1
|
Czernuszewicz TJ, Wang Y, Jiang L, Kim K, Mikulski Z, Aji AM, Rojas JD, Gessner RC, Schnabl B. Noninvasive Monitoring of Steatotic Liver Disease in Western Diet-Fed Obese Mice Using Automated Ultrasound and Shear Wave Elastography. Liver Int 2025; 45:e16141. [PMID: 39523997 PMCID: PMC11903181 DOI: 10.1111/liv.16141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND AIMS Ultrasound imaging and shear wave elastography (SWE) can be used to noninvasively stage hepatopathologies and are widespread in clinical practice. These techniques have recently been adapted for small animal use in a novel 3D in vivo imaging system capable of high-throughput automated scanning. Our goal was to evaluate the feasibility of using this imaging tool in the murine Western diet (WD) model, a highly translatable preclinical model of obesity, metabolic disease and liver fibrosis. METHODS Female C57BL/6 mice (N = 48) were placed on WD or chow diet and imaged longitudinally for a period of 48 weeks. Imaging consisted of 3D B-mode and targeted SWE captures. Liver volume, liver echogenicity and liver stiffness were quantified from in vivo imaging data. A subset of mice was sacrificed at various timepoints (0, 12, 24 and 48 weeks) for histological workup. Correlation analysis was performed between in vivo imaging and histological measurements to determine level of agreement. RESULTS Noninvasive imaging showed statistically significant increases in liver volume and echogenicity, but non-significant increase in liver stiffness in the WD-fed cohort, suggesting development of hepatomegaly and steatosis, but negligible fibrosis. Ex vivo analysis confirmed significant increases in liver weight, liver triglycerides and ALT, but limited increases in fibrosis corroborating noninvasive imaging results. Correlation analysis between imaging and histology demonstrated good agreement between liver volume/liver weight (R2 = 0.85) and echogenicity/triglycerides (R2 = 0.76). CONCLUSIONS This study demonstrated that noninvasive ultrasound liver assessments are feasible in the WD mouse model and closely reflect the underlying pathological state of the animal. Automated ultrasound can serve as a high-throughput noninvasive screening method for preclinical liver disease research and drug development.
Collapse
Affiliation(s)
- Tomasz J Czernuszewicz
- Revvity, Inc., Durham, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Yanhan Wang
- Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Lu Jiang
- Department of Medicine, University of California San Diego, San Diego, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Kenneth Kim
- La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Adam M Aji
- Revvity, Inc., Durham, North Carolina, USA
| | | | | | - Bernd Schnabl
- Department of Medicine, University of California San Diego, San Diego, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
2
|
He Y, Ye M, Xia Y, Zhong Z, Li Q. Antioxidants and the risk of metabolic dysfunction-associated steatotic liver disease: results of National Health and Nutrition Examination Survey and two-sample Mendelian randomization analyses. Eur J Gastroenterol Hepatol 2025; 37:230-239. [PMID: 39621882 DOI: 10.1097/meg.0000000000002898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
BACKGROUND The link between antioxidants and metabolic dysfunction-associated steatotic liver disease (MASLD) is a topic of considerable discussion in the field of observational studies, with the exact causal connections still being unclear. METHODS In this investigation, a cohort consisting of 17 061 participants from the National Health and Nutrition Examination Surveys was studied. Initially, a cross-sectional analysis was carried out to examine the relationship between the CDAI and MASLD. Further, Mendelian randomization (MR) was utilized to assess the possible causal links between antioxidant levels in the bloodstream and MASLD. RESULTS The association between the CDAI and MASLD was found to be significant in the fully adjusted logistic regression model, showing an OR of 0.95 [95% confidence interval (CI): 0.94-0.97; P < 0.001]. The use of restricted cubic spline regression revealed no significant nonlinear association between the CDAI and the occurrence of MASLD ( Pnonlinearity = 0.321). Additionally, MR findings did not suggest any causal connections between circulating levels of various antioxidants and MASLD. These antioxidants included vitamin A (retinol) (IVW: OR: 0.67, 95% CI: 0.33-1.36, P = 0.272), vitamin C (ascorbate) (IVW: OR: 0.61, 95% CI: 0.34-1.09, P = 0.094), vitamin E (α-tocopherol) (IVW: OR: 0.55, 95% CI: 0.13-2.25, P = 0.407), vitamin E (γ-tocopherol) (IVW: OR: 0.89, 95% CI: 0.36-2.23, P = 0.806), zinc (IVW: OR: 0.95, 95% CI: 0.82-1.09, P = 0.449), selenium (IVW: OR: 0.98, 95% CI: 0.84-1.16, P = 0.855), and carotene (IVW: OR: 0.80, 95% CI: 0.36-1.81, P = 0.596). CONCLUSION The findings highlight a significant negative linear relationship between CDAI and MASLD prevalence in the observational component of the study. However, the MR analysis did not indicate any causal effects of circulating antioxidant levels on MASLD.
Collapse
Affiliation(s)
- Yijia He
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | |
Collapse
|
3
|
Gronskaia SA, Rusyaeva NV, Belaya ZE, Melnichenko GA. [Non-classical hormones from the fibroblast growth factor family]. PROBLEMY ENDOKRINOLOGII 2024; 70:23-33. [PMID: 39509633 DOI: 10.14341/probl13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 11/15/2024]
Abstract
Fibroblast growth factors (FGFs) are a group of signaling molecules named for their ability to promote the growth and proliferation of fibroblasts and various other cell types. Typically, FGFs exert their effects locally by binding to receptors within the tissues where they are synthesized. However, certain members of this family, such as FGF 19, FGF 21, and FGF 23, diverge from this pattern. Following synthesis, these FGFs enter the bloodstream and act on distant organs and tissues by binding to their receptors and associated cofactors, thereby classified as non-classical hormones within the FGF family.The biological functions of FGFs are diverse and contingent upon the specific receptors and cofactors involved in their signaling pathways. For instance, FGF 19 and FGF 21 play crucial roles in regulating glucose and lipid metabolism, whereas FGF 23 primarily influences phosphorus metabolism. Given their varied roles, FGFs present promising targets for therapeutic interventions and drug development.This review aims to consolidate current understanding of FGF family hormones, elucidating their biological impacts and exploring their potential applications as therapeutic targets.
Collapse
|
4
|
Sullivan AI, Jensen-Cody SO, Claflin KE, Vorhies KE, Flippo KH, Potthoff MJ. Characterization of FGF21 Sites of Production and Signaling in Mice. Endocrinology 2024; 165:bqae120. [PMID: 39253796 DOI: 10.1210/endocr/bqae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/08/2024] [Accepted: 09/08/2024] [Indexed: 09/11/2024]
Abstract
Fibroblast growth factor (FGF) 21 is an endocrine hormone that signals to multiple tissues to regulate metabolism. FGF21 and another endocrine FGF, FGF15/19, signal to target tissues by binding to the co-receptor β-klotho (KLB), which then facilitates the interaction of these different FGFs with their preferred FGF receptor. KLB is expressed in multiple metabolic tissues, but the specific cell types and spatial distribution of these cells are not known. Furthermore, while circulating FGF21 is primarily produced by the liver, recent publications have indicated that brain-derived FGF21 impacts memory and learning. Here we use reporter mice to comprehensively assess KLB and FGF21 expression throughout the body. These data provide an important resource for guiding future studies to identify important peripheral and central targets of FGFs and to determine the significance of nonhepatic FGF21 production.
Collapse
Affiliation(s)
- Andrew I Sullivan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Sharon O Jensen-Cody
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kristin E Claflin
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kai E Vorhies
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kyle H Flippo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Chen H, Zhou Y, Hao H, Xiong J. Emerging mechanisms of non-alcoholic steatohepatitis and novel drug therapies. Chin J Nat Med 2024; 22:724-745. [PMID: 39197963 DOI: 10.1016/s1875-5364(24)60690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 09/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver disease globally. It initiates with simple steatosis (NAFL) and can progress to the more severe condition of non-alcoholic steatohepatitis (NASH). NASH often advances to end-stage liver diseases such as liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Notably, the transition from NASH to end-stage liver diseases is irreversible, and the precise mechanisms driving this progression are not yet fully understood. Consequently, there is a critical need for the development of effective therapies to arrest or reverse this progression. This review provides a comprehensive overview of the pathogenesis of NASH, examines the current therapeutic targets and pharmacological treatments, and offers insights for future drug discovery and development strategies for NASH therapy.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Jun H, Liu S, Knights AJ, Zhu K, Ma Y, Gong J, Lenhart AE, Peng X, Huang Y, Ginder JP, Downie CH, Ramos ET, Kullander K, Kennedy RT, Xu XZS, Wu J. Signaling through the nicotinic acetylcholine receptor in the liver protects against the development of metabolic dysfunction-associated steatohepatitis. PLoS Biol 2024; 22:e3002728. [PMID: 39028754 PMCID: PMC11290650 DOI: 10.1371/journal.pbio.3002728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is the progressive form of liver steatosis, the most common liver disease, and substantially increases the mortality rate. However, limited therapies are currently available to prevent MASH development. Identifying potential pharmacological treatments for the condition has been hampered by its heterogeneous and complex nature. Here, we identified a hepatic nonneuronal cholinergic signaling pathway required for metabolic adaptation to caloric overload. We found that cholinergic receptor nicotinic alpha 2 subunit (CHRNA2) is highly expressed in hepatocytes of mice and humans. Further, CHRNA2 is activated by a subpopulation of local acetylcholine-producing macrophages during MASH development. The activation of CHRNA2 coordinates defensive programs against a broad spectrum of MASH-related pathogenesis, including steatosis, inflammation, and fibrosis. Hepatocyte-specific loss of CHRNA2 signaling accelerates the disease onset in different MASH mouse models. Activation of this pathway via pharmacological inhibition of acetylcholine degradation protects against MASH development. Our study uncovers a hepatic nicotinic cholinergic receptor pathway that constitutes a cell-autonomous self-defense route against prolonged metabolic stress and holds therapeutic potential for combatting human MASH.
Collapse
Affiliation(s)
- Heejin Jun
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Shanshan Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alexander J. Knights
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kezhou Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yingxu Ma
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianke Gong
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Sciences and Technology, and Huazhong University of Science and Technology, Wuhan, China
| | - Ashley E. Lenhart
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xiaoling Peng
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yunying Huang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jared P. Ginder
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christopher H. Downie
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Erika Thalia Ramos
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Klas Kullander
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - X. Z. Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
7
|
Li S, Zou T, Chen J, Li J, You J. Fibroblast growth factor 21: An emerging pleiotropic regulator of lipid metabolism and the metabolic network. Genes Dis 2024; 11:101064. [PMID: 38292170 PMCID: PMC10825286 DOI: 10.1016/j.gendis.2023.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/20/2023] [Accepted: 06/27/2023] [Indexed: 02/01/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) was originally identified as an important metabolic regulator which plays a crucial physiological role in regulating a variety of metabolic parameters through the metabolic network. As a novel multifunctional endocrine growth factor, the role of FGF21 in the metabolic network warrants extensive exploration. This insight was obtained from the observation that the FGF21-dependent mechanism that regulates lipid metabolism, glycogen transformation, and biological effectiveness occurs through the coordinated participation of the liver, adipose tissue, central nervous system, and sympathetic nerves. This review focuses on the role of FGF21-uncoupling protein 1 (UCP1) signaling in lipid metabolism and how FGF21 alleviates non-alcoholic fatty liver disease (NAFLD). Additionally, this review reveals the mechanism by which FGF21 governs glucolipid metabolism. Recent research on the role of FGF21 in the metabolic network has mostly focused on the crucial pathway of glucolipid metabolism. FGF21 has been shown to have multiple regulatory roles in the metabolic network. Since an adequate understanding of the concrete regulatory pathways of FGF21 in the metabolic network has not been attained, this review sheds new light on the metabolic mechanisms of FGF21, explores how FGF21 engages different tissues and organs, and lays a theoretical foundation for future in-depth research on FGF21-targeted treatment of metabolic diseases.
Collapse
Affiliation(s)
| | | | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jiaming Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
8
|
Nguyen AT, Amigo Z, McDuffie K, MacQueen VC, Bell LD, Truong LK, Batchi G, McMillin SM. Effects of Empagliflozin-Induced Glycosuria on Weight Gain, Food Intake and Metabolic Indicators in Mice Fed a High-Fat Diet. Endocrinol Diabetes Metab 2024; 7:e00475. [PMID: 38475903 DOI: 10.1002/edm2.475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/31/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Sodium glucose-linked transporter 2 (SGLT2) inhibitors promote glucose, and therefore calorie, excretion in the urine. Patients taking SGLT2 inhibitors typically experience mild weight loss, but the amount of weight loss falls short of what is expected based on caloric loss. Understanding the mechanisms responsible for this weight loss discrepancy is imperative, as strategies to improve weight loss could markedly improve type 2 diabetes management and overall metabolic health. METHODS Two mouse models of diet-induced obesity were administered the SGLT2 inhibitor empagliflozin in the food for 3 months. Urine glucose excretion, body weight, food intake and activity levels were monitored. In addition, serum hormone measurements were taken, and gene expression analyses were conducted. RESULTS In both mouse models, mice receiving empagliflozin gained the same amount of body weight as their diet-matched controls despite marked glucose loss in the urine. No changes in food intake, serum ghrelin concentrations or activity levels were observed, but serum levels of fibroblast growth factor 21 (FGF21) decreased after treatment. A decrease in the levels of deiodinase 2 (Dio2) was also observed in the white adipose tissue, a primary target tissue of FGF21. CONCLUSION These findings suggest that compensatory metabolic adaptations, other than increased food intake or decreased physical activity, occur in response to SGLT2 inhibitor-induced glycosuria that combats weight loss, and that reductions in FGF21, along with subsequent reductions in peripheral Dio2, may play a role.
Collapse
Affiliation(s)
- Anh T Nguyen
- Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina, USA
| | - Zachary Amigo
- Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina, USA
| | - Kathleen McDuffie
- Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina, USA
| | - Victoria C MacQueen
- Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina, USA
| | - Lane D Bell
- Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina, USA
| | - Lan K Truong
- Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina, USA
| | - Gloria Batchi
- Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina, USA
| | - Sara M McMillin
- Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina, USA
| |
Collapse
|
9
|
Lu W, Zhao J, Cai X, Wang Y, Lin W, Fang Y, Wang Y, Ao J, Shou J, Xu J, Zhu S. Cadherin-responsive hydrogel combined with dental pulp stem cells and fibroblast growth factor 21 promotes diabetic scald repair via regulating epithelial-mesenchymal transition and necroptosis. Mater Today Bio 2024; 24:100919. [PMID: 38298888 PMCID: PMC10829787 DOI: 10.1016/j.mtbio.2023.100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
Diabetes causes a loss of sensation in the skin, so diabetics are prone to burns when using heating devices. Diabetic scalded skin is often difficult to heal due to the microenvironment of high glucose, high oxidation, and low blood perfusion. The treatment of diabetic scald mainly focuses on three aspects: 1) promote the formation of the epithelium; 2) promote angiogenesis; and 3) maintain intracellular homeostasis. In response to these three major repair factors, we developed a cadherin-responsive hydrogel combined with FGF21 and dental pulp stem cells (DPSCs) to accelerate epithelial formation by recruiting cadherin to the epidermis and promoting the transformation of N cadherin to E cadherin; promoting angiogenesis to increase wound blood perfusion; regulating the stability of lysosomal and activating autophagy to maintain intracellular homeostasis in order to comprehensively advance the recovery of diabetic scald.
Collapse
Affiliation(s)
- Wenjie Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Juan Zhao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiong Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yutian Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenwei Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yaoping Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yunyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jinglei Ao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jiahui Shou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
10
|
Pan C, Liu J, Gao Y, Yang M, Hu H, Liu C, Qian M, Yuan HY, Yang S, Zheng MH, Wang L. Hepatocyte CHRNA4 mediates the MASH-promotive effects of immune cell-produced acetylcholine and smoking exposure in mice and humans. Cell Metab 2023; 35:2231-2249.e7. [PMID: 38056431 DOI: 10.1016/j.cmet.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/28/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a leading risk factor for liver cirrhosis and hepatocellular carcinoma. Here, we report that CHRNA4, a subunit of nicotinic acetylcholine receptors (nAChRs), is an accelerator of MASH progression. CHRNA4 also mediates the MASH-promotive effects induced by smoking. Chrna4 was expressed specifically in hepatocytes and exhibited increased levels in mice and patients with MASH. Elevated CHRNA4 levels were positively correlated with MASH severity. We further revealed that during MASH development, acetylcholine released from immune cells or nicotine derived from smoking functioned as an agonist to activate hepatocyte-intrinsic CHRNA4, inducing calcium influx and activation of inflammatory signaling. The communication between immune cells and hepatocytes via the acetylcholine-CHRNA4 axis led to the production of a variety of cytokines, eliciting inflammation in liver and promoting the pathogenesis of MASH. Genetic and pharmacological inhibition of CHRNA4 protected mice from diet-induced MASH. Targeting CHRNA4 might be a promising strategy for MASH therapeutics.
Collapse
Affiliation(s)
- Chuyue Pan
- Institute of Modern Biology, Nanjing University, Nanjing 210008, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Jun Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Yingsheng Gao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Maohui Yang
- Institute of Modern Biology, Nanjing University, Nanjing 210008, China
| | - Haiyang Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Chang Liu
- Institute of Modern Biology, Nanjing University, Nanjing 210008, China
| | - Minyi Qian
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Hai-Yang Yuan
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Song Yang
- Department of Hepatology, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing 100015, China.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| | - Lirui Wang
- Institute of Modern Biology, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
11
|
Pan C, Liu C, Jia W, Zhao D, Chen X, Zhu X, Yang M, Wang L. Alcohol drinking alters oral microbiota to modulate the progression of alcohol-related liver disease. iScience 2023; 26:107977. [PMID: 37810215 PMCID: PMC10558787 DOI: 10.1016/j.isci.2023.107977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/17/2023] [Indexed: 10/10/2023] Open
Abstract
Alcohol-related liver disease (ALD) is one of the leading causes of liver-related death worldwide. However, roles of oral microbiota in regulating the progression of ALD remain unknown. Here, we fed mice with control or ethanol diet to establish chronic-plus-binge ALD model. 16S ribosomal DNA sequencing was performed on oral and cecum samples. We demonstrated that alcohol drinking influenced bacterial richness, microbial structure, and composition in oral samples of ethanol-fed mice compared with control mice. Alcohol consumption also remodeled relationships among oral microbes and altered functions of oral microbiota. Furthermore, oral microbiota, such as Streptococcus, Helicobacter, Alloprevotella, and Psychrobacter were closely associated with ALD parameters. Finally, we observed Sutterellaceae_uncultured, Dyella, and Gemmatimonas possibly translocated along with oral-gut axis and positively correlated with the severity of ALD. Altogether, alcohol consumption reprogramed composition and functions of oral microbiota to promote ALD progression, suggesting that oral microbes might become a new target for ALD therapy.
Collapse
Affiliation(s)
- Chuyue Pan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Chang Liu
- Institute of Modern Biology, Nanjing University, Nanjing 210008, China
| | - Wenxin Jia
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Danyang Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Xiaoshan Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Xiang Zhu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Maohui Yang
- Institute of Modern Biology, Nanjing University, Nanjing 210008, China
| | - Lirui Wang
- Institute of Modern Biology, Nanjing University, Nanjing 210008, China
| |
Collapse
|
12
|
Song R, McAlpine W, Fond AM, Nair-Gill E, Choi JH, Nyström EEL, Arike L, Field S, Li X, SoRelle JA, Moresco JJ, Moresco EMY, Yates JR, Azadi P, Ni J, Birchenough GMH, Beutler B, Turer EE. Trans-Golgi protein TVP23B regulates host-microbe interactions via Paneth cell homeostasis and Goblet cell glycosylation. Nat Commun 2023; 14:3652. [PMID: 37339972 PMCID: PMC10282085 DOI: 10.1038/s41467-023-39398-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/09/2023] [Indexed: 06/22/2023] Open
Abstract
A key feature in intestinal immunity is the dynamic intestinal barrier, which separates the host from resident and pathogenic microbiota through a mucus gel impregnated with antimicrobial peptides. Using a forward genetic screen, we have found a mutation in Tvp23b, which conferred susceptibility to chemically induced and infectious colitis. Trans-Golgi apparatus membrane protein TVP23 homolog B (TVP23B) is a transmembrane protein conserved from yeast to humans. We found that TVP23B controls the homeostasis of Paneth cells and function of goblet cells, leading to a decrease in antimicrobial peptides and more penetrable mucus layer. TVP23B binds with another Golgi protein, YIPF6, which is similarly critical for intestinal homeostasis. The Golgi proteomes of YIPF6 and TVP23B-deficient colonocytes have a common deficiency of several critical glycosylation enzymes. TVP23B is necessary for the formation of the sterile mucin layer of the intestine and its absence disturbs the balance of host and microbe in vivo.
Collapse
Affiliation(s)
- Ran Song
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - William McAlpine
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Aaron M Fond
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Evan Nair-Gill
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Elisabeth E L Nyström
- Institute of Biochemistry, University of Kiel, 24118, Kiel, Schleswig-Holstein, Germany
| | - Liisa Arike
- The Wallenberg Centre for Molecular & Translational Medicine, Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Sydney Field
- Department of Internal Medicine, Division of Gastroenterology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Jeffrey A SoRelle
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - James J Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Josephine Ni
- Department of Internal Medicine, Division of Gastroenterology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - George M H Birchenough
- The Wallenberg Centre for Molecular & Translational Medicine, Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Emre E Turer
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA.
- Department of Internal Medicine, Division of Gastroenterology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA.
| |
Collapse
|
13
|
Liu X, Yang J, Li Z, Liu R, Wu X, Zhang Z, Lai L, Li Z, Song Y. YIPF5 (p.W218R) mutation induced primary microcephaly in rabbits. Neurobiol Dis 2023; 182:106135. [PMID: 37142085 DOI: 10.1016/j.nbd.2023.106135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Primary microcephaly (PMCPH) is a rare autosomal recessive neurodevelopmental disorder with a global prevalence of PMCPH ranging from 0.0013% to 0.15%. Recently, a homozygous missense mutation in YIPF5 (p.W218R) was identified as a causative mutation of severe microcephaly. In this study, we constructed a rabbit PMCPH model harboring YIPF5 (p.W218R) mutation using SpRY-ABEmax mediated base substitution, which precisely recapitulated the typical symptoms of human PMCPH. Compared with wild-type controls, the mutant rabbits exhibited stunted growth, reduced head circumference, altered motor ability, and decreased survival rates. Further investigation based on model rabbit elucidated that altered YIPF5 function in cortical neurons could lead to endoplasmic reticulum stress and neurodevelopmental disorders, interference of the generation of apical progenitors (APs), the first generation of progenitors in the developing cortex. Furthermore, these YIPF5-mutant rabbits support a correlation between unfolded protein responses (UPR) induced by endoplasmic reticulum stress (ERS), and the development of PMCPH, thus providing a new perspective on the role of YIPF5 in human brain development and a theoretical basis for the differential diagnosis and clinical treatment of PMCPH. To our knowledge, this is the first gene-edited rabbit model of PMCPH. The model better mimics the clinical features of human microcephaly than the traditional mouse models. Hence, it provides great potential for understanding the pathogenesis and developing novel diagnostic and therapeutic approaches for PMCPH.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Jie Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhaoyi Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Ruonan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Xinyu Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhongtian Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China.
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| | - Yuning Song
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| |
Collapse
|
14
|
Cui X, Feng J, Wei T, Zhang L, Lang S, Yang K, Yang J, Liu J, Sterr M, Lickert H, Wei R, Hong T. Pancreatic alpha cell glucagon-liver FGF21 axis regulates beta cell regeneration in a mouse model of type 2 diabetes. Diabetologia 2023; 66:535-550. [PMID: 36331598 PMCID: PMC9892158 DOI: 10.1007/s00125-022-05822-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
AIMS/HYPOTHESIS Glucagon receptor (GCGR) antagonism ameliorates hyperglycaemia and promotes beta cell regeneration in mouse models of type 2 diabetes. However, the underlying mechanisms remain unclear. The present study aimed to investigate the mechanism of beta cell regeneration induced by GCGR antagonism in mice. METHODS The db/db mice and high-fat diet (HFD)+streptozotocin (STZ)-induced mice with type 2 diabetes were treated with antagonistic GCGR monoclonal antibody (mAb), and the metabolic variables and islet cell quantification were evaluated. Plasma cytokine array and liver RNA sequencing data were used to screen possible mediators, including fibroblast growth factor 21 (FGF21). ELISA, quantitative RT-PCR and western blot were applied to verify FGF21 change. Blockage of FGF21 signalling by FGF21-neutralising antibody (nAb) was used to clarify whether FGF21 was involved in the effects of GCGR mAb on the expression of beta cell identity-related genes under plasma-conditional culture and hepatocyte co-culture conditions. FGF21 nAb-treated db/db mice, systemic Fgf21-knockout (Fgf21-/-) diabetic mice and hepatocyte-specific Fgf21-knockout (Fgf21Hep-/-) diabetic mice were used to reveal the involvement of FGF21 in beta cell regeneration. A BrdU tracing study was used to analyse beta cell proliferation in diabetic mice treated with GCGR mAb. RESULTS GCGR mAb treatment improved blood glucose control, and increased islet number (db/db 1.6±0.1 vs 0.8±0.1 per mm2, p<0.001; HFD+STZ 1.2±0.1 vs 0.5±0.1 per mm2, p<0.01) and area (db/db 2.5±0.2 vs 1.2±0.2%, p<0.001; HFD+STZ 1.0±0.1 vs 0.3±0.1%, p<0.01) in diabetic mice. The plasma cytokine array and liver RNA sequencing data showed that FGF21 levels in plasma and liver were upregulated by GCGR antagonism. The GCGR mAb induced upregulation of plasma FGF21 levels (db/db 661.5±40.0 vs 466.2±55.7 pg/ml, p<0.05; HFD+STZ 877.0±106.8 vs 445.5±54.0 pg/ml, p<0.05) and the liver levels of Fgf21 mRNA (db/db 3.2±0.5 vs 1.8±0.1, p<0.05; HFD+STZ 2.0±0.3 vs 1.0±0.2, p<0.05) and protein (db/db 2.0±0.2 vs 1.4±0.1, p<0.05; HFD+STZ 1.6±0.1 vs 1.0±0.1, p<0.01). Exposure to plasma or hepatocytes from the GCGR mAb-treated mice upregulated the mRNA levels of characteristic genes associated with beta cell identity in cultured mouse islets and a beta cell line, and blockage of FGF21 activity by an FGF21 nAb diminished this upregulation. Notably, the effects of increased beta cell number induced by GCGR mAb were attenuated in FGF21 nAb-treated db/db mice, Fgf21-/- diabetic mice and Fgf21Hep-/- diabetic mice. Moreover, GCGR mAb treatment enhanced beta cell proliferation in the two groups of diabetic mice, and this effect was weakened in Fgf21-/- and Fgf21Hep-/- mice. CONCLUSIONS/INTERPRETATION Our findings demonstrate that liver-derived FGF21 is involved in the GCGR antagonism-induced beta cell regeneration in a mouse model of type 2 diabetes.
Collapse
Affiliation(s)
- Xiaona Cui
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Jin Feng
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Linxi Zhang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Shan Lang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Junling Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China.
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China.
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China.
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
15
|
Borin JM, Liu R, Wang Y, Wu TC, Chopyk J, Huang L, Kuo P, Ghose C, Meyer JR, Tu XM, Schnabl B, Pride DT. Fecal virome transplantation is sufficient to alter fecal microbiota and drive lean and obese body phenotypes in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527064. [PMID: 36778328 PMCID: PMC9915734 DOI: 10.1101/2023.02.03.527064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background The gastrointestinal microbiome plays a significant role in numerous host processes and has an especially large impact on modulating the host metabolism. Prior studies have shown that when mice receive fecal transplants from obese donors that were fed high-fat diets (HFD) (even when recipient mice are fed normal diets after transplantation), they develop obese phenotypes. These studies demonstrate the prominent role that the gut microbiota play in determining lean and obese phenotypes. While much of the credit has been given to gut bacteria, studies have not measured the impact of gut viruses on these phenotypes. To address this shortcoming, we gavaged mice with viromes isolated from donors fed HFD or normal chow. By characterizing the mice’s gut bacterial biota and weight-gain phenotypes over time, we demonstrate that viruses can shape the gut bacterial community and affect weight gain or loss. Results We gavaged mice longitudinally over 4 weeks while measuring their body weights and collecting fecal samples for 16S rRNA amplicon sequencing. We evaluated mice that were fed normal chow or high-fat diets, and gavaged each group with either chow-derived fecal viromes, HFD-derived fecal viromes, or phosphate buffered saline controls. We found a significant effect of gavage type, where mice fed chow but gavaged with HFD-derived viromes gained significantly more weight than their counterparts receiving chow-derived viromes. The converse was also true: mice fed HFD but gavaged with chow-derived viromes gained significantly less weight than their counterparts receiving HFD-derived viromes. These results were replicated in two separate experiments and the phenotypic changes were accompanied by significant and identifiable differences in the fecal bacterial biota. Notably, there were differences in Lachnospirales and Clostridia in mice fed chow but gavaged with HFD-derived fecal viromes, and in Peptostreptococcales, Oscillospirales, and Lachnospirales in mice fed HFD but gavaged with chow-derived fecal viromes. Due to methodological limitations, we were unable to identify specific bacterial species or strains that were responsible for respective phenotypic changes. Conclusions This study confirms that virome-mediated perturbations can alter the fecal microbiome in an in vivo model and indicates that such perturbations are sufficient to drive lean and obese phenotypes in mice.
Collapse
Affiliation(s)
- Joshua M Borin
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Roland Liu
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Yanhan Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tsung-Chin Wu
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Jessica Chopyk
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Lina Huang
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Peiting Kuo
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | | - Justin R Meyer
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Xin M Tu
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - David T Pride
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Borin JM, Liu R, Wang Y, Wu TC, Chopyk J, Huang L, Kuo P, Ghose C, Meyer JR, Tu XM, Schnabl B, Pride DT. Fecal virome transplantation is sufficient to alter fecal microbiota and drive lean and obese body phenotypes in mice. Gut Microbes 2023; 15:2236750. [PMID: 37475473 PMCID: PMC10364654 DOI: 10.1080/19490976.2023.2236750] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
The gastrointestinal microbiome plays a significant role in modulating numerous host processes, including metabolism. Prior studies show that when mice receive fecal transplants from obese donors on high-fat diets (HFD) (even when recipient mice are fed normal diets after transplantation), they develop obese phenotypes, demonstrating the prominent role that gut microbiota play in determining lean and obese phenotypes. While much of the credit has been given to gut bacteria, the impact of gut viruses on these phenotypes is understudied. To address this shortcoming, we gavaged mice with viromes isolated from donors fed HFD or normal chow over a 4-week study. By characterizing the gut bacterial biota via 16S rRNA amplicon sequencing and measuring mouse weights over time, we demonstrate that transplanted viruses affect the gut bacterial community, as well as weight gain/loss. Notably, mice fed chow but gavaged with HFD-derived viromes gained more weight than their counterparts receiving chow-derived viromes. The converse was also true: mice fed HFD but gavaged with chow-derived viromes gained less weight than their counterparts receiving HFD-derived viromes. Results were replicated in two independent experiments and phenotypic changes were accompanied by significant and identifiable differences in the fecal bacterial biota. Due to methodological limitations, we were unable to identify the specific bacterial strains responsible for respective phenotypic changes. This study confirms that virome-mediated perturbations can alter the fecal microbiome in vivo and indicates that such perturbations are sufficient to drive lean and obese phenotypes in mice.
Collapse
Affiliation(s)
- Joshua M. Borin
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Roland Liu
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Yanhan Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tsung-Chin Wu
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Jessica Chopyk
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Lina Huang
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Peiting Kuo
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | | - Justin R. Meyer
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Xin M. Tu
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - David T. Pride
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Zhang X, Zuo R, Xiao S, Wang L. Association between iron metabolism and non-alcoholic fatty liver disease: results from the National Health and Nutrition Examination Survey (NHANES 2017-2018) and a controlled animal study. Nutr Metab (Lond) 2022; 19:81. [PMID: 36514155 PMCID: PMC9749311 DOI: 10.1186/s12986-022-00715-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Iron metabolism may be involved in the pathogenesis of the non-alcoholic fatty liver disease (NAFLD). The relationship between iron metabolism and NAFLD has not been clearly established. This study aimed to clarify the relationship between biomarkers of iron metabolism and NAFLD. METHODS Based on the National Health and Nutrition Examination Survey (NHANES), restricted cubic spline models and multivariable logistic regression were used to examine the association between iron metabolism [serum iron (SI), serum ferritin (SF), transferrin saturation (TSAT), and soluble transferrin receptor (sTfR)] and the risk for NAFLD. In addition, stratified subgroup analysis was performed for the association between TSAT and NAFLD. Moreover, serum TSAT levels were determined in male mice with NAFLD. The expression of hepcidin and ferroportin, vital regulators of iron metabolism, were analyzed in the livers of mice by quantitative real-time PCR (qRT-PCR) and patients with NAFLD by microarray collected from the GEO data repository. RESULTS Patients with NAFLD showed decreased SI, SF, and TSAT levels and increased STfR levels based on the NHANES. After adjusting for confounding factors, TSAT was significantly negatively correlated with NAFLD. Of note, the relationship between TSAT and NAFLD differed in the four subgroups of age, sex, race, and BMI (P for interaction < 0.05). Consistently, mice with NAFLD exhibited decreased serum TSAT levels. Decreased hepcidin and increased ferroportin gene expression were observed in the livers of patients and mice with NAFLD. CONCLUSION Serum TSAT levels and hepatic hepcidin expression were decreased in both patients and mice with NAFLD. Among multiple biomarkers of iron metabolism, lower TSAT levels were significantly associated with a higher risk of NAFLD in the U.S. general population. These findings might provide new ideas for the prediction, diagnosis, and mechanistic exploration of NAFLD.
Collapse
Affiliation(s)
- Xinxin Zhang
- grid.254147.10000 0000 9776 7793School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Ronghua Zuo
- grid.412676.00000 0004 1799 0784Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Shengjue Xiao
- grid.263826.b0000 0004 1761 0489Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009 China
| | - Lirui Wang
- grid.41156.370000 0001 2314 964XInstitute of Modern Biology, Nanjing University, 22 Hankou Road, Gulou, Nanjing, 210093 China
| |
Collapse
|
18
|
SUI Y, CHEN J. Hepatic FGF21: Its Emerging Role in Inter-Organ Crosstalk and Cancers. Int J Biol Sci 2022; 18:5928-5942. [PMID: 36263162 PMCID: PMC9576513 DOI: 10.7150/ijbs.76924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/18/2022] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor (FGF) 21 is one of the FGF members with special endocrine properties. In the last twenty years, it has attracted intense research and development for its physiological functions that respond to dietary manipulation, pharmacological benefits of improving the macronutrient metabolism, and clinical values as a biomarker of various human diseases. Generally, FGF21 can be produced by major metabolic organs, but only the subgroup from the liver shows canonical endocrine properties, which emphasizes the special value of delineating the unique secretory and functional characteristics of hepatic FGF21. There has been a growth in literature to address the extra-hepatic activities of FGF21, and many striking findings have therefore been published. Yet, they are fragmented and scattered, and controversies are raised from divergent findings. For this reason, there is a need for a systematic and critical evaluation of current research in this aspect. In this review, we focus on the current knowledge about the molecular biology of endocrine FGF21, especially present details on the regulation of circulating levels of FGF21. We also emphasize its emerging roles in inter-organ crosstalk and cancer development.
Collapse
Affiliation(s)
- Yue SUI
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jianping CHEN
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| |
Collapse
|
19
|
She QY, Bao JF, Wang HZ, Liang H, Huang W, Wu J, Zhong Y, Ling H, Li A, Qin SL. Fibroblast growth factor 21: A "rheostat" for metabolic regulation? Metabolism 2022; 130:155166. [PMID: 35183545 DOI: 10.1016/j.metabol.2022.155166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor 21 is an evolutionarily conserved factor that plays multiple important roles in metabolic homeostasis. During the past two decades, extensive investigations have improved our understanding of its delicate metabolic roles and identified its pharmacological potential to mitigate metabolic disorders. However, most clinical trials have failed to obtain the desired results, which raises issues regarding its clinical value. Fibroblast growth factor 21 is dynamically regulated by nutrients derived from food intake and hepatic/adipose release, which in turn act on the central nervous system, liver, and adipose tissues to influence food preference, hepatic glucose, and adipose fatty acid output. Based on this information, we propose that fibroblast growth factor 21 should not be considered merely an anti-hyperglycemia or anti-obesity factor, but rather a means of balancing of nutrient fluctuations to maintain an appropriate energy supply. Hence, the specific functions of fibroblast growth factor 21 in glycometabolism and lipometabolism depend on specific metabolic states, indicating that its pharmacological effects require further consideration.
Collapse
Affiliation(s)
- Qin-Ying She
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China; Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Jing-Fu Bao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Hui-Zhen Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Huixin Liang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Wentao Huang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Jing Wu
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Yiwen Zhong
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Hanxin Ling
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China.
| | - Shu-Lan Qin
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China.
| |
Collapse
|
20
|
Szczepańska E, Gietka-Czernel M. FGF21: A Novel Regulator of Glucose and Lipid Metabolism and Whole-Body Energy Balance. Horm Metab Res 2022; 54:203-211. [PMID: 35413740 DOI: 10.1055/a-1778-4159] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Fibroblast growth factor (FGF) 21 is a recently recognized metabolic regulator that evokes interest due to its beneficial action of maintaining whole-body energy balance and protecting the liver from excessive triglyceride production and storage. Together with FGF19 and FGF23, FGF21 belongs to the FGF family with hormone-like activity. Serum FGF21 is generated primarily in the liver under nutritional stress stimuli like prolonged fasting or the lipotoxic diet, but also during increased mitochondrial and endoplasmic reticulum stress. FGF21 exerts its endocrine action in the central nervous system and adipose tissue. Acting in the ventromedial hypothalamus, FGF21 diminishes simple sugar intake. In adipose tissue, FGF21 promotes glucose utilization and increases energy expenditure by enhancing adipose tissue insulin sensitivity and brown adipose tissue thermogenesis. Therefore, FGF21 favors glucose consumption for heat production instead of energy storage. Furthermore, FGF21 specifically acts in the liver, where it protects hepatocytes from metabolic stress caused by lipid overload. FGF21 stimulates hepatic fatty acid oxidation and reduces lipid flux into the liver by increasing peripheral lipoprotein catabolism and reducing adipocyte lipolysis. Paradoxically, and despite its beneficial action, FGF21 is elevated in insulin resistance states, that is, fatty liver, obesity, and type 2 diabetes.
Collapse
Affiliation(s)
- Ewa Szczepańska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | |
Collapse
|
21
|
Li Y, Zhao D, Qian M, Liu J, Pan C, Zhang X, Duan X, Zhang Y, Jia W, Wang L. Amlodipine, an anti-hypertensive drug, alleviates non-alcoholic fatty liver disease by modulating gut microbiota. Br J Pharmacol 2021; 179:2054-2077. [PMID: 34862599 DOI: 10.1111/bph.15768] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/08/2021] [Accepted: 11/21/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Non-alcoholic fatty liver disease (NAFLD) represents a severe public health problem. It often coexists with hypertension in the context of metabolic syndrome. Here, we investigated the effects of amlodipine on non-alcoholic fatty liver disease combined with hypertension and the underlying mechanism. EXPERIMENTAL APPROACH mice were fed with high-fat diet and 0.05% N-Nitro-L-arginine methylester sterile water to induce NAFLD with hypertension. Gut microbiota composition and function were assessed by 16S ribosomal DNA and metagenomic sequencing. Untargeted metabolome profiles were applied to identify differential metabolites in mice cecum. KEY RESULTS Amlodipine besylate (AB) and amlodipine aspartate (AA) significantly decreased liver injury, hepatic steatosis and improved lipid metabolism with a concomitant reduction in the expression of lipogenic genes in mice with NAFLD and hypertension. Mechanistically, AA and AB have potential in restoring intestinal barrier integrity and improving antimicrobial defense along with the elevated abundances of Akkermansia, Bacteroides and Lactobacillus. Noteworthily, the gut microbiota in AB and AA-treated mice had higher abundance of functional genes involved in taurine and hypotaurine metabolism. Consistently, the strengthened taurine and hypotaurine metabolism was confirmed by the untargeted metabolome analysis. Based on the correlation and causal analysis, the altered gut microbiota composition and the enhancement of taurine and hypotaurine metabolism may synergistically decreased ALT, liver triglycerides, lipogenic genes and plasma cholesterol in HFD-fed hypertensive mice. CONCLUSION AND IMPLICATIONS Collectively, AA and AB exert multi-factorial improvements in NAFLD and hypertension by modulating gut microbiota, and may serve as a promising therapeutic agent for treating these diseases.
Collapse
Affiliation(s)
- Yang Li
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Danyang Zhao
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Minyi Qian
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jun Liu
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chuyue Pan
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xinxin Zhang
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xubin Duan
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yufei Zhang
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wenxin Jia
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Lirui Wang
- Institute of Modern Biology, Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Qian M, Liu J, Zhao D, Cai P, Pan C, Jia W, Gao Y, Zhang Y, Zhang N, Zhang Y, Zhang Q, Wu D, Shan C, Zhang M, Schnabl B, Yang S, Shen X, Wang L. Aryl Hydrocarbon Receptor Deficiency in Intestinal Epithelial Cells Aggravates Alcohol-Related Liver Disease. Cell Mol Gastroenterol Hepatol 2021; 13:233-256. [PMID: 34454169 PMCID: PMC8599170 DOI: 10.1016/j.jcmgh.2021.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The ligand-activated transcription factor, aryl hydrocarbon receptor (AHR) can sense xenobiotics, dietary, microbial, and metabolic cues. Roles of Ahr in intestinal epithelial cells (IECs) have been much less elucidated compared with those in intestinal innate immune cells. Here, we explored whether the IEC intrinsic Ahr could modulate the development of alcohol-related liver disease (ALD) via the gut-liver axis. METHODS Mice with IEC specific Ahr deficiency (AhrΔIEC) were generated and fed with a control or ethanol diet. Alterations of intestinal microbiota and metabolites were investigated by 16S ribosomal RNA sequencing, metagenomics, and untargeted metabolomics. AHR agonists were used to evaluate the therapeutic potentials of intestinal Ahr activation for ALD treatment. RESULTS AhrΔIEC mice showed more severe liver injury after ethanol feeding than control mice. Ahr deficiency in IECs altered the intestinal metabolite composition, creating an environment that promoted the overgrowth of Helicobacter hepaticus and Helicobacter ganmani in the gut, enhancing their translocation to mesenteric lymph nodes and liver. Among the altered metabolites, isobutyric acid was increased in the cecum of ethanol-fed AhrΔIEC mice relative to control mice. Furthermore, both H.hepaticus and isobutyric acid administration aggravated ethanol-induced liver injury in vivo and in vitro. Supplementation with AHR agonists, 6-formylindolo[3,2-b]carbazole and indole-3-carbinol, protected mice from ALD development by specifically activating intestinal Ahr without affecting liver Ahr function. Alcoholic patients showed lower intestinal AHR expression and higher H.hepaticus levels compared with healthy individuals. CONCLUSIONS Our results indicate that targeted restoration of IEC intrinsic Ahr function may present as a novel approach for ALD treatment.
Collapse
Affiliation(s)
- Minyi Qian
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Institute of Modern Biology, Nanjing University, Nanjing, China,School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Liu
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Danyang Zhao
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Pengpeng Cai
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Chuyue Pan
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Wenxin Jia
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Yingsheng Gao
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Yufei Zhang
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Nan Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Quan Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chengjie Shan
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Meiling Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Song Yang
- Department of Hepatology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xu Shen
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lirui Wang
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Institute of Modern Biology, Nanjing University, Nanjing, China,Correspondence Address correspondence to: Lirui Wang, PhD, Institute of Modern Biology, Nanjing University, 22 Hankou Road, Gulou District, Nanjing, 210093 China.
| |
Collapse
|
23
|
Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gestational diabetes mellitus. Biosci Rep 2021; 41:228450. [PMID: 33890634 PMCID: PMC8145272 DOI: 10.1042/bsr20210617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the metabolic disorder that appears during pregnancy. The current investigation aimed to identify central differentially expressed genes (DEGs) in GDM. The transcription profiling by array data (E-MTAB-6418) was obtained from the ArrayExpress database. The DEGs between GDM samples and non-GDM samples were analyzed. Functional enrichment analysis were performed using ToppGene. Then we constructed the protein–protein interaction (PPI) network of DEGs by the Search Tool for the Retrieval of Interacting Genes database (STRING) and module analysis was performed. Subsequently, we constructed the miRNA–hub gene network and TF–hub gene regulatory network. The validation of hub genes was performed through receiver operating characteristic curve (ROC). Finally, the candidate small molecules as potential drugs to treat GDM were predicted by using molecular docking. Through transcription profiling by array data, a total of 869 DEGs were detected including 439 up-regulated and 430 down-regulated genes. Functional enrichment analysis showed these DEGs were mainly enriched in reproduction, cell adhesion, cell surface interactions at the vascular wall and extracellular matrix organization. Ten genes, HSP90AA1, EGFR, RPS13, RBX1, PAK1, FYN, ABL1, SMAD3, STAT3 and PRKCA were associated with GDM, according to ROC analysis. Finally, the most significant small molecules were predicted based on molecular docking. This investigation identified hub genes, signal pathways and therapeutic agents, which might help us, enhance our understanding of the mechanisms of GDM and find some novel therapeutic agents for GDM.
Collapse
|
24
|
Lu J, Gong Y, Wei X, Yao Z, Yang R, Xin J, Gao L, Shao S. Changes in hepatic triglyceride content with the activation of ER stress and increased FGF21 secretion during pregnancy. Nutr Metab (Lond) 2021; 18:40. [PMID: 33849585 PMCID: PMC8045396 DOI: 10.1186/s12986-021-00570-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 04/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background To meet the needs of foetal growth and development, marked changes in lipid profiles occur during pregnancy. Abnormal lipid metabolism is often accompanied by adverse pregnancy outcomes, which seriously affect maternal and infant health. Further understanding of the mechanism of lipid metabolism during pregnancy would be helpful to reduce the incidence of adverse pregnancy outcomes. Methods Pregnant mice were euthanized in the virgin (V) state, on day 5 of pregnancy (P5), on day 12 of pregnancy (P12), on day 19 of pregnancy (P19) and on lactation day 2 (L2). Body weight and energy expenditure were assessed to evaluate the general condition of the mice. Triglyceride (TG) levels, the cholesterol content in the liver, liver histopathology, serum lipid profiles, serum β-hydroxybutyrate levels, fibroblast growth factor-21 (FGF21) levels and the levels of relevant target genes were analysed. Results During early pregnancy, anabolism was found to play a major role in liver lipid deposition. In contrast, advanced pregnancy is an overall catabolic condition associated with both increased energy expenditure and reduced lipogenesis. Moreover, the accumulation of hepatic TG did not appear until P12, after the onset of endoplasmic reticulum (ER) stress on P5. Then, catabolism was enhanced, and FGF21 secretion was increased in the livers of female mice in late pregnancy. We further found that the expression of sec23a, which as the coat protein complex II (COPII) vesicle coat proteins regulates the secretion of FGF21, in the liver was decreased on P19. Conclusion With the activation of ER stress and increased FGF21 secretion during pregnancy, the hepatic TG content changes, suggesting that ER stress and FGF21 may play an important role in balancing lipid homeostasis and meeting maternal and infant energy requirements in late pregnancy.
Collapse
Affiliation(s)
- Jiayu Lu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 544, Jing 4 Rd., Jinan, 250021, Shandong, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.,Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Ying Gong
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.,Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Xinhong Wei
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, 250021, Shandong, China
| | - Zhenyu Yao
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.,Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Rui Yang
- Experimental Animal Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Jinxing Xin
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 544, Jing 4 Rd., Jinan, 250021, Shandong, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.,Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Ling Gao
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.,Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China.,Scientific Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shanshan Shao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 544, Jing 4 Rd., Jinan, 250021, Shandong, China. .,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China. .,Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China.
| |
Collapse
|
25
|
Zeigerer A, Sekar R, Kleinert M, Nason S, Habegger KM, Müller TD. Glucagon's Metabolic Action in Health and Disease. Compr Physiol 2021; 11:1759-1783. [PMID: 33792899 PMCID: PMC8513137 DOI: 10.1002/cphy.c200013] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Discovered almost simultaneously with insulin, glucagon is a pleiotropic hormone with metabolic action that goes far beyond its classical role to increase blood glucose. Albeit best known for its ability to directly act on the liver to increase de novo glucose production and to inhibit glycogen breakdown, glucagon lowers body weight by decreasing food intake and by increasing metabolic rate. Glucagon further promotes lipolysis and lipid oxidation and has positive chronotropic and inotropic effects in the heart. Interestingly, recent decades have witnessed a remarkable renaissance of glucagon's biology with the acknowledgment that glucagon has pharmacological value beyond its classical use as rescue medication to treat severe hypoglycemia. In this article, we summarize the multifaceted nature of glucagon with a special focus on its hepatic action and discuss the pharmacological potential of either agonizing or antagonizing the glucagon receptor for health and disease. © 2021 American Physiological Society. Compr Physiol 11:1759-1783, 2021.
Collapse
Affiliation(s)
- Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Revathi Sekar
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Maximilian Kleinert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Shelly Nason
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kirk M. Habegger
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Timo D. Müller
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
26
|
Abstract
As a non-canonical fibroblast growth factor, fibroblast growth factor 21 (FGF21) functions as an endocrine hormone that signals to distinct targets throughout the body. Interest in therapeutic applications for FGF21 was initially sparked by its ability to correct metabolic dysfunction and decrease body weight associated with diabetes and obesity. More recently, new functions for FGF21 signalling have emerged, thus indicating that FGF21 is a dynamic molecule capable of regulating macronutrient preference and energy balance. Here, we highlight the major physiological and pharmacological effects of FGF21 related to nutrient and energy homeostasis and summarize current knowledge regarding FGF21’s pharmacodynamic properties. In addition, we provide new perspectives and highlight critical unanswered questions surrounding this unique metabolic messenger.
Collapse
Affiliation(s)
- Kyle H Flippo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA.
| |
Collapse
|
27
|
Zhou R, Llorente C, Cao J, Zaramela LS, Zeng S, Gao B, Li SZ, Welch RD, Huang FQ, Qi LW, Pan C, Huang Y, Zhou P, Beussen I, Zhang Y, Bryam G, Fiehn O, Wang L, Liu EH, Yu RT, Downes M, Evans RM, Goglin K, Fouts DE, Brenner DA, Bode L, Fan X, Zengler K, Schnabl B. Intestinal α1-2-Fucosylation Contributes to Obesity and Steatohepatitis in Mice. Cell Mol Gastroenterol Hepatol 2021; 12:293-320. [PMID: 33631374 PMCID: PMC8166943 DOI: 10.1016/j.jcmgh.2021.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Fucosyltransferase 2 (Fut2)-mediated intestinal α1- 2-fucosylation is important for host-microbe interactions and has been associated with several diseases, but its role in obesity and hepatic steatohepatitis is not known. The aim of this study was to investigate the role of Fut2 in a Western-style diet-induced mouse model of obesity and steatohepatitis. METHODS Wild-type (WT) and Fut2-deficient littermate mice were used and features of the metabolic syndrome and steatohepatitis were assessed after 20 weeks of Western diet feeding. RESULTS Intestinal α1-2-fucosylation was suppressed in WT mice after Western diet feeding, and supplementation of α1-2-fucosylated glycans exacerbated obesity and steatohepatitis in these mice. Fut2-deficient mice were protected from Western diet-induced features of obesity and steatohepatitis despite an increased caloric intake. These mice have increased energy expenditure and thermogenesis, as evidenced by a higher core body temperature. Protection from obesity and steatohepatitis associated with Fut2 deficiency is transmissible to WT mice via microbiota exchange; phenotypic differences between Western diet-fed WT and Fut2-deficient mice were reduced with antibiotic treatment. Fut2 deficiency attenuated diet-induced bile acid accumulation by altered relative abundance of bacterial enzyme 7-α-hydroxysteroid dehydrogenases metabolizing bile acids and by increased fecal excretion of secondary bile acids. This also was associated with increased intestinal farnesoid X receptor/fibroblast growth factor 15 signaling, which inhibits hepatic synthesis of bile acids. Dietary supplementation of α1-2-fucosylated glycans abrogates the protective effects of Fut2 deficiency. CONCLUSIONS α1-2-fucosylation is an important host-derived regulator of intestinal microbiota and plays an important role for the pathogenesis of obesity and steatohepatitis in mice.
Collapse
Affiliation(s)
- Rongrong Zhou
- Department of Infectious Diseases, Xiangya Hospital, Central South University and Key Laboratory of Viral Hepatitis, Hunan, Changsha, China; Department of Medicine, University of California San Diego, La Jolla, California
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Jinling Cao
- Department of Medicine, University of California San Diego, La Jolla, California; College of Food Science and Engineering, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Livia S Zaramela
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Suling Zeng
- Department of Medicine, University of California San Diego, La Jolla, California; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bei Gao
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Shang-Zhen Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ryan D Welch
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, California
| | - Feng-Qing Huang
- The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lian-Wen Qi
- The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chuyue Pan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yan Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University and Key Laboratory of Viral Hepatitis, Hunan, Changsha, China
| | - Pengchen Zhou
- Department of Infectious Diseases, Xiangya Hospital, Central South University and Key Laboratory of Viral Hepatitis, Hunan, Changsha, China
| | - Iris Beussen
- National Institutes of Health West Coast Metabolomics Center, University of California, Davis, California
| | - Ying Zhang
- National Institutes of Health West Coast Metabolomics Center, University of California, Davis, California; Department of Chemistry, University of California, Davis, California
| | - Gregory Bryam
- National Institutes of Health West Coast Metabolomics Center, University of California, Davis, California
| | - Oliver Fiehn
- National Institutes of Health West Coast Metabolomics Center, University of California, Davis, California
| | - Lirui Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, California
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, California
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, California
| | | | | | - David A Brenner
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, California
| | - Xuegong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University and Key Laboratory of Viral Hepatitis, Hunan, Changsha, China
| | - Karsten Zengler
- Department of Pediatrics, University of California San Diego, La Jolla, California; Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California; Department of Medicine, VA San Diego Healthcare System, San Diego, California.
| |
Collapse
|
28
|
Lu W, Li X, Luo Y. FGF21 in obesity and cancer: New insights. Cancer Lett 2020; 499:5-13. [PMID: 33264641 DOI: 10.1016/j.canlet.2020.11.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/23/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
The endocrine FGF21 was discovered as a novel metabolic regulator in 2005 with new functions bifurcating from the canonic heparin-binding FGFs that directly promote cell proliferation and growth independent of a co-receptor. Early studies have demonstrated that FGF21 is a stress sensor in the liver and possibly, several other endocrine and metabolic tissues. Hepatic FGF21 signals via endocrine routes to quench episodes of metabolic derangements, promoting metabolic homeostasis. The convergence of mouse and human studies shows that FGF21 promotes lipid catabolism, including lipolysis, fatty acid oxidation, mitochondrial oxidative activity, and thermogenic energy dissipation, rather than directly regulating insulin and appetite. The white and brown adipose tissues and, to some extent, the hypothalamus, all of which host a transmembrane receptor binary complex of FGFR1 and co-receptor KLB, are considered the essential tissue and molecular targets of hepatic or pharmacological FGF21. On the other hand, a growing body of work has revealed that pancreatic acinar cells form a constitutive high-production site for FGF21, which then acts in an autocrine or paracrine mode. Beyond regulation of macronutrient metabolism and physiological energy expenditure, FGF21 appears to function in forestalling the development of fatty pancreas, steato-pancreatitis, fatty liver, and steato-hepatitis, thereby preventing the development of advanced pathologies such as pancreatic ductal adenocarcinoma or hepatocellular carcinoma. This review is intended to provide updates on these new discoveries that illuminate the protective roles of FGF21-FGFR1-KLB signal pathway in metabolic anomalies-associated severe tissue damage and malignancy, and to inform potential new preventive or therapeutic strategies for obesity-inflicted cancer patients via reducing metabolic risks and inflammation.
Collapse
Affiliation(s)
- Weiqin Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Yongde Luo
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA; School of Pharmaceutical Science, Wenzhou Medical University, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Centeer BioTherapeutics Ltd Co, Houston, TX, 77030, USA.
| |
Collapse
|