1
|
Tumuluru S, Godfrey JK, Cooper A, Yu J, Chen X, MacNabb BW, Venkataraman G, Zha Y, Pelzer B, Song J, Duns G, Sworder BJ, Raj S, Bolen C, Penuel E, Postovalova E, Kotlov N, Bagaev A, Fowler N, Shouval R, Smith SM, Alizadeh AA, Steidl C, Kline J. Integrative genomic analysis of DLBCL identifies immune environments associated with bispecific antibody response. Blood 2025; 145:2460-2472. [PMID: 39869833 DOI: 10.1182/blood.2024025355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/29/2025] Open
Abstract
ABSTRACT Most patients with diffuse large B-cell lymphoma (DLBCL) treated with immunotherapies such as bispecific antibodies (BsAbs) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative multiomics approach was applied to multiple large independent data sets to characterize DLBCL immune environments and to define their association with tumor cell-intrinsic genomic alterations and outcomes to CD19-directed CAR T-cell and CD20 × CD3 BsAb therapies. This approach effectively segregated DLBCLs into 4 immune quadrants (IQs) defined by cell-of-origin and immune-related gene set expression scores. These quadrants consisted of activated B cell-like (ABC) hot, ABC cold, germinal center B cell-like (GCB) hot, and GCB cold DLBCLs. Recurrent genomic alterations were enriched in each IQ, suggesting that lymphoma cell-intrinsic alterations contribute significantly to orchestrating unique DLBCL immune environments. For instance, SOCS1 loss-of-function mutations were significantly enriched among GCB hot DLBCLs, identifying a putative subset of inflamed DLBCLs that may be inherently susceptible to immunotherapy. In patients with relapsed/refractory DLBCL, DLBCL-IQ assignment correlated significantly with clinical benefit with a CD20 × CD3 BsAb (N = 74), but not with CD19-directed CAR T cells (Stanford, N = 51; Memorial Sloan Kettering Cancer Center, N = 69). Thus, DLBCL-IQ provides a new framework to conceptualize the DLBCL immune landscape and suggests the endogenous immune environment has a more significant impact on outcomes to BsAb than CAR T-cell treatment.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Antibodies, Bispecific/therapeutic use
- Antibodies, Bispecific/immunology
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Genomics/methods
- Antigens, CD19/immunology
- Immunotherapy, Adoptive
Collapse
Affiliation(s)
- Sravya Tumuluru
- Biological Sciences Division, Committee on Cancer Biology, The University of Chicago, Chicago, IL
| | - James K Godfrey
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Alan Cooper
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Jovian Yu
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Xiufen Chen
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Brendan W MacNabb
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | | | - Yuanyuan Zha
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Benedikt Pelzer
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Joo Song
- Department of Pathology, City of Hope, Duarte, CA
| | - Gerben Duns
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Brian J Sworder
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA
| | - Sandeep Raj
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | | | | | - Roni Shouval
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sonali M Smith
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| | - Ash A Alizadeh
- Division of Oncology, Department of Medicine, Stanford University, Palo Alto, CA
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Justin Kline
- Biological Sciences Division, Committee on Cancer Biology, The University of Chicago, Chicago, IL
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL
| |
Collapse
|
2
|
Liu X, Lin Y, Zhuang Q, Deng H, Liu A, Sun J. BTK inhibitors resistance in B cell malignancies: Mechanisms and potential therapeutic strategies. Blood Rev 2025; 71:101273. [PMID: 40000280 DOI: 10.1016/j.blre.2025.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/02/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Bruton tyrosine kinase inhibitors (BTKi) have shown prominent clinical efficacy in patients with B cell malignancies, such as chronic lymphocytic leukemia, mantle cell lymphoma, diffuse large B cell lymphoma, and Waldenström's macroglobulinemia. Nevertheless, numerous factors contribute to BTKi resistance, encompassing genetic mutations, chromosomal aberrations, dysregulation of protein expression, tumor microenvironment, and metabolic reprogramming. Accordingly, potential therapeutic strategies have been explored to surmount BTKi resistance, including noncovalent BTKi, BTK proteolysis-targeting chimeras, and combination therapies. Herein, we summarize the mechanisms responsible for BTKi resistance as well as the current preclinical and clinical strategies to address BTKi resistance in B cell malignancies treatment.
Collapse
Affiliation(s)
- Xin Liu
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China; Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yufan Lin
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China; Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiqi Zhuang
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China; Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoren Deng
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China
| | - Aichun Liu
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Jie Sun
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China; Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.
| |
Collapse
|
3
|
Di Giulio V, Canciello A, Carletti E, De Luca A, Giordano A, Morrione A, Berardinelli J, Russo V, Solari D, Cavallo LM, Barboni B. The dual nature of KLHL proteins: From cellular regulators to disease drivers. Eur J Cell Biol 2025; 104:151483. [PMID: 40101609 DOI: 10.1016/j.ejcb.2025.151483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/20/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
The Kelch-like (KLHL) protein family, characterized by its conserved BTB, BACK, and Kelch domains, serves as substrate adaptors for Cullin 3-RING ligases (CRL3), facilitating the ubiquitination and degradation of specific target proteins. Through this mechanism, KLHL proteins regulate numerous physiological processes, including cytoskeletal organization, oxidative stress response, and cell cycle progression. Dysregulation of KLHL proteins-via mutations or abnormal expression-has been implicated in various pathological conditions, including neurodegenerative disorders, cancer, cardiovascular diseases, and hereditary syndromes. This review provides a comprehensive overview of the physiological and pathological roles of KLHL proteins, emphasizing their specific substrates and mechanisms of action. By integrating structural and mechanistic insights with translational research, this review underscores the potential of KLHL proteins as promising therapeutic targets, offering new opportunities to combat a wide spectrum of complex diseases.
Collapse
Affiliation(s)
- Verdiana Di Giulio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy
| | - Angelo Canciello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy.
| | - Erminia Carletti
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), G. D'Annunzio University Chieti-Pescara, Chieti 66100, Italy
| | - Antonella De Luca
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), G. D'Annunzio University Chieti-Pescara, Chieti 66100, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States; Department of Biomedical Biotechnologies, University of Siena, Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Jacopo Berardinelli
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, University of Naples "Federico II", Naples 80138, Italy
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy
| | - Domenico Solari
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, University of Naples "Federico II", Naples 80138, Italy
| | - Luigi Maria Cavallo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, University of Naples "Federico II", Naples 80138, Italy
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy
| |
Collapse
|
4
|
Bolomsky A, Choi J, Phelan JD. Genotype from Phenotype: Using CRISPR Screens to Dissect Lymphoma Biology. Methods Mol Biol 2025; 2865:241-257. [PMID: 39424727 DOI: 10.1007/978-1-0716-4188-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Genome-wide screens are a powerful technique to dissect the complex network of genes regulating diverse cellular phenotypes. The recent adaptation of the CRISPR-Cas9 system for genome engineering has revolutionized functional genomic screening. Here, we present protocols used to introduce Cas9 into human lymphoma cell lines, produce high-titer lentivirus of a genome-wide sgRNA library, transduce and culture cells during the screen, select cells with a specified phenotype, isolate genomic DNA, and prepare a custom library for next-generation sequencing. These protocols were tailored for loss-of-function CRISPR screens in human B-cell lymphoma cell lines but are highly amenable for other experimental purposes.
Collapse
Affiliation(s)
- Arnold Bolomsky
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Roschewski M, Phelan JD, Jaffe ES. Primary large B-cell lymphomas of immune-privileged sites. Blood 2024; 144:2593-2603. [PMID: 38635786 PMCID: PMC11862818 DOI: 10.1182/blood.2023020911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
ABSTRACT Diffuse large B-cell lymphoma (DLBCL) encompasses a diverse spectrum of aggressive B-cell lymphomas with remarkable genetic heterogeneity and myriad clinical presentations. Multiplatform genomic analyses of DLBCL have identified oncogenic drivers within genetic subtypes that allow for pathologic subclassification of tumors into discrete entities with shared immunophenotypic, genetic, and clinical features. Robust classification of lymphoid tumors establishes a foundation for precision medicine and enables the identification of novel therapeutic vulnerabilities within biologically homogeneous entities. Most cases of DLBCL involving the central nervous system (CNS), vitreous, and testis exhibit immunophenotypic features suggesting an activated B-cell (ABC) origin. Shared molecular features include frequent comutations of MYD88 (L265P) and CD79B and frequent genetic alterations promoting immune evasion, which are hallmarks of the MCD/C5/MYD88 genetic subtype of DLBCL. Clinically, these lymphomas primarily arise within anatomic sanctuary sites and have a predilection for remaining confined to extranodal sites and strong CNS tropism. Given the shared clinical and molecular features, the umbrella term primary large B-cell lymphoma of immune-privileged sites (IP-LBCL) was proposed. Other extranodal DLBCL involving the breast, adrenal glands, and skin are often ABC DLBCL but are more heterogeneous in their genomic profile and involve anatomic sites that are not considered immune privileged. In this review, we describe the overlapping clinical, pathologic, and molecular features of IP-LBCL and highlight important considerations for diagnosis, staging, and treatment. We also discuss potential therapeutic vulnerabilities of IP-LBCL including sensitivity to inhibitors of Bruton tyrosine kinase, immunomodulatory agents, and immunotherapy.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Immune Privilege
Collapse
Affiliation(s)
- Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - James D. Phelan
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Elaine S. Jaffe
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
6
|
Muthusamy M, Ramasamy KT, Peters SO, Palani S, Gowthaman V, Nagarajan M, Karuppusamy S, Thangavelu V, Aranganoor Kannan T. Transcriptomic Profiling Reveals Altered Expression of Genes Involved in Metabolic and Immune Processes in NDV-Infected Chicken Embryos. Metabolites 2024; 14:669. [PMID: 39728450 DOI: 10.3390/metabo14120669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVE The poultry industry is significantly impacted by viral infections, particularly Newcastle Disease Virus (NDV), which leads to substantial economic losses. It is essential to comprehend how the sequence of development affects biological pathways and how early exposure to infections might affect immune responses. METHODS This study employed transcriptome analysis to investigate host-pathogen interactions by analyzing gene expression changes in NDV-infected chicken embryos' lungs. RESULT RNA-Seq reads were aligned with the chicken reference genome (Galgal7), revealing 594 differentially expressed genes: 264 upregulated and 330 downregulated. The most overexpressed genes, with logFC between 8.15 and 8.75, included C8A, FGG, PIT54, FETUB, APOC3, and FGA. Notably, downregulated genes included BPIFB3 (-4.46 logFC) and TRIM39.1 (-4.26 logFC). The analysis also identified 29 novel transcripts and 20 lncRNAs that were upregulated. Gene Ontology and KEGG pathways' analyses revealed significant alterations in gene expression related to immune function, metabolism, cell cycle, nucleic acid processes, and mitochondrial activity due to NDV infection. Key metabolic genes, such as ALDOB (3.27 logFC), PRPS2 (2.66 logFC), and XDH (2.15 logFC), exhibited altered expression patterns, while DCK2 (-1.99 logFC) and TK1 (-2.11 logFC) were also affected. Several immune-related genes showed significant upregulation in infected lung samples, including ALB (6.15 logFC), TLR4 (1.86 logFC), TLR2 (2.79 logFC), and interleukin receptors, such as IL1R2 (3.15 logFC) and IL22RA2 (1.37 logFC). Conversely, genes such as CXCR4 (-1.49 logFC), CXCL14 (-2.57 logFC), GATA3 (-1.51 logFC), and IL17REL (-2.93 logFC) were downregulated. The higher expression of HSP genes underscores their vital role in immune responses. CONCLUSION Comprehension of these genes' interactions is essential for regulating viral replication and immune responses during infections, potentially aiding in the identification of candidate genes for poultry breed improvement amidst NDV challenges.
Collapse
Affiliation(s)
- Malarmathi Muthusamy
- Department of Animal Genetics and Breeding, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal 637002, India
| | - Kannaki T Ramasamy
- Indian Council of Agricultural Research-Directorate of Poultry Research, Hyderabad 500030, India
| | | | - Srinivasan Palani
- Department of Veterinary Pathology, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal 637002, India
| | - Vasudevan Gowthaman
- Poultry Disease Diagnosis and Surveillance Laboratory, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal 637002, India
| | - Murali Nagarajan
- Alambadi Cattle Breed Research Centre, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Dharmapuri 635111, India
| | - Sivakumar Karuppusamy
- Faculty of Food and Agriculture, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago
| | | | - Thiruvenkadan Aranganoor Kannan
- Department of Animal Genetics and Breeding, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal 637002, India
| |
Collapse
|
7
|
Jin F, He L, Chen Y, Tian W, Liu L, Ge L, Qian W, Xia L, Yang M. Synergistic effect of venetoclax and ibrutinib on ibrutinib-resistant ABC-type DLBCL cells. Braz J Med Biol Res 2024; 57:e13278. [PMID: 39383379 PMCID: PMC11463907 DOI: 10.1590/1414-431x2024e13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/07/2024] [Indexed: 10/11/2024] Open
Abstract
Despite the widespread use of R-CHOP therapy in diffuse large B-cell lymphoma (DLBCL), the therapeutic efficacy for this disease remains suboptimal, primarily due to the heterogeneity of refractory and/or relapsed diseases. To address this challenge, optimization of DLBCL treatment regimens has focused on the strategy of combining an additional drug "X" with R-CHOP to enhance efficacy. However, the failure of R-CHOP combined with the BTK inhibitor ibrutinib in treating ABC-type DLBCL patients has raised significant concerns regarding ibrutinib resistance. While some studies suggest that venetoclax may synergize with ibrutinib to kill ibrutinib-resistant cells, the underlying mechanisms remain unclear. Our study aimed to validate the enhanced tumor-suppressive effect of combining ibrutinib with venetoclax against ibrutinib-resistant cells and elucidate its potential mechanisms. Our experimental results demonstrated that ibrutinib-resistant cells exhibited significant cytotoxicity to the combination therapy of ibrutinib and venetoclax, inducing cell apoptosis through activation of the mitochondrial pathway and inhibition of aerobic respiration. Furthermore, we validated the inhibitory effect of this combination therapy on tumor growth in in vivo models. Therefore, our study proposes that the combination therapy of ibrutinib and venetoclax is a promising treatment strategy that can be applied in clinical practice for ABC-type DLBCL, offering a new solution to overcome the urgent challenge of ibrutinib resistance.
Collapse
Affiliation(s)
- Fengbo Jin
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Limei He
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Yingying Chen
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Wanlu Tian
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Lixia Liu
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Ling Ge
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Wei Qian
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Leiming Xia
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Mingzhen Yang
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| |
Collapse
|
8
|
Meriranta L, Sorri S, Huse K, Liu X, Spasevska I, Zafar S, Chowdhury I, Dufva O, Sahlberg E, Tandarić L, Karjalainen-Lindsberg ML, Hyytiäinen M, Varjosalo M, Myklebust JH, Leppä S. Disruption of KLHL6 Fuels Oncogenic Antigen Receptor Signaling in B-Cell Lymphoma. Blood Cancer Discov 2024; 5:331-352. [PMID: 38630892 PMCID: PMC11369598 DOI: 10.1158/2643-3230.bcd-23-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Pathomechanisms that activate oncogenic B-cell receptor (BCR) signaling in diffuse large B-cell lymphoma (DLBCL) are largely unknown. Kelch-like family member 6 (KLHL6) encoding a substrate-adapter for Cullin-3-RING E3 ubiquitin ligase with poorly established targets is recurrently mutated in DLBCL. By applying high-throughput protein interactome screens and functional characterization, we discovered that KLHL6 regulates BCR by targeting its signaling subunits CD79A and CD79B. Loss of physiologic KLHL6 expression pattern was frequent among the MCD/C5-like activated B-cell DLBCLs and was associated with higher CD79B levels and dismal outcome. Mutations in the bric-a-brac tramtrack broad domain of KLHL6 disrupted its localization and heterodimerization and increased surface BCR levels and signaling, whereas Kelch domain mutants had the opposite effect. Malfunctions of KLHL6 mutants extended beyond proximal BCR signaling with distinct phenotypes from KLHL6 silencing. Collectively, our findings uncover how recurrent mutations in KLHL6 alter BCR signaling and induce actionable phenotypic characteristics in DLBCL. Significance: Oncogenic BCR signaling sustains DLBCL cells. We discovered that Cullin-3-RING E3 ubiquitin ligase substrate-adapter KLHL6 targets BCR heterodimer (CD79A/CD79B) for ubiquitin-mediated degradation. Recurrent somatic mutations in the KLHL6 gene cause corrupt BCR signaling by disrupting surface BCR homeostasis. Loss of KLHL6 expression and mutant-induced phenotypes associate with targetable disease characteristics in B-cell lymphoma. See related commentary by Leveille et al. See related commentary by Corcoran et al.
Collapse
MESH Headings
- Humans
- Signal Transduction
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- CD79 Antigens/genetics
- CD79 Antigens/metabolism
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Mutation
- Cell Line, Tumor
- Carrier Proteins
Collapse
Affiliation(s)
- Leo Meriranta
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| | - Selma Sorri
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| | - Kanutte Huse
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for B-cell malignancies and Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Xiaonan Liu
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Ivana Spasevska
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for B-cell malignancies and Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Sadia Zafar
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Iftekhar Chowdhury
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
| | - Eerika Sahlberg
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Luka Tandarić
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | | | - Marko Hyytiäinen
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - June H. Myklebust
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for B-cell malignancies and Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Sirpa Leppä
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
9
|
Berardinelli J, Russo V, Canciello A, Di Giacinto O, Mauro A, Nardinocchi D, Bove I, Solari D, Del Basso De Caro M, Cavallo LM, Barboni B. KLHL14 and E-Cadherin Nuclear Co-Expression as Predicting Factor of Nonfunctioning PitNET Invasiveness: Preliminary Study. J Clin Med 2024; 13:4409. [PMID: 39124679 PMCID: PMC11312959 DOI: 10.3390/jcm13154409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Background/Objectives. Novel diagnostic and therapeutic approaches are needed to improve the clinical management of nonfunctioning pituitary neuroendocrine tumors (NF-PitNETs). Here, the expression of two proteins controlling the epithelial-mesenchymal transition (EMT)-an underlying NF-PitNET pathogenic mechanism-were analyzed as prognostic markers: E-cadherin (E-Cad) and KLHL14. Methods. The immunohistochemistry characterization of KLHL14 and E-Cad subcellular expression in surgical specimens of 12 NF-PitNET patients, with low and high invasiveness grades (respectively, Ki67+ < and ≥3%) was carried out. Results. The analysis of healthy vs. NF-PitNET tissues demonstrated an increased protein expression and nuclear translocation of KLHL14. Moreover, both E-Cad and KLHL14 shifted from a cytoplasmic (C) form in a low invasive NF-PitNET to a nuclear (N) localization in a high invasive NF-PitNET. A significant correlation was found between E-Cad/KLHL14 co-localization in the cytoplasm (p = 0.01) and nucleus (p = 0.01) and with NF-PitNET invasiveness grade. Conclusions. Nuclear buildup of both E-Cad and KLHL14 detected in high invasive NF-PitNET patients highlights a novel intracellular mechanism governing the tumor propensity to local invasion (Ki67+ ≥ 3%). The prolonged progression-free survival trend documented in patients with lower KLHL14 expression further supported such a hypothesis even if a larger cohort of NF-PitNET patients have to be analyzed to definitively recognize a key prognostic role for KLHL14.
Collapse
Affiliation(s)
- Jacopo Berardinelli
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, University of Naples “Federico II”, 80138 Naples, Italy; (J.B.); (I.B.); (D.S.); (L.M.C.)
| | - Valentina Russo
- Department of Biosciences and Technology for Food, Agricultural and Environment, University of Teramo, 64100 Teramo, Italy; (V.R.); (O.D.G.); (A.M.); (D.N.); (B.B.)
| | - Angelo Canciello
- Department of Biosciences and Technology for Food, Agricultural and Environment, University of Teramo, 64100 Teramo, Italy; (V.R.); (O.D.G.); (A.M.); (D.N.); (B.B.)
| | - Oriana Di Giacinto
- Department of Biosciences and Technology for Food, Agricultural and Environment, University of Teramo, 64100 Teramo, Italy; (V.R.); (O.D.G.); (A.M.); (D.N.); (B.B.)
| | - Annunziata Mauro
- Department of Biosciences and Technology for Food, Agricultural and Environment, University of Teramo, 64100 Teramo, Italy; (V.R.); (O.D.G.); (A.M.); (D.N.); (B.B.)
| | - Delia Nardinocchi
- Department of Biosciences and Technology for Food, Agricultural and Environment, University of Teramo, 64100 Teramo, Italy; (V.R.); (O.D.G.); (A.M.); (D.N.); (B.B.)
| | - Ilaria Bove
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, University of Naples “Federico II”, 80138 Naples, Italy; (J.B.); (I.B.); (D.S.); (L.M.C.)
| | - Domenico Solari
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, University of Naples “Federico II”, 80138 Naples, Italy; (J.B.); (I.B.); (D.S.); (L.M.C.)
| | | | - Luigi Maria Cavallo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, University of Naples “Federico II”, 80138 Naples, Italy; (J.B.); (I.B.); (D.S.); (L.M.C.)
| | - Barbara Barboni
- Department of Biosciences and Technology for Food, Agricultural and Environment, University of Teramo, 64100 Teramo, Italy; (V.R.); (O.D.G.); (A.M.); (D.N.); (B.B.)
| |
Collapse
|
10
|
Li B, Adam Eichhorn PJ, Chng WJ. Targeting the ubiquitin pathway in lymphoid malignancies. Cancer Lett 2024; 594:216978. [PMID: 38795760 DOI: 10.1016/j.canlet.2024.216978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Ubiquitination and related cellular processes control a variety of aspects in human cell biology, and defects in these processes contribute to multiple illnesses. In recent decades, our knowledge about the pathological role of ubiquitination in lymphoid cancers and therapeutic strategies to target the modified ubiquitination system has evolved tremendously. Here we review the altered signalling mechanisms mediated by the aberrant expression of cancer-associated E2s/E3s and deubiquitinating enzymes (DUBs), which result in the hyperactivation of oncoproteins or the frequently allied downregulation of tumour suppressors. We discuss recent highlights pertaining to the several different therapeutic interventions which are currently being evaluated to effectively block abnormal ubiquitin-proteasome pathway and the use of heterobifunctional molecules which recruit the ubiquitination system to degrade or stabilize non-cognate substrates. This review aids in comprehension of ubiquitination aberrance in lymphoid cancers and current targeting strategies and elicits further investigations to deeply understand the link between cellular ubiquitination and lymphoid pathogenesis as well as to ameliorate corresponding treatment interventions.
Collapse
Affiliation(s)
- Boheng Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Pieter Johan Adam Eichhorn
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia; Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore, Singapore; Department of Medicine, School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
11
|
Esposito M, Migliaccio A, Credendino SC, Maturi R, Prevete N, De Vita G. KLHL14 is a tumor suppressor downregulated in undifferentiated thyroid cancer. Cell Death Discov 2024; 10:297. [PMID: 38909024 PMCID: PMC11193815 DOI: 10.1038/s41420-024-02063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024] Open
Abstract
KLHL14 is a substrate-binding subunit of Cullin-RING ligase 3 ubiquitin ligase complex, highly enriched in thyroid since early embryonic development, together with its antisense RNA KLHL14-AS. We have previously demonstrated that Klhl14-AS is a competing endogenous RNA regulating several differentiation and survival factors in thyroid cancer, acting as tumor suppressor. Recently, also KLHL14 has been shown to function as tumor suppressor in diffuse large B-cell lymphoma and in malignant mesothelioma. Here we show that KLHL14 expression is strongly reduced in anaplastic thyroid cancer, the less differentiated and most aggressive type of thyroid neoplasia. Such reduction is reproduced in different in vivo and in vitro models of thyroid cancer, being invariably associated with loss of differentiation. When Klhl14 expression is rescued in thyroid transformed cells, it reduces the cell proliferation rate and increase the number of apoptotic cells. On the other side, Klhl14 loss of function in normal thyroid cells affects the expression of several regulatory as well as functional thyroid markers. All these findings suggest that KLHL14 could be considered as a novel tumor suppressor in thyroid cancer, by also revealing its physiological role in the maintenance of a fully differentiated and functional thyroid phenotype.
Collapse
Affiliation(s)
- Matteo Esposito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, Italy
- Dipartimento di Scienze Mediche Traslazionali (DiSMeT), Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, Italy
| | - Antonella Migliaccio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, Italy
| | - Sara Carmela Credendino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, Italy
| | - Rufina Maturi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, Italy
| | - Nella Prevete
- Dipartimento di Scienze Mediche Traslazionali (DiSMeT), Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, Italy
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy
| | - Gabriella De Vita
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, Italy.
| |
Collapse
|
12
|
Choi J, Ceribelli M, Phelan JD, Häupl B, Huang DW, Wright GW, Hsiao T, Morris V, Ciccarese F, Wang B, Corcoran S, Scheich S, Yu X, Xu W, Yang Y, Zhao H, Zhou J, Zhang G, Muppidi J, Inghirami GG, Oellerich T, Wilson WH, Thomas CJ, Staudt LM. Molecular targets of glucocorticoids that elucidate their therapeutic efficacy in aggressive lymphomas. Cancer Cell 2024; 42:833-849.e12. [PMID: 38701792 PMCID: PMC11168741 DOI: 10.1016/j.ccell.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
Glucocorticoids have been used for decades to treat lymphomas without an established mechanism of action. Using functional genomic, proteomic, and chemical screens, we discover that glucocorticoids inhibit oncogenic signaling by the B cell receptor (BCR), a recurrent feature of aggressive B cell malignancies, including diffuse large B cell lymphoma and Burkitt lymphoma. Glucocorticoids induce the glucocorticoid receptor (GR) to directly transactivate genes encoding negative regulators of BCR stability (LAPTM5; KLHL14) and the PI3 kinase pathway (INPP5D; DDIT4). GR directly represses transcription of CSK, a kinase that limits the activity of BCR-proximal Src-family kinases. CSK inhibition attenuates the constitutive BCR signaling of lymphomas by hyperactivating Src-family kinases, triggering their ubiquitination and degradation. With the knowledge that glucocorticoids disable oncogenic BCR signaling, they can now be deployed rationally to treat BCR-dependent aggressive lymphomas and used to construct mechanistically sound combination regimens with inhibitors of BTK, PI3 kinase, BCL2, and CSK.
Collapse
MESH Headings
- Humans
- Glucocorticoids/pharmacology
- Receptors, Antigen, B-Cell/metabolism
- Animals
- Signal Transduction/drug effects
- Receptors, Glucocorticoid/metabolism
- Mice
- Cell Line, Tumor
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Burkitt Lymphoma/drug therapy
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/pathology
- Molecular Targeted Therapy/methods
- Phosphatidylinositol 3-Kinases/metabolism
- src-Family Kinases/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - George W Wright
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tony Hsiao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivian Morris
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Ciccarese
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Boya Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sean Corcoran
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joyce Zhou
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grace Zhang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Giorgio G Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Craig J Thomas
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Zhuang X, Woods J, Ji Y, Scheich S, Mo F, Rajagopalan S, Coulibaly ZA, Voss M, Urlaub H, Staudt LM, Pan KT, Long EO. Functional genomics identifies N-acetyllactosamine extension of complex N-glycans as a mechanism to evade lysis by natural killer cells. Cell Rep 2024; 43:114105. [PMID: 38619967 PMCID: PMC11170631 DOI: 10.1016/j.celrep.2024.114105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/31/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
Natural killer (NK) cells are primary defenders against cancer precursors, but cancer cells can persist by evading immune surveillance. To investigate the genetic mechanisms underlying this evasion, we perform a genome-wide CRISPR screen using B lymphoblastoid cells. SPPL3, a peptidase that cleaves glycosyltransferases in the Golgi, emerges as a top hit facilitating evasion from NK cytotoxicity. SPPL3-deleted cells accumulate glycosyltransferases and complex N-glycans, disrupting not only binding of ligands to NK receptors but also binding of rituximab, a CD20 antibody approved for treating B cell cancers. Notably, inhibiting N-glycan maturation restores receptor binding and sensitivity to NK cells. A secondary CRISPR screen in SPPL3-deficient cells identifies B3GNT2, a transferase-mediating poly-LacNAc extension, as crucial for resistance. Mass spectrometry confirms enrichment of N-glycans bearing poly-LacNAc upon SPPL3 loss. Collectively, our study shows the essential role of SPPL3 and poly-LacNAc in cancer immune evasion, suggesting a promising target for cancer treatment.
Collapse
Affiliation(s)
- Xiaoxuan Zhuang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - James Woods
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Yanlong Ji
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fei Mo
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sumati Rajagopalan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Zana A Coulibaly
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias Voss
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kuan-Ting Pan
- Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
14
|
Tumuluru S, Godfrey JK, Cooper A, Yu J, Chen X, MacNabb BW, Venkataraman G, Zha Y, Pelzer B, Song J, Duns G, Sworder BJ, Bolen C, Penuel E, Postovalova E, Kotlov N, Bagaev A, Fowler N, Smith SM, Alizadeh AA, Steidl C, Kline J. Integrative genomic analysis identifies unique immune environments associated with immunotherapy response in diffuse large B cell lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576100. [PMID: 38328071 PMCID: PMC10849512 DOI: 10.1101/2024.01.17.576100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Most diffuse large B-cell lymphoma (DLBCL) patients treated with bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was employed to characterize DLBCL immune environments, which effectively segregated DLBCLs into four quadrants - termed DLBCL-immune quadrants (IQ) - defined by cell-of-origin and immune-related gene set expression scores. Recurrent genomic alterations were enriched in each IQ, suggesting that lymphoma cell-intrinsic alterations contribute to orchestrating unique DLBCL immune environments. In relapsed/refractory DLBCL patients, DLBCL-IQ assignment correlated significantly with clinical benefit with the CD20 x CD3 BsAb, mosunetuzumab, but not with CD19-directed CAR T cells. DLBCL-IQ provides a new framework to conceptualize the DLBCL immune landscape and uncovers the differential impact of the endogenous immune environment on outcomes to BsAb and CAR T cell treatment.
Collapse
|
15
|
Canciello A, Domínguez RB, Barboni B, Giordano A, Morrione A. Characterization of KLHL14 anti-oncogenic action in malignant mesothelioma. Heliyon 2024; 10:e27731. [PMID: 38509883 PMCID: PMC10950656 DOI: 10.1016/j.heliyon.2024.e27731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Malignant mesothelioma (MM) is a very aggressive neoplasia with a short life expectancy and limited therapeutic options. Thus, the identification of novel molecular targets is a matter of great urgency. Kelch-like (KLHL) proteins play an important role in a number of physiological and pathological cell-regulatory processes. Among this family, the function of KLHL14 is still very poorly characterized. KLHL14 was originally identified as a gene involved in regulating the epithelial-mesenchymal transition (EMT) process. Here, we demonstrate that KLHL14 not only prevents EMT but also plays an anti-oncogenic role in MM. Indeed, KLHL14 depletion enhanced proliferation, motility, invasion and colony formation in MM cells. Importantly, we also demonstrated that KLHL14 mechanism of action is dependent on Transforming Growth Factor β (TGF-β). In fact, TGF-β promotes de novo synthesis, increases protein stability and induces nuclear-cytoplasmic shuttling of KLHL14. Collectively, this research is an important step further to decipher KLHLs mechanism of action and further contributes to the understanding of the molecular mechanisms regulating MM.
Collapse
Affiliation(s)
- Angelo Canciello
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Reyes Benot Domínguez
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| |
Collapse
|
16
|
Phelan JD, Scheich S, Choi J, Wright GW, Häupl B, Young RM, Rieke SA, Pape M, Ji Y, Urlaub H, Bolomsky A, Doebele C, Zindel A, Wotapek T, Kasbekar M, Collinge B, Huang DW, Coulibaly ZA, Morris VM, Zhuang X, Enssle JC, Yu X, Xu W, Yang Y, Zhao H, Wang Z, Tran AD, Shoemaker CJ, Shevchenko G, Hodson DJ, Shaffer AL, Staudt LM, Oellerich T. Response to Bruton's tyrosine kinase inhibitors in aggressive lymphomas linked to chronic selective autophagy. Cancer Cell 2024; 42:238-252.e9. [PMID: 38215749 PMCID: PMC11256978 DOI: 10.1016/j.ccell.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024]
Abstract
Diffuse large B cell lymphoma (DLBCL) is an aggressive, profoundly heterogeneous cancer, presenting a challenge for precision medicine. Bruton's tyrosine kinase (BTK) inhibitors block B cell receptor (BCR) signaling and are particularly effective in certain molecular subtypes of DLBCL that rely on chronic active BCR signaling to promote oncogenic NF-κB. The MCD genetic subtype, which often acquires mutations in the BCR subunit, CD79B, and in the innate immune adapter, MYD88L265P, typically resists chemotherapy but responds exceptionally to BTK inhibitors. However, the underlying mechanisms of response to BTK inhibitors are poorly understood. Herein, we find a non-canonical form of chronic selective autophagy in MCD DLBCL that targets ubiquitinated MYD88L265P for degradation in a TBK1-dependent manner. MCD tumors acquire genetic and epigenetic alterations that attenuate this autophagic tumor suppressive pathway. In contrast, BTK inhibitors promote autophagic degradation of MYD88L265P, thus explaining their exceptional clinical benefit in MCD DLBCL.
Collapse
Affiliation(s)
- James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Bethesda, MD 20850, USA
| | - Björn Häupl
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Ryan M Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara A Rieke
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Martine Pape
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Yanlong Ji
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Arnold Bolomsky
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carmen Doebele
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Alena Zindel
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Tanja Wotapek
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Monica Kasbekar
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brett Collinge
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zana A Coulibaly
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivian M Morris
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Xiaoxuan Zhuang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julius C Enssle
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhuo Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andy D Tran
- CCR Microscopy Core, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher J Shoemaker
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Galina Shevchenko
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Daniel J Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Arthur L Shaffer
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Thomas Oellerich
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
17
|
Tkachenko A, Kupcova K, Havranek O. B-Cell Receptor Signaling and Beyond: The Role of Igα (CD79a)/Igβ (CD79b) in Normal and Malignant B Cells. Int J Mol Sci 2023; 25:10. [PMID: 38203179 PMCID: PMC10779339 DOI: 10.3390/ijms25010010] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
B-cell receptor (BCR) is a B cell hallmark surface complex regulating multiple cellular processes in normal as well as malignant B cells. Igα (CD79a)/Igβ (CD79b) are essential components of BCR that are indispensable for its functionality, signal initiation, and signal transduction. CD79a/CD79b-mediated BCR signaling is required for the survival of normal as well as malignant B cells via a wide signaling network. Recent studies identified the great complexity of this signaling network and revealed the emerging role of CD79a/CD79b in signal integration. In this review, we have focused on functional features of CD79a/CD79b, summarized signaling consequences of CD79a/CD79b post-translational modifications, and highlighted specifics of CD79a/CD79b interactions within BCR and related signaling cascades. We have reviewed the complex role of CD79a/CD79b in multiple aspects of normal B cell biology and how is the normal BCR signaling affected by lymphoid neoplasms associated CD79A/CD79B mutations. We have also summarized important unresolved questions and highlighted issues that remain to be explored for better understanding of CD79a/CD79b-mediated signal transduction and the eventual identification of additional therapeutically targetable BCR signaling vulnerabilities.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Kristyna Kupcova
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| |
Collapse
|
18
|
Xu Y, Zheng C, Ashaq MS, Zhou Q, Li Y, Lu C, Zhao B. Regulatory role of E3 ubiquitin ligases in normal B lymphopoiesis and B-cell malignancies. Life Sci 2023; 331:122043. [PMID: 37633415 DOI: 10.1016/j.lfs.2023.122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
E3 ubiquitin ligases play an essential role in protein ubiquitination, which is involved in the regulation of protein degradation, protein-protein interactions and signal transduction. Increasing evidences have shed light on the emerging roles of E3 ubiquitin ligases in B-cell development and related malignances. This comprehensive review summarizes the current understanding of E3 ubiquitin ligases in B-cell development and their contribution to B-cell malignances, which could help explore the molecular mechanism of normal B-cell development and provide potential therapeutic targets of the related diseases.
Collapse
Affiliation(s)
- Yan Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chengzu Zheng
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Muhammad Sameer Ashaq
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qian Zhou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuan Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chunhua Lu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baobing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
19
|
Blengio F, Hocini H, Richert L, Lefebvre C, Durand M, Hejblum B, Tisserand P, McLean C, Luhn K, Thiebaut R, Levy Y. Identification of early gene expression profiles associated with long-lasting antibody responses to the Ebola vaccine Ad26.ZEBOV/MVA-BN-Filo. Cell Rep 2023; 42:113101. [PMID: 37691146 DOI: 10.1016/j.celrep.2023.113101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Ebola virus disease is a severe hemorrhagic fever with a high fatality rate. We investigate transcriptome profiles at 3 h, 1 day, and 7 days after vaccination with Ad26.ZEBOV and MVA-BN-Filo. 3 h after Ad26.ZEBOV injection, we observe an increase in genes related to antigen presentation, sensing, and T and B cell receptors. The highest response occurs 1 day after Ad26.ZEBOV injection, with an increase of the gene expression of interferon-induced antiviral molecules, monocyte activation, and sensing receptors. This response is regulated by the HESX1, ATF3, ANKRD22, and ETV7 transcription factors. A plasma cell signature is observed on day 7 post-Ad26.ZEBOV vaccination, with an increase of CD138, MZB1, CD38, CD79A, and immunoglobulin genes. We have identified early expressed genes correlated with the magnitude of the antibody response 21 days after the MVA-BN-Filo and 364 days after Ad26.ZEBOV vaccinations. Our results provide early gene signatures that correlate with vaccine-induced Ebola virus glycoprotein-specific antibodies.
Collapse
Affiliation(s)
- Fabiola Blengio
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Hakim Hocini
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Laura Richert
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France
| | - Cécile Lefebvre
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Mélany Durand
- University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France
| | - Boris Hejblum
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France
| | - Pascaline Tisserand
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Chelsea McLean
- Janssen Vaccines & Prevention, B.V. Archimediesweg, Leiden, the Netherlands
| | - Kerstin Luhn
- Janssen Vaccines & Prevention, B.V. Archimediesweg, Leiden, the Netherlands
| | - Rodolphe Thiebaut
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France.
| | - Yves Levy
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France.
| |
Collapse
|
20
|
Zhang W, Qu H, Ma X, Li L, Wei Y, Wang Y, Zeng R, Nie Y, Zhang C, Yin K, Zhou F, Yang Z. Identification of cuproptosis and immune-related gene prognostic signature in lung adenocarcinoma. Front Immunol 2023; 14:1179742. [PMID: 37622116 PMCID: PMC10445162 DOI: 10.3389/fimmu.2023.1179742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/12/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Cuproptosis is a novel form of programmed cell death that differs from other types such as pyroptosis, ferroptosis, and autophagy. It is a promising new target for cancer therapy. Additionally, immune-related genes play a crucial role in cancer progression and patient prognosis. Therefore, our study aimed to create a survival prediction model for lung adenocarcinoma patients based on cuproptosis and immune-related genes. This model can be utilized to enhance personalized treatment for patients. METHODS RNA sequencing (RNA-seq) data of lung adenocarcinoma (LUAD) patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The levels of immune cell infiltration in the GSE68465 cohort were determined using gene set variation analysis (GSVA), and immune-related genes (IRGs) were identified using weighted gene coexpression network analysis (WGCNA). Additionally, cuproptosis-related genes (CRGs) were identified using unsupervised clustering. Univariate COX regression analysis and least absolute shrinkage selection operator (LASSO) regression analysis were performed to develop a risk prognostic model for cuproptosis and immune-related genes (CIRGs), which was subsequently validated. Various algorithms were utilized to explore the relationship between risk scores and immune infiltration levels, and model genes were analyzed based on single-cell sequencing. Finally, the expression of signature genes was confirmed through quantitative real-time PCR (qRT-PCR), immunohistochemistry (IHC), and Western blotting (WB). RESULTS We have identified 5 Oncogenic Driver Genes namely CD79B, PEBP1, PTK2B, STXBP1, and ZNF671, and developed proportional hazards regression models. The results of the study indicate significantly reduced survival rates in both the training and validation sets among the high-risk group. Additionally, the high-risk group displayed lower levels of immune cell infiltration and expression of immune checkpoint compared to the low-risk group.
Collapse
Affiliation(s)
- Wentao Zhang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haizeng Qu
- Radiotherapy Department, Dongming People’s Hospital, Heze, Shandong, China
| | - Xiaoqing Ma
- Radiotherapy and Minimally Invasive Group I, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Liang Li
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Yanjun Wei
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Ye Wang
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Renya Zeng
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanliu Nie
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chenggui Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ke Yin
- Department of Pathology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fengge Zhou
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhe Yang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
21
|
Ferreri AJM, Calimeri T, Cwynarski K, Dietrich J, Grommes C, Hoang-Xuan K, Hu LS, Illerhaus G, Nayak L, Ponzoni M, Batchelor TT. Primary central nervous system lymphoma. Nat Rev Dis Primers 2023; 9:29. [PMID: 37322012 PMCID: PMC10637780 DOI: 10.1038/s41572-023-00439-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
Primary central nervous system lymphoma (PCNSL) is a diffuse large B cell lymphoma in which the brain, spinal cord, leptomeninges and/or eyes are exclusive sites of disease. Pathophysiology is incompletely understood, although a central role seems to comprise immunoglobulins binding to self-proteins expressed in the central nervous system (CNS) and alterations of genes involved in B cell receptor, Toll-like receptor and NF-κB signalling. Other factors such as T cells, macrophages or microglia, endothelial cells, chemokines, and interleukins, probably also have important roles. Clinical presentation varies depending on the involved regions of the CNS. Standard of care includes methotrexate-based polychemotherapy followed by age-tailored thiotepa-based conditioned autologous stem cell transplantation and, in patients unsuitable for such treatment, consolidation with whole-brain radiotherapy or single-drug maintenance. Personalized treatment, primary radiotherapy and only supportive care should be considered in unfit, frail patients. Despite available treatments, 15-25% of patients do not respond to chemotherapy and 25-50% relapse after initial response. Relapse rates are higher in older patients, although the prognosis of patients experiencing relapse is poor independent of age. Further research is needed to identify diagnostic biomarkers, treatments with higher efficacy and less neurotoxicity, strategies to improve the penetration of drugs into the CNS, and roles of other therapies such as immunotherapies and adoptive cell therapies.
Collapse
Affiliation(s)
| | - Teresa Calimeri
- Lymphoma Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Kate Cwynarski
- Department of Haematology, University College Hospital, London, UK
| | - Jorg Dietrich
- Cancer and Neurotoxicity Clinic and Brain Repair Research Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Christian Grommes
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Khê Hoang-Xuan
- APHP, Groupe Hospitalier Salpêtrière, Sorbonne Université, IHU, ICM, Service de Neurologie 2, Paris, France
| | - Leland S Hu
- Department of Radiology, Neuroradiology Division, Mayo Clinic, Phoenix, AZ, USA
| | - Gerald Illerhaus
- Clinic of Hematology, Oncology and Palliative Care, Klinikum Stuttgart, Stuttgart, Germany
| | - Lakshmi Nayak
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maurilio Ponzoni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Ateneo Vita-Salute San Raffaele, Milan, Italy
| | - Tracy T Batchelor
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Spirito L, Maturi R, Credendino SC, Manfredi C, Arcaniolo D, De Martino M, Esposito F, Napolitano L, Di Bello F, Fusco A, Pallante P, De Sio M, De Vita G. Differential Expression of LncRNA in Bladder Cancer Development. Diagnostics (Basel) 2023; 13:diagnostics13101745. [PMID: 37238229 DOI: 10.3390/diagnostics13101745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Bladder cancer (BC) is the tenth most common cancer, with urothelial carcinoma representing about 90% of all BC, including neoplasms and carcinomas of different grades of malignancy. Urinary cytology has a significant role in BC screening and surveillance, although it has a low detection rate and high dependence on the pathologist's experience. The currently available biomarkers are not implemented into routine clinical practice due to high costs or low sensitivity. In recent years, the role of lncRNAs in BC has emerged, even though it is still poorly explored. We have previously shown that the lncRNAs Metallophosphoesterase Domain-Containing 2 Antisense RNA 1 (MPPED2-AS1), Rhabdomyosarcoma-2 Associated Transcript (RMST), Kelch-like protein 14 antisense (Klhl14AS) and Prader Willi/Angelman region RNA 5 (PAR5) are involved in the progression of different types of cancers. Here, we investigated the expression of these molecules in BC, first by interrogating the GEPIA database and observing a different distribution of expression levels between normal and cancer specimens. We then measured them in a cohort of neoplastic bladder lesions, either benign or malignant, from patients with suspicion of BC undergoing transurethral resection of bladder tumor (TURBT). The total RNA from biopsies was analyzed using qRT-PCR for the expression of the four lncRNA genes, showing differential expression of the investigated lncRNAs between normal tissue, benign lesions and cancers. In conclusion, the data reported here highlight the involvement of novel lncRNAs in BC development, whose altered expression could potentially affect the regulatory circuits in which these molecules are involved. Our study paves the way for testing lncRNA genes as markers for BC diagnosis and/or follow-up.
Collapse
Affiliation(s)
- Lorenzo Spirito
- Urology Unit, Department of Woman Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy
| | - Rufina Maturi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Sara Carmela Credendino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Celeste Manfredi
- Urology Unit, Department of Woman Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy
| | - Davide Arcaniolo
- Urology Unit, Department of Woman Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy
| | - Marco De Martino
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Via Pansini, 5, 80131 Naples, Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Napoli, Italy
| | - Francesco Esposito
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Via Pansini, 5, 80131 Naples, Italy
| | - Luigi Napolitano
- Urology Unit, Department of Neurosciences, Reproductive Sciences, and Odontostomatology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Francesco Di Bello
- Urology Unit, Department of Neurosciences, Reproductive Sciences, and Odontostomatology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Alfredo Fusco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Via Pansini, 5, 80131 Naples, Italy
| | - Pierlorenzo Pallante
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Via Pansini, 5, 80131 Naples, Italy
| | - Marco De Sio
- Urology Unit, Department of Woman Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy
| | - Gabriella De Vita
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
23
|
Nakhoda S, Vistarop A, Wang YL. Resistance to Bruton tyrosine kinase inhibition in chronic lymphocytic leukaemia and non-Hodgkin lymphoma. Br J Haematol 2023; 200:137-149. [PMID: 36029036 PMCID: PMC9839590 DOI: 10.1111/bjh.18418] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/30/2022] [Accepted: 08/09/2022] [Indexed: 01/17/2023]
Abstract
Bruton tyrosine kinase inhibitors (BTKi) have transformed the therapeutic landscape of chronic lymphocytic leukaemia (CLL) and non-Hodgkin lymphoma. However, primary and acquired resistance to BTKi can be seen due to a variety of mechanisms including tumour intrinsic and extrinsic mechanisms such as gene mutations, activation of bypass signalling pathways and tumour microenvironment. Herein, we provide an updated review of the key clinical data of BTKi treatment in CLL, mantle cell lymphoma, and diffuse large B-cell lymphoma (DLBCL). We incorporate the most recent findings regarding mechanisms of resistance to covalent and non-covalent inhibitors, including ibrutinib, acalabrutinib, zanubrutinib and pirtobrutinib. We also cover the clinical sensitivity of certain molecular subtypes of DLBCL to an ibrutinib-containing regimen. Lastly, we summarise ongoing clinical investigations aimed at overcoming resistance via use of BTKi-containing combined therapies or the novel non-covalent BTKi. The review article targets an audience of clinical practitioners, clinical investigators and translational researchers.
Collapse
Affiliation(s)
- Shazia Nakhoda
- Department of Hematology, Fox Chase Cancer Center, Philadelphia, USA
| | - Aldana Vistarop
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, USA,Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, USA
| | - Y. Lynn Wang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, USA,Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, USA
| |
Collapse
|
24
|
He Y, Yang D, Li Y, Xiang J, Wang L, Wang Y. Circular RNA-related CeRNA network and prognostic signature for patients with oral squamous cell carcinoma. Front Pharmacol 2022; 13:949713. [PMID: 36532732 PMCID: PMC9753980 DOI: 10.3389/fphar.2022.949713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/15/2022] [Indexed: 08/10/2023] Open
Abstract
Background: Circular RNA (circRNA) has an important influence on oral squamous cell carcinoma (OSCC) progression as competing endogenous RNAs (ceRNAs). However, the link between ceRNAs and the OSCC immune microenvironment is unknown. The research aimed to find circRNAs implicated in OSCC carcinogenesis and progression and build a circRNA-based ceRNA network to create a reliable OSCC risk prediction model. Methods: The expression profiles of circRNA in OSCC tumors and normal tissues were assessed through RNA sequencing. From the TCGA database, clinicopathological data and expression patterns of microRNAs (miRNAs) and mRNAs were obtained. A network of circRNA-miRNA-mRNA ceRNA was prepared according to these differentially expressed RNAs and was analyzed through functional enrichment. Subsequently, based on the mRNA in the ceRNA network, the influence of the model on prognosis was then evaluated using a risk prediction model. Finally, considering survival, tumor-infiltrating immune cells (TICs), clinicopathological features, immunosuppressive molecules, and chemotherapy efficacy were analyzed. Results: Eleven differentially expressed circRNAs were found in cancer tissues relative to healthy tissues. We established a network of circRNA-miRNA-mRNA ceRNA, and the ceRNA network includes 123 mRNAs, six miRNAs, and four circRNAs. By the assessment of Genomes pathway and Kyoto Encyclopedia of Genes, it is found that in the cellular senescence, PI3K-AKT and mTOR signaling pathway mRNAs were mainly enrichment. An immune-related signature was created utilizing seven immune-related genes in the ceRNA network after univariate and multivariate analysis. The receiver operating characteristic of the nomogram exhibited satisfactory accuracy and predictive potential. According to a Kaplan-Meier analysis, the high-risk group's survival rate was signally lower than the group with low-risk. In addition, risk models were linked to clinicopathological characteristics, TICs, immune checkpoints, and antitumor drug susceptibility. Conclusion: The profiles of circRNAs expression of OSCC tissues differ significantly from normal tissues. Our study established a circRNA-associated ceRNA network associated with OSCC and identified essential prognostic genes. Furthermore, our proposed immune-based signature aims to help research OSCC etiology, prognostic marker screening, and immune response evaluation.
Collapse
Affiliation(s)
- Yaodong He
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Dengcheng Yang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yunshan Li
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Junwei Xiang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Liecheng Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuanyin Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Shen J, Liu J. Bruton's tyrosine kinase inhibitors in the treatment of primary central nervous system lymphoma: A mini-review. Front Oncol 2022; 12:1034668. [PMID: 36465385 PMCID: PMC9713408 DOI: 10.3389/fonc.2022.1034668] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 09/19/2023] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a highly aggressive brain tumor with poor prognosis if no treatment. The activation of the NF-κB (nuclear factor kappa-B) is the oncogenic hallmark of PCNSL, and it was driven by B cell receptor (BCR) and Toll-like receptor (TLR) signaling pathways. The emergence of Bruton's tyrosine kinase inhibitors (BTKis) has brought the dawn of life to patients with PCNSL. This review summarizes the management of PCNSL with BTKis and potential molecular mechanisms of BTKi in the treatment of PCNSL. And the review will focus on the clinical applications of BTKi in the treatment of PCNSL including the efficacy and adverse events, the clinical trials currently being carried out, the underlying mechanisms of resistance to BTKi and possible solutions to drug resistance.
Collapse
Affiliation(s)
- Jing Shen
- Department of Hematology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Jinghua Liu
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Hematology, Northern Theater General Hospital, Shenyang, China
| |
Collapse
|
26
|
Ye G, Wang J, Yang W, Li J, Ye M, Jin X. The roles of KLHL family members in human cancers. Am J Cancer Res 2022; 12:5105-5139. [PMID: 36504893 PMCID: PMC9729911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
The Kelch-like (KLHL) family members consist of three domains: bric-a-brac, tramtrack, broad complex/poxvirus and zinc finger domain, BACK domain and Kelch domain, which combine and interact with Cullin3 to form an E3 ubiquitin ligase. Research has indicated that KLHL family members ubiquitinate target substrates to regulate physiological and pathological processes, including tumorigenesis and progression. KLHL19, a member of the KLHL family, is associated with tumorigenesis and drug resistance. However, the regulation and cross talks of other KLHL family members, which also play roles in cancer, are still unclear. Our review mainly explores studies concerning the roles of other KLHL family members in tumor-related regulation to provide novel insights into KLHL family members.
Collapse
Affiliation(s)
- Ganghui Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Weili Yang
- Yinzhou People’s Hospital of Medical School, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| |
Collapse
|
27
|
Li M, Mi L, Wang C, Wang X, Zhu J, Qi F, Yu H, Ye Y, Wang D, Cao J, Hu D, Yang Q, Zhao D, Ma T, Song Y, Zhu J. Clinical implications of circulating tumor DNA in predicting the outcome of diffuse large B cell lymphoma patients receiving first-line therapy. BMC Med 2022; 20:369. [PMID: 36280874 PMCID: PMC9594942 DOI: 10.1186/s12916-022-02562-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) has been proven to be a promising tumor-specific biomarker in solid tumors, but its clinical utility in risk stratification and early prediction of relapse for diffuse large B cell lymphoma (DLBCL) has not been well explored. METHODS Here, using a lymphoma-specific sequencing panel, we assessed the prognostic and predictive utilities of ctDNA measurements before, during, and after first-line therapy in 73 Chinese DLBCL patients. RESULTS The pretreatment ctDNA level serving as an independent prognostic factor for both progression-free survival (PFS, adjusted HR 2.47; p = 0.004) and overall survival (OS, adjusted HR 2.49; p = 0.011) was confirmed in our cohort. Furthermore, the patients classified as molecular responders who presented a larger decrease in ctDNA levels after the initial two treatment cycles had more favorable PFS (unreached vs. 6.25 months; HR 5.348; p = 0.0015) and OS (unreached vs. 25.87; HR 4.0; p = 0.028) than non-responders. In addition, interim ctDNA clearance may be an alternative noninvasive method of positron emission tomography and computed tomography (PET-CT) for predicting better PFS (HR 3.65; p = 0.0033) and OS (HR 3.536; p = 0.016). We also demonstrated that posttreatment ctDNA was a sensitive indicator for detecting minimal residual disease (MRD) in patients with a high risk of recurrence (HR 6.471; p = 0.014), who were otherwise claimed to achieve radiographic CR (complete remission). CONCLUSIONS CtDNA is a promising noninvasive tool for prognosis prediction, response assessment, and early relapse prediction of first-line treatment in DLBCL patients.
Collapse
Affiliation(s)
- Miaomiao Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lan Mi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Chunyang Wang
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Xiaojuan Wang
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Jianhua Zhu
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Fei Qi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hui Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yingying Ye
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dedao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiaowu Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dingyao Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Quanyu Yang
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Dandan Zhao
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Tonghui Ma
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China.
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
28
|
Pasqualucci L, Klein U. NF-κB Mutations in Germinal Center B-Cell Lymphomas: Relation to NF-κB Function in Normal B Cells. Biomedicines 2022; 10:2450. [PMID: 36289712 PMCID: PMC9599362 DOI: 10.3390/biomedicines10102450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Most B cell lymphomas arise from the oncogenic transformation of B cells that have undergone the germinal center (GC) reaction of the T cell-dependent immune response, where high-affinity memory B cells and plasma cells are generated. The high proliferation of GC B cells coupled with occasional errors in the DNA-modifying processes of somatic hypermutation and class switch recombination put the cell at a risk to obtain transforming genetic aberrations, which may activate proto-oncogenes or inactivate tumour suppressor genes. Several subtypes of GC lymphomas harbor genetic mutations leading to constitutive, aberrant activation of the nuclear factor-κB (NF-κB) signaling pathway. In normal B cells, NF-κB has crucial biological roles in development and physiology. GC lymphomas highjack these activities to promote tumour-cell growth and survival. It has become increasingly clear that the separate canonical and non-canonical routes of the NF-κB pathway and the five downstream NF-κB transcription factors have distinct functions in the successive stages of GC B-cell development. These findings may have direct implications for understanding how aberrant NF-κB activation promotes the genesis of various GC lymphomas corresponding to the developmentally distinct GC B-cell subsets. The knowledge arising from these studies may be explored for the development of precision medicine approaches aimed at more effective treatments of the corresponding tumours with specific NF-κB inhibitors, thus reducing systemic toxicity. We here provide an overview on the patterns of genetic NF-κB mutations encountered in the various GC lymphomas and discuss the consequences of aberrant NF-κB activation in those malignancies as related to the biology of NF-κB in their putative normal cellular counterparts.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Institute for Cancer Genetics, Department of Pathology & Cell Biology, The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Ulf Klein
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|
29
|
Hu YH, Wang XY, Zhang XW, Chen J, Li F. Investigation of the mechanisms and experimental verification of Shao yao gan cao decoction against Sphincter of Oddi Dysfunction via systems pharmacology. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:13374-13398. [PMID: 36654051 DOI: 10.3934/mbe.2022626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study explored the chemical and pharmacological mechanisms of Shao Yao Gan Cao decoction (SYGC) in the treatment of Sphincter of Oddi Dysfunction (SOD) through ultra-high-performance liquid chromatography coupled with Quadrupole Exactive-Orbitrap high-resolution mass spectrometry (UHPLC-Q Exactive-Orbitrap HR-MS), network pharmacology, transcriptomics, molecular docking and in vivo experiments. First, we identified that SYGC improves SOD in guinea pigs by increased c-kit expression and decreased inflammation infiltration and ring muscle disorders. Then, a total of 649 SOD differential genes were found through RNA sequencing and mainly enriched in complement and coagulation cascades, the B cell receptor signaling pathway and the NF-kappa B signaling pathway. By combining UHPLC-Q-Orbitrap-HRMS with a network pharmacology study, 111 chemicals and a total of 52 common targets were obtained from SYGC in the treatment of SOD, which is also involved in muscle contraction, the B cell receptor signaling pathway and the complement system. Next, 20 intersecting genes were obtained among the PPI network, MCODE and ClusterOne analysis. Then, the molecular docking results indicated that four active compounds (glycycoumarin, licoflavonol, echinatin and homobutein) and three targets (AURKB, KIF11 and PLG) exerted good binding interactions, which are also related to the B cell receptor signaling pathway and the complement system. Finally, animal experiments were conducted to confirm the SYGC therapy effects on SOD and verify the 22 hub genes using RT-qPCR. This study demonstrates that SYGC confers therapeutic effects against an experimental model of SOD via regulating immune response and inflammation, which provides a basis for future research and clinical applications.
Collapse
Affiliation(s)
- Yong-Hong Hu
- Institute of Digestive Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xue-Ying Wang
- Department of Preventive Treatment, Shuguang Hospital affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xi-Wen Zhang
- Department of Pancreaticobiliary Surgery, Shuguang Hospital affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian Chen
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200082, China
| | - Fu Li
- Department of Pancreaticobiliary Surgery, Shuguang Hospital affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
30
|
Deshpande A, Munoz J. Targeted and cellular therapies in lymphoma: Mechanisms of escape and innovative strategies. Front Oncol 2022; 12:948513. [PMID: 36172151 PMCID: PMC9510896 DOI: 10.3389/fonc.2022.948513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
The therapeutic landscape for lymphomas is quite diverse and includes active surveillance, chemotherapy, immunotherapy, radiation therapy, and even stem cell transplant. Advances in the field have led to the development of targeted therapies, agents that specifically act against a specific component within the critical molecular pathway involved in tumorigenesis. There are currently numerous targeted therapies that are currently Food and Drug Administration (FDA) approved to treat certain lymphoproliferative disorders. Of many, some of the targeted agents include rituximab, brentuximab vedotin, polatuzumab vedotin, nivolumab, pembrolizumab, mogamulizumab, vemurafenib, crizotinib, ibrutinib, cerdulatinib, idelalisib, copanlisib, venetoclax, tazemetostat, and chimeric antigen receptor (CAR) T-cells. Although these agents have shown strong efficacy in treating lymphoproliferative disorders, the complex biology of the tumors have allowed for the malignant cells to develop various mechanisms of resistance to the targeted therapies. Some of the mechanisms of resistance include downregulation of the target, antigen escape, increased PD-L1 expression and T-cell exhaustion, mutations altering the signaling pathway, and agent binding site mutations. In this manuscript, we discuss and highlight the mechanism of action of the above listed agents as well as the different mechanisms of resistance to these agents as seen in lymphoproliferative disorders.
Collapse
Affiliation(s)
- Anagha Deshpande
- Mayo Clinic Alix School of Medicine, Scottsdale, AZ, United States
- *Correspondence: Anagha Deshpande,
| | - Javier Munoz
- Division of Hematology and Oncology, Mayo Clinic, Phoenix, AZ, United States
| |
Collapse
|
31
|
Lee T, Kim Y, Kim HJ, Ha NY, Lee S, Chin B, Cho NH. Acute Surge of Atypical Memory and Plasma B-Cell Subsets Driven by an Extrafollicular Response in Severe COVID-19. Front Cell Infect Microbiol 2022; 12:909218. [PMID: 35899045 PMCID: PMC9309264 DOI: 10.3389/fcimb.2022.909218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background Despite the use of vaccines and therapeutics against the coronavirus disease 2019 (COVID-19) pandemic, this severe disease has been a critical burden on public health, whereas the pathogenic mechanism remains elusive. Recently, accumulating evidence underscores the potential role of the aberrant B-cell response and humoral immunity in disease progression, especially in high-risk groups. Methods Using single-cell RNA (scRNA) sequencing analysis, we investigated transcriptional features of B-cell population in peripheral blood from COVID-19 patients and compared them, according to clinical severity and disease course, against a public B-cell dataset. Results We confirmed that acute B cells differentiate into plasma cells, particularly in severe patients, potentially through enhanced extrafollicular (EF) differentiation. In severe groups, the elevated plasma B-cell response displayed increased B-cell receptor (BCR) diversity, as well as higher levels of anti–severe acute respiratory syndrome coronavirus 2 (anti–SARS-CoV-2) spike antibodies in plasma, than those in moderate cases, suggesting more robust and heterogeneous plasma cell response in severe COVID-19 patients. Trajectory analysis identified a differentiation pathway for the EF B-cell response from active naïve to atypical memory B cells (AM2), in addition to the emergence of an aberrant plasma cell subset (PC2), which was associated with COVID-19 progression and severity. The AM2 and PC2 subsets surged in the acute phase of the severe disease and presented multiple inflammatory features, including higher cytokine expression and humoral effector function, respectively. These features differ from other B-cell subsets, suggesting a pathogenic potential for disease progression. Conclusion The acute surge of AM2 and PC2 subsets with lower somatic hypermutation and higher inflammatory features may be driven by the EF B-cell response during the acute phase of severe COVID-19 and may represent one of the critical drivers in disease severity.
Collapse
Affiliation(s)
- Taeseob Lee
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, South Korea
- Discovery department, Biomarker Laboratory, Geninus Inc., Seoul, South Korea
| | - Yuri Kim
- Institute of Endemic Diseases, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Hyun Je Kim
- College of Medicine, Genome Medicine Institute, Seoul National University, Seoul, South Korea
| | - Na-Young Ha
- Institute of Endemic Diseases, Medical Research Center, Seoul National University, Seoul, South Korea
- School of Medicine, Biomedical Research Institute, Chungnam National University, Daejeon, South Korea
| | - Siyoung Lee
- Discovery department, Biomarker Laboratory, Geninus Inc., Seoul, South Korea
| | - BumSik Chin
- Department of Internal Medicine, National Medical Center, Seoul, South Korea
- *Correspondence: Nam-Hyuk Cho, ; BumSik Chin,
| | - Nam-Hyuk Cho
- Institute of Endemic Diseases, Medical Research Center, Seoul National University, Seoul, South Korea
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, South Korea
- Bundang Hospital, Seoul National University, Seongnam, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
- *Correspondence: Nam-Hyuk Cho, ; BumSik Chin,
| |
Collapse
|
32
|
Recurrent switch 2 domain RAC2 mutations in intravascular large B-cell lymphoma. Blood Adv 2022; 6:6051-6055. [PMID: 35395066 PMCID: PMC9706525 DOI: 10.1182/bloodadvances.2022006985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
|
33
|
Profitós-Pelejà N, Santos JC, Marín-Niebla A, Roué G, Ribeiro ML. Regulation of B-Cell Receptor Signaling and Its Therapeutic Relevance in Aggressive B-Cell Lymphomas. Cancers (Basel) 2022; 14:860. [PMID: 35205606 PMCID: PMC8870007 DOI: 10.3390/cancers14040860] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
The proliferation and survival signals emanating from the B-cell receptor (BCR) constitute a crucial aspect of mature lymphocyte's life. Dysregulated BCR signaling is considered a potent contributor to tumor survival in different subtypes of B-cell non-Hodgkin lymphomas (B-NHLs). In the last decade, the emergence of BCR-associated kinases as rational therapeutic targets has led to the development and approval of several small molecule inhibitors targeting either Bruton's tyrosine kinase (BTK), spleen tyrosine kinase (SYK), or phosphatidylinositol 3 kinase (PI3K), offering alternative treatment options to standard chemoimmunotherapy, and making some of these drugs valuable assets in the anti-lymphoma armamentarium. Despite their initial effectiveness, these precision medicine strategies are limited by primary resistance in aggressive B-cell lymphoma such as diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL), especially in the case of first generation BTK inhibitors. In these patients, BCR-targeting drugs often fail to produce durable responses, and nearly all cases eventually progress with a dismal outcome, due to secondary resistance. This review will discuss our current understanding of the role of antigen-dependent and antigen-independent BCR signaling in DLBCL and MCL and will cover both approved inhibitors and investigational molecules being evaluated in early preclinical studies. We will discuss how the mechanisms of action of these molecules, and their off/on-target effects can influence their effectiveness and lead to toxicity, and how our actual knowledge supports the development of more specific inhibitors and new, rationally based, combination therapies, for the management of MCL and DLBCL patients.
Collapse
Affiliation(s)
- Núria Profitós-Pelejà
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Ana Marín-Niebla
- Department of Hematology, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Marcelo Lima Ribeiro
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 12916-900, Brazil
| |
Collapse
|
34
|
Meier-Soelch J, Mayr-Buro C, Juli J, Leib L, Linne U, Dreute J, Papantonis A, Schmitz ML, Kracht M. Monitoring the Levels of Cellular NF-κB Activation States. Cancers (Basel) 2021; 13:5351. [PMID: 34771516 PMCID: PMC8582385 DOI: 10.3390/cancers13215351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
The NF-κB signaling system plays an important regulatory role in the control of many biological processes. The activities of NF-κB signaling networks and the expression of their target genes are frequently elevated in pathophysiological situations including inflammation, infection, and cancer. In these conditions, the outcome of NF-κB activity can vary according to (i) differential activation states, (ii) the pattern of genomic recruitment of the NF-κB subunits, and (iii) cellular heterogeneity. Additionally, the cytosolic NF-κB activation steps leading to the liberation of DNA-binding dimers need to be distinguished from the less understood nuclear pathways that are ultimately responsible for NF-κB target gene specificity. This raises the need to more precisely determine the NF-κB activation status not only for the purpose of basic research, but also in (future) clinical applications. Here we review a compendium of different methods that have been developed to assess the NF-κB activation status in vitro and in vivo. We also discuss recent advances that allow the assessment of several NF-κB features simultaneously at the single cell level.
Collapse
Affiliation(s)
- Johanna Meier-Soelch
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany; (J.M.-S.); (C.M.-B.); (J.J.); (L.L.)
| | - Christin Mayr-Buro
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany; (J.M.-S.); (C.M.-B.); (J.J.); (L.L.)
| | - Jana Juli
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany; (J.M.-S.); (C.M.-B.); (J.J.); (L.L.)
| | - Lisa Leib
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany; (J.M.-S.); (C.M.-B.); (J.J.); (L.L.)
| | - Uwe Linne
- Mass Spectrometry Facility of the Department of Chemistry, Philipps University, 35032 Marburg, Germany;
| | - Jan Dreute
- Institute of Biochemistry, Justus Liebig University, 35392 Giessen, Germany;
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - M. Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University, 35392 Giessen, Germany;
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392 Giessen, Germany; (J.M.-S.); (C.M.-B.); (J.J.); (L.L.)
| |
Collapse
|
35
|
He MY, Kridel R. Treatment resistance in diffuse large B-cell lymphoma. Leukemia 2021; 35:2151-2165. [PMID: 34017074 DOI: 10.1038/s41375-021-01285-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 01/29/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous disease and represents the most common subtype of lymphoma. Although 60-70% of all patients can be cured by the current standard of care in the frontline setting, the majority of the remaining patients will experience treatment resistance and have a poor clinical outcome. Numerous efforts have been made to improve the efficacy of the standard regimen by, for example, dose intensification or adding novel agents. However, these results generally failed to demonstrate significant clinical benefits. Hence, understanding treatment resistance is a pressing need to optimize the outcome of those patients. In this Review, we first describe the conceptual sources of treatment resistance in DLBCL and then provide detailed and up-to-date molecular insight into the mechanisms of resistance to the current treatment options in DLBCL. We lastly highlight the potential strategies for rationally managing treatment resistance from both the preventive and interventional perspectives.
Collapse
Affiliation(s)
- Michael Y He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Robert Kridel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
36
|
Resistance to Bruton's Tyrosine Kinase Inhibitors: The Achilles Heel of Their Success Story in Lymphoid Malignancies. Blood 2021; 138:1099-1109. [PMID: 34320163 DOI: 10.1182/blood.2020006783] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/13/2021] [Indexed: 11/20/2022] Open
Abstract
Bruton's tyrosine kinase inhibitors (BTKi) have significantly changed the treatment landscape for patients with B-cell malignancies including chronic lymphocytic leukemia (CLL), Waldenstrom's macroglobulinemia (WM), mantle cell lymphoma (MCL), and marginal zone lymphoma (MZL). Unfortunately, patients with BTKi resistant disease have shortened survival. Clinical and molecular risk factors, such as number of prior therapies and presence of TP53 mutations, can be used to predict patients at the highest risk of developing BTKi resistance. Many mechanisms of BTKi resistance have been reported with mutations in BTK and phospholipase C g 2 supported with the most data. The introduction of venetoclax has lengthened the survival of patients with BTKi resistant disease. Ongoing clinical trials with promising treatment modalities such as next-generation BTKi and chimeric antigen receptor T-cell therapy have reported promising efficacy in patients with BTKi resistant disease. Continued research focusing on resistance mechanisms and methods of how to circumvent resistance is needed to further prolong the survival of patients with BTKi resistant B-cell malignancies.
Collapse
|
37
|
Qiu J, Fu Y, Chen Z, Zhang L, Li L, Liang D, Wei F, Wen Z, Wang Y, Liang S. BTK Promotes Atherosclerosis by Regulating Oxidative Stress, Mitochondrial Injury, and ER Stress of Macrophages. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9972413. [PMID: 34136067 PMCID: PMC8175170 DOI: 10.1155/2021/9972413] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022]
Abstract
Atherosclerosis (AS) is a chronic metabolic disease in arterial walls, characterized by lipid deposition and persistent aseptic inflammation. AS is regarded as the basis of a variety of cardiovascular and cerebrovascular diseases. It is widely acknowledged that macrophages would become foam cells after internalizing lipoprotein particles, which is an initial factor in atherogenesis. Here, we showed the influences of Bruton's tyrosine kinase (BTK) in macrophage-mediated AS and how BTK regulates the inflammatory responses of macrophages in AS. Our bioinformatic results suggested that BTK was a potential hub gene, which is closely related to oxidative stress, ER stress, and inflammation in macrophage-induced AS. Moreover, we found that BTK knockdown could restrain ox-LDL-induced NK-κB signaling activation in macrophages and repressed M1 polarization. The mechanistic studies revealed that oxidative stress, mitochondrial injury, and ER stress in macrophages were also suppressed by BTK knockdown. Furthermore, we found that sh-BTK adenovirus injection could alleviate the severity of AS in ApoE-/- mice induced by a high-fat diet in vivo. Our study suggested that BTK promoted ox-LDL-induced ER stress, oxidative stress, and inflammatory responses in macrophages, and it may be a potential therapeutic target in AS.
Collapse
Affiliation(s)
- Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Yuan Fu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Zhiteng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Lisui Zhang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Ling Li
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Diefei Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Feng Wei
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Zhuzhi Wen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Yajing Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Shi Liang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| |
Collapse
|
38
|
Hodkinson BP, Schaffer M, Brody JD, Jurczak W, Carpio C, Ben-Yehuda D, Avivi I, Forslund A, Özcan M, Alvarez J, Ceulemans R, Fourneau N, Younes A, Balasubramanian S. Biomarkers of response to ibrutinib plus nivolumab in relapsed diffuse large B-cell lymphoma, follicular lymphoma, or Richter's transformation. Transl Oncol 2020; 14:100977. [PMID: 33395752 PMCID: PMC7723809 DOI: 10.1016/j.tranon.2020.100977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022] Open
Abstract
Biomarkers of response to ibrutinib + nivolumab were analyzed in diffuse large B-cell lymphoma (DLBCL), follicular lymphoma and Richter transformation. DLBCL patients with elevated PD-L1 by immunohistochemistry tended to have better response and survival. Whole exome sequencing identified gene mutations in alternate B-cell receptor pathways linked to response in DLBCL. Enriched pathways by gene expression profiling were related to immune activation in responders and proliferation/replication in nonresponders. This preliminary work may help to generate hypotheses on genetically defined subsets of patients most likely to benefit from ibrutinib + nivolumab.
We analyzed potential biomarkers of response to ibrutinib plus nivolumab in biopsies from patients with diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and Richter's transformation (RT) from the LYM1002 phase I/IIa study, using programmed death ligand 1 (PD-L1) immunohistochemistry, whole exome sequencing (WES), and gene expression profiling (GEP). In DLBCL, PD-L1 elevation was more frequent in responders versus nonresponders (5/8 [62.5%] vs. 3/16 [18.8%]; p = 0.065; complete response 37.5% vs. 0%; p = 0.028). Overall response rates for patients with WES and GEP data, respectively, were: DLBCL (38.5% and 29.6%); FL (46.2% and 43.5%); RT (76.5% and 81.3%). In DLBCL, WES analyses demonstrated that mutations in RNF213 (40.0% vs. 6.2%; p = 0.055), KLHL14 (30.0% vs. 0%; p = 0.046), and LRP1B (30.0% vs. 6.2%; p = 0.264) were more frequent in responders. No responders had mutations in EBF1, ADAMTS20, AKAP9, TP53, MYD88, or TNFRSF14, while the frequency of these mutations in nonresponders ranged from 12.5% to 18.8%. In FL and RT, genes with different mutation frequencies in responders versus nonresponders were: BCL2 (75.0% vs. 28.6%; p = 0.047) and ROS1 (0% vs. 50.0%; p = 0.044), respectively. Per GEP, the most upregulated genes in responders were LEF1 and BTLA (overall), and CRTAM (germinal center B-cell–like DLBCL). Enriched pathways were related to immune activation in responders and resistance-associated proliferation/replication in nonresponders. This preliminary work may help to generate hypotheses regarding genetically defined subsets of DLBCL, FL, and RT patients most likely to benefit from ibrutinib plus nivolumab.
Collapse
Affiliation(s)
- Brendan P Hodkinson
- Oncology Translational Research, Janssen Research & Development, Spring House, PA 19477, United States
| | - Michael Schaffer
- Oncology Translational Research, Janssen Research & Development, Spring House, PA 19477, United States
| | - Joshua D Brody
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Wojciech Jurczak
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, 31-115, Poland
| | - Cecilia Carpio
- Department of Hematology, University Hospital Vall d'Hebron, Department of Medicine. Universitat Autònoma de Barcelona (UAB), Vall d'Hebron Institut of Oncology (VHIO), Barcelona, Spain
| | - Dina Ben-Yehuda
- Department of Hematology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Irit Avivi
- Department of Hematology and Bone Marrow Transplantation, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv 6997801, Israel
| | - Ann Forslund
- Oncology Biomarkers, Bristol-Myers Squibb, Lawrenceville, NJ 08543, United States
| | - Muhit Özcan
- Department of Hematology, Ankara University School of Medicine, Ankara 06100, Turkey
| | - John Alvarez
- Oncology Translational Research, Janssen Research & Development, Spring House, PA 19477, United States
| | - Rob Ceulemans
- Translational Medicine, Janssen Research & Development, Beerse 2340, Belgium
| | - Nele Fourneau
- Translational Medicine, Janssen Research & Development, Beerse 2340, Belgium
| | - Anas Younes
- Lymphoma Department, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Sriram Balasubramanian
- Oncology Translational Research, Janssen Research & Development, Spring House, PA 19477, United States.
| |
Collapse
|
39
|
Ondrisova L, Mraz M. Genetic and Non-Genetic Mechanisms of Resistance to BCR Signaling Inhibitors in B Cell Malignancies. Front Oncol 2020; 10:591577. [PMID: 33154951 PMCID: PMC7116322 DOI: 10.3389/fonc.2020.591577] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
The approval of BTK and PI3K inhibitors (ibrutinib, idelalisib) represents a revolution in the therapy of B cell malignancies such as chronic lymphocytic leukemia (CLL), mantle-cell lymphoma (MCL), diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), or Waldenström's macroglobulinemia (WM). However, these "BCR inhibitors" function by interfering with B cell pathophysiology in a more complex way than anticipated, and resistance develops through multiple mechanisms. In ibrutinib treated patients, the most commonly described resistance-mechanism is a mutation in BTK itself, which prevents the covalent binding of ibrutinib, or a mutation in PLCG2, which acts to bypass the dependency on BTK at the BCR signalosome. However, additional genetic aberrations leading to resistance are being described (such as mutations in the CARD11, CCND1, BIRC3, TRAF2, TRAF3, TNFAIP3, loss of chromosomal region 6q or 8p, a gain of Toll-like receptor (TLR)/MYD88 signaling or gain of 2p chromosomal region). Furthermore, relative resistance to BTK inhibitors can be caused by non-genetic adaptive mechanisms leading to compensatory pro-survival pathway activation. For instance, PI3K/mTOR/Akt, NFkB and MAPK activation, BCL2, MYC, and XPO1 upregulation or PTEN downregulation lead to B cell survival despite BTK inhibition. Resistance could also arise from activating microenvironmental pathways such as chemokine or integrin signaling via CXCR4 or VLA4 upregulation, respectively. Defining these compensatory pro-survival mechanisms can help to develop novel therapeutic combinations of BTK inhibitors with other inhibitors (such as BH3-mimetic venetoclax, XPO1 inhibitor selinexor, mTOR, or MEK inhibitors). The mechanisms of resistance to PI3K inhibitors remain relatively unclear, but some studies point to MAPK signaling upregulation via both genetic and non-genetic changes, which could be co-targeted therapeutically. Alternatively, drugs mimicking the BTK/PI3K inhibition effect can be used to prevent adhesion and/or malignant B cell migration (chemokine and integrin inhibitors) or to block the pro-proliferative T cell signals in the microenvironment (such as IL4/STAT signaling inhibitors). Here we review the genetic and non-genetic mechanisms of resistance and adaptation to the first generation of BTK and PI3K inhibitors (ibrutinib and idelalisib, respectively), and discuss possible combinatorial therapeutic strategies to overcome resistance or to increase clinical efficacy.
Collapse
Affiliation(s)
- Laura Ondrisova
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marek Mraz
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
40
|
George B, Mullick Chowdhury S, Hart A, Sircar A, Singh SK, Nath UK, Mamgain M, Singhal NK, Sehgal L, Jain N. Ibrutinib Resistance Mechanisms and Treatment Strategies for B-Cell lymphomas. Cancers (Basel) 2020; 12:E1328. [PMID: 32455989 PMCID: PMC7281539 DOI: 10.3390/cancers12051328] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/03/2023] Open
Abstract
Chronic activation of B-cell receptor (BCR) signaling via Bruton tyrosine kinase (BTK) is largely considered to be one of the primary mechanisms driving disease progression in B-Cell lymphomas. Although the BTK-targeting agent ibrutinib has shown promising clinical responses, the presence of primary or acquired resistance is common and often leads to dismal clinical outcomes. Resistance to ibrutinib therapy can be mediated through genetic mutations, up-regulation of alternative survival pathways, or other unknown factors that are not targeted by ibrutinib therapy. Understanding the key determinants, including tumor heterogeneity and rewiring of the molecular networks during disease progression and therapy, will assist exploration of alternative therapeutic strategies. Towards the goal of overcoming ibrutinib resistance, multiple alternative therapeutic agents, including second- and third-generation BTK inhibitors and immunomodulatory drugs, have been discovered and tested in both pre-clinical and clinical settings. Although these agents have shown high response rates alone or in combination with ibrutinib in ibrutinib-treated relapsed/refractory(R/R) lymphoma patients, overall clinical outcomes have not been satisfactory due to drug-associated toxicities and incomplete remission. In this review, we discuss the mechanisms of ibrutinib resistance development in B-cell lymphoma including complexities associated with genomic alterations, non-genetic acquired resistance, cancer stem cells, and the tumor microenvironment. Furthermore, we focus our discussion on more comprehensive views of recent developments in therapeutic strategies to overcome ibrutinib resistance, including novel BTK inhibitors, clinical therapeutic agents, proteolysis-targeting chimeras and immunotherapy regimens.
Collapse
Affiliation(s)
- Bhawana George
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Sayan Mullick Chowdhury
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Amber Hart
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Anuvrat Sircar
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Satish Kumar Singh
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Uttam Kumar Nath
- Department of Medical Oncology & Hematology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Mukesh Mamgain
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India; (M.M.); (N.K.S.)
| | - Naveen Kumar Singhal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India; (M.M.); (N.K.S.)
| | - Lalit Sehgal
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Neeraj Jain
- Department of Medical Oncology & Hematology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| |
Collapse
|