1
|
Peng Y, Zhou L, Jin Y, Wu D, Chen N, Zhang C, Liu H, Li C, Ning R, Yang X, Mao Q, Liu J, Zhang P. Calcium bridges built by mitochondria-associated endoplasmic reticulum membranes: potential targets for neural repair in neurological diseases. Neural Regen Res 2025; 20:3349-3369. [PMID: 39589178 PMCID: PMC11974651 DOI: 10.4103/nrr.nrr-d-24-00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 09/29/2024] [Indexed: 11/27/2024] Open
Abstract
The exchange of information and materials between organelles plays a crucial role in regulating cellular physiological functions and metabolic levels. Mitochondria-associated endoplasmic reticulum membranes serve as physical contact channels between the endoplasmic reticulum membrane and the mitochondrial outer membrane, formed by various proteins and protein complexes. This microstructural domain mediates several specialized functions, including calcium (Ca 2+ ) signaling, autophagy, mitochondrial morphology, oxidative stress response, and apoptosis. Notably, the dysregulation of Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes is a critical factor in the pathogenesis of neurological diseases. Certain proteins or protein complexes within these membranes directly or indirectly regulate the distance between the endoplasmic reticulum and mitochondria, as well as the transduction of Ca 2+ signaling. Conversely, Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes influences other mitochondria-associated endoplasmic reticulum membrane-associated functions. These functions can vary significantly across different neurological diseases-such as ischemic stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease-and their respective stages of progression. Targeted modulation of these disease-related pathways and functional proteins can enhance neurological function and promote the regeneration and repair of damaged neurons. Therefore, mitochondria-associated endoplasmic reticulum membranes-mediated Ca 2+ signaling plays a pivotal role in the pathological progression of neurological diseases and represents a significant potential therapeutic target. This review focuses on the effects of protein complexes in mitochondria-associated endoplasmic reticulum membranes and the distinct roles of mitochondria-associated endoplasmic reticulum membranes-mediated Ca 2+ signaling in neurological diseases, specifically highlighting the early protective effects and neuronal damage that can result from prolonged mitochondrial Ca 2+ overload or deficiency. This article provides a comprehensive analysis of the various mechanisms of Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes in neurological diseases, contributing to the exploration of potential therapeutic targets for promoting neuroprotection and nerve repair.
Collapse
Affiliation(s)
- Yichen Peng
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Li Zhou
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Yaju Jin
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Danli Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Na Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Chengcai Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Hongpeng Liu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Chunlan Li
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Rong Ning
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Xichen Yang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Qiuyue Mao
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Jiaxin Liu
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Pengyue Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| |
Collapse
|
2
|
Cagalinec M, Mohd A, Borecka S, Bultynck G, Choubey V, Yanovsky-Dagan S, Ezer S, Gasperikova D, Harel T, Jurkovicova D, Kaasik A, Liévens JC, Maurice T, Peviani M, Richard EM, Skoda J, Skopkova M, Tarot P, Van Gorp R, Zvejniece L, Delprat B. Improving mitochondria-associated endoplasmic reticulum membranes integrity as converging therapeutic strategy for rare neurodegenerative diseases and cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119954. [PMID: 40216201 DOI: 10.1016/j.bbamcr.2025.119954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/04/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025]
Abstract
Membrane contact sites harbor a distinct set of proteins with varying biological functions, thereby emerging as hubs for localized signaling nanodomains underlying adequate cell function. Here, we will focus on mitochondria-associated endoplasmic reticulum membranes (MAMs), which serve as hotspots for Ca2+ signaling, redox regulation, lipid exchange, mitochondrial quality and unfolded protein response pathway. A network of MAM-resident proteins contributes to the structural integrity and adequate function of MAMs. Beyond endoplasmic reticulum (ER)-mitochondrial tethering proteins, MAMs contain several multi-protein complexes that mediate the transfer of or are influenced by Ca2+, reactive oxygen species and lipids. Particularly, IP3 receptors, intracellular Ca2+-release channels, and Sigma-1 receptors (S1Rs), ligand-operated chaperones, serve as important platforms that recruit different accessory proteins and intersect with these local signaling processes. Furthermore, many of these proteins are directly implicated in pathophysiological conditions, where their dysregulation or mutation is not only causing diseases such as cancer and neurodegeneration, but also rare genetic diseases, for example familial Parkinson's disease (PINK1, Parkin, DJ-1), familial Amyotrophic lateral sclerosis (TDP43), Wolfram syndrome1/2 (WFS1 and CISD2), Harel-Yoon syndrome (ATAD3A). In this review, we will discuss the current state-of-the-art regarding the molecular components, protein platforms and signaling networks underlying MAM integrity and function in cell function and how their dysregulation impacts MAMs, thereby driving pathogenesis and/or impacting disease burden. We will highlight how these insights can generate novel, potentially therapeutically relevant, strategies to tackle disease outcomes by improving the integrity of MAMs and the signaling processes occurring at these membrane contact sites.
Collapse
Affiliation(s)
- Michal Cagalinec
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Adnan Mohd
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Silvia Borecka
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Geert Bultynck
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | - Vinay Choubey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Shlomit Ezer
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Daniela Gasperikova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Marco Peviani
- Cellular and Molecular Neuropharmacology Lab., Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Martina Skopkova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pauline Tarot
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Robbe Van Gorp
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | | | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France.
| |
Collapse
|
3
|
Huot JR, Jamnick NA, Pin F, Livingston PD, Callaway CS, Bonetto A. GL261 glioblastoma induces delayed body weight gain and stunted skeletal muscle growth in young mice. Am J Physiol Regul Integr Comp Physiol 2025; 328:R628-R641. [PMID: 40247678 DOI: 10.1152/ajpregu.00035.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/26/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
The survival rate for children and adolescents has increased to over 85%. However, there is limited understanding of the impact of pediatric cancers on muscle development and physiology. Given that brain tumors alone account for 26% of all pediatric cancers, this study aimed to investigate the skeletal muscle consequences of tumor growth in young mice. C2C12 myotubes were cocultured with GL261 murine glioblastoma cells to assess myotube size. GL261 cells were then injected subcutaneously into 4-wk-old male C57BL/6J mice. Animals were euthanized 28 days post-GL261 implantation. Muscle function was tested in vivo and ex vivo. Muscle protein synthesis was estimated via the SUnSET method, and gene/protein expression levels were assessed via Western blotting and qPCR. In vitro, the C2C12 cultures exposed to GL261 exhibited myotube atrophy, consistent with a disrupted anabolic/catabolic balance. In vivo, carcass, heart, and fat mass were significantly reduced in the tumor-bearing mice. Skeletal muscle growth was impeded in the GL261 hosts, along with a smaller muscle cross-sectional area (CSA). Both in vivo muscle torque and the ex vivo Extensor Digitorum Longus (EDL) muscle force were unchanged. At molecular level, the tumor hosts displayed reduced estimations of muscle protein synthesis and increased muscle protein ubiquitination, in disagreement with decreased muscle ubiquitin ligase mRNA expression. Overall, we showed that GL261 tumors impact the growth of pediatric mice by stunting skeletal muscle development, decreasing muscle mass, reducing muscle fiber size, diminishing muscle protein synthesis, and altering protein catabolism signaling.NEW & NOTEWORTHY This study shows that pediatric brain tumors stunt muscle development in young mice. GL261 glioblastoma cells caused myotube atrophy, reduced carcass, heart, and fat mass, and impeded skeletal muscle growth. Tumor-bearing mice had decreased muscle protein synthesis and increased protein ubiquitination. This is the first demonstration that GL261 tumors reduce muscle mass and fiber size, impair muscle function and innervation, and alter muscle protein turnover.
Collapse
Affiliation(s)
- Joshua R Huot
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States
| | - Nicholas A Jamnick
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Patrick D Livingston
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Chandler S Callaway
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Andrea Bonetto
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Nutrition Obesity Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
4
|
He S, Pan T, Tian R, He Q, Cheng D, Qu H, Li R, Tan R. Fatty acid synthesis promotes mtDNA release via ETS1-mediated oligomerization of VDAC1 facilitating endothelial dysfunction in sepsis-induced lung injury. Cell Death Differ 2025:10.1038/s41418-025-01524-5. [PMID: 40369168 DOI: 10.1038/s41418-025-01524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/16/2025] Open
Abstract
Sepsis involves endothelial cell dysfunction leading to the development of lung injury. Fatty acid synthesis contributes to the development of inflammatory injury in sepsis. However, the regulatory mechanisms of fatty acid synthesis-related endothelial activation remain unclear. In this study, we found that fatty acid synthesis in patients with sepsis was greatly disordered. Inhibition of fatty acid synthesis significantly alleviated sepsis-induced endothelial damage and lung injury both in vitro and in vivo. We further found that the release of mtDNA participated in fatty acid synthesis-related regulation of endothelial inflammatory and coagulation activation. Mechanistically, fatty acid synthesis promoted the oligomerization of voltage-dependent anion channel 1 (VDAC1) via ETS proto-oncogene 1 (ETS1)-mediated inhibition of VDAC1 ubiquitination, thereby leading to the increased release of mtDNA and subsequent activation of cGAS-STING signaling and pyroptosis in endothelial cells. Our findings revealed that fatty acid synthesis promoted endothelial dysfunction through mtDNA release, providing new insight into the therapeutic strategies for treating sepsis-associated lung injury.
Collapse
Affiliation(s)
- Shiyuan He
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Rui Tian
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Qian He
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Decui Cheng
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
5
|
Yan JJ, Wang YY, Shi ZY, Ding YY, Wen HQ, Wu MP, Sun SC, Cai YF, Zhang Y. SIRT5 modulates mitochondria function via mitophagy and antioxidant mechanisms to facilitate oocyte maturation in mice. Int J Biol Macromol 2025; 306:141488. [PMID: 40015402 DOI: 10.1016/j.ijbiomac.2025.141488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Mitochondrial homeostasis, closely associated with mitophagy and antioxidant mechanisms, is essential for proper meiotic spindle assembly and chromosome segregation during oocyte maturation. SIRT5, known to modulate mitochondrial function under various conditions, has been shown to impact oocyte quality when inhibited, however, the precise mechanisms linking SIRT5 to mitochondrial homeostasis during meiotic progression remain unclear. In this study, we demonstrate that SIRT5 localizes predominantly at the periphery of the meiotic spindle and is enriched on chromosomes during oocyte maturation. Inhibition of SIRT5 led to significant meiotic defects, including disrupted spindle organization and chromosome misalignment. These defects were associated with increased histone acetylation, which impaired kinetochore-microtubule attachments. Moreover, SIRT5 inhibition resulted in mitochondrial dysfunction, subsequently elevating ROS levels and triggering oxidative stress, which further exacerbated meiotic abnormalities. Mechanistically, SIRT5 inhibition disrupted the balance of Parkin-dependent mitophagy by inducing ULK phosphorylation. Additionally, it activated the PI3K/Akt signaling pathway, which increased NADPH consumption and reduced GSH levels. Collectively, these findings reveal that SIRT5 plays dual roles in maintaining mitochondrial homeostasis during oocyte maturation: (1) by regulating Parkin-dependent mitophagy to prevent excessive mitochondrial clearance, and (2) by preserving the NADPH/GSH antioxidant system to ensure redox balance. These insights provide potential targets for improving oocyte quality and addressing mitochondrial dysfunction-related reproductive disorders in females.
Collapse
Affiliation(s)
- Jing-Jing Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan-Yu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi-Yu Shi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan-Yuan Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao-Quan Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Ping Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ya-Fei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Chen T, Zhang Y, Ding L, Xiong C, Mei C, Wei S, Jiang M, Huang Y, Chen J, Xie T, Zhu Q, Zhang Q, Huang X, Chen S, Li Y. Tripartite Motif Containing 65 Deficiency Confers Protection Against Acute Kidney Injury via Alleviating Voltage-Dependent Anion Channel 1-Mediated Mitochondrial Dysfunction. MedComm (Beijing) 2025; 6:e70149. [PMID: 40264575 PMCID: PMC12013732 DOI: 10.1002/mco2.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/02/2025] [Accepted: 02/17/2025] [Indexed: 04/24/2025] Open
Abstract
Acute kidney injury (AKI) is a prevalent and serious clinical disease with a high incidence rate and significant health burden. The limited understanding of the complex pathological mechanisms has hindered the development of efficacious therapeutics. Tripartite motif containing 65 (TRIM65) has recently been identified as a key regulator of acute inflammation. However, its role in AKI remains unclear. The present study observed that TRIM65 expression was upregulated in AKI. Moreover, the knockout of the Trim65 gene in mice exhibited a substantial protective impact against rhabdomyolysis, ischemia-reperfusion (I/R), and cisplatin-induced AKI. Mechanistically, TRIM65 directly binds and mediates K48/K63-linked polyubiquitination modifications of voltage-dependent anion channel 1 (VDAC1) at its K161 and K200 amino acid sites. TRIM65 plays a role in maintaining the stability of VDAC1 and preventing its degradation by the autophagy pathway. TRIM65 deficiency attenuates mitochondrial dysfunction in renal tubular epithelial cells during AKI. Conversely, the overexpression of VDAC1 in renal tissues has been demonstrated to negate the protective effect of TRIM65 deficiency on AKI. These findings suggest that TRIM65 may play a role regulating of AKI through the targeting of VDAC1-dependent mitochondrial function, offering potential avenues for the development of new drug targets and strategies for the treatment of AKI.
Collapse
Affiliation(s)
- Tao Chen
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Liting Ding
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Chenlu Xiong
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Chao Mei
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Sisi Wei
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Ming Jiang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yingjie Huang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Jianrong Chen
- Department of Endocrinology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Tao Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qing Zhu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qi Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Shibiao Chen
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
7
|
Lee-Glover LP, Picard M, Shutt TE. Mitochondria - the CEO of the cell. J Cell Sci 2025; 138:jcs263403. [PMID: 40310473 PMCID: PMC12070065 DOI: 10.1242/jcs.263403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
As we have learned more about mitochondria over the past decades, including about their essential cellular roles and how altered mitochondrial biology results in disease, it has become apparent that they are not just powerplants pumping out ATP at the whim of the cell. Rather, mitochondria are dynamic information and energy processors that play crucial roles in directing dozens of cellular processes and behaviors. They provide instructions to enact programs that regulate various cellular operations, such as complex metabolic networks, signaling and innate immunity, and even control cell fate, dictating when cells should divide, differentiate or die. To help current and future generations of cell biologists incorporate the dynamic, multifaceted nature of mitochondria and assimilate modern discoveries into their scientific framework, mitochondria need a 21st century 'rebranding'. In this Opinion article, we argue that mitochondria should be considered as the 'Chief Executive Organelle' - the CEO - of the cell.
Collapse
Affiliation(s)
- Laurie P. Lee-Glover
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, 10032, USA
- Department of Neurology, H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia University Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, 10032, USA
- New York State Psychiatric Institute, New York, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, 10032, USA
| | - Timothy E. Shutt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
8
|
Wang Y, Huang Y, Wang L, Chen Z, Zhou L, Xiang F, Li G, Yang J, Chen R, Xu Q, Shen Y. TP53INP2 promotes mitophagic degradation of YAP to impede dedifferentiated liposarcoma development. Oncogene 2025:10.1038/s41388-025-03358-4. [PMID: 40185868 DOI: 10.1038/s41388-025-03358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/21/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
Dedifferentiated liposarcoma (DDLPS) accounts for 15-20% of liposarcoma (LPS) and has high rates of local recurrence and distant metastasis. Hyperactivation of yes-associated protein (YAP) has been implicated in DDLPS development. However, the mechanisms that drive aberrant YAP signaling remain largely unknown. Here, we show that tumor protein p53 inducible nuclear protein 2 (TP53INP2) is a potential negative modulator of the malignant progression of DDLPS. The TP53INP2 protein expression level in tumor tissues from 79 patients with DDLPS decreased progressively. Compared with primary tumors, recurrent tumors also exhibited reduced TP53INP2 expression. More importantly, low TP53INP2 expression is correlated with poor prognosis. TP53INP2 gain- or loss-of-function experiments in DDLPS cell lines showed profound inhibitory effects on processes and properties linked with cancer malignancy, such as proliferation, migration, stemness and dedifferentiation. Mechanistically, TP53INP2 is located mainly in mitochondria and promotes mitophagic degradation of YAP in a VDAC1-dependent manner. The WW domain in YAP and the PPTY motif in VDAC1 are required for their interaction. Taken together, these data demonstrate that TP53INP2 represses the malignant progression of DDLPS by inactivating YAP via a mitophagy-dependent mechanism and that TP53INP2 may constitute a novel prognostic biomarker for advanced DDLPS.
Collapse
Affiliation(s)
- Yixuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Ying Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Liwei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Zhixiu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Lin Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Feng Xiang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University (Second Military University), Shanghai, 200433, China
| | - Guoyu Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Jiawen Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Rui Chen
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University (Second Military University), Shanghai, 200433, China.
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
9
|
Pek JW. The idiosyncrasies of oocytes. Trends Cell Biol 2025; 35:305-315. [PMID: 39142921 DOI: 10.1016/j.tcb.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
Animal oocytes face extreme challenges. They remain dormant in the body for long periods of time. To support offspring development and health, they need to store genetic material and maternal factors stably and at the same time manage cellular damage in a reliable manner. Recent studies have provided new insights on how oocytes cope with such challenges. This review discusses the many unusual or idiosyncratic nature of oocytes and how understanding oocyte biology can help us address issues of reproduction and intergenerational inheritance.
Collapse
Affiliation(s)
- Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543, Singapore.
| |
Collapse
|
10
|
Roy M, Nandy S, Marchesan E, Banerjee C, Mondal R, Caicci F, Ziviani E, Chakraborty J. Efficient PHB2 (prohibitin 2) exposure during mitophagy depends on VDAC1 (voltage dependent anion channel 1). Autophagy 2025; 21:897-909. [PMID: 39513197 DOI: 10.1080/15548627.2024.2426116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024] Open
Abstract
Exposure of inner mitochondrial membrane resident protein PHB2 (prohibitin 2) during autophagic removal of depolarized mitochondria (mitophagy) depends on the ubiquitin-proteasome system. This uncovering facilitates the PHB2 interaction with phagophore membrane-associated protein MAP1LC3/LC3. It is unclear whether PHB2 is exposed randomly at mitochondrial rupture sites. Prior knowledge and initial screening indicated that VDAC1 (voltage dependent anion channel 1) might play a role in this phenomenon. Through in vitro biochemical assays and imaging, we have found that VDAC1-PHB2 interaction increases during mitochondrial depolarization. Subsequently, this interaction enhances the efficiency of PHB2 exposure and mitophagy. To investigate the relevance in vivo, we utilized porin (equivalent to VDAC1) knockout Drosophila line. Our findings demonstrate that during mitochondrial stress, porin is essential for Phb2 exposure, Phb2-Atg8 interaction and mitophagy. This study highlights that VDAC1 predominantly synchronizes efficient PHB2 exposure through mitochondrial rupture sites during mitophagy. These findings may provide insights to understand progressive neurodegeneration.
Collapse
Affiliation(s)
- Moumita Roy
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sumangal Nandy
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Chayan Banerjee
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rupsha Mondal
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Elena Ziviani
- Department of Biology, University of Padova, Padova, Italy
| | - Joy Chakraborty
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
11
|
Duan Y, Yao RQ, Ling H, Zheng LY, Fan Q, Li Q, Wang L, Zhou QY, Wu LM, Dai XG, Yao YM. Organellophagy regulates cell death:A potential therapeutic target for inflammatory diseases. J Adv Res 2025; 70:371-391. [PMID: 38740259 PMCID: PMC11976430 DOI: 10.1016/j.jare.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Dysregulated alterations in organelle structure and function have a significant connection with cell death, as well as the occurrence and development of inflammatory diseases. Maintaining cell viability and inhibiting the release of inflammatory cytokines are essential measures to treat inflammatory diseases. Recently, many studies have showed that autophagy selectively targets dysfunctional organelles, thereby sustaining the functional stability of organelles, alleviating the release of multiple cytokines, and maintaining organismal homeostasis. Organellophagy dysfunction is critically engaged in different kinds of cell death and inflammatory diseases. AIM OF REVIEW We summarized the current knowledge of organellophagy (e.g., mitophagy, reticulophagy, golgiphagy, lysophagy, pexophagy, nucleophagy, and ribophagy) and the underlying mechanisms by which organellophagy regulates cell death. KEY SCIENTIFIC CONCEPTS OF REVIEW We outlined the potential role of organellophagy in the modulation of cell fate during the inflammatory response to develop an intervention strategy for the organelle quality control in inflammatory diseases.
Collapse
Affiliation(s)
- Yu Duan
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China; Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; Department of General Surgery, the First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| | - Hua Ling
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi Fan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qiong Li
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Lu Wang
- Department of Critical Care Medicine, the First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi-Yuan Zhou
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Le-Min Wu
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Xin-Gui Dai
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
12
|
Mampay M, Al‐Hity G, Rolle SO, Alzboon W, Stewart NA, Flint MS, Sheridan GK. Impact of Psychological Stress and Spontaneous Tumour Regression on the Hippocampal Proteome in a Mouse Model of Breast Cancer. J Neurochem 2025; 169:e70052. [PMID: 40172096 PMCID: PMC11963485 DOI: 10.1111/jnc.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Cognitive impairment is common in people diagnosed with breast cancer, but the molecular mechanisms that underlie maladaptive changes in the brain are unknown. The psychological stress of a cancer diagnosis is certainly a contributing factor. Here, we investigated alterations in the hippocampal proteome in response to both cancer and psychological stress using label-free quantitative mass spectrometry techniques. An orthotopic syngeneic model of triple-negative breast cancer (TNBC) was established by injecting Py230 cells into the mammary fat pads of female C57Bl/6 mice. Half of the mice were subjected to a daily restraint stress paradigm. Mice that experienced both cancer and restraint stress lost weight and displayed larger tumours compared to non-stressed mice. Their urinary corticosterone levels were also elevated, as measured by enzyme-linked immunosorbent assay. Non-stressed tumour-bearing mice displayed higher levels of TNFα in the prefrontal cortex (PFC) compared to stressed mice with cancer. Flow cytometry results suggested that the CD4+/CD8+ T cell ratios were also raised in non-stressed tumour-bearing mice compared to both controls and stressed mice with TNBC. Bioinformatic analysis of hippocampal proteomes indicated that cancer alone causes reduced mitochondrial respiration and ATP synthesis, as well as impaired glutamate recycling and synaptic plasticity. Moreover, daily stress in TNBC mice caused further mitochondrial dysfunction, increased oxidative phosphorylation, and altered lipid metabolism. Importantly, over half of the mammary tumours that initially developed spontaneously regressed after 7-9 weeks in these young immunocompetent mice. Tumour regression inhibited TNFα increases in the PFC. However, the hippocampal proteomes of tumour-bearing mice were largely similar to mice in which tumours regressed, suggesting that spontaneous regression of breast cancer confers lasting physiological dysregulations that impact hippocampal protein expression. This study in mice may help to identify molecular mechanisms responsible for long-term memory impairments in cancer survivors and reveal novel drug targets for cancer-related cognitive impairment.
Collapse
Affiliation(s)
- Myrthe Mampay
- School of Applied SciencesUniversity of BrightonBrightonUK
| | - Gheed Al‐Hity
- School of Applied SciencesUniversity of BrightonBrightonUK
| | | | - Walla Alzboon
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | | | | | | |
Collapse
|
13
|
Li Q, Ci H, Zhao P, Yang D, Zou Y, Chen P, Wu D, Shangguan W, Li W, Meng X, Xing M, Chen Y, Zhang M, Chen B, Kong L, Zen K, Huang DCS, Jiang ZW, Zhao Q. NONO interacts with nuclear PKM2 and directs histone H3 phosphorylation to promote triple-negative breast cancer metastasis. J Exp Clin Cancer Res 2025; 44:90. [PMID: 40059196 PMCID: PMC11892261 DOI: 10.1186/s13046-025-03343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/21/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Emerging evidence has revealed that PKM2 has oncogenic functions independent of its canonical pyruvate kinase activity, serving as a protein kinase that regulates gene expression. However, the mechanism by which PKM2, as a histone kinase, regulates the transcription of genes involved in triple-negative breast cancer (TNBC) metastasis remains poorly understood. METHODS We integrated cellular analysis, including cell viability, proliferation, colony formation, and migration assays; biochemical assays, including protein interaction studies and ChIP; clinical sample analysis; RNA-Seq and CUT&Tag data; and xenograft or mammary-specific gene knockout mouse models, to investigate the epigenetic modulation of TNBC metastasis via NONO-dependent interactions with nuclear PKM2. RESULTS We report that the transcription factor NONO directly interacts with nuclear PKM2 and directs PKM2-mediated phosphorylation of histone H3 at threonine 11 (H3T11ph) to promote TNBC metastasis. We show that H3T11ph cooperates with TIP60-mediated acetylation of histone H3 at lysine 27 (H3K27ac) to activate SERPINE1 expression and to increase the proliferative, migratory, and invasive abilities of TNBC cells in a NONO-dependent manner. Conditional mammary loss of NONO or PKM2 markedly suppressed SERPINE1 expression and attenuated the malignant progression of spontaneous mammary tumors in mice. Importantly, elevated expression of NONO or PKM2 in TNBC patients is positively correlated with SERPINE1 expression, enhanced invasiveness, and poor clinical outcomes. CONCLUSION These findings revealed that the NONO-dependent interaction with nuclear PKM2 is key for the epigenetic modulation of TNBC metastasis, suggesting a novel intervention strategy for treating TNBC.
Collapse
Affiliation(s)
- Qixiang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Hongfei Ci
- Department of Pathology/ Ophthalmology/Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Pengpeng Zhao
- Department of Pathology/ Ophthalmology/Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Dongjun Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yi Zou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Panhai Chen
- China-Australia Institute of Translational Medicine Co. Ltd., Nanjing, 211500, China
| | - Dongliang Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wenbing Shangguan
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wenyang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xingjun Meng
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Mengying Xing
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuzhong Chen
- Department of Pathology/ Ophthalmology/Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Ming Zhang
- China-Australia Institute of Translational Medicine Co. Ltd., Nanjing, 211500, China
| | - Bing Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lingdong Kong
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ke Zen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Zhi-Wei Jiang
- Department of General Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
14
|
Velayati E, Sarihi A, Zarei M, Komaki A, Ramezani-Aliakbari F. Diminazine protects against cardiac aging through the improvement of mitophagy and apoptosis in aging rats induced by D-galactose. BMC Cardiovasc Disord 2025; 25:110. [PMID: 39966715 PMCID: PMC11834546 DOI: 10.1186/s12872-025-04572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Mitochondrial dysfunction is a main feature of the aged heart. However, there is still no effective treatment against cardiac aging. Diminazine (DIZE) is an anti-infective agent for animals. It is effective against cardiac disorders. The present study aimed to investigate the effects of DIZE on age-related cardiac dysfunction. METHODS AND RESULTS Wistar rats were randomly divided into four groups, with eight rats per group: control rats (CONT), control rats treated with DIZE (CONT + DIZE), aged rats induced by D-galactose (D-GAL), aged rats treated with DIZE (D-GAL + DIZE). Rats received intraperitoneal (IP) injection of D-GAL at 150 mg/kg daily for 8 weeks to induce aging. The aging animals in the D-GAL + DIZE group were treated with subcutaneous injection of DIZE at 15 mg/kg daily for 8 weeks. Heart tissues were harvested to assay molecular parameters. Our results exhibited cardiac hypertrophy and a significant increase in the expression of cardiac BCL2-associated X (Bax) along with a significant decrease in the expression of cardiac Mitofusin 2 (Mfn2), Phosphatase, and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), Dynamin-related protein 1 (Drp1), and B-cell lymphoma 2 (Bcl2) in the aged rats compared with the control animals. DIZE treatment improved cardiac hypertrophy and the expression of genes. CONCLUSIONS Overall, DIZE treatment significantly reversed the downregulation of PINK1, Mfn2, and Drp1. Moreover, DIZE significantly inhibited apoptosis though improving the gene expression of Bax and Bcl-2 in the heart. DIZE is effective in reducing cardiac hypertrophy induced aging through regulating mitochondrial dynamics, mitophagy and apoptosis.
Collapse
MESH Headings
- Animals
- Galactose
- Apoptosis/drug effects
- Rats, Wistar
- Mitophagy/drug effects
- Aging/pathology
- Aging/metabolism
- Aging/drug effects
- Male
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/pathology
- Mitochondria, Heart/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/metabolism
- Disease Models, Animal
- Age Factors
- bcl-2-Associated X Protein/metabolism
- bcl-2-Associated X Protein/genetics
- Mitochondrial Dynamics/drug effects
- Signal Transduction
- Apoptosis Regulatory Proteins/metabolism
- Apoptosis Regulatory Proteins/genetics
- Mitochondrial Proteins/metabolism
- Mitochondrial Proteins/genetics
- GTP Phosphohydrolases/metabolism
- GTP Phosphohydrolases/genetics
- Dynamins/metabolism
- Dynamins/genetics
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/prevention & control
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
- Protein Kinases/metabolism
- Protein Kinases/genetics
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Cardiomegaly/prevention & control
- Cardiomegaly/chemically induced
- Cardiomegaly/physiopathology
- Rats
Collapse
Affiliation(s)
- Ensiyeh Velayati
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Institute of Neuroscience and Mental Health, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Institute of Neuroscience and Mental Health, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Institute of Neuroscience and Mental Health, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Ramezani-Aliakbari
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Neurophysiology Research Center, Institute of Neuroscience and Mental Health, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
15
|
Huot JR, Jamnick NA, Pin F, Livingston PD, Callaway CS, Bonetto A. GL261 glioblastoma induces delayed body weight gain and stunted skeletal muscle growth in young mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.635159. [PMID: 39990490 PMCID: PMC11844426 DOI: 10.1101/2025.02.10.635159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Introduction The survival rate for children and adolescents has increased to over 85%. However, there is limited understanding of the impact of pediatric cancers on muscle development and physiology. Given that brain tumors alone account for 26% of all pediatric cancers, this study aimed to investigate the skeletal muscle consequences of tumor growth in young mice. Methods C2C12 myotubes were co-cultured with GL261 murine glioblastoma cells to assess myotube size. GL261 cells were then injected subcutaneously into 4-week-old male C57BL/6J mice. Animals were euthanized 28 days post-GL261 implantation. Muscle function was tested in vivo and ex vivo . Muscle protein synthesis was measured via the SUnSET method, and gene/protein expression levels were assessed via Western blotting and qPCR. Results In vitro , the C2C12 cultures exposed to GL261 exhibited myotube atrophy, consistent with a disrupted anabolic/catabolic balance. In vivo , carcass, heart, and fat mass were significantly reduced in the tumor-bearing mice. Skeletal muscle growth was impeded in the GL261 hosts, along with smaller muscle CSA. Both in vivo muscle torque and the ex vivo EDL muscle force were unchanged. At molecular level, the tumor hosts displayed reduced muscle protein synthesis and increased muscle protein ubiquitination, in disagreement with decreased muscle ubiquitin ligase mRNA expression. Conclusions Overall, we showed that GL261 tumors impact the growth of pediatric mice by stunting skeletal muscle development, decreasing muscle mass, reducing muscle fiber size, diminishing muscle protein synthesis, and altering protein catabolism signaling.
Collapse
|
16
|
Zhang L, Yang S, Cui H, Hang C, Wang X, An L, Shan Z, Liang Z, Shao R, Tang Z. Hypothermia regulates mitophagy and apoptosis via PINK1/Parkin-VDAC 3 signaling pathway during oxygen-glucose deprivation/recovery injury. Sci Rep 2025; 15:4607. [PMID: 39920327 PMCID: PMC11806084 DOI: 10.1038/s41598-025-89176-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
Post-cardiac arrest brain injury (PCABI), as the main cause of high mortality and long-term disability in patients, induces mitochondrial damage and cell apoptosis. Hypothermia is well-known as an effective neuroprotective therapy, but its underlying mechanisms deserve further exploration. Previous study has demonstrated that hypothermia provides neuroprotection via increasing PINK1/Parkin-mediated mitophagy. However, whether hypothermia can regulate both apoptosis and mitophagy through the PINK1/Parkin-VDAC3 signaling pathway or not. In this study, BV2 mouse microglial cells were cultured under oxygen-glucose deprivation for 6 h following reperfusion with or without hypothermia for 2-4 h. Cell viability was examined by trypan blue stain. Mitophagy was observed by transmission electron microscope. Mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (mPTP) opening were determined respectively by JC-1 staining and BBcellProbe M61 staining using a flow cytometer. Expression of mitophagy-related proteins (Cleaved PINK1, Parkin, SQSTM1/p62, Beclin-1, LC3B II/LC3B I), apoptosis-related proteins (Bcl-2, Cytochrome C, caspase-3, cleaved caspase3) and VDAC3 were assessed using western blot analysis and quantitative real-time PCR. The interaction between Parkin and VDAC3 was confirmed by immunofluorescence colocalization. The results showed that hypothermia alleviated MMP damage, inhibited mPTP opening, then decreased cell apoptosis and activated mitophagy at 2 h after temperature intervention, which might be mediated by the PINK1/Parkin-VDAC3 signaling pathway. Moreover, the effects of hypothermia were reduced or reversed at 4 h after temperature intervention. In conclusion, the potential mechanisms of hypothermia during oxygen-glucose deprivation/recovery could be summarized as follows:1) At 2 h after temperature intervention, hypothermia provided neuroprotective effects via promoting mitophagy and reducing apoptosis through activating the PINK1/Parkin-VDAC3 signaling pathway. 2) The curative effect of hypothermia was timeliness. At 4 h after temperature intervention, hypothermia aggravated apoptosis through inhibiting Parkin recruitment to mitochondria and aggravating the release of Cyt C through open mPTP.
Collapse
Affiliation(s)
- Luying Zhang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Song Yang
- Department of Emergency Medicine, Beijing Huairou Hospital, Beijing, 101400, China
| | - Hao Cui
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Chenchen Hang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xingsheng Wang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Le An
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhenyu Shan
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhen Liang
- Department of Critical Care Medicine, Mi-Yun Teaching Hospital, Capital Medical University, Beijing, 101500, China
| | - Rui Shao
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Ziren Tang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
17
|
Wang J, Jiang J, Hu H, Chen L. MCU complex: Exploring emerging targets and mechanisms of mitochondrial physiology and pathology. J Adv Res 2025; 68:271-298. [PMID: 38417574 PMCID: PMC11785567 DOI: 10.1016/j.jare.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND Globally, the onset and progression of multiple human diseases are associated with mitochondrial dysfunction and dysregulation of Ca2+ uptake dynamics mediated by the mitochondrial calcium uniporter (MCU) complex, which plays a key role in mitochondrial dysfunction. Despite relevant studies, the underlying pathophysiological mechanisms have not yet been fully elucidated. AIM OF REVIEW This article provides an in-depth analysis of the current research status of the MCU complex, focusing on its molecular composition, regulatory mechanisms, and association with diseases. In addition, we conducted an in-depth analysis of the regulatory effects of agonists, inhibitors, and traditional Chinese medicine (TCM) monomers on the MCU complex and their application prospects in disease treatment. From the perspective of medicinal chemistry, we conducted an in-depth analysis of the structure-activity relationship between these small molecules and MCU and deduced potential pharmacophores and binding pockets. Simultaneously, key structural domains of the MCU complex in Homo sapiens were identified. We also studied the functional expression of the MCU complex in Drosophila, Zebrafish, and Caenorhabditis elegans. These analyses provide a basis for exploring potential treatment strategies targeting the MCU complex and provide strong support for the development of future precision medicine and treatments. KEY SCIENTIFIC CONCEPTS OF REVIEW The MCU complex exhibits varying behavior across different tissues and plays various roles in metabolic functions. It consists of six MCU subunits, an essential MCU regulator (EMRE), and solute carrier 25A23 (SLC25A23). They regulate processes, such as mitochondrial Ca2+ (mCa2+) uptake, mitochondrial adenosine triphosphate (ATP) production, calcium dynamics, oxidative stress (OS), and cell death. Regulation makes it a potential target for treating diseases, especially cardiovascular diseases, neurodegenerative diseases, inflammatory diseases, metabolic diseases, and tumors.
Collapse
Affiliation(s)
- Jin Wang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Jinyong Jiang
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou 416000, China
| | - Haoliang Hu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China; College of Medicine, Hunan University of Arts and Science, Changde 415000, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China.
| |
Collapse
|
18
|
Sakurai M, Kuwahara T. Canonical and noncanonical autophagy: involvement in Parkinson's disease. Front Cell Dev Biol 2025; 13:1518991. [PMID: 39949604 PMCID: PMC11821624 DOI: 10.3389/fcell.2025.1518991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Autophagy is the major degradation process in cells and is involved in a variety of physiological and pathological functions. While macroautophagy, which employs a series of molecular cascades to form ATG8-coated double membrane autophagosomes for degradation, remains the well-known type of canonical autophagy, microautophagy and chaperon-mediated autophagy have also been characterized. On the other hand, recent studies have focused on the functions of autophagy proteins beyond intracellular degradation, including noncanonical autophagy, also known as the conjugation of ATG8 to single membranes (CASM), and autophagy-related extracellular secretion. In particular, CASM is unique in that it does not require autophagy upstream mechanisms, while the ATG8 conjugation system is involved in a manner different from canonical autophagy. There have been many reports on the involvement of these autophagy-related mechanisms in neurodegenerative diseases, with Parkinson's disease (PD) receiving particular attention because of the important roles of several causative and risk genes, including LRRK2. In this review, we will summarize and discuss the contributions of canonical and noncanonical autophagy to cellular functions, with a special focus on the pathogenesis of PD.
Collapse
Affiliation(s)
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Behera BP, Mishra SR, Patra S, Mahapatra KK, Bhol CS, Panigrahi DP, Praharaj PP, Klionsky DJ, Bhutia SK. Molecular regulation of mitophagy signaling in tumor microenvironment and its targeting for cancer therapy. Cytokine Growth Factor Rev 2025:S1359-6101(25)00004-8. [PMID: 39880721 DOI: 10.1016/j.cytogfr.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Aberrations emerging in mitochondrial homeostasis are restrained by mitophagy to control mitochondrial integrity, bioenergetics signaling, metabolism, oxidative stress, and apoptosis. The mitophagy-accompanied mitochondrial processes that occur in a dysregulated condition act as drivers for cancer occurrence. In addition, the enigmatic nature of mitophagy in cancer cells modulates the cellular proteome, creating challenges for therapeutic interventions. Several reports found the role of cellular signaling pathways in cancer to modulate mitophagy to mitigate stress, immune checkpoints, energy demand, and cell death. Thus, targeting mitophagy to hinder oncogenic intracellular signaling by promoting apoptosis, in hindsight, might have an edge against cancer. This review highlights the receptors and adaptors, and the involvement of many proteins in mitophagy and their role in oncogenesis. It also provides insight into using mitophagy as a potential target for therapeutic intervention in various cancer types.
Collapse
Affiliation(s)
- Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India.
| |
Collapse
|
20
|
Shahidi S, Ramezani-Aliakbari K, Sarihi A, Heshmati A, Shiri E, Nosrati S, Hashemi SP, Bahrami M, Ramezani-Aliakbari F. Protective effects of olive oil against cardiac aging through mitophagy and apoptosis. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2025; 16:27-33. [PMID: 40094056 PMCID: PMC11905957 DOI: 10.30466/vrf.2024.2030624.4304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/05/2024] [Indexed: 03/19/2025]
Abstract
Cardiac mitochondrial dysfunction is an important feature of aged heart. However, there is still no potent agent to ameliorate cardiac function abnormalities in aged hosts. Olive oil (OLO), containing monounsaturated fatty acids, has diverse protective effects on the cardiovascular system, including anti-diabetic, anti-inflammatory, and anti-hypertensive effects. We evaluated the beneficial impacts of OLO against aging-related cardiac dysfunction. Wistar rats were randomly allotted into three groups with eight rats, including control, aged rats receiving D-galactose (D-GAL), and aged rats administrated with D-galactose plus OLO (D-GAL + OLO). Aged animals were received D-GAL at a dose of 150.00 mg kg-1 daily through intra-peritoneal injection for aging induction. The animals in D-GAL + OLO group were co-administrated with oral OLO at a dose of 1.00 mL kg-1 by gavage feeding daily. The administration term was eight weeks. A histological examination of heart tissue was performed. The heart tissues were also harvested to assay the oxidative stress and molecular parameters. The aged animals showed cardiac hypertrophy, increased malondialdehyde level and Bax expression, and reduced mitofusin 2, phosphatase and tensin homologue-induced putative kinase 1, dynamin-related protein 1, and Bcl2 expressions in comparison with the control animals. The OLO treatment ameliorated all these parameters. Overall, OLO could improve cardiac aging through reducing oxidative stress, enhancing genes mediated mitophagy, and improving genes mediated apoptosis in the heart.
Collapse
Affiliation(s)
- Siamak Shahidi
- Department of Physiology, School of Medicine, Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran;
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran;
| | | | - Abdolrahman Sarihi
- Department of Physiology, School of Medicine, Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran;
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran;
| | - Ali Heshmati
- Department of Nutrition and Food Safety, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran;
| | - Elham Shiri
- Department of Physiology, School of Medicine, Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran;
- Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran;
| | - Shiva Nosrati
- Department of Physiology, School of Medicine, Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran;
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran;
| | - Sayed Payam Hashemi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran;
| | - Mitra Bahrami
- Department of Islamic Studies, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Fatemeh Ramezani-Aliakbari
- Department of Physiology, School of Medicine, Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran;
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran;
| |
Collapse
|
21
|
Nazeen S, Wang X, Morrow A, Strom R, Ethier E, Ritter D, Henderson A, Afroz J, Stitziel NO, Gupta RM, Luk K, Studer L, Khurana V, Sunyaev SR. NERINE reveals rare variant associations in gene networks across multiple phenotypes and implicates an SNCA-PRL-LRRK2 subnetwork in Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631688. [PMID: 39829934 PMCID: PMC11741352 DOI: 10.1101/2025.01.07.631688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Gene networks encapsulate biological knowledge, often linked to polygenic diseases. While model system experiments generate many plausible gene networks, validating their role in human phenotypes requires evidence from human genetics. Rare variants provide the most straightforward path for such validation. While single-gene analyses often lack power due to rare variant sparsity, expanding the unit of association to networks offers a powerful alternative, provided it integrates network connections. Here, we introduce NERINE, a hierarchical model-based association test that integrates gene interactions that integrates gene interactions while remaining robust to network inaccuracies. Applied to biobanks, NERINE uncovers compelling network associations for breast cancer, cardiovascular diseases, and type II diabetes, undetected by single-gene tests. For Parkinson's disease (PD), NERINE newly substantiates several GWAS candidate loci with rare variant signal and synergizes human genetics with experimental screens targeting cardinal PD pathologies: dopaminergic neuron survival and alpha-synuclein pathobiology. CRISPRi-screening in human neurons and NERINE converge on PRL, revealing an intraneuronal α-synuclein/prolactin stress response that may impact resilience to PD pathologies.
Collapse
Affiliation(s)
- Sumaiya Nazeen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xinyuan Wang
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Autumn Morrow
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ronya Strom
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth Ethier
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dylan Ritter
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | | | - Jalwa Afroz
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Nathan O Stitziel
- Cardiovascular Division, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajat M Gupta
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Vikram Khurana
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Shamil R Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
22
|
Zhou J, Xi Y, Wu T, Zeng X, Yuan J, Peng L, Fu H, Zhou C. A potential therapeutic approach for ulcerative colitis: targeted regulation of mitochondrial dynamics and mitophagy through phytochemicals. Front Immunol 2025; 15:1506292. [PMID: 39840057 PMCID: PMC11747708 DOI: 10.3389/fimmu.2024.1506292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Mitochondria are important organelles that regulate cellular energy and biosynthesis, as well as maintain the body's response to environmental stress. Their dynamics and autophagy influence occurrence of cellular function, particularly under stressful conditions. They can generate reactive oxygen species (ROS) which is a major contributor to inflammatory diseases such as ulcerative colitis (UC). In this review, we discuss the key effects of mitochondrial dynamics and mitophagy on the pathogenesis of UC, with a particular focus on the cellular energy metabolism, oxidative stress, apoptosis, and immunoinflammatory activities. The therapeutic efficacy of existing drugs and phytochemicals targeting the mitochondrial pathway are discussed to reveal important insights for developing therapeutic strategies for treating UC. In addition, new molecular checkpoints with therapeutic potential are identified. We show that the integration of mitochondrial biology with the clinical aspects of UC may generate ideas for enhancing the clinical management of UC.
Collapse
Affiliation(s)
- Jianping Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Xi
- Zigong Hospital of Traditional Chinese Medicine, Zigong, China
| | - Ting Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ce Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Arora T, Sharma G, Prashar V, Singh R, Sharma A, Changotra H, Parkash J. Mechanistic Evaluation of miRNAs and Their Targeted Genes in the Pathogenesis and Therapeutics of Parkinson's Disease. Mol Neurobiol 2025; 62:91-108. [PMID: 38823001 DOI: 10.1007/s12035-024-04261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
MicroRNA (miRNA) are usually 18-25 nucleotides long non-coding RNA targeting post-transcriptional regulation of genes involved in various biological processes. The function of miRNA is essential for maintaining a homeostatic cellular condition, regulating autophagy, cellular motility, and inflammation. Dysregulation of miRNA is responsible for multiple disorders, including neurodegeneration, which has emerged as a severe problem in recent times and has verified itself as a life-threatening condition that can be understood by the continuous destruction of neurons affecting various cognitive and motor functions. Parkinson's disease (PD) is the second most common, permanently debilitating neurodegenerative disorder after Alzheimer's, mainly characterized by uncontrolled tremor, stiffness, bradykinesia or akinesia (slowness in movement), and post-traumatic stress disorder. PD is mainly caused by the demolition of the primary dopamine neurotransmitter secretory cells and dopaminergic or dopamine secretory neurons in the substantia nigra pars compacta of the midbrain, which are majorly responsible for motor functions. In this study, a systematic evaluation of research articles from year 2017 to 2022 was performed on multiple search engines, and lists of miRNA being dysregulated in PD in different body components were generated. This study highlighted miR-7, miR-124, miR-29 family, and miR-425, showing altered expression levels during PD's progression, further regulating the expression of multiple genes responsible for PD.
Collapse
Affiliation(s)
- Tania Arora
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Gaurav Sharma
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Vikash Prashar
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Randeep Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Arti Sharma
- Department of Computational Biology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143101, Punjab, India
| | - Jyoti Parkash
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
24
|
Argueti-Ostrovsky S, Barel S, Kahn J, Israelson A. VDAC1: A Key Player in the Mitochondrial Landscape of Neurodegeneration. Biomolecules 2024; 15:33. [PMID: 39858428 PMCID: PMC11762377 DOI: 10.3390/biom15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Voltage-Dependent Anion Channel 1 (VDAC1) is a mitochondrial outer membrane protein that plays a crucial role in regulating cellular energy metabolism and apoptosis by mediating the exchange of ions and metabolites between mitochondria and the cytosol. Mitochondrial dysfunction and oxidative stress are central features of neurodegenerative diseases. The pivotal functions of VDAC1 in controlling mitochondrial membrane permeability, regulating calcium balance, and facilitating programmed cell death pathways, position it as a key determinant in the delicate balance between neuronal viability and degeneration. Accordingly, increasing evidence suggests that VDAC1 is implicated in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and others. This review summarizes the current findings on the contribution of VDAC1 to neurodegeneration, focusing on its interactions with disease-specific proteins, such as amyloid-β, α-synuclein, and mutant SOD1. By unraveling the complex involvement of VDAC1 in neurodegenerative processes, this review highlights potential avenues for future research and drug development aimed at alleviating mitochondrial-related neurodegeneration.
Collapse
Affiliation(s)
- Shirel Argueti-Ostrovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Shir Barel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Joy Kahn
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
25
|
Shao L, Kong X, Lv S, Shu X, Ma X, Ai X, Yan D, Ying Y. FXR-regulated COX6A2 triggers mitochondrial apoptosis of pancreatic β-cell in type 2 diabetes. Cell Death Dis 2024; 15:920. [PMID: 39702527 DOI: 10.1038/s41419-024-07302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Pancreatic β-cell apoptosis plays a crucial role in the development of type 2 diabetes. Cytochrome c oxidase subunit 6A2 (COX6A2) and Farnesoid X Receptor (FXR) have been identified in pancreatic β-cells, however, whether they are involved in β-cell apoptosis is unclear. Here, we sought to investigate the role of FXR-regulated COX6A2 in diabetic β-cell apoptosis. We found that COX6A2 expression was increased in islets from diabetic animals, whereas FXR expression was suppressed. Notably, overexpression of COX6A2 facilitated β-cell apoptosis, whereas its deficiency attenuated this process and ameliorates type 2 diabetes, suggesting a pro-apoptotic role of COX6A2 in β-cells. Mechanistically, increased COX6A2 interacted with and enhanced the expression of voltage-dependent anion channel 1 (VDAC1), thereby promoting the mitochondrial translocation of Bax, leading to the release of cytochrome c from the mitochondria to the cytoplasm and ultimately causing β-cell apoptosis. Moreover, FXR negatively regulated COX6A2 expression through the inhibition of histone acetyltransferase p300 occupancy, diminishing histone H3 acetylation at lysine 27 on the Cox6a2 promoter. Furthermore, the deficiency of FXR intensified β-cell apoptosis under diabetic situations. Thus, it is probable that in diabetogenic environments, reduced FXR expression contributes to enhanced COX6A2 expression, culminating in β-cell apoptosis. These findings emphasize the essential involvement of the FXR/p300 pathway-controlled COX6A2 in β-cell apoptosis, revealing a previously undiscovered mechanism underlying diabetic β-cell apoptosis.
Collapse
Affiliation(s)
- Lianqi Shao
- Diabetes Institute, the Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis ZDSYS, Shenzhen University Medical School, Shenzhen, PR China
- Guangdong Key Laboratory for Biomedical Measurements and U1trasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical U1trasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, PR China
| | - Xiangchen Kong
- Diabetes Institute, the Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis ZDSYS, Shenzhen University Medical School, Shenzhen, PR China.
| | - Simian Lv
- Diabetes Institute, the Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis ZDSYS, Shenzhen University Medical School, Shenzhen, PR China
- School of Basic Medicine, Jiamusi University, Jiamusi, PR China
| | - Xingsheng Shu
- Diabetes Institute, the Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis ZDSYS, Shenzhen University Medical School, Shenzhen, PR China
| | - Xiaosong Ma
- Diabetes Institute, the Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis ZDSYS, Shenzhen University Medical School, Shenzhen, PR China
| | - Xiaojiao Ai
- Diabetes Institute, the Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis ZDSYS, Shenzhen University Medical School, Shenzhen, PR China
| | - Dan Yan
- Diabetes Institute, the Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis ZDSYS, Shenzhen University Medical School, Shenzhen, PR China.
| | - Ying Ying
- Diabetes Institute, the Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis ZDSYS, Shenzhen University Medical School, Shenzhen, PR China.
| |
Collapse
|
26
|
Ranasinghe T, Seo Y, Park HC, Choe SK, Cha SH. Rotenone exposure causes features of Parkinson`s disease pathology linked with muscle atrophy in developing zebrafish embryo. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136215. [PMID: 39461288 DOI: 10.1016/j.jhazmat.2024.136215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Parkinson's disease (PD) is associated with both genetic and environmental factors; however, sporadic forms of PD account for > 90 % of cases, and PD prevalence has doubled in the past 25 years. Depending on the importance of the environmental factors, various neurotoxins are used to induce PD both in vivo and in vitro. Unlike other neurodegenerative diseases, PD can be induced in vivo using specific neurotoxic chemicals. However, no chemically induced PD model is available because of the sporadic nature of PD. Rotenone is a pesticide that accelerates the induction of PD and exhibits the highest toxicity in fish, unlike other pesticides. Therefore, in this study, we aimed to establish a model exhibiting PD pathologies such as dysfunction of DArgic neuron, aggregation of ɑ-synuclein, and behavioral abnormalities, which are known features of PD pathology, by rotenone exposure at an environmentally relevant concentration (30 nM) in developing zebrafish embryos. Our results provide direct evidence for the association between PD and muscle degeneration by confirming rotenone-induced muscle atrophy. Therefore, we conclude that the rotenone-induced model presents non-motor and motor defects with extensive studies related to muscle atrophy.
Collapse
Affiliation(s)
- Thilini Ranasinghe
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea
| | - Yongbo Seo
- Department of Biomedical Sciences, Korea University, Ansan 15328, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University, Ansan 15328, Republic of Korea
| | - Seong-Kyu Choe
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea; Sacopenia Total Solution Center, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Seon-Heui Cha
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea; Department of Aquatic Life Medicine, Hanseo University, Seosan-si 31962, Republic of Korea; Institute for International Fisheries Science, Hanseo University, Seosan-si 31962, Republic of Korea.
| |
Collapse
|
27
|
Song JQ, Shen LJ, Wang HJ, Liu QB, Ye LB, Liu K, Shi L, Cai B, Lin HS, Pang T. Discovery of Balasubramide Derivative with Tissue-Specific Anti-Inflammatory Activity Against Acute Lung Injury by Targeting VDAC1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410550. [PMID: 39556713 DOI: 10.1002/advs.202410550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/29/2024] [Indexed: 11/20/2024]
Abstract
Macrophage-mediated inflammatory responses including pyroptosis are involved in the pathogenesis of sepsis and acute lung injury (ALI), for which there are currently no effective therapeutic treatments. The natural product (+)-Balasubramide is an eight-membered lactam compound extracted from the leaves of the Sri Lanka plant Clausena Indica and has shown anti-inflammatory activities, but its poor pharmacokinetic properties limit its further application for ALI. In this study, a compound (+)3C-20 is discovered with improved both pharmacokinetic properties and anti-inflammatory activity from a series of (+)-Balasubramide derivatives. The compound (+)3C-20 exhibits a markedly enhanced inhibitory effect against LPS-induced expressions of pro-inflammatory factors in mouse macrophages and human PBMCs from ALI patients and shows a preferable lung tissue distribution in mice. (+)3C-20 remarkably attenuates LPS-induced ALI through lung tissue-specific anti-inflammatory actions. Mechanistically, a chemical proteomics study shows that (+)3C-20 directly binds to mitochondrial VDAC1 and inhibits VDAC1 oligomerization to block mtDNA release, further preventing NLRP3 inflammasome activation. These findings identify (+)3C-20 as a novel VDAC1 inhibitor with promising therapeutic potential for ALI associated with inflammation.
Collapse
Affiliation(s)
- Jin-Qian Song
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Li-Juan Shen
- Intensive Care Unit, Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, P. R. China
| | - Hao-Jie Wang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Qi-Bing Liu
- Department of Pharmacy, the First Affiliated Hospital of Hainan Medical University & Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, Hainan Medical University, Haikou, 571199, P.R. China
| | - Lian-Bao Ye
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Kui Liu
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Lei Shi
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian, 116044, P. R. China
| | - Bin Cai
- Intensive Care Unit, Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, P. R. China
| | - Han-Sen Lin
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, P. R. China
| |
Collapse
|
28
|
Safreena N, Nair IC, Chandra G. Therapeutic potential of Parkin and its regulation in Parkinson's disease. Biochem Pharmacol 2024; 230:116600. [PMID: 39500382 DOI: 10.1016/j.bcp.2024.116600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/14/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the midbrain substantia nigra, resulting in motor and non-motor symptoms. While the exact etiology of PD remains elusive, a growing body of evidence suggests that dysfunction in the parkin protein plays a pivotal role in the pathogenesis of the disease. Parkin is an E3 ubiquitin ligase that ubiquitinates substrate proteins to control a number of crucial cellular processes including protein catabolism, immune response, and cellular apoptosis.While autosomal recessive mutations in the PARK2 gene, which codes for parkin, are linked to an inherited form of early-onset PD, heterozygous mutations in PARK2 have also been reported in the more commonly occurring sporadic PD cases. Impairment of parkin's E3 ligase activity is believed to play a pathogenic role in both familial and sporadic forms of PD.This article provides an overview of the current understanding of the mechanistic basis of parkin's E3 ligase activity, its major physiological role in controlling cellular functions, and how these are disrupted in familial and sporadic PD. The second half of the manuscript explores the currently available and potential therapeutic strategies targeting parkin structure and/or function in order to slow down or mitigate the progressive neurodegeneration in PD.
Collapse
Affiliation(s)
- Narukkottil Safreena
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India
| | - Indu C Nair
- SAS SNDP Yogam College, Konni, Pathanamthitta 689691, Kerala, India
| | - Goutam Chandra
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India.
| |
Collapse
|
29
|
Khanra S, Singh S, Singh TG. Mechanistic exploration of ubiquitination-mediated pathways in cerebral ischemic injury. Mol Biol Rep 2024; 52:22. [PMID: 39607439 DOI: 10.1007/s11033-024-10123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The ubiquitin-proteasome system (UPS) plays a pivotal role in regulating protein homeostasis and cellular processes, including protein degradation, trafficking, DNA repair, and cell signaling. During cerebral ischemia, ischemic conditions profoundly disrupt UPS activity, leading to proteasomal dysfunction and the accumulation of abnormal proteins. This imbalance contributes to neuronal injury and cell death observed in ischemic stroke. The UPS is intricately linked to various signaling pathways crucial for neuronal survival, inflammation, and cellular stress response, such as NF-κB, TRIM, TRIP, JAK-STAT, PI3K/Akt, and ERK1/2. Alterations in the ubiquitination process can significantly impact the activation and regulation of these pathways, exacerbating ischemic brain injury. Therapeutic approaches targeting the UPS in cerebral ischemia aim to rebalance protein levels, reduce proteotoxic stress, and mitigate neuronal injury. Strategies include proteasome inhibition, targeting specific ubiquitin ligases and deubiquitinating enzymes, and modulating ubiquitination-mediated regulation of key signaling pathways implicated in ischemia-induced pathophysiology. Therefore, the present review discusses the molecular mechanisms underlying UPS dysfunction in ischemic stroke is crucial for developing effective therapeutic interventions. Modulating ubiquitination-mediated pathways through therapeutic interventions targeting specific UPS components holds significant promise for mitigating ischemic brain injury and promoting neuroprotection and functional recovery in patients with cerebral ischemia.
Collapse
Affiliation(s)
- Supriya Khanra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
30
|
Chan SN, Pek JW. Can stable introns and noncoding RNAs be harnessed to improve health through activation of mitohormesis? Bioessays 2024; 46:e2400143. [PMID: 39301980 DOI: 10.1002/bies.202400143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Ever since their introduction a decade ago, stable introns, a type of noncoding (nc)RNAs, are found to be key players in different important cellular processes acting through regulation of gene expression and feedback loops to maintain cellular homeostasis. Despite being commonly regarded as useless byproducts, recent studies in yeast suggested that stable introns are essential for cell survivability under starvation. In Drosophila, we found that a stable intron, sisR-1, has a direct effect in regulating mitochondrial dynamics during short-term fasting and subsequently improved overall oocyte quality. We speculated that the beneficial effects implicated by sisR-1 is through the activation of mitohormesis, an interesting phenomenon in mitochondrial biology. Mitohormesis is suggested to improve health span and lifespan of cells and organisms, but the involvement of ncRNAs is not well-documented. Here, we discuss the potential role of sisR-1 and other ncRNAs in activating mitohormesis and the possible applications in improving cellular and organismal health.
Collapse
Affiliation(s)
- Seow Neng Chan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
| | - Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
31
|
Zhao Z, Song X, Wang Y, Yu L, Huang G, Li Y, Zong R, Liu T, Ji Q, Zheng Y, Liu B, Zhu Q, Chen L, Gao C, Liu H. E3 ubiquitin ligase TRIM31 alleviates dopaminergic neurodegeneration by promoting proteasomal degradation of VDAC1 in Parkinson's Disease model. Cell Death Differ 2024; 31:1410-1421. [PMID: 38918620 PMCID: PMC11519394 DOI: 10.1038/s41418-024-01334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the pathogenesis of Parkinson's disease (PD). As a mitochondrial governor, voltage-dependent anion channel 1 (VDAC1) is critical for cell survival and death signals and implicated in neurodegenerative diseases. However, the mechanisms of VDAC1 regulation are poorly understood and the role of tripartite motif-containing protein 31 (TRIM31), an E3 ubiquitin ligase which is enriched in mitochondria, in PD remains unclear. In this study, we found that TRIM31-/- mice developed age associated motor defects and dopaminergic (DA) neurodegeneration spontaneously. In addition, TRIM31 was markedly reduced both in nigrostriatal region of PD mice induced by MPTP and in SH-SY5Y cells stimulated by MPP+. TRIM31 deficiency significantly aggravated DA neurotoxicity induced by MPTP. Mechanistically, TRIM31 interacted with VDAC1 and catalyzed the K48-linked polyubiquitination to degrade it through its E3 ubiquitin ligase activity. In conclusion, we demonstrated for the first time that TRIM31 served as an important regulator in DA neuronal homeostasis by facilitating VDAC1 degradation through the ubiquitin-proteasome pathway. Our study identified TRIM31 as a novel potential therapeutic target and pharmaceutical intervention to the interaction between TRIM31 and VDAC1 may provide a promising strategy for PD.
Collapse
Affiliation(s)
- Ze Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Xiaomeng Song
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Yimeng Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Lu Yu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Gan Huang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Yiquan Li
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Runzhe Zong
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Tengfei Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Qiuran Ji
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Qingfen Zhu
- Shandong Institute for Food and Drug Control, Jinan, Shandong, PR China
| | - Lin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China.
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, PR China.
| | - Huiqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China.
- Department of Rehabilitation Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
32
|
Chen C, Xiang A, Lin X, Guo J, Liu J, Hu S, Rui T, Ye Q. Mitophagy: insights into its signaling molecules, biological functions, and therapeutic potential in breast cancer. Cell Death Discov 2024; 10:457. [PMID: 39472438 PMCID: PMC11522701 DOI: 10.1038/s41420-024-02226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Mitophagy, a form of selective autophagy that removes damaged or dysfunctional mitochondria, plays a crucial role in maintaining mitochondrial and cellular homeostasis. Recent findings suggest that defective mitophagy is closely associated with various diseases, including breast cancer. Moreover, a better understanding of the multifaceted roles of mitophagy in breast cancer progression is crucial for the treatment of this disease. Here, we will summarize the molecular mechanisms of mitophagy process. In addition, we highlight the expression patterns and roles of mitophagy-related signaling molecules in breast cancer progression and the potential implications of mitophagy for the development of breast cancer, aiming to provide better therapeutic strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Cong Chen
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Aizhai Xiang
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xia Lin
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jufeng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jian Liu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Shufang Hu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Tao Rui
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Qianwei Ye
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| |
Collapse
|
33
|
Ryan EM, Norinskiy MA, Bracken AK, Lueders EE, Chen X, Fu Q, Anderson ET, Zhang S, Abbasov ME. Activity-Based Acylome Profiling with N-(Cyanomethyl)- N-(phenylsulfonyl)amides for Targeted Lysine Acylation and Post-Translational Control of Protein Function in Cells. J Am Chem Soc 2024; 146:27622-27643. [PMID: 39348182 PMCID: PMC11899832 DOI: 10.1021/jacs.4c09073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Lysine acylations are ubiquitous and structurally diverse post-translational modifications that vastly expand the functional heterogeneity of the human proteome. Hence, the targeted acylation of lysine residues has emerged as a strategic approach to exert biomimetic control over the protein function. However, existing strategies for targeted lysine acylation in cells often rely on genetic intervention, recruitment of endogenous acylation machinery, or nonspecific acylating agents and lack methods to quantify the magnitude of specific acylations on a global level. In this study, we develop activity-based acylome profiling (ABAP), a chemoproteomic strategy that exploits elaborate N-(cyanomethyl)-N-(phenylsulfonyl)amides and lysine-centric probes for site-specific introduction and proteome-wide mapping of posttranslational lysine acylations in human cells. Harnessing this framework, we quantify various artificial acylations and rediscover numerous endogenous lysine acylations. We validate site-specific acetylation of target lysines and establish a structure-activity relationship for N-(cyanomethyl)-N-(phenylsulfonyl)amides in proteins from diverse structural and functional classes. We identify paralog-selective chemical probes that acetylate conserved lysines within interferon-stimulated antiviral RNA-binding proteins, generating de novo proteoforms with obstructed RNA interactions. We further demonstrate that targeted acetylation of a key enzyme in retinoid metabolism engenders a proteoform with a conformational change in the protein structure, leading to a gain-of-function phenotype and reduced drug potency. These findings underscore the versatility of our strategy in biomimetic control over protein function through targeted delivery and global profiling of endogenous and artificial lysine acylations, potentially advancing therapeutic modalities and our understanding of biological processes orchestrated by these post-translational modifications.
Collapse
Affiliation(s)
- Elizabeth M Ryan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michael A Norinskiy
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Amy K Bracken
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Emma E Lueders
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xueer Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Qin Fu
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Elizabeth T Anderson
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Mikail E Abbasov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
34
|
Abraham O, Ben-Dor S, Goliand I, Haffner-Krausz R, Colaiuta SP, Kovalenko A, Yaron A. Siah3 acts as a physiological mitophagy suppressor that facilitates axonal degeneration. Sci Signal 2024; 17:eadn5805. [PMID: 39378286 DOI: 10.1126/scisignal.adn5805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/27/2024] [Indexed: 10/10/2024]
Abstract
Mitophagy eliminates dysfunctional mitochondria, and defects in this cellular housekeeping mechanism are implicated in various age-related diseases. Here, we found that mitophagy suppression by the protein Siah3 promoted developmental axonal remodeling in mice. Siah3-deficient mice displayed increased peripheral sensory innervation. Cultured Siah3-deficient sensory neurons exhibited delays in both axonal degeneration and caspase-3 activation in response to withdrawal of nerve growth factor. Mechanistically, Siah3 was transcriptionally induced by the loss of trophic support and formed a complex with the cytosolic E3 ubiquitin ligase parkin, a core component of mitophagy, in transfected cells. Axons of Siah3-deficient neurons mounted profound mitophagy upon initiation of degeneration but not under basal conditions. Neurons lacking both Siah3 and parkin did not exhibit the delay in trophic deprivation-induced axonal degeneration or the induction of axonal mitophagy that was seen in Siah3-deficient neurons. Our findings reveal that mitophagy regulation acts as a gatekeeper of a physiological axon elimination program.
Collapse
Affiliation(s)
- Omer Abraham
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Inna Goliand
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Rebecca Haffner-Krausz
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 761000, Israel
| | | | - Andrew Kovalenko
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Avraham Yaron
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 761000, Israel
| |
Collapse
|
35
|
Hushmandi K, Einollahi B, Aow R, Suhairi SB, Klionsky DJ, Aref AR, Reiter RJ, Makvandi P, Rabiee N, Xu Y, Nabavi N, Saadat SH, Farahani N, Kumar AP. Investigating the interplay between mitophagy and diabetic neuropathy: Uncovering the hidden secrets of the disease pathology. Pharmacol Res 2024; 208:107394. [PMID: 39233055 PMCID: PMC11934918 DOI: 10.1016/j.phrs.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitophagy, the cellular process of selectively eliminating damaged mitochondria, plays a crucial role in maintaining metabolic balance and preventing insulin resistance, both key factors in type 2 diabetes mellitus (T2DM) development. When mitophagy malfunctions in diabetic neuropathy, it triggers a cascade of metabolic disruptions, including reduced energy production, increased oxidative stress, and cell death, ultimately leading to various complications. Thus, targeting mitophagy to enhance the process may have emerged as a promising therapeutic strategy for T2DM and its complications. Notably, plant-derived compounds with β-cell protective and mitophagy-stimulating properties offer potential as novel therapeutic agents. This review highlights the intricate mechanisms linking mitophagy dysfunction to T2DM and its complications, particularly neuropathy, elucidating potential therapeutic interventions for this debilitating disease.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rachel Aow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suhana Binte Suhairi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Pooyan Makvandi
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
36
|
D'Amico AG, Maugeri G, Magrì B, Bucolo C, D'Agata V. Targeting the PINK1/Parkin pathway: A new perspective in the prevention and therapy of diabetic retinopathy. Exp Eye Res 2024; 247:110024. [PMID: 39117133 DOI: 10.1016/j.exer.2024.110024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes characterized by neurovascular impairment of the retina. The dysregulation of the mitophagy process occurs before apoptotic cell death and the appearance of vascular damage. In particular, mitochondrial alterations happen during DR development, supporting the hypothesis that mitophagy is negatively correlated to disease progression. This process is mainly regulated by the PTEN-induced putative kinase protein 1 (PINK1)/Parkin pathway whose activation promotes mitophagy. In this review, we will summarize the evidence reported in the literature demonstrating the involvement of the PINK1/Parkin pathway in diabetic retinopathy-induced retinal degeneration.
Collapse
Affiliation(s)
- Agata Grazia D'Amico
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100, Catania, Italy
| | - Benedetta Magrì
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100, Catania, Italy.
| |
Collapse
|
37
|
Deng Y, Xiao J, Xie J, Sun J, Liu H, Huang X, Cao Z. VDAC1-enriched apoptotic extracellular vesicles emerge as an autophagy activator orchestrating PDLSC-based bone regeneration. CHEMICAL ENGINEERING JOURNAL 2024; 497:154625. [DOI: 10.1016/j.cej.2024.154625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2025]
|
38
|
Xia J, Zhang T, Sun Y, Huang Z, Shi D, Qin D, Yang X, Liu H, Yao G, Wei L, Chang X, Gao J, Guo Y, Hou XY. Suppression of neuronal CDK9/p53/VDAC signaling provides bioenergetic support and improves post-stroke neuropsychiatric outcomes. Cell Mol Life Sci 2024; 81:384. [PMID: 39235466 PMCID: PMC11377386 DOI: 10.1007/s00018-024-05428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Bioenergy decline occurs with reperfusion following acute ischemic stroke. However, the molecular mechanisms that limit energy metabolism and their impact on post-stroke cognitive and emotional complications are still unclear. In the present study, we demonstrate that the p53 transcriptional response is responsible for neuronal adenosine triphosphate (ATP) deficiency and progressively neuropsychiatric disturbances, involving the downregulation of mitochondrial voltage-dependent anion channels (VDACs). Neuronal p53 transactivated the promoter of microRNA-183 (miR-183) cluster, thereby upregulating biogenesis of miR-183-5p (miR-183), miR-96-5p (miR-96), and miR-182-5p. Both miR-183 and miR-96 directly targeted and post-transcriptionally suppressed VDACs. Neuronal ablation of p53 protected against ATP deficiency and neurological deficits, whereas post-stroke rescue of miR-183/VDAC signaling reversed these benefits. Interestingly, cyclin-dependent kinase 9 (CDK9) was found to be enriched in cortical neurons and upregulated the p53-induced transcription of the miR-183 cluster in neurons after ischemia. Post-treatment with the CDK9 inhibitor oroxylin A promoted neuronal ATP production mainly through suppressing the miR-183 cluster/VDAC axis, further improved long-term sensorimotor abilities and spatial memory, and alleviated depressive-like behaviors in mice following stroke. Our findings reveal an intrinsic CDK9/p53/VDAC pathway that drives neuronal bioenergy decline and underlies post-stroke cognitive impairment and depression, thus highlighting the therapeutic potential of oroxylin A for better outcomes.
Collapse
Affiliation(s)
- Jing Xia
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Tingting Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Ying Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Zhu Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Dingfang Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Dongshen Qin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xuejun Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Hao Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Guiying Yao
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Libin Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xiaoai Chang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jun Gao
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Yongjian Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
- School of Biopharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Xiao-Yu Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
39
|
Ma Y, Sun X, Yao X. The role and mechanism of VDAC1 in type 2 diabetes: An underestimated target of environmental pollutants. Mitochondrion 2024; 78:101929. [PMID: 38986923 DOI: 10.1016/j.mito.2024.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/08/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disease that accounts for more than 90% of diabetic patients. Its main feature is hyperglycemia due to insulin resistance or insulin deficiency. With changes in diet and lifestyle habits, the incidence of T2D in adolescents has burst in recent decades. The deterioration in the exposure to the environmental pollutants further aggravates the prevalence of T2D, and consequently, it imposes a significant economic burden. Therefore, early prevention and symptomatic treatment are essential to prevent diabetic complications. Mitochondrial number and electron transport chain activity are decreased in the patients with T2D. Voltage-Dependent Anion Channel 1 (VDAC1), as a crucial channel protein on the outer membrane of mitochondria, regulates signal transduction between mitochondria and other cellular components, participating in various biological processes. When VDAC1 exists in oligomeric form, it additionally facilitates the entry and exit of macromolecules into and from mitochondria, modulating insulin secretion. We summarize and highlight the interplay between VDAC1 and T2D, especially in the environmental pollutants-related T2D, shed light on the potential therapeutic implications of targeting VDAC1 monomers and oligomers, providing a new possible target for the treatment of T2D.
Collapse
Affiliation(s)
- Yu Ma
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China
| | - Xiance Sun
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China
| | - Xiaofeng Yao
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China.
| |
Collapse
|
40
|
Luo X, Xie X, Zhang L, Shi Y, Fu B, Yuan L, Zhang Y, Jiang Y, Ke W, Yang B. Uncovering the mechanisms of host mitochondrial cardiolipin release in syphilis: Insights from human microvascular endothelial cells. Int J Med Microbiol 2024; 316:151627. [PMID: 38908301 DOI: 10.1016/j.ijmm.2024.151627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024] Open
Abstract
The release of host mitochondrial cardiolipin is believed to be the main factor that contributes to the production of anti-cardiolipin antibodies in syphilis. However, the precise mechanism by which mitochondria release cardiolipin in this context remains elusive. This study aimed to elucidate the mechanisms underlying mitochondrial cardiolipin release in syphilis. We conducted a cardiolipin quantitative assay and immunofluorescence analysis to detect mitochondrial cardiolipin release in human microvascular endothelial cells (HMEC-1), with and without Treponema pallidum (Tp) infection. Furthermore, we explored apoptosis, a key mechanism for mitochondrial cardiolipin release. The potential mediator molecules were then analyzed through RNA-sequence and subsequently validated using in vitro knockout techniques mediated by CRISPR-Cas9 and pathway-specific inhibitors. Our findings confirm that live-Tp is capable of initiating the release of mitochondrial cardiolipin, whereas inactivated-Tp does not exhibit this capability. Additionally, apoptosis detection further supports the notion that the release of mitochondrial cardiolipin occurs independently of apoptosis. The RNA-sequencing results indicated that microtubule-associated protein2 (MAP2), an axonogenesis and dendrite development gene, was up-regulated in HMEC-1 treated with Tp, which was further confirmed in syphilitic lesions by immunofluorescence. Notably, genetic knockout of MAP2 inhibited Tp-induced mitochondrial cardiolipin release in HMEC-1. Mechanically, Tp-infection regulated MAP2 expression via the MEK-ERK-HES1 pathway, and MEK/ERK phosphorylation inhibitors effectively block Tp-induced mitochondrial cardiolipin release. This study demonstrated that the infection of live-Tp enhanced the expression of MAP2 via the MEK-ERK-HES1 pathway, thereby contributing to our understanding of the role of anti-cardiolipin antibodies in the diagnosis of syphilis.
Collapse
Affiliation(s)
- Xi Luo
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Xiaoyuan Xie
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, PR China
| | - Litian Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Yanqiang Shi
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Bo Fu
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Liyan Yuan
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Yan Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Yinbo Jiang
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China.
| | - Wujian Ke
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China.
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
41
|
Gao M, Zhu H, Xu H, Jin X, Zheng G, Zhu J, Gu C, Wang X. PGK1 can affect the prognosis and development of bladder cancer. Cancer Med 2024; 13:e70242. [PMID: 39315723 PMCID: PMC11420942 DOI: 10.1002/cam4.70242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/05/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Previous studies have demonstrated that the glycolytic enzyme phosphoglycerate kinase 1 (PGK1) can promote tumor development. This study sought to investigate the specific role of PGK1 in bladder cancer (BLCA). METHODS Public databases and immunohistochemistry assays were utilized to analyze the expression of PGK1 in BLCA and its prognostic significance. Cell proliferation was assessed through CCK-8 and colony formation assays, while the level of metastasis was evaluated using transwell migration experiments. Additionally, IC50 experiments were conducted to assess the impact of PGK1 on cisplatin sensitivity. RESULTS The mRNA and protein expression levels of PGK1 were significantly upregulated in BLCA. Cox proportional hazards model analysis revealed that PGK1 and T stage were independent prognostic factors for BLCA patients. Both CCK-8 and colony assays demonstrated that PGK1 promotes proliferation. Furthermore, a positive correlation was observed between PGK1 and Ki67, a proliferation index. Transwell migration assays confirmed the ability of PGK1 to enhance metastasis. Finally, PGK1 increased the IC50 associated with cisplatin treatment in BLCA. CONCLUSION Collectively, these findings suggest that PGK1 may hold clinical value in predicting BLCA prognosis and improving the outcomes of this patient population.
Collapse
Affiliation(s)
- Mingde Gao
- Department of Urology, Affiliated Tumor Hospital of Nantong University and Nantong Tumor Hospital, Nantong, People's Republic of China
| | - Haixia Zhu
- Department of Central Laboratory, Affiliated Tumor Hospital of Nantong University and Nantong Tumor Hospital, Nantong, People's Republic of China
| | - Haifei Xu
- Department of Urology, Affiliated Tumor Hospital of Nantong University and Nantong Tumor Hospital, Nantong, People's Republic of China
| | - Xiaoxia Jin
- Department of Pathology, Affiliated Tumor Hospital of Nantong University and Nantong Tumor Hospital, Nantong, People's Republic of China
| | - Guihua Zheng
- Department of Pathology, Affiliated Tumor Hospital of Nantong University and Nantong Tumor Hospital, Nantong, People's Republic of China
| | - Jinfeng Zhu
- Department of Urology, Affiliated Tumor Hospital of Nantong University and Nantong Tumor Hospital, Nantong, People's Republic of China
| | - Chunyan Gu
- Department of Pathology, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, People's Republic of China
| | - Xiaolin Wang
- Department of Urology, Affiliated Tumor Hospital of Nantong University and Nantong Tumor Hospital, Nantong, People's Republic of China
| |
Collapse
|
42
|
Liu WS, Li RM, Le YH, Zhu ZL. Construction of a mitophagy-related prognostic signature for predicting prognosis and tumor microenvironment in lung adenocarcinoma. Heliyon 2024; 10:e35305. [PMID: 39170577 PMCID: PMC11336613 DOI: 10.1016/j.heliyon.2024.e35305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Background Mitophagy is the selective degradation of mitochondria by autophagy. It becomes increasingly clear that mitophagy pathways are important for cancer cells to adapt to their high-energy needs. However, which genes associated with mitophagy could be used to prognosis cancer is unknown. Methods We created a clinical prognostic model using mitophagy-related genes (MRGs) in lung adenocarcinoma (LUAD) patients for the first time, and we employed bioinformatics methods to search for biomarkers that affect the progression and prognosis of LUAD. Transcriptome data for LUAD were obtained from The Cancer Genome Atlas (TCGA) database, and additional expression data from LUAD patients were sourced from the Gene Expression Omnibus (GEO) database. Furthermore, 25 complete MRGs were identified based on annotations from the MSigDB database. Results A comparison of the mitophagy scores between the groups with high and low scores was done using receiver operating characteristic (ROC) curves, which also revealed the differential gene expression patterns between the two groups. Using Kaplan-Meier analysis, two prognostic MRGs from the groups with high and low mitophagy scores were identified: TOMM40 and VDAC1. Using univariate and multivariate Cox regression, the relationship between the expression levels of these two genes and prognostic clinical features of LUAD was examined further.The prognosis of LUAD patients was shown to be significantly correlated (P < 0.05) with the expression levels of these two genes. Conclusions Our prognostic model would improve the prognosis of LUAD and guide clinical treatments.
Collapse
Affiliation(s)
- Wu-Sheng Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital. No. 16, Meiguan Avenue, Zhanggong, Ganzhou, Jiangxi, 341000, PR China
| | - Ru-Mei Li
- Department of Endocrinology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital. No. 16, Meiguan Avenue, Zhanggong, Ganzhou, Jiangxi, 341000, PR China
| | - Yong-Hong Le
- Department of Respiratory and Critical Care Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital. No. 16, Meiguan Avenue, Zhanggong, Ganzhou, Jiangxi, 341000, PR China
| | - Zan-Lei Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital. No. 16, Meiguan Avenue, Zhanggong, Ganzhou, Jiangxi, 341000, PR China
| |
Collapse
|
43
|
Gąssowska-Dobrowolska M, Olech-Kochańczyk G, Culmsee C, Adamczyk A. Novel Insights into Parkin-Mediated Mitochondrial Dysfunction and "Mito-Inflammation" in α-Synuclein Toxicity. The Role of the cGAS-STING Signalling Pathway. J Inflamm Res 2024; 17:4549-4574. [PMID: 39011416 PMCID: PMC11249072 DOI: 10.2147/jir.s468609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
The prevalence of age-related neurodegenerative diseases, such as Parkinson's disease (PD) and related disorders continues to grow worldwide. Increasing evidence links intracellular inclusions of misfolded alpha-synuclein (α-syn) aggregates, so-called Lewy bodies (LB) and Lewy neuritis, to the progressive pathology of PD and other synucleinopathies. Our previous findings established that α-syn oligomers induce S-nitrosylation and deregulation of the E3-ubiquitin ligase Parkin, leading to mitochondrial disturbances in neuronal cells. The accumulation of damaged mitochondria as a consequence, together with the release of mitochondrial-derived damage-associated molecular patterns (mtDAMPs) could activate the innate immune response and induce neuroinflammation ("mito-inflammation"), eventually accelerating neurodegeneration. However, the molecular pathways that transmit pro-inflammatory signals from damaged mitochondria are not well understood. One of the proposed pathways could be the cyclic GMP-AMP synthase (cGAS) - stimulator of interferon genes (STING) (cGAS-STING) pathway, which plays a pivotal role in modulating the innate immune response. It has recently been suggested that cGAS-STING deregulation may contribute to the development of various pathological conditions. Especially, its excessive engagement may lead to neuroinflammation and appear to be essential for the development of neurodegenerative brain diseases, including PD. However, the precise molecular mechanisms underlying cGAS-STING pathway activation in PD and other synucleinopathies are not fully understood. This review focuses on linking mitochondrial dysfunction to neuroinflammation in these disorders, particularly emphasizing the role of the cGAS-STING signaling. We propose the cGAS-STING pathway as a critical driver of inflammation in α-syn-dependent neurodegeneration and hypothesize that cGAS-STING-driven "mito-inflammation" may be one of the key mechanisms promoting the neurodegeneration in PD. Understanding the molecular mechanisms of α-syn-induced cGAS-STING-associated "mito-inflammation" in PD and related synucleinopathies may contribute to the identification of new targets for the treatment of these disorders.
Collapse
Affiliation(s)
| | - Gabriela Olech-Kochańczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior - CMBB, University of Marburg, Marburg, Germany
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
44
|
Bischof L, Schweitzer F, Schmitz HP, Heinisch JJ. The small yeast GTPase Rho5 requires specific mitochondrial outer membrane proteins for translocation under oxidative stress and interacts with the VDAC Por1. Eur J Cell Biol 2024; 103:151405. [PMID: 38503132 DOI: 10.1016/j.ejcb.2024.151405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
Yeast Rho5 is a small GTPase which mediates the response to nutrient and oxidative stress, and triggers mitophagy and apoptosis. We here studied the rapid translocation of a GFP-tagged Rho5 to mitochondria under such stress conditions by live-cell fluorescence microscopy in the background of strains lacking different mitochondrial outer membrane proteins (MOMP). Fun14, Msp1 and Alo1 were found to be required for efficient recruitment of the GTPase, whereas translocation of Dck1 and Lmo1, the subunits of its dimeric GDP/GTP exchange factor (GEF), remained unaffected. An influence of the voltage-dependent anion channel (VDAC) Por1 on the association of GFP-Rho5 with mitochondria under oxidative stress conditions appeared to be strain-dependent. However, epistasis analyses and bimolecular fluorescence complementation (BiFC) studies indicate a genetic and physical interaction. All four strains lacking a single MOMP were investigated for their effect on mitophagy.
Collapse
Affiliation(s)
- Linnet Bischof
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, Osnabrück D-49076, Germany
| | - Franziska Schweitzer
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, Osnabrück D-49076, Germany
| | - Hans-Peter Schmitz
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, Osnabrück D-49076, Germany
| | - Jürgen J Heinisch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, Osnabrück D-49076, Germany.
| |
Collapse
|
45
|
Njeim R, Merscher S, Fornoni A. Mechanisms and implications of podocyte autophagy in chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F877-F893. [PMID: 38601984 PMCID: PMC11386983 DOI: 10.1152/ajprenal.00415.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Autophagy is a protective mechanism through which cells degrade and recycle proteins and organelles to maintain cellular homeostasis and integrity. An accumulating body of evidence underscores the significant impact of dysregulated autophagy on podocyte injury in chronic kidney disease (CKD). In this review, we provide a comprehensive overview of the diverse types of autophagy and their regulation in cellular homeostasis, with a specific emphasis on podocytes. Furthermore, we discuss recent findings that focus on the functional role of different types of autophagy during podocyte injury in chronic kidney disease. The intricate interplay between different types of autophagy and podocyte health requires further research, which is critical for understanding the pathogenesis of CKD and developing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
46
|
Wu J, Yang Y, Lin D, Wang Z, Ma J. SIRT3 and RORα are two prospective targets against mitophagy during simulated ischemia/reperfusion injury in H9c2 cells. Heliyon 2024; 10:e30568. [PMID: 38784556 PMCID: PMC11112282 DOI: 10.1016/j.heliyon.2024.e30568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Autophagy during myocardial ischemia/reperfusion (MI/R) exacerbates cardiomyocyte injury. Melatonin (Mel) alleviates myocardial damage by regulating mitochondrial function and mitophagy, but the role of mitophagy in melatonin-induced cardioprotection remains unclear. This study aimed to explore the roles of sirtuin3 (SIRT3) and retinoid-related orphan nuclear receptor-α (RORα) in mitophagy during simulated ischemia reperfusion (SIR) in H9c2 cells. Our data showed that mitophagy was excessively activated after SIR injury, which was consistent with reduced cell survival, enhanced oxidative responses and mitochondrial dysfunction in H9c2 myocytes. Melatonin greatly enhanced cell viability, reduced oxidative stress and improved mitochondrial function. The effects of melatonin protection were involved in excessive mitophagy inhibition, as demonstrated by the reduced levels of mitophagy-linked proteins, including Parkin, Beclin1, NIX and BNIP3, and the LC3 II/LC3 I ratio and elevations in p62. Additionally, the decreases in SIRT3 and RORα in H9c2 myocytes after SIR were reversed by melatonin, and the above effects of melatonin were eliminated by small interfering RNA (siRNA)-mediated knockdown of SIRT3 and RORα. In brief, SIRT3 and RORα are two prospective targets in the cardioprotection of melatonin against mitophagy during SIR in H9c2 myocytes.
Collapse
Affiliation(s)
- Jinjing Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Yanli Yang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Zhaoqi Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| |
Collapse
|
47
|
Prus G, Satpathy S, Weinert BT, Narita T, Choudhary C. Global, site-resolved analysis of ubiquitylation occupancy and turnover rate reveals systems properties. Cell 2024; 187:2875-2892.e21. [PMID: 38626770 PMCID: PMC11136510 DOI: 10.1016/j.cell.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/19/2023] [Accepted: 03/19/2024] [Indexed: 04/18/2024]
Abstract
Ubiquitylation regulates most proteins and biological processes in a eukaryotic cell. However, the site-specific occupancy (stoichiometry) and turnover rate of ubiquitylation have not been quantified. Here we present an integrated picture of the global ubiquitylation site occupancy and half-life. Ubiquitylation site occupancy spans over four orders of magnitude, but the median ubiquitylation site occupancy is three orders of magnitude lower than that of phosphorylation. The occupancy, turnover rate, and regulation of sites by proteasome inhibitors are strongly interrelated, and these attributes distinguish sites involved in proteasomal degradation and cellular signaling. Sites in structured protein regions exhibit longer half-lives and stronger upregulation by proteasome inhibitors than sites in unstructured regions. Importantly, we discovered a surveillance mechanism that rapidly and site-indiscriminately deubiquitylates all ubiquitin-specific E1 and E2 enzymes, protecting them against accumulation of bystander ubiquitylation. The work provides a systems-scale, quantitative view of ubiquitylation properties and reveals general principles of ubiquitylation-dependent governance.
Collapse
Affiliation(s)
- Gabriela Prus
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Shankha Satpathy
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Brian T Weinert
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Takeo Narita
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
48
|
Su YS, Cheng MJ, Kwan AL, Huang SP, Tyan YC, Chai CY, Huang B. The crude extract obtained from Cinnamomum macrostemon Hayata regulates oxidative stress and mitophagy in keratinocytes. Biosci Biotechnol Biochem 2024; 88:529-537. [PMID: 38509025 DOI: 10.1093/bbb/zbae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/10/2024] [Indexed: 03/22/2024]
Abstract
Four ethanol fractionated crude extracts (EFCEs [A-D]) purified from the leaves of Cinnamomum macrostemon Hayata were screened for antioxidative effects and mitochondrial function in HaCaT cells. The higher cell viability indicated that EFCE C was mildly toxic. Under the treatment of 50 ng/mL EFCE C, the hydrogen peroxide (H2O2)-induced cytosolic and mitochondrial reactive oxygen species levels were reduced as well as the H2O2-impaired cell viability, mitochondrial membrane potential (MMP), ATP production, and mitochondrial mass. The conversion of globular mitochondria to tubular mitochondria is coincident with EFCE C-restored mitochondrial function. The mitophagy activator rapamycin showed similar effects to EFCE C in recovering the H2O2-impaired cell viability, MMP, ATP production, mitochondrial mass, and also mitophagic proteins such as PINK1, Parkin, LC3 II, and biogenesis protein PGC-1α. We thereby propose the application of EFCE C in the prevention of oxidative stress in skin cells.
Collapse
Affiliation(s)
- Yung-Shun Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Jen Cheng
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Aij-Lie Kwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shu-Ping Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Bin Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
49
|
Zhang T, Cao RJ, Niu JL, Chen ZH, Mu SQ, Cao T, Pang JX, Dong LH. G6PD maintains the VSMC synthetic phenotype and accelerates vascular neointimal hyperplasia by inhibiting the VDAC1-Bax-mediated mitochondrial apoptosis pathway. Cell Mol Biol Lett 2024; 29:47. [PMID: 38589823 PMCID: PMC11003121 DOI: 10.1186/s11658-024-00566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in vascular smooth muscle cell (VSMC) phenotypic switching, which is an early pathogenic event in various vascular remodeling diseases (VRDs). However, the underlying mechanism is not fully understood. METHODS An IP‒LC‒MS/MS assay was conducted to identify new binding partners of G6PD involved in the regulation of VSMC phenotypic switching under platelet-derived growth factor-BB (PDGF-BB) stimulation. Co-IP, GST pull-down, and immunofluorescence colocalization were employed to clarify the interaction between G6PD and voltage-dependent anion-selective channel protein 1 (VDAC1). The molecular mechanisms involved were elucidated by examining the interaction between VDAC1 and apoptosis-related biomarkers, as well as the oligomerization state of VDAC1. RESULTS The G6PD level was significantly elevated and positively correlated with the synthetic characteristics of VSMCs induced by PDGF-BB. We identified VDAC1 as a novel G6PD-interacting molecule essential for apoptosis. Specifically, the G6PD-NTD region was found to predominantly contribute to this interaction. G6PD promotes VSMC survival and accelerates vascular neointimal hyperplasia by inhibiting VSMC apoptosis. Mechanistically, G6PD interacts with VDAC1 upon stimulation with PDGF-BB. By competing with Bax for VDAC1 binding, G6PD reduces VDAC1 oligomerization and counteracts VDAC1-Bax-mediated apoptosis, thereby accelerating neointimal hyperplasia. CONCLUSION Our study showed that the G6PD-VDAC1-Bax axis is a vital switch in VSMC apoptosis and is essential for VSMC phenotypic switching and neointimal hyperplasia, providing mechanistic insight into early VRDs.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Rui-Jie Cao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiang-Ling Niu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhi-Huan Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shi-Qing Mu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tong Cao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jie-Xin Pang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Li-Hua Dong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center, Key Laboratory of Vascular Biology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
50
|
Suman I, Šimić L, Čanadi Jurešić G, Buljević S, Klepac D, Domitrović R. The interplay of mitophagy, autophagy, and apoptosis in cisplatin-induced kidney injury: involvement of ERK signaling pathway. Cell Death Discov 2024; 10:98. [PMID: 38402208 PMCID: PMC10894217 DOI: 10.1038/s41420-024-01872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024] Open
Abstract
AKI induced by CP chemotherapy remains an obstacle during patient treatments. Extracellular signal-regulated protein kinases 1/2 (ERK), key participants in CP-induced nephrotoxicity, are suggested to be involved in the regulation of mitophagy, autophagy, and apoptosis. Human renal proximal tubular cells (HK-2) and BALB/cN mice were used to determine the role of ERK in CP-induced AKI. We found that active ERK is involved in cell viability reduction during apoptotic events but exerts a protective role in the early stages of treatment. Activation of ERK acts as a maintainer of the mitochondrial population and is implicated in mitophagy initiation but has no significant role in its conduction. In the late stages of CP treatment when ATP is deprived, general autophagy that requires ERK activation is initiated as a response, in addition to apoptosis activation. Furthermore, activation of ERK is responsible for the decrease in reserve respiratory capacity and controls glycolysis regulation during CP treatment. Additionally, we found that ERK activation is also required for the induction of NOXA gene and protein expression as well as FoxO3a nuclear translocation, but not for the regular ERK-induced phosphorylation of FoxO3a on Ser294. In summary, this study gives detailed insight into the involvement of ERK activation and its impact on key cellular processes at different time points during CP-induced kidney injury. Inhibitors of ERK activation, including Mirdametinib, are important in the development of new therapeutic strategies for the treatment of AKI in patients receiving CP chemotherapy.
Collapse
Affiliation(s)
- Iva Suman
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Lidija Šimić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Point-of-Care Laboratory, Emergency Department Sušak, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Gordana Čanadi Jurešić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sunčica Buljević
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Damir Klepac
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Centre for Micro- and Nanosciences and Technologies, University of Rijeka, Rijeka, Croatia
| | - Robert Domitrović
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|