CONCLUSIONS Leveraging commercially available tools for implantation, our protocol decreases the risk of infection from open craniotomies, and improves the accuracy of chronic electrode implantations targeting deep brain structures in large animal models.
Collapse
Affiliation(s)
- Borna Mahmoudian
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Hitarth Dalal
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Jonathan Lau
- Department of Clinical Neurological Sciences, Division of Neurosurgery, London Health Sciences Centre, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; School of Biomedical Engineering, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Benjamin Corrigan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Mohamad Abbas
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Department of Clinical Neurological Sciences, Division of Neurosurgery, London Health Sciences Centre, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | | | - Adam Rankin
- Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Elvis C S Chen
- School of Biomedical Engineering, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Department of Medical Biophysics, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Lawson Health Research Institute, 750 Base Line Road East Suite 300, London, ON N6C2R5, Canada; Department of Electrical and Computer Engineering, Thompson Engineering Building, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Terry Peters
- Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Center for Functional and Metabolic Mapping, Robarts Research Institute, Department of Medical Biophysics and Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Julio C Martinez-Trujillo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Lawson Health Research Institute, 750 Base Line Road East Suite 300, London, ON N6C2R5, Canada.
| |
Collapse
|
9
|
Campos LJ, Arokiaraj CM, Chuapoco MR, Chen X, Goeden N, Gradinaru V, Fox AS. Advances in AAV technology for delivering genetically encoded cargo to the nonhuman primate nervous system. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100086. [PMID: 37397806 PMCID: PMC10313870 DOI: 10.1016/j.crneur.2023.100086] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/05/2023] [Accepted: 03/17/2023] [Indexed: 07/04/2023] Open
Abstract
Modern neuroscience approaches including optogenetics, calcium imaging, and other genetic manipulations have facilitated our ability to dissect specific circuits in rodent models to study their role in neurological disease. These approaches regularly use viral vectors to deliver genetic cargo (e.g., opsins) to specific tissues and genetically-engineered rodents to achieve cell-type specificity. However, the translatability of these rodent models, cross-species validation of identified targets, and translational efficacy of potential therapeutics in larger animal models like nonhuman primates remains difficult due to the lack of efficient primate viral vectors. A refined understanding of the nonhuman primate nervous system promises to deliver insights that can guide the development of treatments for neurological and neurodegenerative diseases. Here, we outline recent advances in the development of adeno-associated viral vectors for optimized use in nonhuman primates. These tools promise to help open new avenues for study in translational neuroscience and further our understanding of the primate brain.
Collapse
Affiliation(s)
- Lillian J. Campos
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Cynthia M. Arokiaraj
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Miguel R. Chuapoco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Nick Goeden
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Capsida Biotherapeutics, Thousand Oaks, CA, 91320, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Andrew S. Fox
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
10
|
Maity S, Mayer MG, Shu Q, Linh H, Bao D, Blair RV, He Y, Lyon CJ, Hu TY, Fischer T, Fan J. Cerebrospinal Fluid Protein Markers Indicate Neuro-Damage in SARS-CoV-2-Infected Nonhuman Primates. Mol Cell Proteomics 2023; 22:100523. [PMID: 36870567 PMCID: PMC9981268 DOI: 10.1016/j.mcpro.2023.100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Neurologic manifestations are among the most frequently reported complications of COVID-19. However, given the paucity of tissue samples and the highly infectious nature of the etiologic agent of COVID-19, we have limited information to understand the neuropathogenesis of COVID-19. Therefore, to better understand the impact of COVID-19 on the brain, we used mass-spectrometry-based proteomics with a data-independent acquisition mode to investigate cerebrospinal fluid (CSF) proteins collected from two different nonhuman primates, Rhesus Macaque and African Green Monkeys, for the neurologic effects of the infection. These monkeys exhibited minimal to mild pulmonary pathology but moderate to severe central nervous system (CNS) pathology. Our results indicated that CSF proteome changes after infection resolution corresponded with bronchial virus abundance during early infection and revealed substantial differences between the infected nonhuman primates and their age-matched uninfected controls, suggesting these differences could reflect altered secretion of CNS factors in response to SARS-CoV-2-induced neuropathology. We also observed the infected animals exhibited highly scattered data distributions compared to their corresponding controls indicating the heterogeneity of the CSF proteome change and the host response to the viral infection. Dysregulated CSF proteins were preferentially enriched in functional pathways associated with progressive neurodegenerative disorders, hemostasis, and innate immune responses that could influence neuroinflammatory responses following COVID-19. Mapping these dysregulated proteins to the Human Brain Protein Atlas found that they tended to be enriched in brain regions that exhibit more frequent injury following COVID-19. It, therefore, appears reasonable to speculate that such CSF protein changes could serve as signatures for neurologic injury, identify important regulatory pathways in this process, and potentially reveal therapeutic targets to prevent or attenuate the development of neurologic injuries following COVID-19.
Collapse
Affiliation(s)
- Sudipa Maity
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Meredith G Mayer
- Division of Comparative Pathology, National Primate Research Center, Covington, Louisiana, USA
| | - Qingbo Shu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Hellmers Linh
- Division of Comparative Pathology, National Primate Research Center, Covington, Louisiana, USA
| | - Duran Bao
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Robert V Blair
- Division of Comparative Pathology, National Primate Research Center, Covington, Louisiana, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Christopher J Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Tracy Fischer
- Division of Comparative Pathology, National Primate Research Center, Covington, Louisiana, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA.
| |
Collapse
|
11
|
Klein-Flügge MC, Jensen DEA, Takagi Y, Priestley L, Verhagen L, Smith SM, Rushworth MFS. Relationship between nuclei-specific amygdala connectivity and mental health dimensions in humans. Nat Hum Behav 2022; 6:1705-1722. [PMID: 36138220 PMCID: PMC7613949 DOI: 10.1038/s41562-022-01434-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/14/2022] [Indexed: 01/14/2023]
Abstract
There has been increasing interest in using neuroimaging measures to predict psychiatric disorders. However, predictions usually rely on large brain networks and large disorder heterogeneity. Thus, they lack both anatomical and behavioural specificity, preventing the advancement of targeted interventions. Here we address both challenges. First, using resting-state functional magnetic resonance imaging, we parcellated the amygdala, a region implicated in mood disorders, into seven nuclei. Next, a questionnaire factor analysis provided subclinical mental health dimensions frequently altered in anxious-depressive individuals, such as negative emotions and sleep problems. Finally, for each behavioural dimension, we identified the most predictive resting-state functional connectivity between individual amygdala nuclei and highly specific regions of interest, such as the dorsal raphe nucleus in the brainstem or medial frontal cortical regions. Connectivity in circumscribed amygdala networks predicted behaviours in an independent dataset. Our results reveal specific relations between mental health dimensions and connectivity in precise subcortical networks.
Collapse
Affiliation(s)
- Miriam C Klein-Flügge
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB) and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK.
| | - Daria E A Jensen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Yu Takagi
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB) and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Luke Priestley
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB) and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB) and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB) and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB) and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Knaebe B, Weiss CC, Zimmermann J, Hayden BY. The Promise of Behavioral Tracking Systems for Advancing Primate Animal Welfare. Animals (Basel) 2022; 12:1648. [PMID: 35804547 PMCID: PMC9265027 DOI: 10.3390/ani12131648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Recent years have witnessed major advances in the ability of computerized systems to track the positions of animals as they move through large and unconstrained environments. These systems have so far been a great boon in the fields of primatology, psychology, neuroscience, and biomedicine. Here, we discuss the promise of these technologies for animal welfare. Their potential benefits include identifying and reducing pain, suffering, and distress in captive populations, improving laboratory animal welfare within the context of the three Rs of animal research (reduction, refinement, and replacement), and applying our understanding of animal behavior to increase the "natural" behaviors in captive and wild populations facing human impact challenges. We note that these benefits are often incidental to the designed purpose of these tracking systems, a reflection of the fact that animal welfare is not inimical to research progress, but instead, that the aligned interests between basic research and welfare hold great promise for improvements to animal well-being.
Collapse
Affiliation(s)
- Brenna Knaebe
- Department of Neuroscience and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA; (C.C.W.); (J.Z.); (B.Y.H.)
| | | | | | | |
Collapse
|
13
|
Boisson F, Serriere S, Cao L, Bodard S, Pilleri A, Thomas L, Sportelli G, Vercouillie J, Emond P, Tauber C, Belcari N, Lefaucheur JL, Brasse D, Galineau L. Performance evaluation of the IRIS XL-220 PET/CT system, a new camera dedicated to non-human primates. EJNMMI Phys 2022; 9:10. [PMID: 35122556 PMCID: PMC8818072 DOI: 10.1186/s40658-022-00440-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-human primates (NHP) are critical in biomedical research to better understand the pathophysiology of diseases and develop new therapies. Based on its translational and longitudinal abilities along with its non-invasiveness, PET/CT systems dedicated to non-human primates can play an important role for future discoveries in medical research. The aim of this study was to evaluate the performance of a new PET/CT system dedicated to NHP imaging, the IRIS XL-220 developed by Inviscan SAS. This was performed based on the National Electrical Manufacturers Association (NEMA) NU 4-2008 standard recommendations (NEMA) to characterize the spatial resolution, the scatter fraction, the sensitivity, the count rate, and the image quality of the system. Besides, the system was evaluated in real conditions with two NHP with 18F-FDG and (-)-[18F]FEOBV which targets the vesicular acetylcholine transporter, and one rat using 18F-FDG. RESULTS The full width at half maximum obtained with the 3D OSEM algorithm ranged between 0.89 and 2.11 mm in the field of view. Maximum sensitivity in the 400-620 keV and 250-750 keV energy windows were 2.37% (22 cps/kBq) and 2.81% (25 cps/kBq), respectively. The maximum noise equivalent count rate (NEC) for a rat phantom was 82 kcps at 75 MBq and 88 kcps at 75 MBq for energy window of 250-750 and 400-620 keV, respectively. For the monkey phantom, the maximum NEC was 18 kcps at 126 MBq and 19 kcps at 126 MBq for energy window of 250-750 and 400-620 keV, respectively. The IRIS XL provided an excellent quality of images in non-human primates and rats using 18F-FDG. The images acquired using (-)-[18F]FEOBV were consistent with those previously reported in non-human primates. CONCLUSIONS Taken together, these results showed that the IRIS XL-220 is a high-resolution system well suited for PET/CT imaging in non-human primates.
Collapse
Affiliation(s)
- Frédéric Boisson
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 rue du Loess, 67037, Strasbourg, France.,UMR7178, CNRS, 67037, Strasbourg, France
| | - Sophie Serriere
- UMR 1253, IBrain, Équipe Imagerie, Biomarqueurs et Thérapie, Université de Tours, Inserm, UFR Médecine, 10 boulevard Tonnellé, Bât. Planiol 4ème étage, 37000, Tours, France.,Département d'Imagerie Préclinique, Plateforme Scientifique et Technique Analyse des Systèmes Biologiques, Université de Tours, Tours, France
| | - Liji Cao
- Inviscan SAS, Strasbourg, France
| | - Sylvie Bodard
- UMR 1253, IBrain, Équipe Imagerie, Biomarqueurs et Thérapie, Université de Tours, Inserm, UFR Médecine, 10 boulevard Tonnellé, Bât. Planiol 4ème étage, 37000, Tours, France
| | - Alessandro Pilleri
- Department of Physics, University of Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | - Lionel Thomas
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 rue du Loess, 67037, Strasbourg, France.,UMR7178, CNRS, 67037, Strasbourg, France
| | - Giancarlo Sportelli
- Department of Physics, University of Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | - Johnny Vercouillie
- UMR 1253, IBrain, Équipe Imagerie, Biomarqueurs et Thérapie, Université de Tours, Inserm, UFR Médecine, 10 boulevard Tonnellé, Bât. Planiol 4ème étage, 37000, Tours, France
| | - Patrick Emond
- UMR 1253, IBrain, Équipe Imagerie, Biomarqueurs et Thérapie, Université de Tours, Inserm, UFR Médecine, 10 boulevard Tonnellé, Bât. Planiol 4ème étage, 37000, Tours, France.,Département d'Imagerie Préclinique, Plateforme Scientifique et Technique Analyse des Systèmes Biologiques, Université de Tours, Tours, France
| | - Clovis Tauber
- UMR 1253, IBrain, Équipe Imagerie, Biomarqueurs et Thérapie, Université de Tours, Inserm, UFR Médecine, 10 boulevard Tonnellé, Bât. Planiol 4ème étage, 37000, Tours, France
| | - Nicola Belcari
- Department of Physics, University of Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | | | - David Brasse
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 rue du Loess, 67037, Strasbourg, France.,UMR7178, CNRS, 67037, Strasbourg, France
| | - Laurent Galineau
- UMR 1253, IBrain, Équipe Imagerie, Biomarqueurs et Thérapie, Université de Tours, Inserm, UFR Médecine, 10 boulevard Tonnellé, Bât. Planiol 4ème étage, 37000, Tours, France. .,Département d'Imagerie Préclinique, Plateforme Scientifique et Technique Analyse des Systèmes Biologiques, Université de Tours, Tours, France.
| |
Collapse
|
14
|
Kenwood MM, Kalin NH, Barbas H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology 2022; 47:260-275. [PMID: 34400783 PMCID: PMC8617307 DOI: 10.1038/s41386-021-01109-z] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Anxiety is experienced in response to threats that are distal or uncertain, involving changes in one's subjective state, autonomic responses, and behavior. Defensive and physiologic responses to threats that involve the amygdala and brainstem are conserved across species. While anxiety responses typically serve an adaptive purpose, when excessive, unregulated, and generalized, they can become maladaptive, leading to distress and avoidance of potentially threatening situations. In primates, anxiety can be regulated by the prefrontal cortex (PFC), which has expanded in evolution. This prefrontal expansion is thought to underlie primates' increased capacity to engage high-level regulatory strategies aimed at coping with and modifying the experience of anxiety. The specialized primate lateral, medial, and orbital PFC sectors are connected with association and limbic cortices, the latter of which are connected with the amygdala and brainstem autonomic structures that underlie emotional and physiological arousal. PFC pathways that interface with distinct inhibitory systems within the cortex, the amygdala, or the thalamus can regulate responses by modulating neuronal output. Within the PFC, pathways connecting cortical regions are poised to reduce noise and enhance signals for cognitive operations that regulate anxiety processing and autonomic drive. Specialized PFC pathways to the inhibitory thalamic reticular nucleus suggest a mechanism to allow passage of relevant signals from thalamus to cortex, and in the amygdala to modulate the output to autonomic structures. Disruption of specific nodes within the PFC that interface with inhibitory systems can affect the negative bias, failure to regulate autonomic arousal, and avoidance that characterize anxiety disorders.
Collapse
Affiliation(s)
- Margaux M Kenwood
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
- Wisconsin National Primate Center, Madison, WI, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
15
|
Scott JT, Bourne JA. Modelling behaviors relevant to brain disorders in the nonhuman primate: Are we there yet? Prog Neurobiol 2021; 208:102183. [PMID: 34728308 DOI: 10.1016/j.pneurobio.2021.102183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
Recent years have seen a profound resurgence of activity with nonhuman primates (NHPs) to model human brain disorders. From marmosets to macaques, the study of NHP species offers a unique window into the function of primate-specific neural circuits that are impossible to examine in other models. Examining how these circuits manifest into the complex behaviors of primates, such as advanced cognitive and social functions, has provided enormous insights to date into the mechanisms underlying symptoms of numerous neurological and neuropsychiatric illnesses. With the recent optimization of modern techniques to manipulate and measure neural activity in vivo, such as optogenetics and calcium imaging, NHP research is more well-equipped than ever to probe the neural mechanisms underlying pathological behavior. However, methods for behavioral experimentation and analysis in NHPs have noticeably failed to keep pace with these advances. As behavior ultimately lies at the junction between preclinical findings and its translation to clinical outcomes for brain disorders, approaches to improve the integrity, reproducibility, and translatability of behavioral experiments in NHPs requires critical evaluation. In this review, we provide a unifying account of existing brain disorder models using NHPs, and provide insights into the present and emerging contributions of behavioral studies to the field.
Collapse
Affiliation(s)
- Jack T Scott
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
16
|
Invasive Research on Non-Human Primates-Time to Turn the Page. Animals (Basel) 2021; 11:ani11102999. [PMID: 34680019 PMCID: PMC8532895 DOI: 10.3390/ani11102999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Despite increasing ethical concerns, primates are still often used in invasive research (i.e., laboratory research that causes body manipulations causing them pain or distress and not aimed at directly improving their well-being). Here, we will review previous studies showing that primates have complex behaviour and cognition, and that they suffer long-term consequences after being used in invasive research. We will discuss the ethical problems that invasive research on primates posit, the legal protection that they are, to date, granted in different countries, and summarize the past and current attempts to ban this kind of research on primates. We will conclude why, in our opinion, invasive research on primates should be banned, and non-invasive methods should be considered the only possible approach to the study of primates. Abstract Invasive research on primates (i.e., laboratory research that implies body manipulations causing pain or distress that is not aimed to directly improve the individuals’ well-being) has a long history. Although some invasive studies have allowed answering research questions that we could not have addressed with other methods (or at least not as quickly), the use of primates in invasive research also raises ethical concerns. In this review, we will discuss (i) recent advances in the study of primates that show evidence of complex behaviour and cognition, (ii) welfare issues that might arise when using primates in invasive research, (iii) the main ethical issues that have been raised about invasive research on primates, (iv) the legal protection that primates are granted in several countries, with a special focus on the principle of the 3Rs, and (v) previous and current attempts to ban the use of primates in invasive research. Based on this analysis, we suggest that the importance of a research question cannot justify the costs of invasive research on primates, and that non-invasive methods should be considered the only possible approach in the study of primates.
Collapse
|
17
|
Royo J, Forkel SJ, Pouget P, Thiebaut de Schotten M. The squirrel monkey model in clinical neuroscience. Neurosci Biobehav Rev 2021; 128:152-164. [PMID: 34118293 DOI: 10.1016/j.neubiorev.2021.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/27/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Clinical neuroscience research relying on animal models brought valuable translational insights into the function and pathologies of the human brain. The anatomical, physiological, and behavioural similarities between humans and mammals have prompted researchers to study cerebral mechanisms at different levels to develop and test new treatments. The vast majority of biomedical research uses rodent models, which are easily manipulable and have a broadly resembling organisation to the human nervous system but cannot satisfactorily mimic some disorders. For these disorders, macaque monkeys have been used as they have a more comparable central nervous system. Still, this research has been hampered by limitations, including high costs and reduced samples. This review argues that a squirrel monkey model might bridge the gap by complementing translational research from rodents, macaque, and humans. With the advent of promising new methods such as ultrasound imaging, tool miniaturisation, and a shift towards open science, the squirrel monkey model represents a window of opportunity that will potentially fuel new translational discoveries in the diagnosis and treatment of brain pathologies.
Collapse
Affiliation(s)
- Julie Royo
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France; Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, ICM, Movement Investigation and Therapeutics Team, Paris, France.
| | - Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neurosciences, King's College London, UK
| | - Pierre Pouget
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France; Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, ICM, Movement Investigation and Therapeutics Team, Paris, France
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.
| |
Collapse
|
18
|
Mitchell AS, Hartig R, Basso MA, Jarrett W, Kastner S, Poirier C. International primate neuroscience research regulation, public engagement and transparency opportunities. Neuroimage 2021; 229:117700. [PMID: 33418072 PMCID: PMC7994292 DOI: 10.1016/j.neuroimage.2020.117700] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/08/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Scientific excellence is a necessity for progress in biomedical research. As research becomes ever more international, establishing international collaborations will be key to advancing our scientific knowledge. Understanding the similarities in standards applied by different nations to animal research, and where the differences might lie, is crucial. Cultural differences and societal values will also contribute to these similarities and differences between countries and continents. Our overview is not comprehensive for all species, but rather focuses on non-human primate (NHP) research, involving New World marmosets and Old World macaques, conducted in countries where NHPs are involved in neuroimaging research. Here, an overview of the ethics and regulations is provided to help assess welfare standards amongst primate research institutions. A comparative examination of these standards was conducted to provide a basis for establishing a common set of standards for animal welfare. These criteria may serve to develop international guidelines, which can be managed by an International Animal Welfare and Use Committee (IAWUC). Internationally, scientists have a moral responsibility to ensure excellent care and welfare of their animals, which in turn, influences the quality of their research. When working with animal models, maintaining a high quality of care ("culture of care") and welfare is essential. The transparent promotion of this level of care and welfare, along with the results of the research and its impact, may reduce public concerns associated with animal experiments in neuroscience research.
Collapse
Affiliation(s)
- Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.
| | - Renée Hartig
- Centre for Integrative Neurosciences, University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience Department of Psychiatry and Biobehavioral Sciences UCLA Los Angeles 90095, CA United States
| | - Wendy Jarrett
- Understanding Animal Research, London, United Kingdom
| | - Sabine Kastner
- Princeton Neuroscience Institute & Department of Psychology, Princeton University, Princeton, United States
| | - Colline Poirier
- Biosciences Institute & Centre for Behaviour and Evolution, Faculty of Medical Sciences, Newcastle University, United Kingdom
| |
Collapse
|
19
|
Orbitofrontal State Representations Are Related to Choice Adaptations and Reward Predictions. J Neurosci 2021; 41:1941-1951. [PMID: 33446521 DOI: 10.1523/jneurosci.0753-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 11/21/2022] Open
Abstract
Animals can categorize the environment into "states," defined by unique sets of available action-outcome contingencies in different contexts. Doing so helps them choose appropriate actions and make accurate outcome predictions when in each given state. State maps have been hypothesized to be held in the orbitofrontal cortex (OFC), an area implicated in decision-making and encoding information about outcome predictions. Here we recorded neural activity in OFC in 6 male rats to test state representations. Rats were trained on an odor-guided choice task consisting of five trial blocks containing distinct sets of action-outcome contingencies, constituting states, with unsignaled transitions between them. OFC neural ensembles were analyzed using decoding algorithms. Results indicate that the vast majority of OFC neurons contributed to representations of the current state at any point in time, independent of odor cues and reward delivery, even at the level of individual neurons. Across state transitions, these representations gradually integrated evidence for the new state; the rate at which this integration happened in the prechoice part of the trial was related to how quickly the rats' choices adapted to the new state. Finally, OFC representations of outcome predictions, often thought to be the primary function of OFC, were dependent on the accuracy of OFC state representations.SIGNIFICANCE STATEMENT A prominent hypothesis proposes that orbitofrontal cortex (OFC) tracks current location in a "cognitive map" of state space. Here we tested this idea in detail by analyzing neural activity recorded in OFC of rats performing a task consisting of a series of states, each defined by a set of available action-outcome contingencies. Results show that most OFC neurons contribute to state representations and that these representations are related to the rats' decision-making and OFC reward predictions. These findings suggest new interpretations of emotional dysregulation in pathologies, such as addiction, which have long been known to be related to OFC dysfunction.
Collapse
|
20
|
Gao J, Skouras S, Leung HK, Wu BWY, Wu H, Chang C, Sik HH. Repetitive Religious Chanting Invokes Positive Emotional Schema to Counterbalance Fear: A Multi-Modal Functional and Structural MRI Study. Front Behav Neurosci 2020; 14:548856. [PMID: 33328917 PMCID: PMC7732428 DOI: 10.3389/fnbeh.2020.548856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/07/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction During hard times, religious chanting/praying is widely practiced to cope with negative or stressful emotions. While the underlying neural mechanism has not been investigated to a sufficient extent. A previous event-related potential study showed that religious chanting could significantly diminish the late-positive potential induced by negative stimuli. However, the regulatory role of subcortical brain regions, especially the amygdala, in this process remains unclear. This multi-modal MRI study aimed to further clarify the neural mechanism underlying the effectiveness of religious chanting for emotion regulation. Methodology Twenty-one participants were recruited for a multi-modal MRI study. Their age range was 40–52 years, 11 were female and all participants had at least 1 year of experience in religious chanting. The participants were asked to view neutral/fearful pictures while practicing religious chanting (i.e., chanting the name of Buddha Amitābha), non-religious chanting (i.e., chanting the name of Santa Claus), or no chanting. A 3.0 T Philips MRI scanner was used to collect the data and SPM12 was used to analyze the imaging data. Voxel-based morphometry (VBM) was used to explore the potential hemispheric asymmetries in practitioners. Results Compared to non-religious chanting and no chanting, higher brain activity was observed in several brain regions when participants performed religious chanting while viewing fearful images. These brain regions included the fusiform gyrus, left parietal lobule, and prefrontal cortex, as well as subcortical regions such as the amygdala, thalamus, and midbrain. Importantly, significantly more activity was observed in the left than in the right amygdala during religious chanting. VBM showed hemispheric asymmetries, mainly in the thalamus, putamen, hippocampus, amygdala, and cerebellum; areas related to skill learning and biased memory formation. Conclusion This preliminary study showed that repetitive religious chanting may induce strong brain activity, especially in response to stimuli with negative valence. Practicing religious chanting may structurally lateralize a network of brain areas involved in biased memory formation. These functional and structural results suggest that religious chanting helps to form a positive schema to counterbalance negative emotions. Future randomized control studies are necessary to confirm the neural mechanism related to religious chanting in coping with stress and negative emotions.
Collapse
Affiliation(s)
- Junling Gao
- Buddhism and Science Research Lab, Centre of Buddhist Studies, The University of Hong Kong, Hong Kong, Hong Kong
| | - Stavros Skouras
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Hang Kin Leung
- Buddhism and Science Research Lab, Centre of Buddhist Studies, The University of Hong Kong, Hong Kong, Hong Kong
| | - Bonnie Wai Yan Wu
- Buddhism and Science Research Lab, Centre of Buddhist Studies, The University of Hong Kong, Hong Kong, Hong Kong
| | - Huijun Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Hin Hung Sik
- Buddhism and Science Research Lab, Centre of Buddhist Studies, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
21
|
Abstract
Brain-wide circuits that coordinate affective and social behaviours intersect in the amygdala. Consequently, amygdala lesions cause a heterogeneous array of social and non-social deficits. Social behaviours are not localized to subdivisions of the amygdala even though the inputs and outputs that carry social signals are anatomically restricted to distinct subnuclear regions. This observation may be explained by the multidimensional response properties of the component neurons. Indeed, the multitudes of circuits that converge in the amygdala enlist the same subset of neurons into different ensembles that combine social and non-social elements into high-dimensional representations. These representations may enable flexible, context-dependent social decisions. As such, multidimensional processing may operate in parallel with subcircuits of genetically identical neurons that serve specialized and functionally dissociable functions. When combined, the activity of specialized circuits may grant specificity to social behaviours, whereas multidimensional processing facilitates the flexibility and nuance needed for complex social behaviour.
Collapse
|
22
|
Buffalo EA, Movshon JA, Wurtz RH. From basic brain research to treating human brain disorders. Proc Natl Acad Sci U S A 2019; 116:26167-26172. [PMID: 31871205 PMCID: PMC6936684 DOI: 10.1073/pnas.1919895116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Elizabeth A. Buffalo
- Department of Physiology and Biophysics, School of Medicine, Washington National Primate Research Center, University of Washington, Seattle, WA 98195
| | | | - Robert H. Wurtz
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|