1
|
Prabakaran AD, Chung HJ, McFarland K, Govindarajan T, Soussi FEA, Durumutla HB, Villa C, Piczer K, Latimer H, Werbrich C, Akinborewa O, Horning R, Quattrocelli M. The human genetic variant rs6190 unveils Foxc1 and Arid5a as novel pro-metabolic targets of the glucocorticoid receptor in muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.28.586997. [PMID: 38585940 PMCID: PMC10996618 DOI: 10.1101/2024.03.28.586997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The genetic determinants of the glucocorticoid receptor (GR) metabolic action remain largely unelucidated. This is a compelling gap in knowledge for the GR single nucleotide polymorphism (SNP) rs6190 (p.R23K), which has been associated in humans with enhanced metabolic health but whose mechanism of action remains completely unknown. We generated transgenic knock-in mice genocopying this polymorphism to elucidate how the mutant GR impacts metabolism. Compared to non-mutant littermates, mutant mice showed increased insulin sensitivity on regular chow and high-fat diet, blunting the diet-induced adverse effects on adiposity and exercise intolerance. Overlay of RNA-seq and ChIP-seq profiling in skeletal muscle revealed increased transactivation of Foxc1 and Arid5A genes by the mutant GR. Using myotropic adeno-associated viruses for in vivo overexpression or knockdown in muscle, we found that Foxc1 was required and sufficient for normal expression levels of insulin response pathway genes Insr and Irs1, promoting muscle insulin sensitivity. In parallel, Arid5a was required and sufficient to transcriptionally repress the lipid uptake genes Cd36 and Fabp4, reducing muscle triacylglycerol accumulation. Moreover, the Foxc1 and Arid5a programs in muscle were divergently changed by glucocorticoid regimens with opposite metabolic outcomes in muscle. Finally, we found a direct human relevance for our mechanism of SNP action in the UK Biobank and All of Us datasets, where the rs6190 SNP correlated with pro-metabolic changes in BMI, lean mass, strength and glucose control according to zygosity. Collectively, our study leveraged a human nuclear receptor coding variant to unveil novel epigenetic regulators of muscle metabolism.
Collapse
Affiliation(s)
- Ashok Daniel Prabakaran
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hyun-Jy Chung
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kevin McFarland
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Thirupugal Govindarajan
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fadoua El Abdellaoui Soussi
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hima Bindu Durumutla
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chiara Villa
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, University of Milan, Italy
| | - Kevin Piczer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hannah Latimer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cole Werbrich
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Olukunle Akinborewa
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Systems Biology and Physiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Robert Horning
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
2
|
Li Y, Vyas SP, Mehta I, Asada N, Dey I, Taylor TC, Bechara R, Amatya N, Aggor FE, Coleman BM, Li DD, Yamamoto K, Ezenwa O, Sun Y, Sterneck E, McManus CJ, Panzer U, Biswas PS, Savan R, Das J, Gaffen SL. The RNA binding protein Arid5a drives IL-17-dependent autoantibody-induced glomerulonephritis. J Exp Med 2024; 221:e20240656. [PMID: 39058386 PMCID: PMC11284280 DOI: 10.1084/jem.20240656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Autoantibody-mediated glomerulonephritis (AGN) arises from dysregulated renal inflammation, with urgent need for improved treatments. IL-17 is implicated in AGN and drives pathology in a kidney-intrinsic manner via renal tubular epithelial cells (RTECs). Nonetheless, downstream signaling mechanisms provoking kidney pathology are poorly understood. A noncanonical RNA binding protein (RBP), Arid5a, was upregulated in human and mouse AGN. Arid5a-/- mice were refractory to AGN, with attenuated myeloid infiltration and impaired expression of IL-17-dependent cytokines and transcription factors (C/EBPβ, C/EBPδ). Transcriptome-wide RIP-Seq revealed that Arid5a inducibly interacts with conventional IL-17 target mRNAs, including CEBPB and CEBPD. Unexpectedly, many Arid5a RNA targets corresponded to translational regulation and RNA processing pathways, including rRNAs. Indeed, global protein synthesis was repressed in Arid5a-deficient cells, and C/EBPs were controlled at the level of protein rather than RNA accumulation. IL-17 prompted Arid5a nuclear export and association with 18S rRNA, a 40S ribosome constituent. Accordingly, IL-17-dependent renal autoimmunity is driven by Arid5a at the level of ribosome interactions and translation.
Collapse
Affiliation(s)
- Yang Li
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shachi P. Vyas
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Isha Mehta
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nariaki Asada
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ipsita Dey
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tiffany C. Taylor
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rami Bechara
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nilesh Amatya
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Felix E.Y. Aggor
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bianca M. Coleman
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - De-Dong Li
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenta Yamamoto
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ogechukwu Ezenwa
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yeque Sun
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Esta Sterneck
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - C. Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ulf Panzer
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Partha S. Biswas
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Jishnu Das
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah L. Gaffen
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Yang W, He Y, Tian Y, Xiong H, Zhang C, Sun Y. Characterization and Mechanism of a Novel Rice Protein Peptide (AHVGMSGEEPE) Calcium Chelate in Enhancing Calcium Absorption in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8569-8580. [PMID: 38563891 DOI: 10.1021/acs.jafc.3c09916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Rice protein peptides (RPP) are a potentially valuable source of high-quality calcium chelating properties. However, there is a lack of information regarding the calcium-absorption-promoting effect of RPP and its underlying mechanism. The present study adopted molecular docking methodologies to analyze the 10 most potent peptide segments from RPP. Results revealed that the peptide AHVGMSGEEPE (AHV) displayed optimal calcium binding properties (calcium-chelating capacity 55.69 ± 0.66 mg/g). Quantum chemistry analysis revealed that the AHV peptide effectively binds and forms stable complexes with calcium via the carbonyl oxygen atoms in valine at position 3 and the carbonyl of the C-terminal carboxyl group of glutamate at position 11. The spectral analysis results indicated that AHV may bind to calcium through carboxyl oxygen atoms, resulting in a transition from a smooth surface block-like structure to a dense granular structure. Furthermore, this study demonstrated that the 4 mmol/L AHV-Ca chelate (61.75 ± 13.23 μg/well) significantly increases calcium absorption compared to 1 mM CaCl2 (28.57 ± 8.59 μg/well) in the Caco-2 cell monolayer. In terms of mechanisms, the novel peptide-calcium chelate AHV-Ca derived from RPP exerts a cell-level effect by upregulating the expression of TRPV6 calcium-ion-channel-related genes and proteins (TRPV6 and Calbindin-D9k). This study provides a theoretical basis for developing functional foods with the AHV peptide as ingredients to improve calcium absorption.
Collapse
Affiliation(s)
- Wenting Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yangzheng He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yue Tian
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Chunbo Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
4
|
Jing K, Mipam TD, Zhang P, Peng W, Wang M, Yue B, Chen X, Wang J, Shu S, Fu C, Zhong J, Cai X. Transcriptomic analysis of yak longissimus dorsi muscle identifies genes associated with tenderness. Anim Biotechnol 2023; 34:3978-3987. [PMID: 37593948 DOI: 10.1080/10495398.2023.2248493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Meat tenderness is an important sensory index when consumers choose meat products, which determines the value of meat products and consumers' buying intentions. Yak meat is rich in nutrition and unique in flavor, which is favored by consumers. However, its meat has the deficiencies of low tenderness and poor taste, which has a negative impact on the value of its meat products and customer satisfaction. To identify the genes affecting the yak meat tenderness, we used RNA-seq to analyze the longissimus dorsi muscle of yaks with different tenderness, screened a total of 1120 differentially expressed genes (DEGs). Meanwhile, 23 pathways were significantly enriched. By further analysis, we identified eight genes related to yak meat tenderness (WNT5A, ARID5B, SERPINE1 KLHL40, RUNX1, MAFF, RFX7 and ARID5A). Notably, SERPINE1 was involved in the significant enrichment pathways of 'complement and coagulation cascade pathway', 'HIF-1 signaling pathway' and 'AGE-RAGE signaling pathway in diabetic complications' which can regulate meat tenderness. This implies that SERPINE1 may play an important regulatory role among them. The DEGs associated with yak meat quality screened in this work will be helpful to identify potential biomarkers related to meat tenderness.
Collapse
Affiliation(s)
- Kemin Jing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Tserang Donko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Peng Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Wei Peng
- Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, People's Republic of China
| | - Mingxiu Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Xuemei Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Shi Shu
- Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, People's Republic of China
| | - Changqi Fu
- Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, People's Republic of China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, People's Republic of China
| |
Collapse
|
5
|
Wu X, Wang F, Cai X, Wang S. Glycosylated peptide-calcium chelate: Characterization, calcium absorption promotion and prebiotic effect. Food Chem 2023; 403:134335. [DOI: 10.1016/j.foodchem.2022.134335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/03/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022]
|
6
|
Kedziora SM, Obermayer B, Sugulle M, Herse F, Kräker K, Haase N, Langmia IM, Müller DN, Staff AC, Beule D, Dechend R. Placental Transcriptome Profiling in Subtypes of Diabetic Pregnancies Is Strongly Confounded by Fetal Sex. Int J Mol Sci 2022; 23:ijms232315388. [PMID: 36499721 PMCID: PMC9740420 DOI: 10.3390/ijms232315388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The placenta is a temporary organ with a unique structure and function to ensure healthy fetal development. Placental dysfunction is involved in pre-eclampsia (PE), fetal growth restriction, preterm birth, and gestational diabetes mellitus (GDM). A diabetic state affects maternal and fetal health and may lead to functional alterations of placental metabolism, inflammation, hypoxia, and weight, amplifying the fetal stress. The placental molecular adaptations to the diabetic environment and the adaptive spatio-temporal consequences to elevated glucose or insulin are largely unknown (2). We aimed to identify gene expression signatures related to the diabetic placental pathology of placentas from women with diabetes mellitus. Human placenta samples (n = 77) consisting of healthy controls, women with either gestational diabetes mellitus (GDM), type 1 or type 2 diabetes, and women with GDM, type 1 or type 2 diabetes and superimposed PE were collected. Interestingly, gene expression differences quantified by total RNA sequencing were mainly driven by fetal sex rather than clinical diagnosis. Association of the principal components with a full set of clinical patient data identified fetal sex as the single main explanatory variable. Accordingly, placentas complicated by type 1 and type 2 diabetes showed only few differentially expressed genes, while possible effects of GDM and diabetic pregnancy complicated by PE were not identifiable in this cohort. We conclude that fetal sex has a prominent effect on the placental transcriptome, dominating and confounding gene expression signatures resulting from diabetes mellitus in settings of well-controlled diabetic disease. Our results support the notion of placenta as a sexual dimorphic organ.
Collapse
Affiliation(s)
- Sarah M. Kedziora
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785 Berlin, Germany
| | - Benedikt Obermayer
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Core Unit Bioinformatics, 10117 Berlin, Germany
| | - Meryam Sugulle
- Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, 0424 Oslo, Norway
| | - Florian Herse
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 10178 Berlin, Germany
| | - Kristin Kräker
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785 Berlin, Germany
| | - Nadine Haase
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785 Berlin, Germany
| | - Immaculate M. Langmia
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 10178 Berlin, Germany
| | - Dominik N. Müller
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785 Berlin, Germany
| | - Anne Cathrine Staff
- Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, 0424 Oslo, Norway
| | - Dieter Beule
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Core Unit Bioinformatics, 10117 Berlin, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785 Berlin, Germany
- HELIOS Clinic, Department of Cardiology and Nephrology, 13125 Berlin, Germany
- Correspondence: ; Tel.: +49-30-4505-40301
| |
Collapse
|
7
|
Mesenchymal Stem Cell Secreted-Extracellular Vesicles are Involved in Chondrocyte Production and Reduce Adipogenesis during Stem Cell Differentiation. Tissue Eng Regen Med 2022; 19:1295-1310. [DOI: 10.1007/s13770-022-00490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background:
Extracellular vesicles (EVs) are derived from internal cellular compartments, and have potential as a diagnostic and therapeutic tool in degenerative disease associated with aging. Mesenchymal stem cells (MSCs) have become a promising tool for functional EVs production. This study investigated the efficacy of EVs and its effect on differentiation capacity.
Methods:
The characteristics of MSCs were evaluated by flow cytometry and stem cell differentiation analysis, and a production mode of functional EVs was scaled from MSCs. The concentration and size of EVs were quantitated by Nanoparticle Tracking Analysis (NTA). Western blot analysis was used to assess the protein expression of exosome-specific markers. The effects of MSC-derived EVs were assessed by chondrogenic and adipogenic differentiation analyses and histological observation.
Results:
The range of the particle size of adipose-derived stem cells (ADSCs)- and Wharton’s jelly -MSCs-derived EVs were from 130 to 150 nm as measured by NTA, which showed positive expression of exosomal markers. The chondrogenic induction ability was weakened in the absence of EVs in vitro. Interestingly, after EV administration, type II collagen, a major component in the cartilage extracellular matrix, was upregulated compared to the EV-free condition. Moreover, EVs decreased the lipid accumulation rate during adipogenic induction.
Conclusion:
The results indicated that the production model could facilitate production of effective EVs and further demonstrated the role of MSC-derived EVs in cell differentiation. MSC-derived EVs could be successfully used in cell-free therapy to guide chondrogenic differentiation of ADSC for future clinical applications in cartilage regeneration.
Collapse
|
8
|
Hashimoto A, Handa H, Hata S, Hashimoto S. Orchestration of mesenchymal plasticity and immune evasiveness via rewiring of the metabolic program in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:1005566. [PMID: 36408139 PMCID: PMC9669439 DOI: 10.3389/fonc.2022.1005566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most fatal cancer in humans, due to its difficulty of early detection and its high metastatic ability. The occurrence of epithelial to mesenchymal transition in preinvasive pancreatic lesions has been implicated in the early dissemination, drug resistance, and cancer stemness of PDAC. PDAC cells also have a reprogrammed metabolism, regulated by driver mutation-mediated pathways, a desmoplastic tumor microenvironment (TME), and interactions with stromal cells, including pancreatic stellate cells, fibroblasts, endothelial cells, and immune cells. Such metabolic reprogramming and its functional metabolites lead to enhanced mesenchymal plasticity, and creates an acidic and immunosuppressive TME, resulting in the augmentation of protumor immunity via cancer-associated inflammation. In this review, we summarize our recent understanding of how PDAC cells acquire and augment mesenchymal features via metabolic and immunological changes during tumor progression, and how mesenchymal malignancies induce metabolic network rewiring and facilitate an immune evasive TME. In addition, we also present our recent findings on the interesting relevance of the small G protein ADP-ribosylation factor 6-based signaling pathway driven by KRAS/TP53 mutations, inflammatory amplification signals mediated by the proinflammatory cytokine interleukin 6 and RNA-binding protein ARID5A on PDAC metabolic reprogramming and immune evasion, and finally discuss potential therapeutic strategies for the quasi-mesenchymal subtype of PDAC.
Collapse
Affiliation(s)
- Ari Hashimoto
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
- *Correspondence: Ari Hashimoto, ; Shigeru Hashimoto,
| | - Haruka Handa
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Soichiro Hata
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
- *Correspondence: Ari Hashimoto, ; Shigeru Hashimoto,
| |
Collapse
|
9
|
Roles of RNA-binding proteins in immune diseases and cancer. Semin Cancer Biol 2022; 86:310-324. [PMID: 35351611 DOI: 10.1016/j.semcancer.2022.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023]
Abstract
Genetic information that is transcribed from DNA to mRNA, and then translated from mRNA to protein, is regulated by complex and sophisticated post-transcriptional mechanisms. Recently, it has become clear that mRNA degradation not only acts to remove unnecessary mRNA, but is also closely associated with the regulation of translation initiation, and is essential for maintaining cellular homeostasis. Various RNA-binding proteins (RBPs) have been reported to play central roles in the mechanisms of mRNA stability and translation initiation through various signal transduction pathways, and to modulate gene expression faster than the transcription process via post-transcriptional modifications in response to intracellular and extracellular stimuli, without de novo protein synthesis. On the other hand, inflammation is necessary for the elimination of pathogens associated with infection, and is tightly controlled to avoid the overexpression of inflammatory cytokines, such as interleukin 6 (IL-6) and tumor necrosis factor (TNF). It is increasingly becoming clear that RBPs play important roles in the post-transcriptional regulation of these immune responses. Furthermore, it has been shown that the aberrant regulation of RBPs leads to chronic inflammation and autoimmune diseases. Although it has been recognized since the time of Rudolf Virchow in the 19th century that cancer-associated inflammation contributes to tumor onset and progression, involvement of the disruption of the balance between anti-tumor immunity via the immune surveillance system and pro-tumor immunity by cancer-associated inflammation in the malignant transformation of cancer remains elusive. Recently, the dysregulated expression and activation of representative RBPs involved in regulation of the production of pro-inflammatory cytokines have been shown to be involved in tumor progression. In this review, we summarize the recent progress in our understanding of the functional roles of these RBPs in several types of immune responses, and the involvement of RBP dysregulation in the pathogenesis of immune diseases and cancer, and discuss possible therapeutic strategies against cancer by targeting RBPs, coupled with immunotherapy.
Collapse
|
10
|
Verma P, Joshi BC, Bairy PS. A Comprehensive Review on Anti-obesity Potential of Medicinal Plants and their Bioactive Compounds. CURRENT TRADITIONAL MEDICINE 2022. [DOI: 10.2174/2215083808666220211162540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Obesity is a complex health and global epidemic issue. It is an increasing global health challenge covering significant social and economic costs. Abnormal accumulation of fat in the body may increase the health risks including diabetes, hypertension, osteoarthritis, sleep apnea, cardiovascular diseases, stroke and cancer. Synthetic drugs available on the market reported to have several side effects. Therefore, the management of obesity got to involve the traditional use of medicinal plants which helps to search the new therapeutic targets and supports the research and development of anti-obesity drugs.
Objective:
This review aim to update the data and provide a comprehensive report of currently available knowledge of medicinal plants and phyto-chemical constituents reported for their anti-obesity activity.
Methodology:
An electronic search of the periodical databases like Web of Science, Scopus, PubMed, Scielo, Niscair, ScienceDirect, Springerlink, Wiley, SciFinder and Google Scholar with information reported the period 1991-2019, was used to retrieve published data.
Results:
A comprehensive report of the present review manuscript is an attempt to list the medicinal plants with anti-obesity activity. The review focused on plant extracts, isolated chemical compounds with their mechanism of action and their preclinical experimental model, clinical studies for further scientific research.
Conclusion:
This review is the compilation of the medicinal plants and their constituents reported for the managements of obesity. The data will fascinate the researcher to initiate further research that may lead to the drug for the management of obesity and their associated secondary complications. Several herbal plants and their respective lead constituents were also screened by preclinical In-vitro and In-vivo, clinical trials and are effective in the treatment of obesity. Therefore, there is a need to develop and screen large number of plant extracts and this approach can surely be a driving force for the discovery of anti-obesity drugs from medicinal plants.
Collapse
Affiliation(s)
- Piyush Verma
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun-248001, Uttarakhand (India)
| | - Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, Uttarakhand (India)
| | - Partha Sarathi Bairy
- School of Pharmacy, Graphic Era Hill University, Clement Town, Dehradun-248001, Uttarakhand (India)
| |
Collapse
|
11
|
Xia J, Chen S, Li Y, Li H, Gan M, Wu J, Prohaska CC, Bai Y, Gao L, Gu L, Zhang D. Immune Response Is Key to Genetic Mechanisms of SARS-CoV-2 Infection With Psychiatric Disorders Based on Differential Gene Expression Pattern Analysis. Front Immunol 2022; 13:798538. [PMID: 35185890 PMCID: PMC8854505 DOI: 10.3389/fimmu.2022.798538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Existing evidence demonstrates that coronavirus disease 2019 (COVID-19) leads to psychiatric illness, despite its main clinical manifestations affecting the respiratory system. People with mental disorders are more susceptible to COVID-19 than individuals without coexisting mental health disorders, with significantly higher rates of severe illness and mortality in this population. The incidence of new psychiatric diagnoses after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is also remarkably high. SARS-CoV-2 has been reported to use angiotensin-converting enzyme-2 (ACE2) as a receptor for infecting susceptible cells and is expressed in various tissues, including brain tissue. Thus, there is an urgent need to investigate the mechanism linking psychiatric disorders to COVID-19. Using a data set of peripheral blood cells from patients with COVID-19, we compared this to data sets of whole blood collected from patients with psychiatric disorders and used bioinformatics and systems biology approaches to identify genetic links. We found a large number of overlapping immune-related genes between patients infected with SARS-CoV-2 and differentially expressed genes of bipolar disorder (BD), schizophrenia (SZ), and late-onset major depressive disorder (LOD). Many pathways closely related to inflammatory responses, such as MAPK, PPAR, and TGF-β signaling pathways, were observed by enrichment analysis of common differentially expressed genes (DEGs). We also performed a comprehensive analysis of protein-protein interaction network and gene regulation networks. Chemical-protein interaction networks and drug prediction were used to screen potential pharmacologic therapies. We hope that by elucidating the relationship between the pathogenetic processes and genetic mechanisms of infection with SARS-CoV-2 with psychiatric disorders, it will lead to innovative strategies for future research and treatment of psychiatric disorders linked to COVID-19.
Collapse
Affiliation(s)
- Jing Xia
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Shuhan Chen
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Yaping Li
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Li
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Minghong Gan
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Jiashuo Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Clare Colette Prohaska
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Yang Bai
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lu Gao
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Li Gu
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Dongfang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Nyati KK, Kishimoto T. Recent Advances in the Role of Arid5a in Immune Diseases and Cancer. Front Immunol 2022; 12:827611. [PMID: 35126382 PMCID: PMC8809363 DOI: 10.3389/fimmu.2021.827611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/31/2021] [Indexed: 12/09/2022] Open
Abstract
AT-rich interactive domain 5a (Arid5a) is a nucleic acid binding protein. In this review, we highlight recent advances in the association of Arid5a with inflammation and human diseases. Arid5a is known as a protein that performs dual functions. In in vitro and in vivo studies, it was found that an inflammation-dependent increase in Arid5a expression mediates both transcriptional and post-transcriptional regulatory effects that are implicated in immune regulation and cellular homeostasis. A series of publications demonstrated that inhibiting Arid5a augmented several processes, such as preventing septic shock, experimental autoimmune encephalomyelitis, acute lung injury, invasion and metastasis, immune evasion, epithelial-to-mesenchymal transition, and the M1-like tumor-associated macrophage (TAM) to M2-like TAM transition. In addition, Arid5a controls adipogenesis and obesity in mice to maintain metabolic homeostasis. Taken together, recent progress indicates that Arid5a exhibits multifaceted, both beneficial and detrimental, roles in health and disease and suggest the relevance of Arid5a as a potential therapeutic target.
Collapse
|
13
|
Nyati KK, Kishimoto T. The emerging role of Arid5a in cancer: A new target for tumors. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
14
|
Ikeuchi W, Wakita Y, Zhang G, Li C, Itakura K, Yamakawa T. AT-rich interaction domain 5A regulates the transcription of interleukin-6 gene in prostate cancer cells. Prostate 2022; 82:97-106. [PMID: 34633095 PMCID: PMC8665135 DOI: 10.1002/pros.24251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Interleukin-6 (IL-6) is a pleiotropic cytokine that confers androgen-independence and aggressiveness in prostate cancer (PCa); however, the molecular mechanisms regulating IL-6 expression remain unclear. The expression of ARID5A, an AT-rich interaction domain (ARID) DNA-binding motif-containing transcription factor is positively correlated with IL-6 expression in human PCa. We, therefore, hypothesized that ARID5A could regulate IL-6 expression in PCa. METHODS The relationship between ARID5A and IL-6 in PCa patients was analyzed using statistical analyses of multiple clinical microarray data sets. To investigate whether ARID5A regulates IL-6 expression, CRISPR-driven ARID5A knockout clones were established in DU145 and PC-3 cells. RESULTS Analysis of three microarray data sets showed a positive correlation between ARID5A and IL-6 expression. The expression of IL-6 in ARID5A knockout clones was significantly reduced compared with control clones in both PCa cell lines. Knockout of ARID5A did not result in any loss of IL-6 mRNA stability. Instead, we observed a significant decrease in the occupancy of both active RNA Polymerase II and the active histone mark, H3K4me3 at the IL-6 transcriptional start site in ARID5A knockout PCa cells, suggesting a role for transcriptional regulation. CONCLUSIONS Our study demonstrated that loss of ARID5A downregulates the expression of IL-6 at the transcriptional level.
Collapse
Affiliation(s)
- Wataru Ikeuchi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Yuriko Wakita
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Guoxiang Zhang
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Chun Li
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Keiichi Itakura
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Takahiro Yamakawa
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
15
|
PPARs-Orchestrated Metabolic Homeostasis in the Adipose Tissue. Int J Mol Sci 2021; 22:ijms22168974. [PMID: 34445679 PMCID: PMC8396609 DOI: 10.3390/ijms22168974] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
It has been more than three decades since peroxisome proliferator-activated receptors (PPARs) were first discovered. Many investigations have revealed the central regulators of PPARs in lipid and glucose homeostasis in response to different nutrient conditions. PPARs have attracted much attention due to their ability to improve metabolic syndromes, and they have also been proposed as classical drug targets for the treatment of hyperlipidemia and type 2 diabetes (T2D) mellitus. In parallel, adipose tissue is known to play a unique role in the pathogenesis of insulin resistance and metabolic syndromes due to its ability to “safely” store lipids and secrete cytokines that regulate whole-body metabolism. Adipose tissue relies on a complex and subtle network of transcription factors to maintain its normal physiological function, by coordinating various molecular events, among which PPARs play distinctive and indispensable roles in adipocyte differentiation, lipid metabolism, adipokine secretion, and insulin sensitivity. In this review, we discuss the characteristics of PPARs with special emphasis on the roles of the different isotypes in adipocyte biology.
Collapse
|
16
|
Nyati KK, Hashimoto S, Singh SK, Tekguc M, Metwally H, Liu YC, Okuzaki D, Gemechu Y, Kang S, Kishimoto T. The novel long noncoding RNA AU021063, induced by IL-6/Arid5a signaling, exacerbates breast cancer invasion and metastasis by stabilizing Trib3 and activating the Mek/Erk pathway. Cancer Lett 2021; 520:295-306. [PMID: 34389433 DOI: 10.1016/j.canlet.2021.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 01/17/2023]
Abstract
Interleukin (IL-6) is a pleotropic cytokine with both tumor-promoting and -inhibitory effects on breast cancer growth. However, the mechanisms governing the outcome of IL-6 on cancer progression remain to be clarified. Our study unraveled a novel long noncoding RNA (lncRNA) AU021063 downstream of IL-6 signaling. We found that IL-6 induced the expression of AU021063 predominantly in breast cancer compared to other cancer types. Mechanistically, IL-6 induced AT-rich interactive domain 5a (Arid5a) expression, which promotes the transcription of AU021063. In turn, AU021063 promotes breast cancer metastasis through stabilizing tribbles homolog 3 (Trib3) and activating Mek/Erk signaling pathway. Genetic ablation of either Arid5a, AU021063 or Trib3 abolished breast cancer metastasis in vitro and in vivo. Overall, our study highlights the importance of IL-6-Arid5a-AU021063 axis in regulating breast cancer invasiveness and metastasis, which may provide potential novel therapeutics for breast cancer.
Collapse
Affiliation(s)
- Kishan Kumar Nyati
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan.
| | - Shigeru Hashimoto
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Shailendra Kumar Singh
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Murat Tekguc
- Laboratory of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Hozaifa Metwally
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Yu-Chen Liu
- Laboratory of Human Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Yohannes Gemechu
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Sujin Kang
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Osaka, Japan.
| |
Collapse
|
17
|
Björk C, Subramanian N, Liu J, Acosta JR, Tavira B, Eriksson AB, Arner P, Laurencikiene J. An RNAi Screening of Clinically Relevant Transcription Factors Regulating Human Adipogenesis and Adipocyte Metabolism. Endocrinology 2021; 162:6272286. [PMID: 33963396 PMCID: PMC8197287 DOI: 10.1210/endocr/bqab096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/13/2022]
Abstract
CONTEXT Healthy hyperplasic (many but smaller fat cells) white adipose tissue (WAT) expansion is mediated by recruitment, proliferation and/or differentiation of new fat cells. This process (adipogenesis) is controlled by transcriptional programs that have been mostly identified in rodents. OBJECTIVE A systemic investigation of adipogenic human transcription factors (TFs) that are relevant for metabolic conditions has not been revealed previously. METHODS TFs regulated in WAT by obesity, adipose morphology, cancer cachexia, and insulin resistance were selected from microarrays. Their role in differentiation of human adipose tissue-derived stem cells (hASC) was investigated by RNA interference (RNAi) screen. Lipid accumulation, cell number, and lipolysis were measured for all screened factors (148 TFs). RNA (RNAseq), protein (Western blot) expression, insulin, and catecholamine responsiveness were examined in hASC following siRNA treatment of selected target TFs. RESULTS Analysis of TFs regulated by metabolic conditions in human WAT revealed that many of them belong to adipogenesis-regulating pathways. The RNAi screen identified 39 genes that affected fat cell differentiation in vitro, where 11 genes were novel. Of the latter JARID2 stood out as being necessary for formation of healthy fat cell metabolic phenotype by regulating expression of multiple fat cell phenotype-specific genes. CONCLUSION This comprehensive RNAi screening in hASC suggests that a large proportion of WAT TFs that are impacted by metabolic conditions might be important for hyperplastic adipose tissue expansion. The screen also identified JARID2 as a novel TF essential for the development of functional adipocytes.
Collapse
Affiliation(s)
- Christel Björk
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Narmadha Subramanian
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Jianping Liu
- Karolinska High Throughput Center, Department of Medical Biochemistry and Biophysics (MBB), Division of Functional Genomics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Juan Ramon Acosta
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Beatriz Tavira
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Anders B Eriksson
- Karolinska High Throughput Center, Department of Medical Biochemistry and Biophysics (MBB), Division of Functional Genomics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Peter Arner
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Jurga Laurencikiene
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
- Correspondence: Jurga Laurencikiene, PhD, Karolinska Institutet, Lipid laboratory, Dept. of Medicine Huddinge (MedH), NEO, Hälsovägen 9/Blickagången 16, 14183 Huddinge, Sweden.
| |
Collapse
|
18
|
Kulsirirat T, Honsawek S, Takeda-Morishita M, Sinchaipanid N, Udomsinprasert W, Leanpolchareanchai J, Sathirakul K. The Effects of Andrographolide on the Enhancement of Chondrogenesis and Osteogenesis in Human Suprapatellar Fat Pad Derived Mesenchymal Stem Cells. Molecules 2021; 26:1831. [PMID: 33805078 PMCID: PMC8037192 DOI: 10.3390/molecules26071831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Andrographolide is a labdane diterpenoid herb, which is isolated from the leaves of Andrographis paniculata, and widely used for its potential medical properties. However, there are no reports on the effects of andrographolide on the human suprapatellar fat pad of osteoarthritis patients. In the present study, our goal was to evaluate the innovative effects of andrographolide on viability and Tri-lineage differentiation of human mesenchymal stem cells from suprapatellar fat pad tissues. The results revealed that andrographolide had no cytotoxic effects when the concentration was less than 12.5 µM. Interestingly, andrographolide had significantly enhanced, dose dependent, osteogenesis and chondrogenesis as evidenced by a significantly intensified stain for Alizarin Red S, Toluidine Blue and Alcian Blue. Moreover, andrographolide can upregulate the expression of genes related to osteogenic and chondrogenic differentiation, including Runx2, OPN, Sox9, and Aggrecan in mesenchymal stem cells from human suprapatellar fat pad tissues. In contrast, andrographolide suppressed adipogenic differentiation as evidenced by significantly diminished Oil Red O staining and expression levels for adipogenic-specific genes for PPAR-γ2 and LPL. These findings confirm that andrographolide can specifically enhance osteogenesis and chondrogenesis of mesenchymal stem cells from human suprapatellar fat pad tissues. It has potential as a therapeutic agent derived from natural sources for regenerative medicine.
Collapse
Affiliation(s)
- Thitianan Kulsirirat
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (T.K.); (J.L.)
| | - Sittisak Honsawek
- Osteoarthritis and Musculoskeleton Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Mariko Takeda-Morishita
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Hyogo 650-8586, Japan;
| | - Nuttanan Sinchaipanid
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | - Wanvisa Udomsinprasert
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | | | - Korbtham Sathirakul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (T.K.); (J.L.)
| |
Collapse
|
19
|
Abstract
Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3' untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3' UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.
Collapse
Affiliation(s)
- Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| | - Kazuhiko Maeda
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| |
Collapse
|
20
|
Caffeic and Chlorogenic Acids Synergistically Activate Browning Program in Human Adipocytes: Implications of AMPK- and PPAR-Mediated Pathways. Int J Mol Sci 2020; 21:ijms21249740. [PMID: 33371201 PMCID: PMC7766967 DOI: 10.3390/ijms21249740] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Caffeic acid (CA) and chlorogenic acid (CGA) are phenolic compounds claimed to be responsible for the metabolic effects of coffee and tea consumption. Along with their structural similarities, they share common mechanisms such as activation of the AMP-activated protein kinase (AMPK) signaling. The present study aimed to investigate the anti-obesity potential of CA and CGA as co-treatment in human adipocytes. The molecular interactions of CA and CGA with key adipogenic transcription factors were simulated through an in silico molecular docking approach. The expression levels of white and brown adipocyte markers, as well as genes related to lipid metabolism, were analyzed by real-time quantitative PCR and Western blot analyses. Mechanistically, the CA/CGA combination induced lipolysis, upregulated AMPK and browning gene expression and downregulated peroxisome proliferator-activated receptor γ (PPARγ) at both transcriptional and protein levels. The gene expression profiles of the CA/CGA-co-treated adipocytes strongly resembled brown-like signatures. Major pathways identified included the AMPK- and PPAR-related signaling pathways. Collectively, these findings indicated that CA/CGA co-stimulation exerted a browning-inducing potential superior to that of either compound used alone which merits implementation in obesity management. Further, the obtained data provide additional insights on how CA and CGA modify adipocyte function, differentiation and lipid metabolism.
Collapse
|
21
|
Nyati KK, Zaman MMU, Sharma P, Kishimoto T. Arid5a, an RNA-Binding Protein in Immune Regulation: RNA Stability, Inflammation, and Autoimmunity. Trends Immunol 2020; 41:255-268. [PMID: 32035762 DOI: 10.1016/j.it.2020.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/05/2023]
Abstract
AT-rich interactive domain 5A (ARID5A/Arid5a) is a known cofactor of transcription factors (TFs) that contributes to cell growth and differentiation. It has recently been recognized for its unique function in the stabilization of mRNA, which is associated with inflammatory autoimmune diseases. Studies have revolutionized our understanding of the post-transcriptional regulation of inflammatory genes by revealing the fundamental events underpinning novel functions and activities of Arid5a. We review current research on Arid5a, which has focused our attention towards the therapeutic potential of this factor in the putative treatment of inflammatory and autoimmune disorders, including experimental autoimmune encephalomyelitis and sepsis in mice.
Collapse
Affiliation(s)
- Kishan Kumar Nyati
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka 565 0871, Japan; Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India.
| | - Mohammad Mahabub-Uz Zaman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka 565 0871, Japan.
| |
Collapse
|
22
|
Nyati KK, Agarwal RG, Sharma P, Kishimoto T. Arid5a Regulation and the Roles of Arid5a in the Inflammatory Response and Disease. Front Immunol 2019; 10:2790. [PMID: 31867000 PMCID: PMC6906145 DOI: 10.3389/fimmu.2019.02790] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023] Open
Abstract
Abnormal gene expression patterns underlie many diseases that represent major public health concerns and robust therapeutic challenges. Posttranscriptional gene regulation by RNA-binding proteins (RBPs) is well-recognized, and the biological functions of RBPs have been implicated in many diseases, such as autoimmune diseases, inflammatory diseases, and cancer. However, a complete understanding of the regulation mediated by several RBPs is lacking. During the past few years, a novel role of AT-rich interactive domain-containing protein 5a (Arid5a) as an RBP is being investigated in the field of immunology owing to binding of Arid5a protein to the 3' untranslated region (UTR) of Il-6 mRNA. Indeed, Arid5a is a dynamic molecule because upon inflammation, it translocates to the cytoplasm and stabilizes a variety of inflammatory mRNA transcripts, including Il-6, Stat3, Ox40, T-bet, and IL-17-induced targets, and contributes to the inflammatory response and a variety of diseases. TLR4-activated NF-κB and MAPK pathways are involved in regulating Arid5a expression from synthesis to degradation, and even a slight alteration in these pathways can lead to intense production of inflammatory molecules, such as IL-6, which may further contribute to the development of inflammatory diseases such as sepsis and experimental autoimmune encephalomyelitis. This review highlights the regulation of the Arid5a expression and function. Additionally, recent findings on Arid5a are discussed to further our understanding of this molecule, which may be a promising therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Kishan Kumar Nyati
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | | | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|