1
|
Favaretto F, Matsumura EE, Ferriol I, Chitarra W, Nerva L. The four Ws of viruses: Where, Which, What and Why - A deep dive into viral evolution. Virology 2025; 606:110476. [PMID: 40073500 DOI: 10.1016/j.virol.2025.110476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/05/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
For centuries, humanity has been captivated by evolution, seeking to unravel the origins of life and identify past patterns with future applications. Viruses, despite their obligate parasitic nature, are the most adaptable biological entities, surpassing cellular life in their variability and adaptability. While many theories about viral evolution exist, a consensus on their origins remains elusive. The quasispecies theory, however, has emerged as a leading framework for understanding viral evolution and, indirectly, their variability and adaptability. This theory illuminates how viruses regulate behaviours such as host range and their symbiotic or antagonistic interactions with hosts. This review delves into the most substantiated theories of viral evolution, addressing four fundamental questions relevant to virus ecology: Where did viruses originate? What factors drive viral evolution? What determines the virus host range? And why do viruses adopt pathogenic or mutualistic strategies? We will provide a comprehensive and up-to-date analysis that integrates diverse theoretical perspectives with empirical data, providing a holistic view of viral evolution and its implications for viral behaviour.
Collapse
Affiliation(s)
- Francesco Favaretto
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Via XXVIII Aprile, 26, 31015, Conegliano, TV, Italy; University of Padua, Department of Agronomy, Food, Natural Resources, Animals and Environment, Agripolis, Viale dell'Università 16, 35020, Legnaro, Pd, Italy
| | - Emilyn E Matsumura
- Laboratory of Virology, Wageningen University and Research, 6700 AA 8 Wageningen, the Netherlands
| | - Inmaculada Ferriol
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Calle Serrano 115 apdo, 28006, Madrid, Spain
| | - Walter Chitarra
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Via XXVIII Aprile, 26, 31015, Conegliano, TV, Italy; National Research Council of Italy - Institute for Sustainable Plant Protection (IPSP-CNR), Strada delle Cacce, 73, 10135, Torino, TO, Italy
| | - Luca Nerva
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Via XXVIII Aprile, 26, 31015, Conegliano, TV, Italy; National Research Council of Italy - Institute for Sustainable Plant Protection (IPSP-CNR), Strada delle Cacce, 73, 10135, Torino, TO, Italy.
| |
Collapse
|
2
|
Nunes-Alves AK, Abrahão JS, de Farias ST. Yaravirus brasiliense genomic structure analysis and its possible influence on the metabolism. Genet Mol Biol 2025; 48:e20240139. [PMID: 39918235 PMCID: PMC11803573 DOI: 10.1590/1678-4685-gmb-2024-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/11/2024] [Indexed: 02/11/2025] Open
Abstract
Here we analyze the Yaravirus brasiliense, an amoeba-infecting 80-nm-sized virus with a 45-kbp dsDNA, using structural molecular modeling. Almost all of its 74 genes were previously identified as ORFans. Considering its unprecedented genetic content, we analyzed Yaravirus genome to understand its genetic organization, its proteome, and how it interacts with its host. We reported possible functions for all Yaravirus proteins. Our results suggest the first ever report of a fragment proteome, in which the proteins are separated in modules and joined together at a protein level. Given the structural resemblance between some Yaravirus proteins and proteins related to tricarboxylic acid cycle (TCA), glyoxylate cycle, and the respiratory complexes, our work also allows us to hypothesize that these viral proteins could be modulating cell metabolism by upregulation. The presence of these TCA cycle-related enzymes specifically could be trying to overcome the cycle's control points, since they are strategic proteins that maintain malate and oxaloacetate levels. Therefore, we propose that Yaravirus proteins are redirecting energy and resources towards viral production, and avoiding TCA cycle control points, "unlocking" the cycle. Altogether, our data helped understand a previously almost completely unknown virus, and a little bit more of the incredible diversity of viruses.
Collapse
Affiliation(s)
- Ana Karoline Nunes-Alves
- Universidade Federal da Paraíba, Departamento de Biologia Molecular,
Laboratório de Genética Evolutiva Paulo Leminski, João Pessoa, PB, Brazil
| | - Jônatas Santos Abrahão
- Universidade Federal de Minas Gerais, Instituto de Ciências
Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Belo Horizonte, MG,
Brazil
| | - Sávio Torres de Farias
- Universidade Federal da Paraíba, Departamento de Biologia Molecular,
Laboratório de Genética Evolutiva Paulo Leminski, João Pessoa, PB, Brazil
- Network of Researchers on the Chemical Evolution of Life (NoRCEL),
Leeds, United Kingdom
| |
Collapse
|
3
|
Yutin N, Mutz P, Krupovic M, Koonin EV. Mriyaviruses: small relatives of giant viruses. mBio 2024; 15:e0103524. [PMID: 38832788 PMCID: PMC11253617 DOI: 10.1128/mbio.01035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
The phylum Nucleocytoviricota consists of large and giant viruses that range in genome size from about 100 kilobases (kb) to more than 2.5 megabases. Here, using metagenome mining followed by extensive phylogenomic analysis and protein structure comparison, we delineate a distinct group of viruses with double-stranded (ds) DNA genomes in the range of 35-45 kb that appear to be related to the Nucleocytoviricota. In phylogenetic trees of the conserved double jelly-roll major capsid proteins (MCPs) and DNA packaging ATPases, these viruses do not show affinity to any particular branch of the Nucleocytoviricota and accordingly would comprise a class which we propose to name "Mriyaviricetes" (after Ukrainian "mriya," dream). Structural comparison of the MCP suggests that, among the extant virus lineages, mriyaviruses are the closest one to the ancestor of the Nucleocytoviricota. In the phylogenetic trees, mriyaviruses split into two well-separated branches, the family Yaraviridae and proposed new family "Gamadviridae." The previously characterized members of these families, yaravirus and Pleurochrysis sp. endemic viruses, infect amoeba and haptophytes, respectively. The genomes of the rest of the mriyaviruses were assembled from metagenomes from diverse environments, suggesting that mriyaviruses infect various unicellular eukaryotes. Mriyaviruses lack DNA polymerase, which is encoded by all other members of the Nucleocytoviricota, and RNA polymerase subunits encoded by all cytoplasmic viruses among the Nucleocytoviricota, suggesting that they replicate in the host cell nuclei. All mriyaviruses encode a HUH superfamily endonuclease that is likely to be essential for the initiation of virus DNA replication via the rolling circle mechanism. IMPORTANCE The origin of giant viruses of eukaryotes that belong to the phylum Nucleocytoviricota is not thoroughly understood and remains a matter of major interest and debate. Here, we combine metagenome database searches with extensive protein sequence and structure analysis to describe a distinct group of viruses with comparatively small genomes of 35-45 kilobases that appear to comprise a distinct class within the phylum Nucleocytoviricota that we provisionally named "Mriyaviricetes." Mriyaviruses appear to be the closest identified relatives of the ancestors of the Nucleocytoviricota. Analysis of proteins encoded in mriyavirus genomes suggests that they replicate their genome via the rolling circle mechanism that is unusual among viruses with double-stranded DNA genomes and so far not described for members of Nucleocytoviricota.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| |
Collapse
|
4
|
de Azevedo BL, Queiroz VF, de Aquino ILM, Machado TB, de Assis FL, Reis E, Araújo Júnior JP, Ullmann LS, Colson P, Greub G, Aylward F, Rodrigues RAL, Abrahão JS. The genomic and phylogenetic analysis of Marseillevirus cajuinensis raises questions about the evolution of Marseilleviridae lineages and their taxonomical organization. J Virol 2024; 98:e0051324. [PMID: 38752754 PMCID: PMC11237802 DOI: 10.1128/jvi.00513-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/19/2024] [Indexed: 06/14/2024] Open
Abstract
Marseilleviruses (MsV) are a group of viruses that compose the Marseilleviridae family within the Nucleocytoviricota phylum. They have been found in different samples, mainly in freshwater. MsV are classically organized into five phylogenetic lineages (A/B/C/D/E), but the current taxonomy does not fully represent all the diversity of the MsV lineages. Here, we describe a novel strain isolated from a Brazilian saltwater sample named Marseillevirus cajuinensis. Based on genomics and phylogenetic analyses, M. cajuinensis exhibits a 380,653-bp genome that encodes 515 open reading frames. Additionally, M. cajuinensis encodes a transfer RNA, a feature that is rarely described for Marseilleviridae. Phylogeny suggests that M. cajuinensis forms a divergent branch within the MsV lineage A. Furthermore, our analysis suggests that the common ancestor for the five classical lineages of MsV diversified into three major groups. The organization of MsV into three main groups is reinforced by a comprehensive analysis of clusters of orthologous groups, sequence identities, and evolutionary distances considering several MsV isolates. Taken together, our results highlight the importance of discovering new viruses to expand the knowledge about known viruses that belong to the same lineages or families. This work proposes a new perspective on the Marseilleviridae lineages organization that could be helpful to a future update in the taxonomy of the Marseilleviridae family. IMPORTANCE Marseilleviridae is a family of viruses whose members were mostly isolated from freshwater samples. In this work, we describe the first Marseillevirus isolated from saltwater samples, which we called Marseillevirus cajuinensis. Most of M. cajuinensis genomic features are comparable to other Marseilleviridae members, such as its high number of unknown proteins. On the other hand, M. cajuinensis encodes a transfer RNA, which is a gene category involved in protein translation that is rarely described in this viral family. Additionally, our phylogenetic analyses suggested the existence of, at least, three major Marseilleviridae groups. These observations provide a new perspective on Marseilleviridae lineages organization, which will be valuable in future updates to the taxonomy of the family since the current official classification does not capture all the Marseilleviridae known diversity.
Collapse
Affiliation(s)
- Bruna Luiza de Azevedo
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Victória Fulgêncio Queiroz
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Isabella Luiza Martins de Aquino
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Talita Bastos Machado
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Felipe Lopes de Assis
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Erik Reis
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - João Pessoa Araújo Júnior
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Alameda das Tecomarias s/n, Chácara Capão Bonito, Botucatu, Brazil
| | - Leila Sabrina Ullmann
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Alameda das Tecomarias s/n, Chácara Capão Bonito, Botucatu, Brazil
| | - Philippe Colson
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Gilbert Greub
- Centre for Research on Intracellular Bacteria and Giant Viruses, Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland
| | - Frank Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease Virginia Tech, Blacksburg, Virginia, USA
| | - Rodrigo Araújo Lima Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Machado TB, de Aquino ILM, Azevedo BL, Serafim MS, Barcelos MG, Andrade ACSP, Reis E, Ullmann LS, Pessoa J, Costa AO, Rosa LH, Abrahão JS. A long-term prospecting study on giant viruses in terrestrial and marine Brazilian biomes. Virol J 2024; 21:135. [PMID: 38858684 PMCID: PMC11165748 DOI: 10.1186/s12985-024-02404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
The discovery of mimivirus in 2003 prompted the search for novel giant viruses worldwide. Despite increasing interest, the diversity and distribution of giant viruses is barely known. Here, we present data from a 2012-2022 study aimed at prospecting for amoebal viruses in water, soil, mud, and sewage samples across Brazilian biomes, using Acanthamoeba castellanii for isolation. A total of 881 aliquots from 187 samples covering terrestrial and marine Brazilian biomes were processed. Electron microscopy and PCR were used to identify the obtained isolates. Sixty-seven amoebal viruses were isolated, including mimiviruses, marseilleviruses, pandoraviruses, cedratviruses, and yaraviruses. Viruses were isolated from all tested sample types and almost all biomes. In comparison to other similar studies, our work isolated a substantial number of Marseillevirus and cedratvirus representatives. Taken together, our results used a combination of isolation techniques with microscopy, PCR, and sequencing and put highlight on richness of giant virus present in different terrestrial and marine Brazilian biomes.
Collapse
Affiliation(s)
- Talita B Machado
- Laboratório de vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte city, Minas Gerais, Brazil
| | - Isabella L M de Aquino
- Laboratório de vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte city, Minas Gerais, Brazil
| | - Bruna L Azevedo
- Laboratório de vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte city, Minas Gerais, Brazil
| | - Mateus S Serafim
- Laboratório de vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte city, Minas Gerais, Brazil
| | - Matheus G Barcelos
- Laboratório de vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte city, Minas Gerais, Brazil
| | - Ana Cláudia S P Andrade
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Laval city, Québec, Canada
| | - Erik Reis
- Laboratório de virologia básica e aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte city, Minas Gerais, Brazil
| | - Leila Sabrina Ullmann
- Laboratório de Virologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia (FAMEZ), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande city, Mato Grosso do Sul, Brazil
| | - João Pessoa
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (UNESP), Botucatu city, São Paulo, Brazil
| | - Adriana O Costa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte city, Minas Gerais, Brazil
| | - Luiz H Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte city, Minas Gerais, Brazil
| | - Jônatas S Abrahão
- Laboratório de vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte city, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Queiroz VF, Tatara JM, Botelho BB, Rodrigues RAL, Almeida GMDF, Abrahao JS. The consequences of viral infection on protists. Commun Biol 2024; 7:306. [PMID: 38462656 PMCID: PMC10925606 DOI: 10.1038/s42003-024-06001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
Protists encompass a vast widely distributed group of organisms, surpassing the diversity observed in metazoans. Their diverse ecological niches and life forms are intriguing characteristics that render them valuable subjects for in-depth cell biology studies. Throughout history, viruses have played a pivotal role in elucidating complex cellular processes, particularly in the context of cellular responses to viral infections. In this comprehensive review, we provide an overview of the cellular alterations that are triggered in specific hosts following different viral infections and explore intricate biological interactions observed in experimental conditions using different host-pathogen groups.
Collapse
Affiliation(s)
- Victoria Fulgencio Queiroz
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Miranda Tatara
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Bruna Barbosa Botelho
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Araújo Lima Rodrigues
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Magno de Freitas Almeida
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Jonatas Santos Abrahao
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
7
|
Yutin N, Mutz P, Krupovic M, Koonin EV. Mriyaviruses: Small Relatives of Giant Viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582850. [PMID: 38529486 PMCID: PMC10962738 DOI: 10.1101/2024.02.29.582850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The phylum Nucleocytoviricota consists of large and giant viruses that range in genome size from about 100 kilobases (kb) to more than 2.5 megabases. Here, using metagenome mining followed by extensive phylogenomic analysis and protein structure comparison, we delineate a distinct group of viruses with double-stranded (ds) DNA genomes in the range of 35-45 kb that appear to be related to the Nucleocytoviricota. In phylogenetic trees of the conserved double jelly-roll major capsid proteins (MCP) and DNA packaging ATPases, these viruses do not show affinity to any particular branch of the Nucleocytoviricota and accordingly would comprise a class which we propose to name "Mriyaviricetes" (after Ukrainian Mriya, dream). Structural comparison of the MCP suggests that, among the extant virus lineages, mriyaviruses are the closest one to the ancestor of the Nucleocytoviricota. In the phylogenetic trees, mriyaviruses split into two well-separated branches, the family Yaraviridae and proposed new family "Gamadviridae". The previously characterized members of these families, Yaravirus and Pleurochrysis sp. endemic viruses, infect amoeba and haptophytes, respectively. The genomes of the rest of the mriyaviruses were assembled from metagenomes from diverse environments, suggesting that mriyaviruses infect various unicellular eukaryotes. Mriyaviruses lack DNA polymerase, which is encoded by all other members of the Nucleocytoviricota, and RNA polymerase subunits encoded by all cytoplasmic viruses among the Nucleocytoviricota, suggesting that they replicate in the host cell nuclei. All mriyaviruses encode a HUH superfamily endonuclease that is likely to be essential for the initiation of virus DNA replication via the rolling circle mechanism.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris 75015, France
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
8
|
Zhang S, Yang C, Qiu Y, Liao R, Xuan Z, Ren F, Dong Y, Xie X, Han Y, Wu D, Ramos-González PL, Freitas-Astúa J, Yang H, Zhou C, Cao M. Conserved untranslated regions of multipartite viruses: Natural markers of novel viral genomic components and tags of viral evolution. Virus Evol 2024; 10:veae004. [PMID: 38361819 PMCID: PMC10868557 DOI: 10.1093/ve/veae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Viruses with split genomes are classified as being either segmented or multipartite based on whether their genomic segments occur within a single virion or across different virions. Despite variations in number and sequence during evolution, the genomic segments of many viruses are conserved within the untranslated regions (UTRs). In this study, we present a methodology that combines RNA sequencing with iterative BLASTn of UTRs (https://github.com/qq371260/Iterative-blast-v.1.0) to identify new viral genomic segments. Some novel multipartite-like viruses related to the phylum Kitrinoviricota were annotated using sequencing data from field plant samples and public databases. We identified potentially plant-infecting jingmen-related viruses (order Amarillovirales) and jivi-related viruses (order Martellivirales) with at least six genomic components. The number of RNA molecules associated with a genome of the novel viruses in the families Closteroviridae, Kitaviridae, and Virgaviridae within the order Martellivirales reached five. Several of these viruses seem to represent new taxa at the subgenus, genus, and family levels. The diversity of novel genomic components and the multiple duplication of proteins or protein domains within single or multiple genomic components emphasize the evolutionary roles of genetic recombination (horizontal gene transfer), reassortment, and deletion. The relatively conserved UTRs at the genome level might explain the relationships between monopartite and multipartite viruses, as well as how subviral agents such as defective RNAs and satellite viruses can coexist with their helper viruses.
Collapse
Affiliation(s)
| | - Caixia Yang
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, 21 Huanan Street, Shenyang, Liaoning 110044, China
| | - Yuanjian Qiu
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Ruiling Liao
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Zhiyou Xuan
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Fang Ren
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, 98 Xinghainan Street, Xingcheng, Liaoning 125100, China
| | - Yafeng Dong
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, 98 Xinghainan Street, Xingcheng, Liaoning 125100, China
| | - Xiaoying Xie
- Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, China
| | - Yanhong Han
- Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, China
| | - Di Wu
- College of Horticulture and Landscape Architecture, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Pedro Luis Ramos-González
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, Av. Cons. Rodrigues Alves 1252, São Paulo SP, 04014-002, Brazil
| | - Juliana Freitas-Astúa
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, Av. Cons. Rodrigues Alves 1252, São Paulo SP, 04014-002, Brazil
- Embrapa Mandioca e Fruticultura, Rua da Embrapa, Caixa Postal 007, CEP, Cruz das Almas BA, 44380-000, Brazil
| | - Huadong Yang
- Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410125, China
| | - Changyong Zhou
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, 40 Putuo Road, Guilin, Guangxi 541010, China
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, 40 Putuo Road, Guilin, Guangxi 541010, China
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| |
Collapse
|
9
|
Haltom J, Trovao NS, Guarnieri J, Vincent P, Singh U, Tsoy S, O'Leary CA, Bram Y, Widjaja GA, Cen Z, Meller R, Baylin SB, Moss WN, Nikolau BJ, Enguita FJ, Wallace DC, Beheshti A, Schwartz R, Wurtele ES. SARS-CoV-2 Orphan Gene ORF10 Contributes to More Severe COVID-19 Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.27.23298847. [PMID: 38076862 PMCID: PMC10705665 DOI: 10.1101/2023.11.27.23298847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The orphan gene of SARS-CoV-2, ORF10, is the least studied gene in the virus responsible for the COVID-19 pandemic. Recent experimentation indicated ORF10 expression moderates innate immunity in vitro. However, whether ORF10 affects COVID-19 in humans remained unknown. We determine that the ORF10 sequence is identical to the Wuhan-Hu-1 ancestral haplotype in 95% of genomes across five variants of concern (VOC). Four ORF10 variants are associated with less virulent clinical outcomes in the human host: three of these affect ORF10 protein structure, one affects ORF10 RNA structural dynamics. RNA-Seq data from 2070 samples from diverse human cells and tissues reveals ORF10 accumulation is conditionally discordant from that of other SARS-CoV-2 transcripts. Expression of ORF10 in A549 and HEK293 cells perturbs immune-related gene expression networks, alters expression of the majority of mitochondrially-encoded genes of oxidative respiration, and leads to large shifts in levels of 14 newly-identified transcripts. We conclude ORF10 contributes to more severe COVID-19 clinical outcomes in the human host.
Collapse
Affiliation(s)
- Jeffrey Haltom
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Nidia S Trovao
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Joseph Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Pan Vincent
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Urminder Singh
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
| | - Sergey Tsoy
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Collin A O'Leary
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Gabrielle A Widjaja
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zimu Cen
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert Meller
- Morehouse School of Medicine, Atlanta, GA , 30310-1495, USA
| | - Stephen B Baylin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
- Van Andel Research Institute, Grand Rapids, MI 49503
| | - Walter N Moss
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Basil J Nikolau
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA 02155, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Blue Marble Space Institute of Science, Seattle, WA, 98104 USA
| | - Robert Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| |
Collapse
|
10
|
Hikida H, Okazaki Y, Zhang R, Nguyen TT, Ogata H. A rapid genome-wide analysis of isolated giant viruses using MinION sequencing. Environ Microbiol 2023; 25:2621-2635. [PMID: 37543720 DOI: 10.1111/1462-2920.16476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Following the discovery of Acanthamoeba polyphaga mimivirus, diverse giant viruses have been isolated. However, only a small fraction of these isolates have been completely sequenced, limiting our understanding of the genomic diversity of giant viruses. MinION is a portable and low-cost long-read sequencer that can be readily used in a laboratory. Although MinION provides highly error-prone reads that require correction through additional short-read sequencing, recent studies assembled high-quality microbial genomes only using MinION sequencing. Here, we evaluated the accuracy of MinION-only genome assemblies for giant viruses by re-sequencing a prototype marseillevirus. Assembled genomes presented over 99.98% identity to the reference genome with a few gaps, demonstrating a high accuracy of the MinION-only assembly. As a proof of concept, we de novo assembled five newly isolated viruses. Average nucleotide identities to their closest known relatives suggest that the isolates represent new species of marseillevirus, pithovirus and mimivirus. The assembly of subsampled reads demonstrated that their taxonomy and genomic composition could be analysed at the 50× sequencing coverage. We also identified a pithovirus gene whose homologues were detected only in metagenome-derived relatives. Collectively, we propose that MinION-only assembly is an effective approach to rapidly perform a genome-wide analysis of isolated giant viruses.
Collapse
Affiliation(s)
- Hiroyuki Hikida
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Ruixuan Zhang
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Thi Tuyen Nguyen
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Queiroz VF, Carvalho JVRP, de Souza FG, Lima MT, Santos JD, Rocha KLS, de Oliveira DB, Araújo JP, Ullmann LS, Rodrigues RAL, Abrahão JS. Analysis of the Genomic Features and Evolutionary History of Pithovirus-Like Isolates Reveals Two Major Divergent Groups of Viruses. J Virol 2023; 97:e0041123. [PMID: 37395647 PMCID: PMC10373538 DOI: 10.1128/jvi.00411-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023] Open
Abstract
New representatives of the phylum Nucleocytoviricota have been rapidly described in the last decade. Despite this, not all viruses of this phylum are allocated to recognized taxonomic families, as is the case for orpheovirus, pithovirus, and cedratvirus, which form the proposed family Pithoviridae. In this study, we performed comprehensive comparative genomic analyses of 8 pithovirus-like isolates, aiming to understand their common traits and evolutionary history. Structural and functional genome annotation was performed de novo for all the viruses, which served as a reference for pangenome construction. The synteny analysis showed substantial differences in genome organization between these viruses, with very few and short syntenic blocks shared between orpheovirus and its relatives. It was possible to observe an open pangenome with a significant increase in the slope when orpheovirus was added, alongside a decrease in the core genome. Network analysis placed orpheovirus as a distant and major hub with a large fraction of unique clusters of orthologs, indicating a distant relationship between this virus and its relatives, with only a few shared genes. Additionally, phylogenetic analyses of strict core genes shared with other viruses of the phylum reinforced the divergence of orpheovirus from pithoviruses and cedratviruses. Altogether, our results indicate that although pithovirus-like isolates share common features, this group of ovoid-shaped giant viruses presents substantial differences in gene contents, genomic architectures, and the phylogenetic history of several core genes. Our data indicate that orpheovirus is an evolutionarily divergent viral entity, suggesting its allocation to a different viral family, Orpheoviridae. IMPORTANCE Giant viruses that infect amoebae form a monophyletic group named the phylum Nucleocytoviricota. Despite being genomically and morphologically very diverse, the taxonomic categories of some clades that form this phylum are not yet well established. With advances in isolation techniques, the speed at which new giant viruses are described has increased, escalating the need to establish criteria to define the emerging viral taxa. In this work, we performed a comparative genomic analysis of representatives of the putative family Pithoviridae. Based on the dissimilarity of orpheovirus from the other viruses of this putative family, we propose that orpheovirus be considered a member of an independent family, Orpheoviridae, and suggest criteria to demarcate families consisting of ovoid-shaped giant viruses.
Collapse
Affiliation(s)
- Victória F. Queiroz
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João Victor R. P. Carvalho
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda G. de Souza
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maurício T. Lima
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliane D. Santos
- Laboratório de Doenças Infecciosas e Parasitárias, Programa de pós graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Kamila L. S. Rocha
- Laboratório de Doenças Infecciosas e Parasitárias, Programa de pós graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Danilo B. de Oliveira
- Laboratório de Doenças Infecciosas e Parasitárias, Programa de pós graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - João Pessoa Araújo
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Leila Sabrina Ullmann
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- Laboratório de Virologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rodrigo A. L. Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jônatas S. Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
12
|
Gaïa M, Meng L, Pelletier E, Forterre P, Vanni C, Fernandez-Guerra A, Jaillon O, Wincker P, Ogata H, Krupovic M, Delmont TO. Mirusviruses link herpesviruses to giant viruses. Nature 2023; 616:783-789. [PMID: 37076623 PMCID: PMC10132985 DOI: 10.1038/s41586-023-05962-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/16/2023] [Indexed: 04/21/2023]
Abstract
DNA viruses have a major influence on the ecology and evolution of cellular organisms1-4, but their overall diversity and evolutionary trajectories remain elusive5. Here we carried out a phylogeny-guided genome-resolved metagenomic survey of the sunlit oceans and discovered plankton-infecting relatives of herpesviruses that form a putative new phylum dubbed Mirusviricota. The virion morphogenesis module of this large monophyletic clade is typical of viruses from the realm Duplodnaviria6, with multiple components strongly indicating a common ancestry with animal-infecting Herpesvirales. Yet, a substantial fraction of mirusvirus genes, including hallmark transcription machinery genes missing in herpesviruses, are closely related homologues of giant eukaryotic DNA viruses from another viral realm, Varidnaviria. These remarkable chimaeric attributes connecting Mirusviricota to herpesviruses and giant eukaryotic viruses are supported by more than 100 environmental mirusvirus genomes, including a near-complete contiguous genome of 432 kilobases. Moreover, mirusviruses are among the most abundant and active eukaryotic viruses characterized in the sunlit oceans, encoding a diverse array of functions used during the infection of microbial eukaryotes from pole to pole. The prevalence, functional activity, diversification and atypical chimaeric attributes of mirusviruses point to a lasting role of Mirusviricota in the ecology of marine ecosystems and in the evolution of eukaryotic DNA viruses.
Collapse
Affiliation(s)
- Morgan Gaïa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Lingjie Meng
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Patrick Forterre
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, Université Paris-Saclay, Gif sur Yvette, France
- Département de Microbiologie, Institut Pasteur, Paris, France
| | - Chiara Vanni
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Antonio Fernandez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Olivier Jaillon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.
| |
Collapse
|
13
|
Siddiqui R, Muhammad JS, Alharbi AM, Alfahemi H, Khan NA. Can Acanthamoeba Harbor Monkeypox Virus? Microorganisms 2023; 11:microorganisms11040855. [PMID: 37110278 PMCID: PMC10146756 DOI: 10.3390/microorganisms11040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Acanthamoeba is well known to host a variety of microorganisms such as viruses, bacteria, protozoa, and yeast. Given the recent number of cases of monkeypox infection, we speculate that amoebae may be aiding viral transmission to the susceptible hosts. Although there is no confirmatory evidence to suggest that Acanthamoeba is a host to monkeypox (a double-stranded DNA virus), the recent discovery of mimivirus (another double-stranded DNA virus) from Acanthamoeba, suggests that amoebae may shelter monkeypox virus. Furthermore, given the possible spread of monkeypox virus from animals to humans during an earlier outbreak, which came about after patients came in contact with prairie dogs, it is likely that animals may also act as mixing vessel between ubiquitously distributed Acanthamoeba and monkeypox virus, in addition to the environmental habitat that acts as an interface in complex interactions between diverse microorganisms and the host.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | | | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-65057722
| |
Collapse
|
14
|
Giant Viruses as a Source of Novel Enzymes for Biotechnological Application. Pathogens 2022; 11:pathogens11121453. [PMID: 36558786 PMCID: PMC9787589 DOI: 10.3390/pathogens11121453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The global demand for industrial enzymes has been increasing in recent years, and the search for new sources of these biological products is intense, especially in microorganisms. Most known viruses have limited genetic machinery and, thus, have been overlooked by the enzyme industry for years. However, a peculiar group of viruses breaks this paradigm. Giant viruses of the phylum Nucleocytoviricota infect protists (i.e., algae and amoebae) and have complex genomes, reaching up to 2.7 Mb in length and encoding hundreds of genes. Different giant viruses have robust metabolic machinery, especially those in the Phycodnaviridae and Mimiviridae families. In this review, we present some peculiarities of giant viruses that infect protists and discuss why they should be seen as an outstanding source of new enzymes. We revisited the genomes of representatives of different groups of giant viruses and put together information about their enzymatic machinery, highlighting several genes to be explored in biotechnology involved in carbohydrate metabolism, DNA replication, and RNA processing, among others. Finally, we present additional evidence based on structural biology using chitinase as a model to reinforce the role of giant viruses as a source of novel enzymes for biotechnological application.
Collapse
|
15
|
Zhang QY, Ke F, Gui L, Zhao Z. Recent insights into aquatic viruses: Emerging and reemerging pathogens, molecular features, biological effects, and novel investigative approaches. WATER BIOLOGY AND SECURITY 2022; 1:100062. [DOI: 10.1016/j.watbs.2022.100062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Rayamajhee B, Willcox MDP, Henriquez FL, Petsoglou C, Subedi D, Carnt N. Acanthamoeba, an environmental phagocyte enhancing survival and transmission of human pathogens. Trends Parasitol 2022; 38:975-990. [PMID: 36109313 DOI: 10.1016/j.pt.2022.08.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/13/2023]
Abstract
The opportunistic protist Acanthamoeba, which interacts with other microbes such as bacteria, fungi, and viruses, shows significant similarity in cellular and functional aspects to human macrophages. Intracellular survival of microbes in this microbivorous amoebal host may be a crucial step for initiation of infection in higher eukaryotic cells. Therefore, Acanthamoeba-microbe adaptations are considered an evolutionary model of macrophage-pathogen interactions. This paper reviews Acanthamoeba as an emerging human pathogen and different ecological interactions between Acanthamoeba and microbes that may serve as environmental training grounds and a genetic melting pot for the evolution, persistence, and transmission of potential human pathogens.
Collapse
Affiliation(s)
- Binod Rayamajhee
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, Australia.
| | - Mark D P Willcox
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, Australia.
| | - Fiona L Henriquez
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Blantyre, South Lanarkshire, G72 0LH, UK
| | - Constantinos Petsoglou
- Sydney and Sydney Eye Hospital, Southeastern Sydney Local Health District, Sydney, Australia; Save Sight Institute, University of Sydney, Sydney, Australia
| | - Dinesh Subedi
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Nicole Carnt
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, Australia
| |
Collapse
|
17
|
Rigou S, Santini S, Abergel C, Claverie JM, Legendre M. Past and present giant viruses diversity explored through permafrost metagenomics. Nat Commun 2022; 13:5853. [PMID: 36207343 PMCID: PMC9546926 DOI: 10.1038/s41467-022-33633-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Giant viruses are abundant in aquatic environments and ecologically important through the metabolic reprogramming of their hosts. Less is known about giant viruses from soil even though two of them, belonging to two different viral families, were reactivated from 30,000-y-old permafrost samples. This suggests an untapped diversity of Nucleocytoviricota in this environment. Through permafrost metagenomics we reveal a unique diversity pattern and a high heterogeneity in the abundance of giant viruses, representing up to 12% of the sum of sequence coverage in one sample. Pithoviridae and Orpheoviridae-like viruses were the most important contributors. A complete 1.6 Mb Pithoviridae-like circular genome was also assembled from a 42,000-y-old sample. The annotation of the permafrost viral sequences revealed a patchwork of predicted functions amidst a larger reservoir of genes of unknown functions. Finally, the phylogenetic reconstructions not only revealed gene transfers between cells and viruses, but also between viruses from different families.
Collapse
Affiliation(s)
- Sofia Rigou
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France
| | - Sébastien Santini
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France
| | - Chantal Abergel
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France
| | - Jean-Michel Claverie
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France
| | - Matthieu Legendre
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (Unité Mixte de Recherche 7256), Institut de Microbiologie de la Méditerranée (FR3479), 13288, Marseille Cedex 9, France.
| |
Collapse
|
18
|
Schulz F, Abergel C, Woyke T. Giant virus biology and diversity in the era of genome-resolved metagenomics. Nat Rev Microbiol 2022; 20:721-736. [PMID: 35902763 DOI: 10.1038/s41579-022-00754-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Abstract
The discovery of giant viruses, with capsids as large as some bacteria, megabase-range genomes and a variety of traits typically found only in cellular organisms, was one of the most remarkable breakthroughs in biology. Until recently, most of our knowledge of giant viruses came from ~100 species-level isolates for which genome sequences were available. However, these isolates were primarily derived from laboratory-based co-cultivation with few cultured protists and algae and, thus, did not reflect the true diversity of giant viruses. Although virus co-cultures enabled valuable insights into giant virus biology, many questions regarding their origin, evolution and ecological importance remain unanswered. With advances in sequencing technologies and bioinformatics, our understanding of giant viruses has drastically expanded. In this Review, we summarize our understanding of giant virus diversity and biology based on viral isolates as laboratory cultivation has enabled extensive insights into viral morphology and infection strategies. We then explore how cultivation-independent approaches have heightened our understanding of the coding potential and diversity of the Nucleocytoviricota. We discuss how metagenomics has revolutionized our perspective of giant viruses by revealing their distribution across our planet's biomes, where they impact the biology and ecology of a wide range of eukaryotic hosts and ultimately affect global nutrient cycles.
Collapse
Affiliation(s)
- Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Chantal Abergel
- Aix Marseille University, CNRS, IGS UMR7256, IMM FR3479, IM2B, IO, Marseille, France
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,University of California Merced, Merced, CA, USA.
| |
Collapse
|
19
|
Bellini NK, Thiemann OH, Reyes-Batlle M, Lorenzo-Morales J, Costa AO. A history of over 40 years of potentially pathogenic free-living amoeba studies in Brazil - a systematic review. Mem Inst Oswaldo Cruz 2022; 117:e210373. [PMID: 35792751 PMCID: PMC9252135 DOI: 10.1590/0074-02760210373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
Free-living amoeba (FLA) group includes the potentially pathogenic genera Acanthamoeba, Naegleria, Balamuthia, Sappinia, and Vermamoeba, causative agents of human infections (encephalitis, keratitis, and disseminated diseases). In Brazil, the first report on pathogenic FLA was published in the 70s and showed meningoencephalitis caused by Naegleria spp. FLA studies are emerging, but no literature review is available to investigate this trend in Brazil critically. Thus, the present work aims to integrate and discuss these data. Scopus, PubMed, and Web of Science were searched, retrieving studies from 1974 to 2020. The screening process resulted in 178 papers, which were clustered into core and auxiliary classes and sorted into five categories: wet-bench studies, dry-bench studies, clinical reports, environmental identifications, and literature reviews. The papers dating from the last ten years account for 75% (134/178) of the total publications, indicating the FLA topic has gained Brazilian interest. Moreover, 81% (144/178) address Acanthamoeba-related matter, revealing this genus as the most prevalent in all categories. Brazil’s Southeast, South, and Midwest geographic regions accounted for 96% (171/178) of the publications studied in the present work. To the best of our knowledge, this review is the pioneer in summarising the FLA research history in Brazil.
Collapse
Affiliation(s)
- Natália Karla Bellini
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Belo Horizonte, MG, Brasil
| | - Otavio Henrique Thiemann
- Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brasil.,Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP, Brasil
| | - María Reyes-Batlle
- Universidad de La Laguna, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Red de Investigación Cooperativa en Enfermedades Tropicales, Tenerife, Islas Canarias, Spain
| | - Jacob Lorenzo-Morales
- Universidad de La Laguna, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Red de Investigación Cooperativa en Enfermedades Tropicales, Tenerife, Islas Canarias, Spain.,Instituto de Salud Carlos III, Consorcio Centro de Investigación Biomédica en Red MP de Enfermedades Infecciosas, Madrid, Spain
| | - Adriana Oliveira Costa
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Belo Horizonte, MG, Brasil
| |
Collapse
|
20
|
Queiroz VF, Rodrigues RAL, Boratto PVDM, La Scola B, Andreani J, Abrahão JS. Amoebae: Hiding in Plain Sight: Unappreciated Hosts for the Very Large Viruses. Annu Rev Virol 2022; 9:79-98. [DOI: 10.1146/annurev-virology-100520-125832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For decades, viruses have been isolated primarily from humans and other organisms. Interestingly, one of the most complex sides of the virosphere was discovered using free-living amoebae as hosts. The discovery of giant viruses in the early twenty-first century opened a new chapter in the field of virology. Giant viruses are included in the phylum Nucleocytoviricota and harbor large and complex DNA genomes (up to 2.7 Mb) encoding genes never before seen in the virosphere and presenting gigantic particles (up to 1.5 μm). Different amoebae have been used to isolate and characterize a plethora of new viruses with exciting details about novel viral biology. Through distinct isolation techniques and metagenomics, the diversity and complexity of giant viruses have astonished the scientific community. Here, we discuss the latest findings on amoeba viruses and how using these single-celled organisms as hosts has revealed entities that have remained hidden in plain sight for ages. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Victória Fulgêncio Queiroz
- Laboratório de Vírus, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Araújo Lima Rodrigues
- Laboratório de Vírus, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Bernard La Scola
- Department of Microbes, Evolution, Phylogeny and Infection, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Julien Andreani
- Department of Microbes, Evolution, Phylogeny and Infection, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Laboratoire de Virologie, Centre Hospitalier Universitaire Grenoble-Alpes, Grenoble, France
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
21
|
Geballa-Koukoulas K, La Scola B, Blanc G, Andreani J. Diversity of Giant Viruses Infecting Vermamoeba vermiformis. Front Microbiol 2022; 13:808499. [PMID: 35602053 PMCID: PMC9116030 DOI: 10.3389/fmicb.2022.808499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
The discovery of Acanthamoeba polyphaga mimivirus in 2003 using the free-living amoeba Acanthamoeba polyphaga caused a paradigm shift in the virology field. Twelve years later, using another amoeba as a host, i.e., Vermamoeba vermiformis, novel isolates of giant viruses have been discovered. This amoeba–virus relationship led scientists to study the evolution of giant viruses and explore the origins of eukaryotes. The purpose of this article is to review all the giant viruses that have been isolated from Vermamoeba vermiformis, compare their genomic features, and report the influence of these viruses on the cell cycle of their amoebal host. To date, viruses putatively belonging to eight different viral taxa have been described: 7 are lytic and 1 is non-lytic. The comparison of giant viruses infecting Vermamoeba vermiformis has suggested three homogenous groups according to their size, the replication time inside the host cell, and the number of encoding tRNAs. This approach is an attempt at determining the evolutionary origins and trajectories of the virus; therefore, more giant viruses infecting Vermamoeba must be discovered and studied to create a comprehensive knowledge on these intriguing biological entities.
Collapse
Affiliation(s)
- Khalil Geballa-Koukoulas
- MEPHI, APHM, IRD 198, Aix Marseille University, IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
- *Correspondence: Khalil Geballa-Koukoulas,
| | - Bernard La Scola
- MEPHI, APHM, IRD 198, Aix Marseille University, IHU-Méditerranée Infection, Marseille, France
| | - Guillaume Blanc
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Julien Andreani
- MEPHI, APHM, IRD 198, Aix Marseille University, IHU-Méditerranée Infection, Marseille, France
- Julien Andreani,
| |
Collapse
|
22
|
Boratto PVM, Serafim MSM, Witt ASA, Crispim APC, de Azevedo BL, de Souza GAP, de Aquino ILM, Machado TB, Queiroz VF, Rodrigues RAL, Bergier I, Cortines JR, de Farias ST, dos Santos RN, Campos FS, Franco AC, Abrahão JS. A Brief History of Giant Viruses’ Studies in Brazilian Biomes. Viruses 2022; 14:v14020191. [PMID: 35215784 PMCID: PMC8875882 DOI: 10.3390/v14020191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023] Open
Abstract
Almost two decades after the isolation of the first amoebal giant viruses, indubitably the discovery of these entities has deeply affected the current scientific knowledge on the virosphere. Much has been uncovered since then: viruses can now acknowledge complex genomes and huge particle sizes, integrating remarkable evolutionary relationships that date as early as the emergence of life on the planet. This year, a decade has passed since the first studies on giant viruses in the Brazilian territory, and since then biomes of rare beauty and biodiversity (Amazon, Atlantic forest, Pantanal wetlands, Cerrado savannas) have been explored in the search for giant viruses. From those unique biomes, novel viral entities were found, revealing never before seen genomes and virion structures. To celebrate this, here we bring together the context, inspirations, and the major contributions of independent Brazilian research groups to summarize the accumulated knowledge about the diversity and the exceptionality of some of the giant viruses found in Brazil.
Collapse
Affiliation(s)
- Paulo Victor M. Boratto
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Mateus Sá M. Serafim
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Amanda Stéphanie A. Witt
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Ana Paula C. Crispim
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Bruna Luiza de Azevedo
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Gabriel Augusto P. de Souza
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Isabella Luiza M. de Aquino
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Talita B. Machado
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Victória F. Queiroz
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Rodrigo A. L. Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Ivan Bergier
- Embrapa Pantanal, Corumbá 79320-900, Mato Grosso do Sul, Brazil;
| | - Juliana Reis Cortines
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Rio de Janeiro, Brazil;
| | - Savio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa 58050-085, Paraíba, Brazil;
| | - Raíssa Nunes dos Santos
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.050-170, Rio Grande do Sul, Brazil; (R.N.d.S.); (F.S.C.); (A.C.F.)
| | - Fabrício Souza Campos
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.050-170, Rio Grande do Sul, Brazil; (R.N.d.S.); (F.S.C.); (A.C.F.)
| | - Ana Cláudia Franco
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.050-170, Rio Grande do Sul, Brazil; (R.N.d.S.); (F.S.C.); (A.C.F.)
| | - Jônatas S. Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
- Correspondence:
| |
Collapse
|
23
|
Abstract
Here, we propose the creation of the family "Yaraviridae", a new taxon to classify a virus infecting Acanthamoeba castellanii cells. Recently, we described the discovery of a new virus infecting free-living amoebae, yaravirus, which has features that strongly differ from those of all other viruses of amoebae described to date. Yaravirus particles are about 80 nm in diameter and have a dsDNA genome of ~45 kbp containing 74 ORFs, most of which (>90%) have no homologs in current databases. Together, these data support the creation of a new species ("Yaravirus brasiliense"), a new viral genus (here proposed as "Yaravirus"), and a new viral family (here proposed as "Yaraviridae") to classify yaravirus and other related viruses that may be described in the future. All of them are to be included into the existing realm Varidnaviria and the kingdom Bamfordvirae, due to the presence of a major capsid protein containing a double jelly-roll fold.
Collapse
|
24
|
Claverie JM, Santini S. Validation of predicted anonymous proteins simply using Fisher's exact test. BIOINFORMATICS ADVANCES 2021; 1:vbab034. [PMID: 36700095 PMCID: PMC9710694 DOI: 10.1093/bioadv/vbab034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 01/28/2023]
Abstract
Motivation Genomes sequencing has become the primary (and often the sole) experimental method to characterize newly discovered organisms, in particular from the microbial world (bacteria, archaea, viruses). This generates an ever increasing number of predicted proteins the existence of which is unwarranted, in particular among those without homolog in model organisms. As a last resort, the computation of the selection pressure from pairwise alignments of the corresponding 'Open Reading Frames' (ORFs) can be used to validate their existences. However, this approach is error-prone, as not usually associated with a significance test. Results We introduce the use of the straightforward Fisher's exact test as a postprocessing of the results provided by the popular CODEML sequence comparison software. The respective rates of nucleotide changes at the nonsynonymous versus synonymous position (as determined by CODEML) are turned into entries into a 2 × 2 contingency table, the probability of which is computed under the Null hypothesis that they should not behave differently if the ORFs do not encode actual proteins. Using the genome sequences of two recently isolated giant viruses, we show that strong negative selection pressures do not always provide a solid argument in favor of the existence of proteins.
Collapse
Affiliation(s)
- Jean-Michel Claverie
- Aix-Marseille University, CNRS, IGS (UMR7256), IMM (FR3479), Luminy, Marseille F-13288, France,To whom correspondence should be addressed.
| | - Sébastien Santini
- Aix-Marseille University, CNRS, IGS (UMR7256), IMM (FR3479), Luminy, Marseille F-13288, France
| |
Collapse
|
25
|
Andreani J, Schulz F, Di Pinto F, Levasseur A, Woyke T, La Scola B. Morphological and Genomic Features of the New Klosneuvirinae Isolate Fadolivirus IHUMI-VV54. Front Microbiol 2021; 12:719703. [PMID: 34621250 PMCID: PMC8490762 DOI: 10.3389/fmicb.2021.719703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/18/2021] [Indexed: 12/03/2022] Open
Abstract
Since the discovery of Mimivirus, viruses with large genomes encoding components of the translation machinery and other cellular processes have been described as belonging to the nucleocytoplasmic large DNA viruses. Recently, genome-resolved metagenomics led to the discovery of more than 40 viruses that have been grouped together in a proposed viral subfamily named Klosneuvirinae. Members of this group had genomes of up to 2.4Mb in size and featured an expanded array of translation system genes. Yet, despite the large diversity of the Klosneuvirinae in metagenomic data, there are currently only two isolates available. Here, we report the isolation of a novel giant virus known as Fadolivirus from an Algerian sewage site and provide morphological data throughout its replication cycle in amoeba and a detailed genomic characterization. The Fadolivirus genome, which is more than 1.5Mb in size, encodes 1,452 predicted proteins and phylogenetic analyses place this viral isolate as a near relative of the metagenome assembled Klosneuvirus and Indivirus. The genome encodes for 66 tRNAs, 23 aminoacyl-tRNA synthetases and a wide range of transcription factors, surpassing Klosneuvirus and other giant viruses. The Fadolivirus genome also encodes putative vacuolar-type proton pumps with the domains D and A, potentially constituting a virus-derived system for energy generation. The successful isolation of Fadolivirus will enable future hypothesis-driven experimental studies providing deeper insights into the biology of the Klosneuvirinae.
Collapse
Affiliation(s)
- Julien Andreani
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Fabrizio Di Pinto
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Anthony Levasseur
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Bernard La Scola
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
26
|
Mönttinen HAM, Bicep C, Williams TA, Hirt RP. The genomes of nucleocytoplasmic large DNA viruses: viral evolution writ large. Microb Genom 2021; 7. [PMID: 34542398 PMCID: PMC8715426 DOI: 10.1099/mgen.0.000649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleocytoplasmic large DNA viruses (NCLDVs) are a diverse group that currently contain the largest known virions and genomes, also called giant viruses. The first giant virus was isolated and described nearly 20 years ago. Their genome sizes were larger than for any other known virus at the time and it contained a number of genes that had not been previously described in any virus. The origin and evolution of these unusually complex viruses has been puzzling, and various mechanisms have been put forward to explain how some NCLDVs could have reached genome sizes and coding capacity overlapping with those of cellular microbes. Here we critically discuss the evidence and arguments on this topic. We have also updated and systematically reanalysed protein families of the NCLDVs to further study their origin and evolution. Our analyses further highlight the small number of widely shared genes and extreme genomic plasticity among NCLDVs that are shaped via combinations of gene duplications, deletions, lateral gene transfers and de novo creation of protein-coding genes. The dramatic expansions of the genome size and protein-coding gene capacity characteristic of some NCLDVs is now increasingly understood to be driven by environmental factors rather than reflecting relationships to an ancient common ancestor among a hypothetical cellular lineage. Thus, the evolution of NCLDVs is writ large viral, and their origin, like all other viral lineages, remains unknown.
Collapse
Affiliation(s)
- Heli A M Mönttinen
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Present address: Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Viikki Biocenter 2, Helsinki 00014, Finland
| | - Cedric Bicep
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Present address: Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont Ferrand, France
| | - Tom A Williams
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,School of Biological Sciences, University of Bristol, 24 Tyndall Ave., Bristol, BS8 1TH, UK
| | - Robert P Hirt
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
27
|
Dos Santos Oliveira J, Lavell AA, Essus VA, Souza G, Nunes GHP, Benício E, Guimarães AJ, Parent KN, Cortines JR. Structure and physiology of giant DNA viruses. Curr Opin Virol 2021; 49:58-67. [PMID: 34051592 DOI: 10.1016/j.coviro.2021.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/02/2023]
Abstract
Although giant viruses have existed for millennia and possibly exerted great evolutionary influence in their environment. Their presence has only been noticed by virologists recently with the discovery of Acanthamoeba polyphaga mimivirus in 2003. Its virion with a diameter of 500 nm and its genome larger than 1 Mpb shattered preconceived standards of what a virus is and triggered world-wide prospection studies. Thanks to these investigations many giant virus families were discovered, each with its own morphological peculiarities and genomes ranging from 0.4 to 2.5 Mpb that possibly encode more than 400 viral proteins. This review aims to present the morphological diversity, the different aspects observed in host-virus interactions during replication, as well as the techniques utilized during their investigation.
Collapse
Affiliation(s)
- Juliana Dos Santos Oliveira
- Departamento de Virologia, Instituto de Mcirobiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21590-902, Rio de Janeiro, Brazil
| | - Anastasiya A Lavell
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Victor Alejandro Essus
- Departamento de Virologia, Instituto de Mcirobiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21590-902, Rio de Janeiro, Brazil
| | - Getúlio Souza
- Departamento de Virologia, Instituto de Mcirobiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21590-902, Rio de Janeiro, Brazil
| | - Gabriel Henrique Pereira Nunes
- Departamento de Virologia, Instituto de Mcirobiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21590-902, Rio de Janeiro, Brazil
| | - Eduarda Benício
- Departamento de Virologia, Instituto de Mcirobiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21590-902, Rio de Janeiro, Brazil
| | - Allan Jefferson Guimarães
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | - Juliana R Cortines
- Departamento de Virologia, Instituto de Mcirobiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21590-902, Rio de Janeiro, Brazil.
| |
Collapse
|
28
|
War of the microbial world: Acanthamoeba spp. interactions with microorganisms. Folia Microbiol (Praha) 2021; 66:689-699. [PMID: 34145552 PMCID: PMC8212903 DOI: 10.1007/s12223-021-00889-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Acanthamoeba is known to interact with a plethora of microorganisms such as bacteria, fungi and viruses. In these interactions, the amoebae can be predatory in nature, transmission vehicle or an incubator. Amoebae consume microorganisms, especially bacteria, as food source to fulfil their nutritional needs by taking up bacteria through phagocytosis and lysing them in phagolysosomes and hence play an eminent role in the regulation of bacterial density in the nature and accountable for eradication of around 60% of the bacterial population in the environment. Acanthamoeba can also act as a “Trojan horse” for microbial transmission in the environment. Additionally, Acanthamoeba may serve as an incubator-like reservoir for microorganisms, including those that are pathogenic to humans, where the microorganisms use amoebae’s defences to resist harsh environment and evade host defences and drugs, whilst growing in numbers inside the amoebae. Furthermore, amoebae can also be used as a “genetic melting pot” where exchange of genes as well as adaptation of microorganisms, leading to higher pathogenicity, may arise. Here, we describe bacteria, fungi and viruses that are known to interact with Acanthamoeba spp.
Collapse
|
29
|
Rodrigues RA, de Souza FG, de Azevedo BL, da Silva LC, Abrahão JS. The morphogenesis of different giant viruses as additional evidence for a common origin of Nucleocytoviricota. Curr Opin Virol 2021; 49:102-110. [PMID: 34116391 DOI: 10.1016/j.coviro.2021.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Large and giant DNA viruses are a monophyletic group constituting the recently established phylum Nucleocytoviricota. The virus particle morphogenesis of these viruses exhibit striking similarities. Viral factories are established in the host cells where new virions are assembled by recruiting host membranes, forming an inner lipid layer. An outer protein layer starts as a lamellar structure, commonly referred to as viral crescents, coded by the major capsid protein gene. Also, these viruses have a conserved ATPase-coding gene related to genome encapsidation. Similar properties are described for tectiviruses, putative small ancestors of giant viruses. Here we review the morphogenesis of giant viruses and discuss how the process similarities constitute additional evidence to the common origin of Nucleocytoviricota.
Collapse
Affiliation(s)
- Rodrigo Al Rodrigues
- Departament of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Fernanda G de Souza
- Departament of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bruna L de Azevedo
- Departament of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lorena Cf da Silva
- Departament of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jônatas S Abrahão
- Departament of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
30
|
Quantitative Assessment of Nucleocytoplasmic Large DNA Virus and Host Interactions Predicted by Co-occurrence Analyses. mSphere 2021; 6:6/2/e01298-20. [PMID: 33883262 PMCID: PMC8546719 DOI: 10.1128/msphere.01298-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nucleocytoplasmic large DNA viruses (NCLDVs) are highly diverse and abundant in marine environments. However, the knowledge of their hosts is limited because only a few NCLDVs have been isolated so far. Taking advantage of the recent large-scale marine metagenomics census, in silico host prediction approaches are expected to fill the gap and further expand our knowledge of virus-host relationships for unknown NCLDVs. In this study, we built co-occurrence networks of NCLDVs and eukaryotic taxa to predict virus-host interactions using Tara Oceans sequencing data. Using the positive likelihood ratio to assess the performance of host prediction for NCLDVs, we benchmarked several co-occurrence approaches and demonstrated an increase in the odds ratio of predicting true positive relationships 4-fold compared to random host predictions. To further refine host predictions from high-dimensional co-occurrence networks, we developed a phylogeny-informed filtering method, Taxon Interaction Mapper, and showed it further improved the prediction performance by 12-fold. Finally, we inferred virophage-NCLDV networks to corroborate that co-occurrence approaches are effective for predicting interacting partners of NCLDVs in marine environments.IMPORTANCE NCLDVs can infect a wide range of eukaryotes, although their life cycle is less dependent on hosts compared to other viruses. However, our understanding of NCLDV-host systems is highly limited because few of these viruses have been isolated so far. Co-occurrence information has been assumed to be useful to predict virus-host interactions. In this study, we quantitatively show the effectiveness of co-occurrence inference for NCLDV host prediction. We also improve the prediction performance with a phylogeny-guided method, which leads to a concise list of candidate host lineages for three NCLDV families. Our results underpin the usage of co-occurrence approaches for the metagenomic exploration of the ecology of this diverse group of viruses.
Collapse
|
31
|
de Arruda LB, Campos FS, Abrahão JS, da Fonseca FG, Araújo Junior JP, Rosado Spilki F. 31st Brazilian Online Society for Virology (SBV) 2020 Annual Meeting. Viruses 2021; 13:414. [PMID: 33807596 PMCID: PMC8000644 DOI: 10.3390/v13030414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/02/2022] Open
Abstract
The year 2020 was profoundly marked by the emergence and spread of SARS-CoV-2, causing COVID-19, which represents the greatest pandemic of the 21st century until now, and a major challenge for virologists in the scientific and medical communities. Increased numbers of SARS-CoV-2 infection all over the world imposed social and travel restrictions, including avoidance of face-to-face scientific meetings. Therefore, for the first time in history, the 2020 edition of the Brazilian Society of Virology (SBV) congress was totally online. Despite the challenge of the new format, the Brazilian society board and collaborators were successful in virtually congregating more than 921 attendees, which was the greatest SBV participant number ever reached. Seminal talks from prominent national and international researchers were presented every night, during a week, and included discussions about environmental, basic, animal, human, plant and invertebrate virology. A special roundtable debated exclusively new data and perspectives regarding COVID-19 by some of the greatest Brazilian virologists. Women scientists were very well represented in another special roundtable called "Young Women Inspiring Research", which was one of the most viewed and commented section during the meeting, given the extraordinary quality of the presented work. Finally, SBV offered the Helio Gelli Pereira award for one graduate and one undergraduate student, which has also been a fruitful collaboration between the society and Viruses journal. The annual SBV meeting has, therefore, reached its goals to inspire young scientists, stimulate high-quality scientific discussion and to encourage global collaboration between virologists.
Collapse
Affiliation(s)
- Luciana Barros de Arruda
- Laboratório de Genética e Imunologia das Infecções Virais, Depto de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Fabrício Souza Campos
- Bioinformatics and Biotechnology Laboratory, Campus de Gurupi, Universidade Federal do Tocantins (UFT), Gurupi, TO 77410-570, Brazil;
| | - Jônatas Santos Abrahão
- Department of Microbiology, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MT 31270-901, Brazil; (J.S.A.); (F.G.d.F.)
| | - Flávio Guimarães da Fonseca
- Department of Microbiology, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MT 31270-901, Brazil; (J.S.A.); (F.G.d.F.)
| | | | - Fernando Rosado Spilki
- One Health Laboratory, Federação de Estabelecimentos de Ensino Superior em Novo Hamburgo (FEEVALE), Novo Hamburgo, RS 93525-075, Brazil
| |
Collapse
|
32
|
de Souza GAP, Queiroz VF, Coelho LFL, Abrahão JS. Alohomora! What the entry mechanisms tell us about the evolution and diversification of giant viruses and their hosts. Curr Opin Virol 2021; 47:79-85. [PMID: 33647556 DOI: 10.1016/j.coviro.2021.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022]
Abstract
The virosphere is fascinatingly vast and diverse, but as mandatory intracellular parasites, viral particles must reach the intracellular space to guarantee their species' permanence on the planet. While most known viruses that infect animals explore the endocytic pathway to enter the host cell, a diverse group of ancient viruses that make up the phylum Nucleocytoviricota appear to have evolved to explore new access' routes to the cell's cytoplasm. Giant viruses of amoeba take advantage of the phagocytosis process that these organisms exploit a lot, while phycodnavirus must actively break through a algal cellulose cell wall. The mechanisms of entry into the cell and the viruses themselves are diverse, varying in the steps of adhesion, entry, and uncoating. These are clues left by evolution about how these organisms shaped and were shaped by convoluting with eukaryotes.
Collapse
Affiliation(s)
- Gabriel Augusto Pires de Souza
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brasil
| | - Victória Fulgêncio Queiroz
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brasil
| | - Luiz Felipe Leomil Coelho
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, 37130-001, Brasil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brasil.
| |
Collapse
|
33
|
Aylward FO, Moniruzzaman M. ViralRecall-A Flexible Command-Line Tool for the Detection of Giant Virus Signatures in 'Omic Data. Viruses 2021; 13:v13020150. [PMID: 33498458 PMCID: PMC7909515 DOI: 10.3390/v13020150] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 01/06/2023] Open
Abstract
Giant viruses are widespread in the biosphere and play important roles in biogeochemical cycling and host genome evolution. Also known as nucleo-cytoplasmic large DNA viruses (NCLDVs), these eukaryotic viruses harbor the largest and most complex viral genomes known. Studies have shown that NCLDVs are frequently abundant in metagenomic datasets, and that sequences derived from these viruses can also be found endogenized in diverse eukaryotic genomes. The accurate detection of sequences derived from NCLDVs is therefore of great importance, but this task is challenging owing to both the high level of sequence divergence between NCLDV families and the extraordinarily high diversity of genes encoded in their genomes, including some encoding for metabolic or translation-related functions that are typically found only in cellular lineages. Here, we present ViralRecall, a bioinformatic tool for the identification of NCLDV signatures in ‘omic data. This tool leverages a library of giant virus orthologous groups (GVOGs) to identify sequences that bear signatures of NCLDVs. We demonstrate that this tool can effectively identify NCLDV sequences with high sensitivity and specificity. Moreover, we show that it can be useful both for removing contaminating sequences in metagenome-assembled viral genomes as well as the identification of eukaryotic genomic loci that derived from NCLDV. ViralRecall is written in Python 3.5 and is freely available on GitHub: https://github.com/faylward/viralrecall.
Collapse
|
34
|
Tisza MJ, Belford AK, Domínguez-Huerta G, Bolduc B, Buck CB. Cenote-Taker 2 democratizes virus discovery and sequence annotation. Virus Evol 2021; 7:veaa100. [PMID: 33505708 PMCID: PMC7816666 DOI: 10.1093/ve/veaa100] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viruses, despite their great abundance and significance in biological systems, remain largely mysterious. Indeed, the vast majority of the perhaps hundreds of millions of viral species on the planet remain undiscovered. Additionally, many viruses deposited in central databases like GenBank and RefSeq are littered with genes annotated as 'hypothetical protein' or the equivalent. Cenote-Taker 2, a virus discovery and annotation tool available on command line and with a graphical user interface with free high-performance computation access, utilizes highly sensitive models of hallmark virus genes to discover familiar or divergent viral sequences from user-input contigs. Additionally, Cenote-Taker 2 uses a flexible set of modules to automatically annotate the sequence features of contigs, providing more gene information than comparable tools. The outputs include readable and interactive genome maps, virome summary tables, and files that can be directly submitted to GenBank. We expect Cenote-Taker 2 to facilitate virus discovery, annotation, and expansion of the known virome.
Collapse
Affiliation(s)
- Michael J Tisza
- Lab of Cellular Oncology, NCI, NIH, Bethesda, MD 20892-4263, USA
| | - Anna K Belford
- Lab of Cellular Oncology, NCI, NIH, Bethesda, MD 20892-4263, USA
| | | | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
35
|
Nasir A, Romero-Severson E, Claverie JM. Investigating the Concept and Origin of Viruses. Trends Microbiol 2020; 28:959-967. [PMID: 33158732 PMCID: PMC7609044 DOI: 10.1016/j.tim.2020.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022]
Abstract
The ongoing COVID-19 pandemic has piqued public interest in the properties, evolution, and emergence of viruses. Here, we discuss how these basic questions have surprisingly remained disputed despite being increasingly within the reach of scientific analysis. We review recent data-driven efforts that shed light into the origin and evolution of viruses and explain factors that resist the widespread acceptance of new views and insights. We propose a new definition of viruses that is not restricted to the presence or absence of any genetic or physical feature, detail a scenario for how viruses likely originated from ancient cells, and explain technical and conceptual biases that limit our understanding of virus evolution. We note that the philosophical aspects of virus evolution also impact the way we might prepare for future outbreaks.
Collapse
Affiliation(s)
- Arshan Nasir
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Ethan Romero-Severson
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Jean-Michel Claverie
- Aix Marseille University, CNRS, IGS, Structural and Genomic Information Laboratory (UMR7256), Mediterranean Institute of Microbiology (FR3479), Marseille, France
| |
Collapse
|
36
|
Baig AM. Can Neurotropic Free-Living Amoeba Serve as a Model to Study SARS-CoV-2 Pathogenesis? ACS Chem Neurosci 2020; 11:3697-3700. [PMID: 33119251 DOI: 10.1021/acschemneuro.0c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Of the single-celled eukaryotic microbes, Naegleria fowleri, Balamuthia mandrillaris, and Acanthamoeba spp. are known to cause fatal encephalitis in humans. Being eukaryotes, these cells have been used as a model for studying and understanding complex cellular processes in humans like cell motility, phagocytosis, and metabolism. The ongoing pandemic caused by SARS-CoV-2 that infects multiple organs has emerged as a challenge to unravel its mode of infection and the pathogenicity resulting in eukaryotic cell death. Working with these single-celled eukaryotic microbes provided us the opportunity to plan bioinformatic approaches to look into the likelihood of studying the known and alternative mode of infection of the SARS-CoV-2 in eukaryotic cells. Genome databases of N. fowleri, B. mandrillaris, and Acanthamoeba spp. were used to explore the expression of angiotensin-converting enzyme 2 (ACE2), androgen-regulated serine protease precursor (TMPRSS2), CD4, CD147, and furin that are known to be cardinal for SARS-CoV-2 in recognition and binding to human cells. It was hypothesized that if a receptor-dependent or phagocytosis-assisted SARS-CoV-2 uptake does occur in free-living amoebae (FLA), this model can provide an alternative to human cells to study cellular recognition and binding of SARS-CoV-2 that can help design drugs and treatment modalities in COVID-19. We show that, of the FLA, ACE2 and TMPRSS2 are not expressed in Acanthamoeba spp. and B. mandrillaris, but primitive forms of these cell recognition proteins were seen to be encoded in N. fowleri. Acanthamoeba spp. and N. fowleri encode for human-like furin which is a known SARS-CoV-2 spike protein involved in host cell recognition and binding.
Collapse
Affiliation(s)
- Abdul Mannan Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| |
Collapse
|
37
|
Mughal F, Nasir A, Caetano-Anollés G. The origin and evolution of viruses inferred from fold family structure. Arch Virol 2020; 165:2177-2191. [PMID: 32748179 PMCID: PMC7398281 DOI: 10.1007/s00705-020-04724-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/30/2020] [Indexed: 12/16/2022]
Abstract
The canonical frameworks of viral evolution describe viruses as cellular predecessors, reduced forms of cells, or entities that escaped cellular control. The discovery of giant viruses has changed these standard paradigms. Their genetic, proteomic and structural complexities resemble those of cells, prompting a redefinition and reclassification of viruses. In a previous genome-wide analysis of the evolution of structural domains in proteomes, with domains defined at the fold superfamily level, we found the origins of viruses intertwined with those of ancient cells. Here, we extend these data-driven analyses to the study of fold families confirming the co-evolution of viruses and ancient cells and the genetic ability of viruses to foster molecular innovation. The results support our suggestion that viruses arose by genomic reduction from ancient cells and validate a co-evolutionary ‘symbiogenic’ model of viral origins.
Collapse
Affiliation(s)
- Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Arshan Nasir
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|