1
|
Cheng M, Jiao Z, Lei J, Li M, Yang K, Qi S, Yu X, Wang Y, Yan LT, Yu G. Topologically Engineered Supramolecular Cyclolipid Nanoparticles: A Custom-Tailored Delivery System for Inhaled Combination Therapy. J Am Chem Soc 2025; 147:15693-15706. [PMID: 40293309 DOI: 10.1021/jacs.5c03033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Lipid nanoparticles (LNPs) have shown promising potential in the development of nucleic acid therapeutics and vaccines; however, unsatisfactory endosomal escape efficiency and physiological stability hinder their clinical applications. Herein, we design and synthesize a novel topologically engineered cyclodextrin-cored lipid (cyclolipid) featuring seven tertiary amine groups, seven secondary amine groups, and 14 hydrophobic alkyl tails to fabricate two-component supramolecular cyclolipid nanoparticles (CNPs). Benefiting from its cone-shaped structure, the cyclolipid facilitates the transition of endosomal membranes from the lamellar phase to the unstable hexagonal II phase, thereby promoting membrane destabilization and endosomal escape of CNPs. Additionally, the high density of ionizable sites enhances the binding capacity with RNA, while multiple hydrophobic alkyl chains strengthen the stability of CNPs, thus guaranteeing the in vivo circulation stability. Interestingly, the cavity of the cyclolipid enables the encapsulation of pirfenidone (PFD, an antifibrotic drug) through host-guest interactions, offering a promising strategy for synergistic therapy. Rationally optimizing the components and physicochemical properties of CNPs dramatically promotes mucus penetration capability, thereby enhancing their bioavailability in the lungs and avoiding unwanted side effects toward other organs. Leveraging their exceptional ability for achieving physiological stability, mucus penetration, and endosomal escape, siRNA targeting heat shock protein 47 (siHsp47) and PFD are codelivered by CNPs (CNPs@siHsp47/PFD) for the treatment of pulmonary fibrosis. CNPs@siHsp47/PFD synergistically alleviates pulmonary fibrosis, achieving therapeutic outcomes comparable to those of healthy mice, highlighting the outstanding potential of CNPs as the next-generation delivery platform for drug and gene combination therapy.
Collapse
Affiliation(s)
- Meiqi Cheng
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zheng Jiao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Jiaqi Lei
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Mengyao Li
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Kai Yang
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Shaolong Qi
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xinyang Yu
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yangfan Wang
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Guocan Yu
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
2
|
Swistak L, Albert M, Valenzuela C, Gokerkucuk EB, Bontems F, Tachon S, Egger KT, Gazi AD, Sartori-Rupp A, Lesser CF, Paul-Gilloteaux P, Tinevez JY, Vos M, Enninga J. The bacterial type three secretion system induces mechanoporation of vacuolar membranes. PLoS Biol 2025; 23:e3003135. [PMID: 40310862 PMCID: PMC12045489 DOI: 10.1371/journal.pbio.3003135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/26/2025] [Indexed: 05/03/2025] Open
Abstract
Endomembrane breaching is a crucial strategy employed by intracellular pathogens enclosed within vacuoles to access the nutrient-rich cytosol for intracellular replication. While bacteria use various mechanisms to compromise host membranes, the specific processes and factors involved are often unknown. Shigella flexneri, a major human pathogen, accesses the cytosol relying on the Type Three Secretion System (T3SS) and secreted effectors. Using in-cell correlative light and electron microscopy, we tracked the sequential steps of Shigella host cell entry. Moreover, we captured the T3SS, which projects a needle from the bacterial surface, in the process of puncturing holes in the vacuolar membrane. This initial puncture ensures disruption of the vacuole. Together this introduces the concept of mechanoporation via a bacterial secretion system as a crucial process for bacterial pathogen-induced membrane damage.
Collapse
Affiliation(s)
- Léa Swistak
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, Paris, France
| | - Marvin Albert
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, Paris, France
| | - Camila Valenzuela
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, Paris, France
| | - Elif Begum Gokerkucuk
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, Paris, France
| | - François Bontems
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology, Paris, France
- Département de Biologie et Chimie Structurales, Institut de Chimie des Substances Naturelles, CNRS UPR2301, Gif-sur-Yvette, France
| | - Stéphane Tachon
- Institut Pasteur, Université Paris Cité, NanoImaging Core Facility, Paris, France
| | - Keith T. Egger
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, Paris, France
| | - Anastasia D. Gazi
- Institut Pasteur, Université Paris Cité, Ultrastructural BioImaging Core Facility, Paris, France
| | - Anna Sartori-Rupp
- Institut Pasteur, Université Paris Cité, NanoImaging Core Facility, Paris, France
| | - Cammie F. Lesser
- Center for Bacterial Pathogenesis, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, Paris, France
| | - Matthijn Vos
- Institut Pasteur, Université Paris Cité, NanoImaging Core Facility, Paris, France
| | - Jost Enninga
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, Paris, France
| |
Collapse
|
3
|
Nsairat H, Lafi Z, Al-Najjar BO, Al-Samydai A, Saqallah FG, El-Tanani M, Oriquat GA, Sa’bi BM, Ibrahim AA, Dellinger AL, Alshaer W. How Advanced are Self-Assembled Nanomaterials for Targeted Drug Delivery? A Comprehensive Review of the Literature. Int J Nanomedicine 2025; 20:2133-2161. [PMID: 39990285 PMCID: PMC11847455 DOI: 10.2147/ijn.s490444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/22/2025] [Indexed: 02/25/2025] Open
Abstract
The development of effective drug delivery systems is a key focus in pharmaceutical research, aiming to enhance therapeutic efficacy while minimizing adverse effects. Self-assembled nanostructures present a promising solution due to their tunable properties, biocompatibility, and ability to encapsulate and deliver therapeutic agents to specific targets. This review examines recent advancements in drug-based self-assembled nanostructures for targeted delivery applications, including drug-drug conjugates, polymeric-based architectures, biomolecules, peptides, DNA, squalene conjugates and amphiphilic drugs. Various strategies for fabricating these nanostructures are discussed, with an emphasis on the design principles and mechanisms underlying their self-assembly and potential for targeted drug delivery to specific tissues or cells. Furthermore, the integration of targeting ligands, stimuli-responsive moieties and imaging agents into these nanostructures is explored for enhanced therapeutic outcomes and real-time monitoring. Challenges such as stability, scalability and regulatory hurdles in translating these nanostructures from bench to bedside are also addressed. Drug-based self-assembled nanostructures represent a promising platform for developing next-generation targeted drug delivery systems with improved therapeutic efficacy and reduced side effects.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Belal O Al-Najjar
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Fadi G Saqallah
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Ghaleb Ali Oriquat
- Pharmacological and Diagnostic Research Center, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Bailasan Mohammad Sa’bi
- Pharmacological and Diagnostic Research Center, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Anthony Lee Dellinger
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
4
|
Nasiri MJ, Venketaraman V. Advances in Host-Pathogen Interactions in Tuberculosis: Emerging Strategies for Therapeutic Intervention. Int J Mol Sci 2025; 26:1621. [PMID: 40004082 PMCID: PMC11855387 DOI: 10.3390/ijms26041621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Tuberculosis (TB) remains one of the most challenging infectious diseases, with Mycobacterium tuberculosis (Mtb) employing sophisticated mechanisms to evade host immunity and establish persistent infections. This review explores recent advances in understanding Mtb's immune evasion strategies; granuloma dynamics; and emerging immunotherapeutic approaches. Key findings highlight the manipulation of host autophagy; metabolic reprogramming; and cytokine pathways by Mtb to sustain its survival within host cells. Insights into granuloma formation reveal the critical role of bacterial lipids; immune modulation; and hypoxia-driven dormancy in maintaining chronic infection. Innovative therapeutic strategies, including host-directed therapies; epigenetic interventions; and immunomodulators, hold promise for improving TB management and combating drug-resistant strains. Despite these advancements, significant challenges remain, including the development of effective vaccines; addressing latent TB; and ensuring equitable access to novel treatments. The integration of advanced technologies such as artificial intelligence and multi-omics approaches, alongside global collaboration, is essential to overcome these hurdles. This review underscores the importance of a multidisciplinary approach to tackling TB, with the ultimate goal of eradicating this global health threat.
Collapse
Affiliation(s)
- Mohammad J. Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-69411, Iran;
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| |
Collapse
|
5
|
Davids CJ, Umashankar-Rao K, Kassaliete J, Ahmadi S, Happonen L, Welinder C, Tullberg C, Grey C, Puthia M, Godaly G. The role of antibiotic-derived mycobacterial vesicles in tuberculosis pathogenesis. Sci Rep 2024; 14:28198. [PMID: 39548211 PMCID: PMC11568285 DOI: 10.1038/s41598-024-79215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Pulmonary tuberculosis (TB) causes progressive and irreversible damage to lung tissue, a damage that may not fully resolve after treatment. Mycobacterial vesicles (MVs), which are poorly understood, may contribute to TB pathology. This study investigated the effects of stress, such as treatment with conventional TB antibiotics rifampicin, isoniazid, ethambutol, or treatment with an antimycobacterial peptide (NZX), on mycobacterial vesiculation. Stress from minimal inhibitory concentrations of antibiotics, or peptide all increased MV formation. Electron microscopy and lipid profiling revealed that these vesicles, about 40 nm in size, were released from the bacterial inner membrane and consisted of apolar lipids. Using mass spectrometry, the study identified key differences in MVs protein cargo dependent on the antibiotic used, especially with ethambutol-induced MVs that contained proteins from several mycobacterial pathways. Additionally, toxicology analysis using different concentrations of MVs on primary human macrophages and the monocytic cells indicated that MVs from the different treatments were not toxic to human cells, however induced specific inflammatory profiles. In conclusion, this study identified mycobacterial vesicles to be a potential contributor to tuberculosis pathology.
Collapse
Affiliation(s)
- C J Davids
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - K Umashankar-Rao
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - J Kassaliete
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - S Ahmadi
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden
| | - L Happonen
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - C Welinder
- Swedish National Infrastructure for Biological Mass Spectrometry, BioMS, Lund, Sweden
| | - C Tullberg
- Division of Biotechnology, Department of Chemistry, Lund University, Lund, Sweden
| | - C Grey
- Division of Biotechnology, Department of Chemistry, Lund University, Lund, Sweden
| | - M Puthia
- Department of Dermatology and Venereology, Institution of Clinical Sciences, Lund University, Lund, Sweden
| | - Gabriela Godaly
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
6
|
Mittal E, Prasad GVRK, Upadhyay S, Sadadiwala J, Olive AJ, Yang G, Sassetti CM, Philips JA. Mycobacterium tuberculosis virulence lipid PDIM inhibits autophagy in mice. Nat Microbiol 2024; 9:2970-2984. [PMID: 39242815 PMCID: PMC12097147 DOI: 10.1038/s41564-024-01797-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/25/2024] [Indexed: 09/09/2024]
Abstract
Mycobacterium tuberculosis (Mtb) infects several lung macrophage populations, which have distinct abilities to restrict Mtb. What enables Mtb survival in certain macrophage populations is not well understood. Here we used transposon sequencing analysis of Mtb in wild-type and autophagy-deficient mouse macrophages lacking ATG5 or ATG7, and found that Mtb genes involved in phthiocerol dimycocerosate (PDIM) virulence lipid synthesis confer resistance to autophagy. Using ppsD mutant Mtb, we found that PDIM inhibits LC3-associated phagocytosis (LAP) by inhibiting phagosome recruitment of NADPH oxidase. In mice, PDIM protected Mtb from LAP and classical autophagy. During acute infection, PDIM was dispensable for Mtb survival in alveolar macrophages but required for survival in non-alveolar macrophages in an autophagy-dependent manner. During chronic infection, autophagy-deficient mice succumbed to infection with PDIM-deficient Mtb, with impairments in B-cell accumulation in lymphoid follicles. These findings demonstrate that PDIM contributes to Mtb virulence and immune evasion, revealing a contributory role for autophagy in B-cell responses.
Collapse
Affiliation(s)
- Ekansh Mittal
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| | - G V R Krishna Prasad
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sandeep Upadhyay
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jully Sadadiwala
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Andrew J Olive
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Guozhe Yang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
7
|
Hop HT, Liao PC, Wu HY. Enhancement of mycobacterial pathogenesis by host interferon-γ. Cell Mol Life Sci 2024; 81:380. [PMID: 39222120 PMCID: PMC11368887 DOI: 10.1007/s00018-024-05425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The cytokine IFNγ is a principal effector of macrophage activation and immune resistance to mycobacterial infection; however, pathogenic mycobacteria are capable of surviving in IFNγ-activated macrophages by largely unknown mechanisms. In this study, we find that pathogenic mycobacteria, including M. bovis BCG and M. tuberculosis can sense IFNγ to promote their proliferative activity and virulence phenotype. Moreover, interaction with the host intracellular environment increases the susceptibility of mycobacteria to IFNγ through upregulating expression of mmpL10, a mycobacterial IFNγ receptor, thereby facilitating IFNγ-dependent survival and growth of mycobacteria in macrophages. Transmission electron microscopy analysis reveals that IFNγ triggers the secretion of extracellular vesicles, an essential virulence strategy of intracellular mycobacteria, while proteomics identifies numerous pivotal IFNγ-induced effectors required for mycobacterial infection in macrophages. Our study suggests that sensing host IFNγ is a crucial virulence mechanism used by pathogenic mycobacteria to survive and proliferate inside macrophages.
Collapse
Affiliation(s)
- Huynh Tan Hop
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
8
|
Prince A, Tiwari A, Mandal T, Koiri D, Meher G, Sinha DK, Saleem M. Lipid Specificity of the Fusion of Bacterial Extracellular Vesicles with the Host Membrane. J Phys Chem B 2024; 128:8116-8130. [PMID: 38981091 DOI: 10.1021/acs.jpcb.4c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Bacterial membrane vesicles (MVs) facilitate the long-distance delivery of virulence factors crucial for pathogenicity. The entry and trafficking mechanisms of virulence factors inside host cells are recently emerging; however, whether bacterial MVs can fuse and modulate the physicochemical properties of the host lipid membrane and membrane lipid parameter for fusion remains unknown. In this study, we reconstituted the interaction of bacterial MVs with host cell lipid membranes and quantitatively showed that bacterial MV interaction increases the fluidity, dipole potential, and compressibility of a biologically relevant multicomponent host membrane upon fusion. The presence of cylindrical lipids, such as phosphatidylcholine, and a moderate acyl chain length of C16 help the MV interaction. While significant binding of bacterial MVs to the raft-like lipid membranes with phase-separated regions of the membrane was observed, however, MVs prefer binding to the liquid-disordered regions of the membrane. Furthermore, the elevated levels of cholesterol tend to hinder the interaction of bacterial MVs, as evident from the favorable excess Gibbs free energy of mixing bacterial MVs with host lipid membranes. The findings provide new insights that might have implications for the regulation of host machinery by bacterial pathogens through manipulation of the host membrane properties.
Collapse
Affiliation(s)
- Ashutosh Prince
- Department of Life Sciences, National Institute of Technology, Rourkela 769008, India
| | - Anuj Tiwari
- Department of Life Sciences, National Institute of Technology, Rourkela 769008, India
| | - Titas Mandal
- Department of Physical Biochemistry, University of Potsdam, Potsdam 14476, Germany
| | - Debraj Koiri
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Geetanjali Meher
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Deepak Kumar Sinha
- Department of Biological Chemistry, Indian Association for the Cultivation of Sciences, Kolkata 700032, India
| | - Mohammed Saleem
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
9
|
Vu A, Glassman I, Campbell G, Yeganyan S, Nguyen J, Shin A, Venketaraman V. Host Cell Death and Modulation of Immune Response against Mycobacterium tuberculosis Infection. Int J Mol Sci 2024; 25:6255. [PMID: 38892443 PMCID: PMC11172987 DOI: 10.3390/ijms25116255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), a prevalent infectious disease affecting populations worldwide. A classic trait of TB pathology is the formation of granulomas, which wall off the pathogen, via the innate and adaptive immune systems. Some key players involved include tumor necrosis factor-alpha (TNF-α), foamy macrophages, type I interferons (IFNs), and reactive oxygen species, which may also show overlap with cell death pathways. Additionally, host cell death is a primary method for combating and controlling Mtb within the body, a process which is influenced by both host and bacterial factors. These cell death modalities have distinct molecular mechanisms and pathways. Programmed cell death (PCD), encompassing apoptosis and autophagy, typically confers a protective response against Mtb by containing the bacteria within dead macrophages, facilitating their phagocytosis by uninfected or neighboring cells, whereas necrotic cell death benefits the pathogen, leading to the release of bacteria extracellularly. Apoptosis is triggered via intrinsic and extrinsic caspase-dependent pathways as well as caspase-independent pathways. Necrosis is induced via various pathways, including necroptosis, pyroptosis, and ferroptosis. Given the pivotal role of host cell death pathways in host defense against Mtb, therapeutic agents targeting cell death signaling have been investigated for TB treatment. This review provides an overview of the diverse mechanisms underlying Mtb-induced host cell death, examining their implications for host immunity. Furthermore, it discusses the potential of targeting host cell death pathways as therapeutic and preventive strategies against Mtb infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (G.C.); (A.S.)
| |
Collapse
|
10
|
Jones BS, Hu DD, Nicholson KR, Cronin RM, Weaver SD, Champion MM, Champion PA. The loss of the PDIM/PGL virulence lipids causes differential secretion of ESX-1 substrates in Mycobacterium marinum. mSphere 2024; 9:e0000524. [PMID: 38661343 PMCID: PMC11237470 DOI: 10.1128/msphere.00005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
The mycobacterial cell envelope is a major virulence determinant in pathogenic mycobacteria. Specific outer lipids play roles in pathogenesis, modulating the immune system and promoting the secretion of virulence factors. ESX-1 (ESAT-6 system-1) is a conserved protein secretion system required for mycobacterial pathogenesis. Previous studies revealed that mycobacterial strains lacking the outer lipid PDIM have impaired ESX-1 function during laboratory growth and infection. The mechanisms underlying changes in ESX-1 function are unknown. We used a proteo-genetic approach to measure phthiocerol dimycocerosate (PDIM)- and phenolic glycolipid (PGL)-dependent protein secretion in M. marinum, a non-tubercular mycobacterial pathogen that causes tuberculosis-like disease in ectothermic animals. Importantly, M. marinum is a well-established model for mycobacterial pathogenesis. Our findings showed that M. marinum strains without PDIM and PGL showed specific, significant reductions in protein secretion compared to the WT and complemented strains. We recently established a hierarchy for the secretion of ESX-1 substrates in four (I-IV) groups. Loss of PDIM differentially impacted secretion of Group III and IV ESX-1 substrates, which are likely the effectors of pathogenesis. Our data suggest that the altered secretion of specific ESX-1 substrates is responsible for the observed ESX-1-related effects in PDIM-deficient strains.IMPORTANCEMycobacterium tuberculosis, the cause of human tuberculosis, killed an estimated 1.3 million people in 2022. Non-tubercular mycobacterial species cause acute and chronic human infections. Understanding how these bacteria cause disease is critical. Lipids in the cell envelope are essential for mycobacteria to interact with the host and promote disease. Strains lacking outer lipids are attenuated for infection, but the reasons are unclear. Our research aims to identify a mechanism for attenuation of mycobacterial strains without the PDIM and PGL outer lipids in M. marinum. These findings will enhance our understanding of the importance of lipids in pathogenesis and how these lipids contribute to other established virulence mechanisms.
Collapse
Affiliation(s)
- Bradley S. Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Daniel D. Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Kathleen R. Nicholson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rachel M. Cronin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Simon D. Weaver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew M. Champion
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
11
|
Ghoshal A, Verma A, Bhaskar A, Dwivedi VP. The uncharted territory of host-pathogen interaction in tuberculosis. Front Immunol 2024; 15:1339467. [PMID: 38312835 PMCID: PMC10834760 DOI: 10.3389/fimmu.2024.1339467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb) effectively manipulates the host processes to establish the deadly respiratory disease, Tuberculosis (TB). M.tb has developed key mechanisms to disrupt the host cell health to combat immune responses and replicate efficaciously. M.tb antigens such as ESAT-6, 19kDa lipoprotein, Hip1, and Hsp70 destroy the integrity of cell organelles (Mitochondria, Endoplasmic Reticulum, Nucleus, Phagosomes) or delay innate/adaptive cell responses. This is followed by the induction of cellular stress responses in the host. Such cells can either undergo various cell death processes such as apoptosis or necrosis, or mount effective immune responses to clear the invading pathogen. Further, to combat the infection progression, the host secretes extracellular vesicles such as exosomes to initiate immune signaling. The exosomes can contain M.tb as well as host cell-derived peptides that can act as a double-edged sword in the immune signaling event. The host-symbiont microbiota produces various metabolites that are beneficial for maintaining healthy tissue microenvironment. In juxtaposition to the above-mentioned mechanisms, M.tb dysregulates the gut and respiratory microbiome to support its replication and dissemination process. The above-mentioned interconnected host cellular processes of Immunometabolism, Cellular stress, Host Microbiome, and Extracellular vesicles are less explored in the realm of exploration of novel Host-directed therapies for TB. Therefore, this review highlights the intertwined host cellular processes to control M.tb survival and showcases the important factors that can be targeted for designing efficacious therapy.
Collapse
Affiliation(s)
| | | | | | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
12
|
Brown T, Chavent M, Im W. Molecular Modeling and Simulation of the Mycobacterial Cell Envelope: From Individual Components to Cell Envelope Assemblies. J Phys Chem B 2023; 127:10941-10949. [PMID: 38091517 PMCID: PMC10758119 DOI: 10.1021/acs.jpcb.3c06136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023]
Abstract
Unlike typical Gram-positive bacteria, the cell envelope of mycobacteria is unique and composed of a mycobacterial outer membrane, also known as the mycomembrane, a peptidoglycan layer, and a mycobacterial inner membrane, which is analogous to that of Gram-negative bacteria. Despite its importance, however, our understanding of this complex cell envelope is rudimentary at best. Thus, molecular modeling and simulation of such an envelope can benefit the scientific community by proposing new hypotheses about the biophysical properties of its different layers. In this Perspective, we present recent advances in molecular modeling and simulation of the mycobacterial cell envelope from individual components to cell envelope assemblies. We also show how modeling other types of cell envelopes, such as that of Escherichia coli, may help modeling part of the mycobacterial envelopes. We hope that the studies presented here are just the beginning of the road and more and more new modeling and simulation studies help us to understand crucial questions related to mycobacteria such as antibiotic resistance or bacterial survival in the host.
Collapse
Affiliation(s)
- Turner Brown
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Matthieu Chavent
- Institut
de Pharmacologie et Biologie Structurale, CNRS, Université
de Toulouse, 205 Route de Narbonne, 31400 Toulouse, France
| | - Wonpil Im
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Departments
of Biological Sciences and Chemistry, Lehigh
University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
13
|
Srivatsav AT, Kapoor S. Biophysical Interaction Landscape of Mycobacterial Mycolic Acids and Phenolic Glycolipids with Host Macrophage Membranes. ACS APPLIED BIO MATERIALS 2023; 6:5555-5562. [PMID: 38015441 PMCID: PMC7617140 DOI: 10.1021/acsabm.3c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Lipidic adjuvant formulations consisting of immunomodulatory mycobacterial cell wall lipids interact with host cells following administration. The impact of this cross-talk on the host membrane's structure and function is rarely given enough consideration but is imperative to rule out nonspecific perturbation underlying the adjuvant. In this work, we investigated changes in the plasma membranes of live mammalian cells after exposure to mycobacterial mycolic acid (MA) and phenolic glycolipids, two strong candidates for lipidic adjuvant therapy. We found that phenolic glycolipid 1 softened the plasma membrane, lowering membrane tension and stiffness, but MA did not significantly change the membrane characteristics. Further, phenolic glycolipid 1 had a fluidizing impact on the host plasma membrane, increasing the fluidity and the abundance of fluid-ordered-disordered coexisting lipid domains. Notably, lipid diffusion was not impacted. Overall, MA and, to a lesser extent, phenolic glycolipid 1, due to minor disruption of host cell membranes, may serve as appropriate lipids in adjuvant formulations.
Collapse
Affiliation(s)
- Aswin T Srivatsav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
14
|
Mishra R, Hannebelle M, Patil VP, Dubois A, Garcia-Mouton C, Kirsch GM, Jan M, Sharma K, Guex N, Sordet-Dessimoz J, Perez-Gil J, Prakash M, Knott GW, Dhar N, McKinney JD, Thacker VV. Mechanopathology of biofilm-like Mycobacterium tuberculosis cords. Cell 2023; 186:5135-5150.e28. [PMID: 37865090 PMCID: PMC10642369 DOI: 10.1016/j.cell.2023.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/23/2023]
Abstract
Mycobacterium tuberculosis (Mtb) cultured axenically without detergent forms biofilm-like cords, a clinical identifier of virulence. In lung-on-chip (LoC) and mouse models, cords in alveolar cells contribute to suppression of innate immune signaling via nuclear compression. Thereafter, extracellular cords cause contact-dependent phagocyte death but grow intercellularly between epithelial cells. The absence of these mechanopathological mechanisms explains the greater proportion of alveolar lesions with increased immune infiltration and dissemination defects in cording-deficient Mtb infections. Compression of Mtb lipid monolayers induces a phase transition that enables mechanical energy storage. Agent-based simulations demonstrate that the increased energy storage capacity is sufficient for the formation of cords that maintain structural integrity despite mechanical perturbation. Bacteria in cords remain translationally active despite antibiotic exposure and regrow rapidly upon cessation of treatment. This study provides a conceptual framework for the biophysics and function in tuberculosis infection and therapy of cord architectures independent of mechanisms ascribed to single bacteria.
Collapse
Affiliation(s)
- Richa Mishra
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Melanie Hannebelle
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Vishal P Patil
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Anaëlle Dubois
- BioElectron Microscopy Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Gabriela M Kirsch
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maxime Jan
- Bioinformatics Competence Centre, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Kunal Sharma
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Centre, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jessica Sordet-Dessimoz
- Histology Core Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jesus Perez-Gil
- Department of Biochemistry, University Complutense Madrid, 28040 Madrid, Spain
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Graham W Knott
- BioElectron Microscopy Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Neeraj Dhar
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - John D McKinney
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Vivek V Thacker
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
15
|
Mathew L, Verma DK, Liang K, Duan M, Dadhich R, Kapoor S. Fusion Landscape of Mycobacterial Envelope-Derived Lipid Vesicles with Intact Bacteria Dictates High Intracellular Drug Retention. ACS APPLIED BIO MATERIALS 2023; 6:3066-3073. [PMID: 37493278 DOI: 10.1021/acsabm.3c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Membrane vesicles are critical regulators of pathogenic diseases. In tubercular infections, the use of mycobacteria derived vesicles as delivery vehicles to overcome drug resistance and complex treatment regimens has never been attempted. Here, we first address how these vesicles interact with their target cells, especially via membrane fusion. Membrane fusion between alike mycobacterial outer and inner membrane layer-derived lipid vesicles is shown to be driven by the structural, geometrical, and biophysical attributes of constituent lipids. The increased fusion of outer-membrane-derived vesicles with intact bacteria ensures enhanced intracellular drug levels and is presented as a "natural" antitubercular drug delivery vehicle.
Collapse
Affiliation(s)
- Lydia Mathew
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dheeraj Kumar Verma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Kuan Liang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Mojie Duan
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
16
|
Toniolo C, Dhar N, McKinney JD. Uptake-independent killing of macrophages by extracellular Mycobacterium tuberculosis aggregates. EMBO J 2023; 42:e113490. [PMID: 36920246 PMCID: PMC10152147 DOI: 10.15252/embj.2023113490] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection is initiated by inhalation of bacteria into lung alveoli, where they are phagocytosed by resident macrophages. Intracellular Mtb replication induces the death of the infected macrophages and the release of bacterial aggregates. Here, we show that these aggregates can evade phagocytosis by killing macrophages in a contact-dependent but uptake-independent manner. We use time-lapse fluorescence microscopy to show that contact with extracellular Mtb aggregates triggers macrophage plasma membrane perturbation, cytosolic calcium accumulation, and pyroptotic cell death. These effects depend on the Mtb ESX-1 secretion system, however, this system alone cannot induce calcium accumulation and macrophage death in the absence of the Mtb surface-exposed lipid phthiocerol dimycocerosate. Unexpectedly, we found that blocking ESX-1-mediated secretion of the EsxA/EsxB virulence factors does not eliminate the uptake-independent killing of macrophages and that the 50-kDa isoform of the ESX-1-secreted protein EspB can mediate killing in the absence of EsxA/EsxB secretion. Treatment with an ESX-1 inhibitor reduces uptake-independent killing of macrophages by Mtb aggregates, suggesting that novel therapies targeting this anti-phagocytic mechanism could prevent the propagation of extracellular bacteria within the lung.
Collapse
Affiliation(s)
- Chiara Toniolo
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Neeraj Dhar
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.,Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - John D McKinney
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
17
|
Barisch C, Holthuis JCM, Cosentino K. Membrane damage and repair: a thin line between life and death. Biol Chem 2023; 404:467-490. [PMID: 36810295 DOI: 10.1515/hsz-2022-0321] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Bilayered membranes separate cells from their surroundings and form boundaries between intracellular organelles and the cytosol. Gated transport of solutes across membranes enables cells to establish vital ion gradients and a sophisticated metabolic network. However, an advanced compartmentalization of biochemical reactions makes cells also particularly vulnerable to membrane damage inflicted by pathogens, chemicals, inflammatory responses or mechanical stress. To avoid potentially lethal consequences of membrane injuries, cells continuously monitor the structural integrity of their membranes and readily activate appropriate pathways to plug, patch, engulf or shed the damaged membrane area. Here, we review recent insights into the cellular mechanisms that underly an effective maintenance of membrane integrity. We discuss how cells respond to membrane lesions caused by bacterial toxins and endogenous pore-forming proteins, with a primary focus on the intimate crosstalk between membrane proteins and lipids during wound formation, detection and elimination. We also discuss how a delicate balance between membrane damage and repair determines cell fate upon bacterial infection or activation of pro-inflammatory cell death pathways.
Collapse
Affiliation(s)
- Caroline Barisch
- Molecular Infection Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Katia Cosentino
- Molecular Cell Biophysics Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| |
Collapse
|
18
|
Supramolecular organization and dynamics of mannosylated phosphatidylinositol lipids in the mycobacterial plasma membrane. Proc Natl Acad Sci U S A 2023; 120:e2212755120. [PMID: 36693100 PMCID: PMC9945971 DOI: 10.1073/pnas.2212755120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), a disease that claims ~1.6 million lives annually. The current treatment regime is long and expensive, and missed doses contribute to drug resistance. Therefore, development of new anti-TB drugs remains one of the highest public health priorities. Mtb has evolved a complex cell envelope that represents a formidable barrier to antibiotics. The Mtb cell envelop consists of four distinct layers enriched for Mtb specific lipids and glycans. Although the outer membrane, comprised of mycolic acid esters, has been extensively studied, less is known about the plasma membrane, which also plays a critical role in impacting antibiotic efficacy. The Mtb plasma membrane has a unique lipid composition, with mannosylated phosphatidylinositol lipids (phosphatidyl-myoinositol mannosides, PIMs) comprising more than 50% of the lipids. However, the role of PIMs in the structure and function of the membrane remains elusive. Here, we used multiscale molecular dynamics (MD) simulations to understand the structure-function relationship of the PIM lipid family and decipher how they self-organize to shape the biophysical properties of mycobacterial plasma membranes. We assess both symmetric and asymmetric assemblies of the Mtb plasma membrane and compare this with residue distributions of Mtb integral membrane protein structures. To further validate the model, we tested known anti-TB drugs and demonstrated that our models agree with experimental results. Thus, our work sheds new light on the organization of the mycobacterial plasma membrane. This paves the way for future studies on antibiotic development and understanding Mtb membrane protein function.
Collapse
|
19
|
Bon C, Cabantous S, Julien S, Guillet V, Chalut C, Rima J, Brison Y, Malaga W, Sanchez-Dafun A, Gavalda S, Quémard A, Marcoux J, Waldo GS, Guilhot C, Mourey L. Solution structure of the type I polyketide synthase Pks13 from Mycobacterium tuberculosis. BMC Biol 2022; 20:147. [PMID: 35729566 PMCID: PMC9210659 DOI: 10.1186/s12915-022-01337-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type I polyketide synthases (PKSs) are multifunctional enzymes responsible for the biosynthesis of a group of diverse natural compounds with biotechnological and pharmaceutical interest called polyketides. The diversity of polyketides is impressive despite the limited set of catalytic domains used by PKSs for biosynthesis, leading to considerable interest in deciphering their structure-function relationships, which is challenging due to high intrinsic flexibility. Among nineteen polyketide synthases encoded by the genome of Mycobacterium tuberculosis, Pks13 is the condensase required for the final condensation step of two long acyl chains in the biosynthetic pathway of mycolic acids, essential components of the cell envelope of Corynebacterineae species. It has been validated as a promising druggable target and knowledge of its structure is essential to speed up drug discovery to fight against tuberculosis. RESULTS We report here a quasi-atomic model of Pks13 obtained using small-angle X-ray scattering of the entire protein and various molecular subspecies combined with known high-resolution structures of Pks13 domains or structural homologues. As a comparison, the low-resolution structures of two other mycobacterial polyketide synthases, Mas and PpsA from Mycobacterium bovis BCG, are also presented. This study highlights a monomeric and elongated state of the enzyme with the apo- and holo-forms being identical at the resolution probed. Catalytic domains are segregated into two parts, which correspond to the condensation reaction per se and to the release of the product, a pivot for the enzyme flexibility being at the interface. The two acyl carrier protein domains are found at opposite sides of the ketosynthase domain and display distinct characteristics in terms of flexibility. CONCLUSIONS The Pks13 model reported here provides the first structural information on the molecular mechanism of this complex enzyme and opens up new perspectives to develop inhibitors that target the interactions with its enzymatic partners or between catalytic domains within Pks13 itself.
Collapse
Affiliation(s)
- Cécile Bon
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Stéphanie Cabantous
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Los Alamos National Laboratory, Bioscience Division B-N2, Los Alamos, NM, 87545, USA
- Present address: Centre de Recherche en Cancérologie de Toulouse (CRCT), Inserm, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sylviane Julien
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Valérie Guillet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julie Rima
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yoann Brison
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Present address: Toulouse White Biotechnology, 31400, Toulouse, France
| | - Wladimir Malaga
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Angelique Sanchez-Dafun
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sabine Gavalda
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Present address: Carbios, Biopole Clermont Limagne, 63360, Saint-Beauzire, France
| | - Annaïk Quémard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geoffrey S Waldo
- Los Alamos National Laboratory, Bioscience Division B-N2, Los Alamos, NM, 87545, USA
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
20
|
Ahmad F, Rani A, Alam A, Zarin S, Pandey S, Singh H, Hasnain SE, Ehtesham NZ. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Front Immunol 2022; 13:747799. [PMID: 35603185 PMCID: PMC9122124 DOI: 10.3389/fimmu.2022.747799] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/30/2022] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of human tuberculosis (TB) which primarily infects the macrophages. Nearly a quarter of the world's population is infected latently by Mtb. Only around 5%-10% of those infected develop active TB disease, particularly during suppressed host immune conditions or comorbidity such as HIV, hinting toward the heterogeneity of Mtb infection. The aerosolized Mtb first reaches the lungs, and the resident alveolar macrophages (AMs) are among the first cells to encounter the Mtb infection. Evidence suggests that early clearance of Mtb infection is associated with robust innate immune responses in resident macrophages. In addition to lung-resident macrophage subsets, the recruited monocytes and monocyte-derived macrophages (MDMs) have been suggested to have a protective role during Mtb infection. Mtb, by virtue of its unique cell surface lipids and secreted protein effectors, can evade killing by the innate immune cells and preferentially establish a niche within the AMs. Continuous efforts to delineate the determinants of host defense mechanisms have brought to the center stage the crucial role of macrophage phenotypical variations for functional adaptations in TB. The morphological and functional heterogeneity and plasticity of the macrophages aid in confining the dissemination of Mtb. However, during a suppressed or hyperactivated immune state, the Mtb virulence factors can affect macrophage homeostasis which may skew to favor pathogen growth, causing active TB. This mini-review is aimed at summarizing the interplay of Mtb pathomechanisms in the macrophages and the implications of macrophage heterogeneity and plasticity during Mtb infection.
Collapse
Affiliation(s)
- Faraz Ahmad
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Anshu Rani
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Anwar Alam
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Sheeba Zarin
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Saurabh Pandey
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Hina Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Nasreen Zafar Ehtesham
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| |
Collapse
|
21
|
Zheng L, Wei F, Li G. The crosstalk between bacteria and host autophagy: host defense or bacteria offense. J Microbiol 2022; 60:451-460. [DOI: 10.1007/s12275-022-2009-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022]
|
22
|
Guallar-Garrido S, Campo-Pérez V, Pérez-Trujillo M, Cabrera C, Senserrich J, Sánchez-Chardi A, Rabanal RM, Gómez-Mora E, Noguera-Ortega E, Luquin M, Julián E. Mycobacterial surface characters remodeled by growth conditions drive different tumor-infiltrating cells and systemic IFN-γ/IL-17 release in bladder cancer treatment. Oncoimmunology 2022; 11:2051845. [PMID: 35355681 PMCID: PMC8959508 DOI: 10.1080/2162402x.2022.2051845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Sandra Guallar-Garrido
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Víctor Campo-Pérez
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Bacterial Infections and Antimicrobial Therapies group, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain
| | - Míriam Pérez-Trujillo
- Servei de Ressonància Magnètica Nuclear i Departament de Química, Facultat de Ciències i Biociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Universitat Autònoma de Barcelona, Badalona, 08916, Spain
| | - Jordi Senserrich
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Universitat Autònoma de Barcelona, Badalona, 08916, Spain
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Departament de Biologia Evolutiva, Ecologia i Universitat de Barcelona, Barcelona 08028, Spain
| | - Rosa Maria Rabanal
- Unitat de Patologia Murina i Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Elisabet Gómez-Mora
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Universitat Autònoma de Barcelona, Badalona, 08916, Spain
| | - Estela Noguera-Ortega
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Marina Luquin
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
23
|
Thirumalaisamy R, Aroulmoji V, Iqbal MN, Saride S, Bhuvaneswari M, Deepa M, Sivasankar C, Khan R. Molecular insights of hyaluronic acid - ethambutol and hyaluronic acid - isoniazid drug conjugates act as promising novel drugs for the treatment of tuberculosis. J Biomol Struct Dyn 2022; 41:3562-3573. [PMID: 35293842 DOI: 10.1080/07391102.2022.2051748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study examines cellular targeted drug delivery (CTDD) pattern of two novel Hyaluronic acid (HA) Tuberculosis Drug (TB) conjugates and its efficacy and strong binding affinity towards TB molecular protein targets. Two TB drugs ethambutol (EB) and isoniazid (IN) and their Hyaluronic acid conjugates (HA-EB & HA-IN) were tested for its metabolism, toxicity and excretion prediction through In silico tools they revealed hyaluronic acid conjugate of two TB drugs exhibited good drug profile over their free form of TB drugs. Further these four molecules subjected to In silico molecular docking study with four potential Mycobacterium tuberculosis target proteins (3PD8, 4Y0L, 5DZK and 6GAU). Molecular docking study revealed that hyaluronic conjugates (HA-EB & HA-IN) exhibit significant binding affinity and excellent docking scores with all screened molecular protein targets of TB over their free form of drug. Further molecular dynamic simulation was calculated for the four drug molecules (EB, IN, HA- EB & HA-IN) with DNA gyrase enzyme (PDB ID 6GAU) of Mycobacterium tuberculosis and the MDS results revealed that both the conjugates with the TB target protein possessed good number of interaction with binding pocket residues and good simulation scores than the free form of drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- R Thirumalaisamy
- Department of Biotechnology, Sona College of Arts and Science, Salem, Tamil Nadu, India
| | - V Aroulmoji
- Centre for Research & Development, Mahendra Engineering College (Autonomous), Mallasamudram, Namakkal, Tamil Nadu, India
| | | | - Shreyas Saride
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - M Bhuvaneswari
- Department of Biotechnology, Sona College of Arts and Science, Salem, Tamil Nadu, India
| | - M Deepa
- Postgraduate and Research Department of Chemistry, Muthurangam Govt. Arts College, Vellore, India
| | - C Sivasankar
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University, Kalapet, Pondicherry, India
| | - Riaz Khan
- Rumsey, Berkshire, England, United Kingdom
| |
Collapse
|
24
|
Bao Y, Wang L, Sun J. Post-translational knockdown and post-secretional modification of EsxA determine contribution of EsxA membrane permeabilizing activity for mycobacterial intracellular survival. Virulence 2021; 12:312-328. [PMID: 33356823 PMCID: PMC7808419 DOI: 10.1080/21505594.2020.1867438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Current genetic studies (e.g. gene knockout) have suggested that EsxA and EsxB function as secreted virulence factors that are essential for Mycobaterium tuberculosis (Mtb) intracellular survival, specifically in mediating phagosome rupture and translocation of Mtb to the cytosol of host cells, which further facilitates Mtb intracellular replicating and cell-to-cell spreading. The EsxA-mediated intracellular survival is presumably achieved by its pH-dependent membrane-permeabilizing activity (MPA). However, the data from other studies have generated a discrepancy regarding the role of EsxA MPA in mycobacterial intracellular survival, which has raised a concern that genetic manipulations, such as deletion of esxB-esxA operon or RD-1 locus, may affect other codependently secreted factors that could be also directly involved cytosolic translocation, or stimulate extended disturbance on other genes' expression. To avoid the drawbacks of gene knockout, we first engineered a Mycobacterium marinum (Mm) strain, in which a DAS4+ tag was fused to the C-terminus of EsxB to allow inducible knockdown of EsxB (also EsxA) at the post-translational level. We also engineered an Mm strain by fusing a SpyTag (ST) to the C-terminus of EsxA, which allowed inhibition of EsxA-ST MPA at the post-secretional level through a covalent linkage to SpyCatcher-GFP. Both post-translational knockdown and functional inhibition of EsxA resulted in attenuation of Mm intracellular survival in lung epithelial cells or macrophages, which unambiguously confirms the direct role of EsxA MPA in mycobacterial intracellular survival.
Collapse
Affiliation(s)
- Yanqing Bao
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Lin Wang
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Jianjun Sun
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
25
|
Hinman AE, Jani C, Pringle SC, Zhang WR, Jain N, Martinot AJ, Barczak AK. Mycobacterium tuberculosis canonical virulence factors interfere with a late component of the TLR2 response. eLife 2021; 10:e73984. [PMID: 34755600 PMCID: PMC8610422 DOI: 10.7554/elife.73984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/29/2021] [Indexed: 01/15/2023] Open
Abstract
For many intracellular pathogens, the phagosome is the site of events and interactions that shape infection outcome. Phagosomal membrane damage, in particular, is proposed to benefit invading pathogens. To define the innate immune consequences of this damage, we profiled macrophage transcriptional responses to wild-type Mycobacterium tuberculosis (Mtb) and mutants that fail to damage the phagosomal membrane. We identified a set of genes with enhanced expression in response to the mutants. These genes represented a late component of the TLR2-dependent transcriptional response to Mtb, distinct from an earlier component that included Tnf. Expression of the later component was inherent to TLR2 activation, dependent upon endosomal uptake, and enhanced by phagosome acidification. Canonical Mtb virulence factors that contribute to phagosomal membrane damage blunted phagosome acidification and undermined the endosome-specific response. Profiling cell survival and bacterial growth in macrophages demonstrated that the attenuation of these mutants is partially dependent upon TLR2. Further, TLR2 contributed to the attenuated phenotype of one of these mutants in a murine model of infection. These results demonstrate two distinct components of the TLR2 response and identify a component dependent upon endosomal uptake as a point where pathogenic bacteria interfere with the generation of effective inflammation. This interference promotes tuberculosis (TB) pathogenesis in both macrophage and murine infection models.
Collapse
Affiliation(s)
- Amelia E Hinman
- The Ragon Institute, Massachusetts General HospitalCambridgeUnited States
| | - Charul Jani
- The Ragon Institute, Massachusetts General HospitalCambridgeUnited States
| | | | - Wei R Zhang
- The Ragon Institute, Massachusetts General HospitalCambridgeUnited States
| | - Neharika Jain
- Department of Infectious Diseases and Global Health, Tufts University Cummings School of Veterinary MedicineNorth Grafton, MAUnited States
| | - Amanda J Martinot
- Department of Infectious Diseases and Global Health, Tufts University Cummings School of Veterinary MedicineNorth Grafton, MAUnited States
| | - Amy K Barczak
- The Ragon Institute, Massachusetts General HospitalCambridgeUnited States
- The Division of Infectious Diseases, Massachusetts General HospitalBostonUnited States
- Department of Medicine, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
26
|
A Small Protein but with Diverse Roles: A Review of EsxA in Mycobacterium-Host Interaction. Cells 2021; 10:cells10071645. [PMID: 34209120 PMCID: PMC8305481 DOI: 10.3390/cells10071645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
As a major effector of the ESX-1 secretion system, EsxA is essential for the virulence of pathogenic mycobacteria, such as Mycobacterium tuberculosis (Mtb) and Mycobacterium marinum (Mm). EsxA possesses an acidic pH-dependent membrane permeabilizing activity and plays an essential role by mediating mycobacterial escape from the phagosome and translocation to the cytosol for intracellular replication. Moreover, EsxA regulates host immune responses as a potent T-cell antigen and a strong immunoregulator. EsxA interacts with multiple cellular proteins and stimulates several signal pathways, such as necrosis, apoptosis, autophagy, and antigen presentation. Interestingly, there is a co-dependency in the expression and secretion of EsxA and other mycobacterial factors, which greatly increases the complexity of dissecting the precise roles of EsxA and other factors in mycobacterium-host interaction. In this review, we summarize the current understandings of the roles and functions of EsxA in mycobacterial infection and discuss the challenges and future directions.
Collapse
|
27
|
Holzheimer M, Buter J, Minnaard AJ. Chemical Synthesis of Cell Wall Constituents of Mycobacterium tuberculosis. Chem Rev 2021; 121:9554-9643. [PMID: 34190544 PMCID: PMC8361437 DOI: 10.1021/acs.chemrev.1c00043] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The pathogen Mycobacterium tuberculosis (Mtb), causing
tuberculosis disease, features an extraordinary
thick cell envelope, rich in Mtb-specific lipids,
glycolipids, and glycans. These cell wall components are often directly
involved in host–pathogen interaction and recognition, intracellular
survival, and virulence. For decades, these mycobacterial natural
products have been of great interest for immunology and synthetic
chemistry alike, due to their complex molecular structure and the
biological functions arising from it. The synthesis of many of these
constituents has been achieved and aided the elucidation of their
function by utilizing the synthetic material to study Mtb immunology. This review summarizes the synthetic efforts of a quarter
century of total synthesis and highlights how the synthesis layed
the foundation for immunological studies as well as drove the field
of organic synthesis and catalysis to efficiently access these complex
natural products.
Collapse
Affiliation(s)
- Mira Holzheimer
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jeffrey Buter
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
28
|
Kim S, Voth GA. Physical Characterization of Triolein and Implications for Its Role in Lipid Droplet Biogenesis. J Phys Chem B 2021; 125:6874-6888. [PMID: 34139844 DOI: 10.1021/acs.jpcb.1c03559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipid droplets (LDs) are neutral lipid-storing organelles surrounded by a phospholipid (PL) monolayer. At present, how LDs are formed in the endoplasmic reticulum (ER) bilayer is poorly understood. In this study, we present a revised all-atom (AA) triolein (TG) model, the main constituent of the LD core, and characterize its properties in a bilayer membrane to demonstrate the implications of its behavior in LD biogenesis. In bilayer simulations, TG resides at the surface, adopting PL-like conformations (denoted in this work as SURF-TG). Free energy sampling simulation results estimate the barrier for TG relocating from the bilayer surface to the bilayer center to be ∼2 kcal/mol in the absence of an oil lens. SURF-TG is able to modulate membrane properties by increasing PL ordering, decreasing bending modulus, and creating local negative curvature. The other neutral lipid, dioleoyl-glycerol (DAG), also reduces the membrane bending modulus and populates negative curvature regions. A phenomenological coarse-grained (CG) model is also developed to observe larger-scale SURF-TG-mediated membrane deformation. CG simulations confirm that TG nucleates between the bilayer leaflets at a critical concentration when SURF-TG is evenly distributed. However, when one monolayer contains more SURF-TG, the membrane bends toward the other leaflet, followed by TG nucleation if a concentration is higher than the critical threshold. The central conclusion of this study is that SURF-TG is a negative curvature inducer, as well as a membrane modulator. To this end, a model is proposed in which the accumulation of SURF-TG in the luminal leaflet bends the ER bilayer toward the cytosolic side, followed by TG nucleation.
Collapse
Affiliation(s)
- Siyoung Kim
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
29
|
Taurine-Mediated IDOL Contributes to Resolution of Streptococcus uberis Infection. Infect Immun 2021; 89:IAI.00788-20. [PMID: 33593888 DOI: 10.1128/iai.00788-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic alterations occur in pathogenic infections, but the role of lipid metabolism in the progression of bacterial mastitis is unclear. Cross talk between lipid droplets (LDs) and invading bacteria occurs, and targeting of de novo lipogenesis inhibits pathogen reproduction. In this study, we investigate the role(s) of lipid metabolism in mammary cells during Streptococcus uberis infection. Our results indicate that S. uberis induces the synthesis of fatty acids and production of LDs. Importantly, taurine reduces fatty acid synthesis, the abundance of LDs and the in vitro bacterial load of S. uberis These changes are mediated, at least partly, by the E3 ubiquitin ligase IDOL, which is associated with the degradation of low-density lipoprotein receptors (LDLRs). We have identified a critical role for IDOL-mediated fatty acid synthesis in bacterial infection, and we suggest that taurine may be an effective prophylactic or therapeutic strategy for preventing S. uberis mastitis.
Collapse
|
30
|
Fevereiro J, Fraga AG, Pedrosa J. Genetics in the Host-Mycobacterium ulcerans interaction. Immunol Rev 2021; 301:222-241. [PMID: 33682158 DOI: 10.1111/imr.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Buruli ulcer is an emerging infectious disease associated with high morbidity and unpredictable outbreaks. It is caused by Mycobacterium ulcerans, a slow-growing pathogen evolutionarily shaped by the acquisition of a plasmid involved in the production of a potent macrolide-like cytotoxin and by genome rearrangements and downsizing. These events culminated in an uncommon infection pattern, whereby M. ulcerans is both able to induce the initiation of the inflammatory cascade and the cell death of its proponents, as well as to survive within the phagosome and in the extracellular milieu. In such extreme conditions, the host is sentenced to rely on a highly orchestrated genetic landscape to be able to control the infection. We here revisit the dynamics of M. ulcerans infection, drawing parallels from other mycobacterioses and integrating the most recent knowledge on its evolution and pathogenicity in its interaction with the host immune response.
Collapse
Affiliation(s)
- João Fevereiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
31
|
Rens C, Chao JD, Sexton DL, Tocheva EI, Av-Gay Y. Roles for phthiocerol dimycocerosate lipids in Mycobacterium tuberculosis pathogenesis. MICROBIOLOGY-SGM 2021; 167. [PMID: 33629944 DOI: 10.1099/mic.0.001042] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The success of Mycobacterium tuberculosis as a pathogen is well established: tuberculosis is the leading cause of death by a single infectious agent worldwide. The threat of multi- and extensively drug-resistant bacteria has renewed global concerns about this pathogen and understanding its virulence strategies will be essential in the fight against tuberculosis. The current review will focus on phthiocerol dimycocerosates (PDIMs), a long-known and well-studied group of complex lipids found in the M. tuberculosis cell envelope. Numerous studies show a role for PDIMs in several key steps of M. tuberculosis pathogenesis, with recent studies highlighting its involvement in bacterial virulence, in association with the ESX-1 secretion system. Yet, the mechanisms by which PDIMs help M. tuberculosis to control macrophage phagocytosis, inhibit phagosome acidification and modulate host innate immunity, remain to be fully elucidated.
Collapse
Affiliation(s)
- Céline Rens
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Joseph D Chao
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Danielle L Sexton
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
| | - Elitza I Tocheva
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
| | - Yossef Av-Gay
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada.,Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
32
|
Kinsella RL, Zhu DX, Harrison GA, Mayer Bridwell AE, Prusa J, Chavez SM, Stallings CL. Perspectives and Advances in the Understanding of Tuberculosis. ANNUAL REVIEW OF PATHOLOGY 2021; 16:377-408. [PMID: 33497258 DOI: 10.1146/annurev-pathol-042120-032916] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains a leading cause of death due to infection in humans. To more effectively combat this pandemic, many aspects of TB control must be developed, including better point of care diagnostics, shorter and safer drug regimens, and a protective vaccine. To address all these areas of need, better understanding of the pathogen, host responses, and clinical manifestations of the disease is required. Recently, the application of cutting-edge technologies to the study of Mtb pathogenesis has resulted in significant advances in basic biology, vaccine development, and antibiotic discovery. This leaves us in an exciting era of Mtb research in which our understanding of this deadly infection is improving at a faster rate than ever, and renews hope in our fight to end TB. In this review, we reflect on what is known regarding Mtb pathogenesis, highlighting recent breakthroughs that will provide leverage for the next leaps forward in the field.
Collapse
Affiliation(s)
- Rachel L Kinsella
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Dennis X Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Gregory A Harrison
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Anne E Mayer Bridwell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Sthefany M Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| |
Collapse
|
33
|
Grabowska AD, Brison Y, Maveyraud L, Gavalda S, Faille A, Nahoum V, Bon C, Guilhot C, Pedelacq JD, Chalut C, Mourey L. Molecular Basis for Extender Unit Specificity of Mycobacterial Polyketide Synthases. ACS Chem Biol 2020; 15:3206-3216. [PMID: 33237724 DOI: 10.1021/acschembio.0c00772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mycobacterium tuberculosis is the causative agent of the tuberculosis disease, which claims more human lives each year than any other bacterial pathogen. M. tuberculosis and other mycobacterial pathogens have developed a range of unique features that enhance their virulence and promote their survival in the human host. Among these features lies the particular cell envelope with high lipid content, which plays a substantial role in mycobacterial pathogenicity. Several envelope components of M. tuberculosis and other mycobacteria, e.g., mycolic acids, phthiocerol dimycocerosates, and phenolic glycolipids, belong to the "family" of polyketides, secondary metabolites synthesized by fascinating versatile enzymes-polyketide synthases. These megasynthases consist of multiple catalytic domains, among which the acyltransferase domain plays a key role in selecting and transferring the substrates required for polyketide extension. Here, we present three new crystal structures of acyltransferase domains of mycobacterial polyketide synthases and, for one of them, provide evidence for the identification of residues determining extender unit specificity. Unravelling the molecular basis for such specificity is of high importance considering the role played by extender units for the final structure of key mycobacterial components. This work provides major advances for the use of mycobacterial polyketide synthases as potential therapeutic targets and, more generally, contributes to the prediction and bioengineering of polyketide synthases with desired specificity.
Collapse
Affiliation(s)
- Anna D. Grabowska
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Yoann Brison
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Laurent Maveyraud
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Sabine Gavalda
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Alexandre Faille
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Virginie Nahoum
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Cécile Bon
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
34
|
Weng J, Yang M, Wang W, Xu X, Tian Z. Revealing Thermodynamics and Kinetics of Lipid Self-Assembly by Markov State Model Analysis. J Am Chem Soc 2020; 142:21344-21352. [PMID: 33314927 DOI: 10.1021/jacs.0c09343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Self-assembly is ubiquitous in the realm of biology and has become an elegant bottom-up approach to fabricate new materials. Although molecular dynamics (MD) simulations can complement experiments by providing the missing atomic details, it still remains a grand challenge to reveal the thermodynamic and kinetic information on a self-assembly system. In this work, we demonstrate for the first time that the Markov state model analysis can be used to delineate the variation of free energy during the self-assembly process of a typical amphiphilic lipid dipalmitoyl-phosphatidylcholine (DPPC). Free energy profiles against the solvent-accessible surface area and the root-mean-square deviation have been derived from extensive MD results of more than five hundred trajectories, which identified a metastable crossing-cylinder (CC) state and a transition state of the distorted bilayer with a free energy barrier of ∼0.02 kJ mol-1 per DPPC lipid, clarifying a long-standing speculation for 20 years that there exists a free energy barrier during lipid self-assembly. Our simulations also unearth two mesophase structures at the early stage of self-assembly, discovering two assembling pathways to the CC state that have never been reported before. Further thermodynamic analysis derives the contributions from the enthalpy and the entropy terms to the free energy, demonstrating the critical role played by the enthalpy-entropy compensation. Our strategy opens the door to quantitatively understand the self-assembly processes in general and provides new opportunities for identifying common thermodynamic and kinetic patterns in different self-assembly systems and inspiring new ideas for experiments. It may also contribute to the refinement of force field parameters of various self-assembly systems.
Collapse
Affiliation(s)
- Jingwei Weng
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Maohua Yang
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Wenning Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Zhongqun Tian
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
35
|
Kumar G, Narayan R, Kapoor S. Chemical Tools for Illumination of Tuberculosis Biology, Virulence Mechanisms, and Diagnosis. J Med Chem 2020; 63:15308-15332. [PMID: 33307693 DOI: 10.1021/acs.jmedchem.0c01337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases and begs the scientific community to up the ante for research and exploration of completely novel therapeutic avenues. Chemical biology-inspired design of tunable chemical tools has aided in clinical diagnosis, facilitated discovery of therapeutics, and begun to enable investigation of virulence mechanisms at the host-pathogen interface of Mycobacterium tuberculosis. This Perspective highlights chemical tools specific to mycobacterial proteins and the cell lipid envelope that have furnished rapid and selective diagnostic strategies and provided unprecedented insights into the function of the mycobacterial proteome and lipidome. We discuss chemical tools that have enabled elucidating otherwise intractable biological processes by leveraging the unique lipid and metabolite repertoire of mycobacterial species. Some of these probes represent exciting starting points with the potential to illuminate poorly understood aspects of mycobacterial pathogenesis, particularly the host membrane-pathogen interactions.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Ponda 403 401, Goa, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India.,Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
| |
Collapse
|
36
|
Thiam AR, Ikonen E. Lipid Droplet Nucleation. Trends Cell Biol 2020; 31:108-118. [PMID: 33293168 DOI: 10.1016/j.tcb.2020.11.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
All living organisms can make lipid droplets (LDs), intracellular oil-in-water droplets, surrounded by a phospholipid and protein monolayer. LDs are at the nexus of cellular lipid metabolism and function in diverse biological processes. During the past decade, multidisciplinary approaches have shed light on LD assembly steps from the endoplasmic reticulum (ER): nucleation, growth, budding, and formation of a separate organelle. However, the molecular mechanisms underpinning these steps remain elusive. In this review, we focus on the nucleation step, defining where and how LD assembly is initiated. We present how membrane biophysical and physicochemical properties control this step and how proteins act on it to orchestrate LD biogenesis.
Collapse
Affiliation(s)
- Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France.
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland.
| |
Collapse
|
37
|
Cambier CJ, Banik SM, Buonomo JA, Bertozzi CR. Spreading of a mycobacterial cell-surface lipid into host epithelial membranes promotes infectivity. eLife 2020; 9:60648. [PMID: 33226343 PMCID: PMC7735756 DOI: 10.7554/elife.60648] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022] Open
Abstract
Several virulence lipids populate the outer cell wall of pathogenic mycobacteria. Phthiocerol dimycocerosate (PDIM), one of the most abundant outer membrane lipids, plays important roles in both defending against host antimicrobial programs and in evading these programs altogether. Immediately following infection, mycobacteria rely on PDIM to evade Myd88-dependent recruitment of microbicidal monocytes which can clear infection. To circumvent the limitations in using genetics to understand virulence lipids, we developed a chemical approach to track PDIM during Mycobacterium marinum infection of zebrafish. We found that PDIM's methyl-branched lipid tails enabled it to spread into host epithelial membranes to prevent immune activation. Additionally, PDIM’s affinity for cholesterol promoted this phenotype; treatment of zebrafish with statins, cholesterol synthesis inhibitors, decreased spreading and provided protection from infection. This work establishes that interactions between host and pathogen lipids influence mycobacterial infectivity and suggests the use of statins as tuberculosis preventive therapy by inhibiting PDIM spread.
Collapse
Affiliation(s)
- C J Cambier
- Department of Chemistry, Stanford University, Stanford, United States
| | - Steven M Banik
- Department of Chemistry, Stanford University, Stanford, United States
| | - Joseph A Buonomo
- Department of Chemistry, Stanford University, Stanford, United States
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
38
|
Augenstreich J, Briken V. Host Cell Targets of Released Lipid and Secreted Protein Effectors of Mycobacterium tuberculosis. Front Cell Infect Microbiol 2020; 10:595029. [PMID: 33194845 PMCID: PMC7644814 DOI: 10.3389/fcimb.2020.595029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a very successful pathogen, strictly adapted to humans and the cause of tuberculosis. Its success is associated with its ability to inhibit host cell intrinsic immune responses by using an arsenal of virulence factors of different nature. It has evolved to synthesize a series of complex lipids which form an outer membrane and may also be released to enter host cell membranes. In addition, secreted protein effectors of Mtb are entering the host cell cytosol to interact with host cell proteins. We briefly discuss the current model, involving the ESX-1 type seven secretion system and the Mtb lipid phthiocerol dimycoserosate (PDIM), of how Mtb creates pores in the phagosomal membrane to allow Mtb proteins to access to the host cell cytosol. We provide an exhaustive list of Mtb secreted proteins that have effector functions. They modify (mostly inhibit but sometimes activate) host cell pathways such as: phagosome maturation, cell death, cytokine response, xenophagy, reactive oxygen species (ROS) response via NADPH oxidase 2 (NOX2), nitric oxide (NO) response via NO Synthase 2 (NOS2) and antigen presentation via MHC class I and class II molecules. We discuss the host cell targets for each lipid and protein effector and the importance of the Mtb effector for virulence of the bacterium.
Collapse
Affiliation(s)
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
39
|
Dadhich R, Kapoor S. Various Facets of Pathogenic Lipids in Infectious Diseases: Exploring Virulent Lipid-Host Interactome and Their Druggability. J Membr Biol 2020; 253:399-423. [PMID: 32833058 PMCID: PMC7443855 DOI: 10.1007/s00232-020-00135-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Lipids form an integral, structural, and functional part of all life forms. They play a significant role in various cellular processes such as membrane fusion, fission, endocytosis, protein trafficking, and protein functions. Interestingly, recent studies have revealed their more impactful and critical involvement in infectious diseases, starting with the manipulation of the host membrane to facilitate pathogenic entry. Thereafter, pathogens recruit specific host lipids for the maintenance of favorable intracellular niche to augment their survival and proliferation. In this review, we showcase the lipid-mediated host pathogen interplay in context of life-threatening viral and bacterial diseases including the recent SARS-CoV-2 infection. We evaluate the emergent lipid-centric approaches adopted by these pathogens, while delineating the alterations in the composition and organization of the cell membrane within the host, as well as the pathogen. Lastly, crucial nexus points in their interaction landscape for therapeutic interventions are identified. Lipids act as critical determinants of bacterial and viral pathogenesis by altering the host cell membrane structure and functions.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
40
|
Augenstreich J, Haanappel E, Sayes F, Simeone R, Guillet V, Mazeres S, Chalut C, Mourey L, Brosch R, Guilhot C, Astarie-Dequeker C. Phthiocerol Dimycocerosates From Mycobacterium tuberculosis Increase the Membrane Activity of Bacterial Effectors and Host Receptors. Front Cell Infect Microbiol 2020; 10:420. [PMID: 32923411 PMCID: PMC7456886 DOI: 10.3389/fcimb.2020.00420] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) synthesizes a variety of atypical lipids that are exposed at the cell surface and help the bacterium infect macrophages and escape elimination by the cell's immune responses. In the present study, we investigate the mechanism of action of one family of hydrophobic lipids, the phthiocerol dimycocerosates (DIM/PDIM), major lipid virulence factors. DIM are transferred from the envelope of Mtb to host membranes during infection. Using the polarity-sensitive fluorophore C-Laurdan, we visualized that DIM decrease the membrane polarity of a supported lipid bilayer put in contact with mycobacteria, even beyond the site of contact. We observed that DIM activate the complement receptor 3, a predominant receptor for phagocytosis of Mtb by macrophages. DIM also increased the activity of membrane-permeabilizing effectors of Mtb, among which the virulence factor EsxA. This is consistent with previous observations that DIM help Mtb disrupt host cell membranes. Taken together, our data show that transferred DIM spread within the target membrane, modify its physical properties and increase the activity of host cell receptors and bacterial effectors, diverting in a non-specific manner host cell functions. We therefore bring new insight into the molecular mechanisms by which DIM increase Mtb's capability to escape the cell's immune responses.
Collapse
Affiliation(s)
- Jacques Augenstreich
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Evert Haanappel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Fadel Sayes
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Roxane Simeone
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Valérie Guillet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Serge Mazeres
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Catherine Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| |
Collapse
|
41
|
Osman MM, Pagán AJ, Shanahan JK, Ramakrishnan L. Mycobacterium marinum phthiocerol dimycocerosates enhance macrophage phagosomal permeabilization and membrane damage. PLoS One 2020; 15:e0233252. [PMID: 32701962 PMCID: PMC7377490 DOI: 10.1371/journal.pone.0233252] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Phthiocerol dimycocerosates (PDIMs) are a class of mycobacterial lipids that promote virulence in Mycobacterium tuberculosis and Mycobacterium marinum. It has recently been shown that PDIMs work in concert with the M. tuberculosis Type VII secretion system ESX-1 to permeabilize the phagosomal membranes of infected macrophages. As the zebrafish-M. marinum model of infection has revealed the critical role of PDIM at the host-pathogen interface, we set to determine if PDIMs contributed to phagosomal permeabilization in M. marinum. Using an ΔmmpL7 mutant defective in PDIM transport, we find the PDIM-ESX-1 interaction to be conserved in an M. marinum macrophage infection model. However, we find PDIM and ESX-1 mutants differ in their degree of defect, with the PDIM mutant retaining more membrane damaging activity. Using an in vitro hemolysis assay-a common surrogate for cytolytic activity, we find that PDIM and ESX-1 differ in their contributions: the ESX-1 mutant loses hemolytic activity while PDIM retains it. Our observations confirm the involvement of PDIMs in phagosomal permeabilization in M. marinum infection and suggest that PDIM enhances the membrane disrupting activity of pathogenic mycobacteria and indicates that the role they play in damaging phagosomal and red blood cell membranes may differ.
Collapse
Affiliation(s)
- Morwan M. Osman
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Antonio J. Pagán
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Jonathan K. Shanahan
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Lalita Ramakrishnan
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Bah A, Sanicas M, Nigou J, Guilhot C, Astarie-Dequeker C, Vergne I. The Lipid Virulence Factors of Mycobacterium tuberculosis Exert Multilayered Control over Autophagy-Related Pathways in Infected Human Macrophages. Cells 2020; 9:cells9030666. [PMID: 32182946 PMCID: PMC7140614 DOI: 10.3390/cells9030666] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
Autophagy is an important innate immune defense mechanism that controls Mycobacterium tuberculosis (Mtb) growth inside macrophages. Autophagy machinery targets Mtb-containing phagosomes via xenophagy after damage to the phagosomal membrane due to the Type VII secretion system Esx-1 or via LC3-associated phagocytosis without phagosomal damage. Conversely, Mtb restricts autophagy-related pathways via the production of various bacterial protein factors. Although bacterial lipids are known to play strategic functions in Mtb pathogenesis, their role in autophagy manipulation remains largely unexplored. Here, we report that the lipid virulence factors sulfoglycolipids (SLs) and phthiocerol dimycocerosates (DIMs) control autophagy-related pathways through distinct mechanisms in human macrophages. Using knock-out and knock-in mutants of Mtb and Mycobacterium bovis BCG (Bacille Calmette Guerin) and purified lipids, we found that (i) Mtb mutants with DIM and SL deficiencies promoted functional autophagy via an MyD88-dependent and phagosomal damage-independent pathway in human macrophages; (ii) SLs limited this pathway by acting as TLR2 antagonists; (iii) DIMs prevented phagosomal damage-independent autophagy while promoting Esx-1-dependent xenophagy; (iv) and DIMs, but not SLs, limited the acidification of LC3-positive Mtb compartments. In total, our study reveals an unexpected and intricate role for Mtb lipid virulence factors in controlling autophagy-related pathways in human macrophages, thus providing further insight into the autophagy manipulation tactics deployed by intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Aïcha Bah
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France; (A.B.); (M.S.); (J.N.); (C.G.)
| | - Merlin Sanicas
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France; (A.B.); (M.S.); (J.N.); (C.G.)
- University of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France; (A.B.); (M.S.); (J.N.); (C.G.)
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France; (A.B.); (M.S.); (J.N.); (C.G.)
| | - Catherine Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France; (A.B.); (M.S.); (J.N.); (C.G.)
- Correspondence: (C.A.-D.); (I.V.)
| | - Isabelle Vergne
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France; (A.B.); (M.S.); (J.N.); (C.G.)
- Correspondence: (C.A.-D.); (I.V.)
| |
Collapse
|
43
|
Mycobacterium tuberculosis pathogenicity viewed through the lens of molecular Koch's postulates. Curr Opin Microbiol 2020; 54:103-110. [PMID: 32062573 DOI: 10.1016/j.mib.2020.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 01/12/2023]
Abstract
Thirty years ago Stanley Falkow formulated molecular Koch's postulates as a framework to help dissect the contribution of microbial genes to their pathogenicity (Box 1). Three years later, his advice led me to develop Mycobacterium marinum, a close genetic relative of Mycobacterium tuberculosis, as a model for tuberculosis pathogenesis. Here, I discuss insights into M. tuberculosis pathogenicity from studying M. marinum in the zebrafish, and frame them in terms of molecular Koch's postulates. The highly orchestrated life cycle of M. tuberculosis is achieved in substantial measure not by "traditional" pathogen-exclusive virulence genes acquired along its evolutionary history, but rather by genes that are shared with its environmental ancestors. Together, these genes support its tactics of subterfuge and exploitation to overcome host immunity so as to produce the transmissible disease that ensures the evolutionary survival of this obligate human pathogen.
Collapse
|
44
|
Guzman G, Niekamp P, Tafesse FG. The Squeaky Yeast Gets Greased: The Roles of Host Lipids in the Clearance of Pathogenic Fungi. J Fungi (Basel) 2020; 6:E19. [PMID: 32024011 PMCID: PMC7151219 DOI: 10.3390/jof6010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/21/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
Fungal infections remain a global health threat with high morbidity and mortality. The human immune system must, therefore, perpetually defend against invasive fungal infections. Phagocytosis is critical for the clearance of fungal pathogens, as this cellular process allows select immune cells to internalize and destroy invading fungal cells. While much is known about the protein players that enable phagocytosis, the various roles that lipids play during this fundamental innate immune process are still being illuminated. In this review, we describe recent discoveries that shed new light on the mechanisms by which host lipids enable the phagocytic uptake and clearance of fungal pathogens.
Collapse
Affiliation(s)
- Gaelen Guzman
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA; (G.G.); (P.N.)
| | - Patrick Niekamp
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA; (G.G.); (P.N.)
- Biology & Chemistry Department, University of Osnabrück, Fachbereich Biologie/Chemie, Barbarastrasse 13, 49076 Osnabrück, Germany
| | - Fikadu Geta Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA; (G.G.); (P.N.)
| |
Collapse
|
45
|
Mycobacterium tuberculosis enters macrophages with aid from a bacterial lipid. Proc Natl Acad Sci U S A 2019; 116:25372-25373. [PMID: 31757857 DOI: 10.1073/pnas.1918900116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|