1
|
Li H, Li K, Hu W, Zhao J, Su T, Yang J, Chen Y, Yang K, Du M, Li Z, Zhao W. Weak Antilocalization and Negative Magnetoresistance of the Gate-Tunable PbTe Thin Films. J Phys Chem Lett 2025; 16:1267-1275. [PMID: 39866013 DOI: 10.1021/acs.jpclett.4c03425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
We have systematically studied the electromagnetic transport properties of PbTe thin films under gate voltage modulation. The system demonstrates pronounced electron-electron interactions exclusively within the gate voltage range where only hole carriers are present. Furthermore, the Berry phase is utilized to qualitatively elucidate the transition between weak antilocalization (WAL) and weak localization (WL) through the regulation of gate voltage and temperature. Using the three-resistor model, we have effectively explained the correlation between the characteristic temperature of the R-T curve, the coexistence of electron-hole carriers, and the nonmonotonic temperature dependence of negative magnetoresistance (NMR), consistently indicating that complex magnetotransport phenomena are caused by microscopic disorder. Our research findings open up new avenues for exploring and manipulating the magnetotransport properties of PbTe thin films.
Collapse
Affiliation(s)
- Huizhen Li
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Kang Li
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Wenyu Hu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Jianyuan Zhao
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Tong Su
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Jielin Yang
- School of Physics, Hubei University, Wuhan 430062, People's Republic of China
| | - Yiming Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Kuo Yang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Mei Du
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Zhe Li
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Weiwei Zhao
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
2
|
Moulick S, Maity D, Samanta G, Mandal K, Pal AN. Charge noise in low Schottky barrier multilayer tellurium field-effect transistors. NANOSCALE 2025; 17:2259-2268. [PMID: 39663927 DOI: 10.1039/d4nr04176c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Creating van der Waals (vdW) homojunction devices requires materials with narrow bandgaps and high carrier mobilities for bipolar transport, which are crucial for constructing fundamental building blocks like diodes and transistors in a 2D architecture. Following the recent discovery of elemental 2D tellurium, here, we systematically investigate the electrical transport and flicker noise of hydrothermally grown multilayer tellurium field effect transistors. While the devices exhibit a dominant p-type behavior with high hole mobilities up to ∼242 cm2 V-1 s-1 at room temperature and almost linear current-voltage characteristics down to 77 K, ambipolar behavior was observed in some cases. Through a detailed temperature dependent transport characterization, we estimated the Schottky barrier height as low as ∼20 meV. The good electrical contacts further facilitate the observation of metal-to-insulator transition at low temperature, being an intrinsic property of the tellurium channel rather than the contacts. Finally, detailed low frequency noise spectroscopy shows dominant 1/f type behavior across the entire gate-voltage range. The origin of the observed noise can be described by Hooge's mobility fluctuation model, rather than the carrier number fluctuations due to interfacial traps. We anticipate that such analysis will contribute to the development of futuristic low-noise devices using tellurium.
Collapse
Affiliation(s)
- Shubhadip Moulick
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
| | - Dipanjan Maity
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Rachenahalli Lake Rd, Jakkur, Bengaluru, Karnataka 560064, India
| | - Gaurab Samanta
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
| | - Kalyan Mandal
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
| | - Atindra Nath Pal
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
| |
Collapse
|
3
|
Miao G, Su N, Yu Z, Li B, Huang X, Zhong W, Guo Q, Liu M, Wang W, Guo J. Doping Elemental 2D Semiconductor Te through Surface Se Substitutions. PHYSICAL REVIEW LETTERS 2024; 133:236201. [PMID: 39714688 DOI: 10.1103/physrevlett.133.236201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 10/24/2024] [Indexed: 12/24/2024]
Abstract
The development of two-dimensional (2D) semiconductors is limited by the lack of doping methods. We propose surface isovalent substitution as an efficient doping mechanism for 2D semiconductors by revealing the evolution of the structure and electronic properties of 2D Se/Te. Because of the different electronegativity of Se and Te, Se substitution for Te at the specific lattice sites introduces electric dipoles and leads to charge redistribution, which lowers the work function and tunes the Te films from p-type to n-type semiconductors. This differs from the gap enlargement of alloy films with random Se-Te substitutions. This doping method minimizes the change of lattice structure and surface roughness, which benefits structure stacking. Further increasing the Se content leads to the formation of two types of 2D semiconducting Se polymorphs.
Collapse
|
4
|
Kim G, Bahng J, Jeong J, Sakong W, Lee T, Lee D, Kim Y, Rho H, Lim SC. Gate Modulation of Dissipationless Nonlinear Quantum Geometric Current in 2D Te. NANO LETTERS 2024; 24:10820-10826. [PMID: 39193777 PMCID: PMC11378762 DOI: 10.1021/acs.nanolett.4c02224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Two-dimensional trigonal tellurium (2D Te), a narrow-bandgap semiconductor with a bandgap of approximately 0.3 eV, hosts Weyl points near the band edge and exhibits a narrow, strong Berry curvature dipole (BCD). By applying a back-gate bias to align the Fermi level with the BCD, a sharp increase in the dissipationless transverse nonlinear Hall response is observed in 2D Te. Gate modulation of the BCD demonstrates an on/off ratio of 104 and a responsivity of nearly 106 V/W, while the longitudinal current induced by band modulation reaches an on/off ratio of about 10. This current is sustained up to 200 K, exhibiting a change of 3 orders of magnitude. The inclusion of both transistor action and rectification enhances the temperature sensitivity of the dissipationless Hall current, offering potential applications in electrothermal detectors and sensors and highlighting the significance of topological properties in advancing electronic applications.
Collapse
Affiliation(s)
- Giheon Kim
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaeuk Bahng
- Department of Smart Fabrication Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaemo Jeong
- Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wonkil Sakong
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taegeon Lee
- Department of Physics, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Daekwon Lee
- Department of Physics, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Youngkuk Kim
- Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Heesuk Rho
- Department of Physics, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Seong Chu Lim
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Smart Fabrication Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Zhang J, Zhang J, Qi Y, Gong S, Xu H, Liu Z, Zhang R, Sadi MA, Sychev D, Zhao R, Yang H, Wu Z, Cui D, Wang L, Ma C, Wu X, Gao J, Chen YP, Wang X, Jiang Y. Room-temperature ferroelectric, piezoelectric and resistive switching behaviors of single-element Te nanowires. Nat Commun 2024; 15:7648. [PMID: 39223121 PMCID: PMC11368953 DOI: 10.1038/s41467-024-52062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Ferroelectrics are essential in memory devices for multi-bit storage and high-density integration. Ferroelectricity mainly exists in compounds but rare in single-element materials due to their lack of spontaneous polarization in the latter. However, we report a room-temperature ferroelectricity in quasi-one-dimensional Te nanowires. Piezoelectric characteristics, ferroelectric loops and domain reversals are clearly observed. We attribute the ferroelectricity to the ion displacement created by the interlayer interaction between lone-pair electrons. Ferroelectric polarization can induce a strong field effect on the transport along the Te chain, giving rise to a self-gated ferroelectric field-effect transistor. By utilizing ferroelectric Te nanowire as channel, the device exhibits high mobility (~220 cm2·V-1·s-1), continuous-variable resistive states can be observed with long-term retention (>105 s), fast speed (<20 ns) and high-density storage (>1.92 TB/cm2). Our work provides opportunities for single-element ferroelectrics and advances practical applications such as ultrahigh-density data storage and computing-in-memory devices.
Collapse
Affiliation(s)
- Jinlei Zhang
- Key Laboratory of Inteligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China
- Advanced Technology Research Institute of Taihu Photon Center, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing, China
| | - Jiayong Zhang
- Key Laboratory of Inteligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China
| | - Yaping Qi
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau SAR, China
- Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Shuainan Gong
- Key Laboratory of Inteligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China
| | - Hang Xu
- Key Laboratory of Inteligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China
| | - Zhenqi Liu
- Key Laboratory of Inteligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China
| | - Ran Zhang
- Key Laboratory of Inteligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China
| | - Mohammad A Sadi
- Department of Physics and Astronomy and Elmore Family School of Electrical and Computer Engineering and Birck Nanotechnology Center and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, USA
| | - Demid Sychev
- Department of Physics and Astronomy and Elmore Family School of Electrical and Computer Engineering and Birck Nanotechnology Center and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, USA
| | - Run Zhao
- Key Laboratory of Inteligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China
| | - Hongbin Yang
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou, China
| | - Zhenping Wu
- State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing, China
| | - Dapeng Cui
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA
| | - Lin Wang
- School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Chunlan Ma
- Key Laboratory of Inteligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China
| | - Xiaoshan Wu
- Advanced Technology Research Institute of Taihu Photon Center, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China
| | - Ju Gao
- Key Laboratory of Inteligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China
- School for Optoelectronic Engineering, Zaozhuang University, ZaoZhuang, Shandong, China
| | - Yong P Chen
- Advanced Institute for Materials Research, Tohoku University, Sendai, Japan.
- Department of Physics and Astronomy and Elmore Family School of Electrical and Computer Engineering and Birck Nanotechnology Center and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, USA.
- Institute of Physics and Astronomy and Villum Center for Hybrid Quantum Materials and Devices, Aarhus University, Aarhus, Denmark.
| | - Xinran Wang
- School of Integrated Circuits, Nanjing University, Suzhou, China.
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
- Interdisciplinary Research Center for Future Intelligent Chips (Chip-X), Nanjing University, Suzhou, China.
- Suzhou Laboratory, Suzhou, China.
| | - Yucheng Jiang
- Key Laboratory of Inteligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China.
- Advanced Technology Research Institute of Taihu Photon Center, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, China.
| |
Collapse
|
6
|
He Z, Su J, Wang YT, Wang K, Wang JL, Li Y, Wang R, Chen QX, Jiang HJ, Hou ZH, Liu JW, Yu SH. Interfacial-Assembly-Induced In Situ Transformation from Aligned 1D Nanowires to Quasi-2D Nanofilms. J Am Chem Soc 2024; 146:19998-20008. [PMID: 38865282 DOI: 10.1021/jacs.4c03730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
As the dimensionality of materials generally affects their characteristics, thin films composed of low-dimensional nanomaterials, such as nanowires (NWs) or nanoplates, are of great importance in modern engineering. Among various bottom-up film fabrication strategies, interfacial assembly of nanoscale building blocks holds great promise in constructing large-scale aligned thin films, leading to emergent or enhanced collective properties compared to individual building blocks. As for 1D nanostructures, the interfacial self-assembly causes the morphology orientation, effectively achieving anisotropic electrical, thermal, and optical conduction. However, issues such as defects between each nanoscale building block, crystal orientation, and homogeneity constrain the application of ordered films. The precise control of transdimensional synthesis and the formation mechanism from 1D to 2D are rarely reported. To meet this gap, we introduce an interfacial-assembly-induced interfacial synthesis strategy and successfully synthesize quasi-2D nanofilms via the oriented attachment of 1D NWs on the liquid interface. Theoretical sampling and simulation show that NWs on the liquid interface maintain their lowest interaction energy for the ordered crystal plane (110) orientation and then rearrange and attach to the quasi-2D nanofilm. This quasi-2D nanofilm shows enhanced electric conductivity and unique optical properties compared with its corresponding 1D geometry materials. Uncovering these growth pathways of the 1D-to-2D transition provides opportunities for future material design and synthesis at the interface.
Collapse
Affiliation(s)
- Zhen He
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Department of Materials Science and Engineering, Institute of Innovative Materials, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Jie Su
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Tao Wang
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Department of Materials Science and Engineering, Institute of Innovative Materials, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kang Wang
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Jin-Long Wang
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Department of Materials Science and Engineering, Institute of Innovative Materials, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Li
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Rui Wang
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Qing-Xia Chen
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Hui-Jun Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Huai Hou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Jian-Wei Liu
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Department of Materials Science and Engineering, Institute of Innovative Materials, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- New Cornerstone Science Laboratory, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Nakayama K, Tokuyama A, Yamauchi K, Moriya A, Kato T, Sugawara K, Souma S, Kitamura M, Horiba K, Kumigashira H, Oguchi T, Takahashi T, Segawa K, Sato T. Observation of edge states derived from topological helix chains. Nature 2024; 631:54-59. [PMID: 38839966 DOI: 10.1038/s41586-024-07484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/29/2024] [Indexed: 06/07/2024]
Abstract
Introducing the concept of topology has revolutionized materials classification, leading to the discovery of topological insulators and Dirac-Weyl semimetals1-3. One of the most fundamental theories underpinning topological materials is the Su-Schrieffer-Heeger (SSH) model4,5, which was developed in 1979-decades before the recognition of topological insulators-to describe conducting polymers. Distinct from the vast majority of known topological insulators with two and three dimensions1-3, the SSH model predicts a one-dimensional analogue of topological insulators, which hosts topological bound states at the endpoints of a chain4-8. To establish this unique and pivotal state, it is crucial to identify the low-energy excitations stemming from bound states, but this has remained unknown in solids because of the absence of suitable platforms. Here we report unusual electronic states that support the emergent bound states in elemental tellurium, the single helix of which was recently proposed to realize an extended version of the SSH chain9,10. Using spin- and angle-resolved photoemission spectroscopy with a micro-focused beam, we have shown spin-polarized in-gap states confined to the edges of the (0001) surface. Our density functional theory calculations indicate that these states are attributed to the interacting bound states originating from the one-dimensional array of SSH tellurium chains. Helices in solids offer a promising experimental platform for investigating exotic properties associated with the SSH chain and exploring topological phases through dimensionality control.
Collapse
Affiliation(s)
- K Nakayama
- Department of Physics, Tohoku University, Sendai, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Tokyo, Japan.
| | - A Tokuyama
- Department of Physics, Tohoku University, Sendai, Japan
| | - K Yamauchi
- Center for Spintronics Research Network (CSRN), Osaka University, Toyonaka, Osaka, Japan
| | - A Moriya
- Department of Physics, Tohoku University, Sendai, Japan
| | - T Kato
- Department of Physics, Tohoku University, Sendai, Japan
| | - K Sugawara
- Department of Physics, Tohoku University, Sendai, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Tokyo, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
| | - S Souma
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
- Center for Science and Innovation in Spintronics (CSIS), Tohoku University, Sendai, Japan
| | - M Kitamura
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
- National Institutes for Quantum Science and Technology (QST), Sendai, Japan
| | - K Horiba
- National Institutes for Quantum Science and Technology (QST), Sendai, Japan
| | - H Kumigashira
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Japan
| | - T Oguchi
- Center for Spintronics Research Network (CSRN), Osaka University, Toyonaka, Osaka, Japan
| | - T Takahashi
- Department of Physics, Tohoku University, Sendai, Japan
| | - K Segawa
- Department of Physics, Kyoto Sangyo University, Kyoto, Japan
| | - T Sato
- Department of Physics, Tohoku University, Sendai, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
- Center for Science and Innovation in Spintronics (CSIS), Tohoku University, Sendai, Japan
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, Sendai, Japan
- Mathematical Science Center for Co-creative Society (MathCCS), Tohoku University, Sendai, Japan
| |
Collapse
|
8
|
Cheng B, Gao Y, Zheng Z, Chen S, Liu Z, Zhang L, Zhu Q, Li H, Li L, Zeng C. Giant nonlinear Hall and wireless rectification effects at room temperature in the elemental semiconductor tellurium. Nat Commun 2024; 15:5513. [PMID: 38951497 PMCID: PMC11217359 DOI: 10.1038/s41467-024-49706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
The second-order nonlinear Hall effect (NLHE) in non-centrosymmetric materials has recently drawn intense interest, since its inherent rectification could enable various device applications such as energy harvesting and wireless charging. However, previously reported NLHE systems normally suffer from relatively small Hall voltage outputs and/or low working temperatures. In this study, we report the observation of a pronounced NLHE in tellurium (Te) thin flakes at room temperature. Benefiting from the semiconductor nature of Te, the obtained nonlinear response can be readily enhanced through electrostatic gating, leading to a second-harmonic output at 300 K up to 2.8 mV. By utilizing such a giant NLHE, we further demonstrate the potential of Te as a wireless Hall rectifier within the radiofrequency range, which is manifested by the remarkable and tunable rectification effect also at room temperature. Extrinsic scattering is then revealed to be the dominant mechanism for the NLHE in Te, with symmetry breaking on the surface playing a key role. As a simple elemental semiconductor, Te provides an appealing platform to advance our understanding of nonlinear transport in solids and to develop NLHE-based electronic devices.
Collapse
Affiliation(s)
- Bin Cheng
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Yang Gao
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhi Zheng
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Shuhang Chen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zheng Liu
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ling Zhang
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Qi Zhu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hui Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Lin Li
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China.
| | - Changgan Zeng
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China.
| |
Collapse
|
9
|
An D, Zhang S, Zhai X, Yang W, Wu R, Zhang H, Fan W, Wang W, Chen S, Cojocaru-Mirédin O, Zhang XM, Wuttig M, Yu Y. Metavalently bonded tellurides: the essence of improved thermoelectric performance in elemental Te. Nat Commun 2024; 15:3177. [PMID: 38609361 PMCID: PMC11014947 DOI: 10.1038/s41467-024-47578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Elemental Te is important for semiconductor applications including thermoelectric energy conversion. Introducing dopants such as As, Sb, and Bi has been proven critical for improving its thermoelectric performance. However, the remarkably low solubility of these elements in Te raises questions about the mechanism with which these dopants can improve the thermoelectric properties. Indeed, these dopants overwhelmingly form precipitates rather than dissolve in the Te lattice. To distinguish the role of doping and precipitation on the properties, we have developed a correlative method to locally determine the structure-property relationship for an individual matrix or precipitate. We reveal that the conspicuous enhancement of electrical conductivity and power factor of bulk Te stems from the dopant-induced metavalently bonded telluride precipitates. These precipitates form electrically beneficial interfaces with the Te matrix. A quantum-mechanical-derived map uncovers more candidates for advancing Te thermoelectrics. This unconventional doping scenario adds another recipe to the design options for thermoelectrics and opens interesting pathways for microstructure design.
Collapse
Affiliation(s)
- Decheng An
- College of Chemistry, Taiyuan University of Technology, 030024, Taiyuan, China
| | - Senhao Zhang
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Xin Zhai
- School of Electronic Science & Engineering, Southeast University, 210096, Nanjing, China
| | - Wutao Yang
- College of Chemistry, Taiyuan University of Technology, 030024, Taiyuan, China
| | - Riga Wu
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Huaide Zhang
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Wenhao Fan
- Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Materials Science and Engineering, Instrumental Analysis Center, Taiyuan University of Technology, 030024, Taiyuan, China
| | - Wenxian Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Materials Science and Engineering, Instrumental Analysis Center, Taiyuan University of Technology, 030024, Taiyuan, China
| | - Shaoping Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Materials Science and Engineering, Instrumental Analysis Center, Taiyuan University of Technology, 030024, Taiyuan, China
| | - Oana Cojocaru-Mirédin
- Department of Sustainable Systems Engineering (INATECH), Albert-Ludwigs-Universität Freiburg, 79110, Freiburg, Germany
| | - Xian-Ming Zhang
- College of Chemistry, Taiyuan University of Technology, 030024, Taiyuan, China.
- Key Laboratory of Interface Science and Engineering in Advanced Materials, College of Materials Science and Engineering, Instrumental Analysis Center, Taiyuan University of Technology, 030024, Taiyuan, China.
| | - Matthias Wuttig
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany.
- Peter Grünberg Institute (PGI 10), Forschungszentrum Jülich, 52428, Jülich, Germany.
| | - Yuan Yu
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany.
| |
Collapse
|
10
|
Lim S, Singh S, Huang FT, Pan S, Wang K, Kim J, Kim J, Vanderbilt D, Cheong SW. Magnetochiral tunneling in paramagnetic Co 1/3NbS 2. Proc Natl Acad Sci U S A 2024; 121:e2318443121. [PMID: 38412131 PMCID: PMC10927506 DOI: 10.1073/pnas.2318443121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
Electric currents have the intriguing ability to induce magnetization in nonmagnetic crystals with sufficiently low crystallographic symmetry. Some associated phenomena include the non-linear anomalous Hall effect in polar crystals and the nonreciprocal directional dichroism in chiral crystals when magnetic fields are applied. In this work, we demonstrate that the same underlying physics is also manifested in the electronic tunneling process between the surface of a nonmagnetic chiral material and a magnetized scanning probe. In the paramagnetic but chiral metallic compound Co1/3NbS2, the magnetization induced by the tunneling current is shown to become detectable by its coupling to the magnetization of the tip itself. This results in a contrast across different chiral domains, achieving atomic-scale spatial resolution of structural chirality. To support the proposed mechanism, we used first-principles theory to compute the chirality-dependent current-induced magnetization and Berry curvature in the bulk of the material. Our demonstration of this magnetochiral tunneling effect opens up an avenue for investigating atomic-scale variations in the local crystallographic symmetry and electronic structure across the structural domain boundaries of low-symmetry nonmagnetic crystals.
Collapse
Affiliation(s)
- Seongjoon Lim
- Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ08854
| | - Sobhit Singh
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627
- Materials Science Program, University of Rochester, Rochester, NY14627
| | - Fei-Ting Huang
- Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ08854
| | - Shangke Pan
- Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ08854
- State Key Laboratory Base of Novel Function Materials and Preparation Science, School of Material Sciences and Chemical Engineering, Ningbo University, Ningbo315211, China
| | - Kefeng Wang
- Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ08854
| | - Jaewook Kim
- Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ08854
| | - Jinwoong Kim
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ08854
| | - David Vanderbilt
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ08854
| | - Sang-Wook Cheong
- Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ08854
| |
Collapse
|
11
|
Ai W, Chen F, Liu Z, Yuan X, Zhang L, He Y, Dong X, Fu H, Luo F, Deng M, Wang R, Wu J. Observation of giant room-temperature anisotropic magnetoresistance in the topological insulator β-Ag 2Te. Nat Commun 2024; 15:1259. [PMID: 38341422 DOI: 10.1038/s41467-024-45643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Achieving room-temperature high anisotropic magnetoresistance ratios is highly desirable for magnetic sensors with scaled supply voltages and high sensitivities. However, the ratios in heterojunction-free thin films are currently limited to only a few percent at room temperature. Here, we observe a high anisotropic magnetoresistance ratio of -39% and a giant planar Hall effect (520 μΩ⋅cm) at room temperature under 9 T in β-Ag2Te crystals grown by chemical vapor deposition. We propose a theoretical model of anisotropic scattering - induced by a Dirac cone tilt and modulated by intrinsic properties of effective mass and sound velocity - as a possible origin. Moreover, small-size angle sensors with a Wheatstone bridge configuration were fabricated using the synthesized β-Ag2Te crystals. The sensors exhibited high output response (240 mV/V), high angle sensitivity (4.2 mV/V/°) and small angle error (<1°). Our work translates the developments in topological insulators to a broader impact on practical applications such as high-field magnetic and angle sensors.
Collapse
Affiliation(s)
- Wei Ai
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fuyang Chen
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
| | - Zhaochao Liu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xixi Yuan
- Center of Quantum Materials and Devices & College of Physics, Chongqing University, Chongqing, 401331, China
| | - Lei Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuyu He
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xinyue Dong
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Huixia Fu
- Center of Quantum Materials and Devices & College of Physics, Chongqing University, Chongqing, 401331, China.
| | - Feng Luo
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Mingxun Deng
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China.
| | - Ruiqiang Wang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006, China
| | - Jinxiong Wu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
12
|
Fu Q, Cong X, Xu X, Zhu S, Zhao X, Liu S, Yao B, Xu M, Deng Y, Zhu C, Wang X, Kang L, Zeng Q, Lin ML, Wang X, Tang B, Yang J, Dong Z, Liu F, Xiong Q, Zhou J, Wang Q, Li X, Tan PH, Tay BK, Liu Z. Berry Curvature Dipole Induced Giant Mid-Infrared Second-Harmonic Generation in 2D Weyl Semiconductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306330. [PMID: 37737448 DOI: 10.1002/adma.202306330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Indexed: 09/23/2023]
Abstract
Due to its inversion-broken triple helix structure and the nature of Weyl semiconductor, 2D Tellurene (2D Te) is promising to possess a strong nonlinear optical response in the infrared region, which is rarely reported in 2D materials. Here, a giant nonlinear infrared response induced by large Berry curvature dipole (BCD) is demonstrated in the Weyl semiconductor 2D Te. Ultrahigh second-harmonic generation response is acquired from 2D Te with a large second-order nonlinear optical susceptibility (χ(2) ), which is up to 23.3 times higher than that of monolayer MoS2 in the range of 700-1500 nm. Notably, distinct from other 2D nonlinear semiconductors, χ(2) of 2D Te increases extraordinarily with increasing wavelength and reaches up to 5.58 nm V-1 at ≈2300 nm, which is the best infrared performance among the reported 2D nonlinear materials. Large χ(2) of 2D Te also enables the high-intensity sum-frequency generation with an ultralow continuous-wave (CW) pump power. Theoretical calculations reveal that the exceptional performance is attributed to the presence of large BCD located at the Weyl points of 2D Te. These results unravel a new linkage between Weyl semiconductor and strong optical nonlinear responses, rendering 2D Te a competitive candidate for highly efficient nonlinear 2D semiconductors in the infrared region.
Collapse
Affiliation(s)
- Qundong Fu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- IRL 3288 CINTRA (CNRS-NTU-THALES Research Alliances), Nanyang Technological University, Singapore, 637553, Singapore
| | - Xin Cong
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Xiaodong Xu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Song Zhu
- School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Sheng Liu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bingqing Yao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Manzhang Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ya Deng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chao Zhu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xiaowei Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lixing Kang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qingsheng Zeng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Miao-Ling Lin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Xingli Wang
- IRL 3288 CINTRA (CNRS-NTU-THALES Research Alliances), Nanyang Technological University, Singapore, 637553, Singapore
| | - Bijun Tang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jianqun Yang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhili Dong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, P. R. China
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, P. R. China
| | - Jiadong Zhou
- Key Lab of advanced optoelectronic quantum architecture and measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qijie Wang
- IRL 3288 CINTRA (CNRS-NTU-THALES Research Alliances), Nanyang Technological University, Singapore, 637553, Singapore
- School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xingji Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ping-Heng Tan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Beng Kang Tay
- IRL 3288 CINTRA (CNRS-NTU-THALES Research Alliances), Nanyang Technological University, Singapore, 637553, Singapore
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- IRL 3288 CINTRA (CNRS-NTU-THALES Research Alliances), Nanyang Technological University, Singapore, 637553, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Blk S9, Level 9, 4 Science Drive 2, Singapore, 117544, Singapore
| |
Collapse
|
13
|
Zhang SJ, Chen L, Li SS, Zhang Y, Yan JM, Tang F, Fang Y, Fei LF, Zhao W, Karel J, Chai Y, Zheng RK. Coexistence of logarithmic and SdH quantum oscillations in ferromagnetic Cr-doped tellurium single crystals. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:245701. [PMID: 36940480 DOI: 10.1088/1361-648x/acc5ca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
We report the synthesis of transition-metal-doped ferromagnetic elemental single-crystal semiconductors with quantum oscillations using the physical vapor transport method. The 7.7 atom% Cr-doped Te crystals (Cr:Te) show ferromagnetism, butterfly-like negative magnetoresistance in the low temperature (<3.8 K) and low field (<0.15 T) region, and high Hall mobility, e.g. 1320 cm2V-1s-1at 30 K and 350 cm2V-1s-1at 300 K, implying that Cr:Te crystals are ferromagnetic elemental semiconductors. WhenB// [001] // I, the maximum negative MR is ∼-27% atT= 20 K andB= 8 T. In the low temperature semiconducting region, Cr:Te crystals show strong discrete scale invariance dominated logarithmic quantum oscillations when the direction of the magnetic fieldBis parallel to the [100] crystallographic direction (B// [100]) and show Landau quantization dominated Shubnikov-de Haas oscillations forB// [210] direction, which suggests the broken rotation symmetry of the Fermi pockets in the Cr:Te crystals. The findings of coexistence of multiple quantum oscillations and ferromagnetism in such an elemental quantum material may inspire more study of narrow bandgap semiconductors with ferromagnetism and quantum phenomena.
Collapse
Affiliation(s)
- Shu-Juan Zhang
- School of Materials and Mechanic & Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330038, People's Republic of China
| | - Lei Chen
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Shuang-Shuang Li
- School of Materials Science and Engineering and Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Nanchang University, Nanchang 330031, People's Republic of China
| | - Ying Zhang
- School of Materials Science and Engineering and Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Nanchang University, Nanchang 330031, People's Republic of China
| | - Jian-Min Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, People's Republic of China
| | - Fang Tang
- Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500, People's Republic of China
| | - Yong Fang
- Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500, People's Republic of China
| | - Lin-Feng Fei
- School of Materials Science and Engineering and Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Nanchang University, Nanchang 330031, People's Republic of China
| | - Weiyao Zhao
- Department of Materials Science & Engineering, & ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Julie Karel
- Department of Materials Science & Engineering, & ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, People's Republic of China
| | - Ren-Kui Zheng
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
14
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
15
|
Chen J, Zhou Y, Yan J, Liu J, Xu L, Wang J, Wan T, He Y, Zhang W, Chai Y. Room-temperature valley transistors for low-power neuromorphic computing. Nat Commun 2022; 13:7758. [PMID: 36522374 PMCID: PMC9755139 DOI: 10.1038/s41467-022-35396-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Valley pseudospin is an electronic degree of freedom that promises highly efficient information processing applications. However, valley-polarized excitons usually have short pico-second lifetimes, which limits the room-temperature applicability of valleytronic devices. Here, we demonstrate room-temperature valley transistors that operate by generating free carrier valley polarization with a long lifetime. This is achieved by electrostatic manipulation of the non-trivial band topology of the Weyl semiconductor tellurium (Te). We observe valley-polarized diffusion lengths of more than 7 μm and fabricate valley transistors with an ON/OFF ratio of 105 at room temperature. Moreover, we demonstrate an ion insertion/extraction device structure that enables 32 non-volatile memory states with high linearity and symmetry in the Te valley transistor. With ultralow power consumption (~fW valley contribution), we enable the inferring process of artificial neural networks, exhibiting potential for applications in low-power neuromorphic computing.
Collapse
Affiliation(s)
- Jiewei Chen
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Yue Zhou
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Jianmin Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Jidong Liu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Shenzhen University, 518060, Shenzhen, China
| | - Lin Xu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Jingli Wang
- Frontier Institute of Chip and System, Fudan University, Shanghai, China
| | - Tianqing Wan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yuhui He
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Wenjing Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Shenzhen University, 518060, Shenzhen, China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
16
|
Viana ER, Cifuentes N, González JC. Enhanced electronic transport properties of Te roll-like nanostructures. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1284-1291. [PMID: 36447564 PMCID: PMC9663975 DOI: 10.3762/bjnano.13.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
In this work, the electronic transport properties of Te roll-like nanostructures were investigated in a broad temperature range by fabricating single-nanostructure back-gated field-effect-transistors via photolithography. These one-dimensional nanostructures, with a unique roll-like morphology, were produced by a facile synthesis and extensively studied by scanning and transmission electron microscopy. The nanostructures are made of pure and crystalline Tellurium with trigonal structure (t-Te), and exhibit p-type conductivity with enhanced field-effect hole mobility between 273 cm2/Vs at 320 K and 881 cm2/Vs at 5 K. The thermal ionization of shallow acceptors, with small ionization energy between 2 and 4 meV, leads to free-hole conduction at high temperatures. The free-hole mobility follows a negative power-law temperature behavior, with an exponent between -1.28 and -1.42, indicating strong phonon scattering in this temperature range. At lower temperatures, the electronic conduction is dominated by nearest-neighbor hopping (NNH) conduction in the acceptor band, with a small activation energy E NNH ≈ 0.6 meV and an acceptor concentration of N A ≈ 1 × 1016 cm-3. These results demonstrate the enhanced electrical properties of these nanostructures, with a small disorder, and superior quality for nanodevice applications.
Collapse
Affiliation(s)
- E R Viana
- Departamento Acadêmico de Física, Universidade Tecnológica Federal do Paraná, Campus Curitiba, 80230-901, Curitiba, Brazil
| | - N Cifuentes
- Departamento de Física, Universidade Federal de Minas Gerais, 30123-970, Belo Horizonte, Brazil
| | - J C González
- Departamento de Física, Universidade Federal de Minas Gerais, 30123-970, Belo Horizonte, Brazil
| |
Collapse
|
17
|
Parfenov OE, Taldenkov AN, Averyanov DV, Sokolov IS, Kondratev OA, Borisov MM, Yakunin SN, Karateev IA, Tokmachev AM, Storchak VG. Layer-controlled evolution of electron state in the silicene intercalation compound SrSi 2. MATERIALS HORIZONS 2022; 9:2854-2862. [PMID: 36056695 DOI: 10.1039/d2mh00640e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Silicene, a Si-based analogue of graphene, holds a high promise for electronics because of its exceptional properties but a high chemical reactivity makes it a very challenging material to work with. The silicene lattice can be stabilized by active metals to form stoichiometric compounds MSi2. Being candidate topological semimetals, these materials provide an opportunity to probe layer dependence of unconventional electronic structures. It is demonstrated here that in the silicene compound SrSi2, the number of monolayers controls the electronic state. A series of films ranging from bulk-like multilayers down to a single monolayer have been synthesized on silicon and characterized with a combination of techniques - from electron and X-ray diffraction to high-resolution electron microscopy. Transport measurements reveal evolution of the chiral anomaly in bulk SrSi2 to weak localization in ultrathin films down to 3 monolayers followed by 3D and 2D strong localization in 2 and 1 monolayers, respectively. The results outline the range of stability of the chiral state, important for practical applications, and shed light on the localization phenomena in the limit of a few monolayers.
Collapse
Affiliation(s)
- Oleg E Parfenov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Alexander N Taldenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Dmitry V Averyanov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Ivan S Sokolov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Oleg A Kondratev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Mikhail M Borisov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Sergey N Yakunin
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Igor A Karateev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Andrey M Tokmachev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| | - Vyacheslav G Storchak
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, Moscow 123182, Russia.
| |
Collapse
|
18
|
Shao Z, Li S, Liu Y, Li Z, Wang H, Bian Q, Yan J, Mandrus D, Liu H, Zhang P, Xie XC, Wang J, Pan M. Discrete scale invariance of the quasi-bound states at atomic vacancies in a topological material. Proc Natl Acad Sci U S A 2022; 119:e2204804119. [PMID: 36215510 PMCID: PMC9586292 DOI: 10.1073/pnas.2204804119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Recently, log-periodic quantum oscillations have been detected in the topological materials zirconium pentatelluride (ZrTe5) and hafnium pentatelluride (HfTe5), displaying an intriguing discrete scale invariance (DSI) characteristic. In condensed materials, the DSI is considered to be related to the quasi-bound states formed by massless Dirac fermions with strong Coulomb attraction, offering a feasible platform to study the long-pursued atomic-collapse phenomenon. Here, we demonstrate that a variety of atomic vacancies in the topological material HfTe5 can host the geometric quasi-bound states with a DSI feature, resembling an artificial supercritical atom collapse. The density of states of these quasi-bound states is enhanced, and the quasi-bound states are spatially distributed in the "orbitals" surrounding the vacancy sites, which are detected and visualized by low-temperature scanning tunneling microscope/spectroscopy. By applying the perpendicular magnetic fields, the quasi-bound states at lower energies become wider and eventually invisible; meanwhile, the energies of quasi-bound states move gradually toward the Fermi energy (EF). These features are consistent with the theoretical prediction of a magnetic field-induced transition from supercritical to subcritical states. The direct observation of geometric quasi-bound states sheds light on the deep understanding of the DSI in quantum materials.
Collapse
Affiliation(s)
- Zhibin Shao
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - Shaojian Li
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanzhao Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Zi Li
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Huichao Wang
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Qi Bian
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqiang Yan
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - David Mandrus
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996
| | - Haiwen Liu
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Ping Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - X. C. Xie
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Jian Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Minghu Pan
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
19
|
Unveiling Weyl-related optical responses in semiconducting tellurium by mid-infrared circular photogalvanic effect. Nat Commun 2022; 13:5425. [PMID: 36109522 PMCID: PMC9477843 DOI: 10.1038/s41467-022-33190-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractElemental tellurium, conventionally recognized as a narrow bandgap semiconductor, has recently aroused research interests for exploiting Weyl physics. Chirality is a unique feature of Weyl cones and can support helicity-dependent photocurrent generation, known as circular photogalvanic effect. Here, we report circular photogalvanic effect with opposite signs at two different mid-infrared wavelengths which provides evidence of Weyl-related optical responses. These two different wavelengths correspond to two critical transitions relating to the bands of different Weyl cones and the sign of circular photogalvanic effect is determined by the chirality selection rules within certain Weyl cone and between two different Weyl cones. Further experimental evidences confirm the observed response is an intrinsic second-order process. With flexibly tunable bandgap and Fermi level, tellurium is established as an ideal semiconducting material to manipulate and explore chirality-related Weyl physics in both conduction and valence bands. These results are also directly applicable to helicity-sensitive optoelectronics devices.
Collapse
|
20
|
Chen J, Zhang T, Wang J, Xu L, Lin Z, Liu J, Wang C, Zhang N, Lau SP, Zhang W, Chhowalla M, Chai Y. Topological phase change transistors based on tellurium Weyl semiconductor. SCIENCE ADVANCES 2022; 8:eabn3837. [PMID: 35687677 PMCID: PMC9187226 DOI: 10.1126/sciadv.abn3837] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Modern electronics demand transistors with extremely high performance and energy efficiency. Charge-based transistors with conventional semiconductors experience substantial heat dissipation because of carrier scattering. Here, we demonstrate low-loss topological phase change transistors (TPCTs) based on tellurium, a Weyl semiconductor. By modulating the energy separation between the Fermi level and the Weyl point of tellurium through electrostatic gate modulation, the device exhibits topological phase change between Weyl (Chern number ≠ 0) and conventional (Chern number = 0) semiconductors. In the Weyl ON state, the device has low-loss transport characteristics due to the global topology of gauge fields against external perturbations; the OFF state exhibits trivial charge transport in the conventional phase by moving the Fermi level into the bandgap. The TPCTs show a high ON/OFF ratio (108) at low operation voltage (≤2 volts) and high ON-state conductance (39 mS/μm). Our studies provide alternative strategies for realizing ultralow power electronics.
Collapse
Affiliation(s)
- Jiewei Chen
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Ting Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jingli Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Frontier Institute of Chip and System, Fudan University, Shanghai, China
| | - Lin Xu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ziyuan Lin
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jidong Liu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Shenzhen University, Shenzhen 518060, China
| | - Cong Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Ning Zhang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Shu Ping Lau
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Wenjing Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Shenzhen University, Shenzhen 518060, China
| | - Manish Chhowalla
- Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
21
|
Calavalle F, Suárez-Rodríguez M, Martín-García B, Johansson A, Vaz DC, Yang H, Maznichenko IV, Ostanin S, Mateo-Alonso A, Chuvilin A, Mertig I, Gobbi M, Casanova F, Hueso LE. Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires. NATURE MATERIALS 2022; 21:526-532. [PMID: 35256792 DOI: 10.1038/s41563-022-01211-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Chiral materials are an ideal playground for exploring the relation between symmetry, relativistic effects and electronic transport. For instance, chiral organic molecules have been intensively studied to electrically generate spin-polarized currents in the last decade, but their poor electronic conductivity limits their potential for applications. Conversely, chiral inorganic materials such as tellurium have excellent electrical conductivity, but their potential for enabling the electrical control of spin polarization in devices remains unclear. Here, we demonstrate the all-electrical generation, manipulation and detection of spin polarization in chiral single-crystalline tellurium nanowires. By recording a large (up to 7%) and chirality-dependent unidirectional magnetoresistance, we show that the orientation of the electrically generated spin polarization is determined by the nanowire handedness and uniquely follows the current direction, while its magnitude can be manipulated by an electrostatic gate. Our results pave the way for the development of magnet-free chirality-based spintronic devices.
Collapse
Affiliation(s)
| | | | | | - Annika Johansson
- Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, Germany
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Diogo C Vaz
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain
| | - Haozhe Yang
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain
| | - Igor V Maznichenko
- Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sergey Ostanin
- Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Aurelio Mateo-Alonso
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain
| | - Andrey Chuvilin
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ingrid Mertig
- Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Marco Gobbi
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Centro de Física de Materiales CSIC-UPV/EHU, Donostia-San Sebastian, Spain.
| | - Fèlix Casanova
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Luis E Hueso
- CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
22
|
Guan S, Zhang G, Liu C. Enhanced in-plane ferroelectricity, antiferroelectricity, and unconventional 2D emergent fermions in quadruple-layer XSbO 2 (X = Li, Na). NANOSCALE 2021; 13:19172-19180. [PMID: 34781325 DOI: 10.1039/d1nr06051a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Low-dimensional ferroelectricity and Dirac materials with protected band crossings are fascinating research subjects. Based on first-principles calculations, we predict the coexistence of spontaneous in-plane polarization and novel 2D emergent fermions in dynamically stable quadruple-layer (QL) XSbO2 (X = Li, Na). Depending on the different polarization configurations, QL-XSbO2 can exhibit unconventional inner-QL ferroelectricity and antiferroelectricity. Both ground states harbor robust ferroelectricity with enhanced spontaneous polarization of 0.56 nC m-1 and 0.39 nC m-1 for QL-LiSbO2 and QL-NaSbO2, respectively. Interestingly, the QL-LiSbO2 possesses two other metastable ferroelectric (FE) phases. The ground FE phase can be flexibly driven into one of the two metastable FE phases and then into the antiferroelectric (AFE) phase. During this phase transition, several types of 2D fermions emerge, for instance, hourglass hybrid and type-II Weyl loops in the ground FE phase, type-II Weyl fermionsin the metastable FE phase, and type-II Dirac fermions in the AFE phase. These 2D fermions are robust under spin-orbit coupling. Notably, two of these fermions, e.g., an hourglass hybrid or type-II Weyl loop, have not been observed before. Our findings identify QL-XSbO2 as a unique platform for studying 2D ferroelectricity relating to 2D emergent fermions.
Collapse
Affiliation(s)
- Shan Guan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
| | - GuangBiao Zhang
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Chang Liu
- Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| |
Collapse
|
23
|
Tian X, Lv Y, Fan Y, Wang Z, Yu B, Song C, Lu Q, Xi C, Pi L, Zhang X. Safety evaluation of mice exposed to 7.0-33.0 T high-static magnetic fields. J Magn Reson Imaging 2020; 53:1872-1884. [PMID: 33382516 DOI: 10.1002/jmri.27496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/26/2023] Open
Abstract
Magnetic resonance imaging (MRI) of 7 T and higher can provide superior image resolution and capability. Clinical tests have been performed in 9.4 T MRI, and 21.1 T small-bore-size MRI has also been tested in rodents. Although the safety issue is a prerequisite for their future medical application, there are very few relevant studies for the safety of static magnetic fields (SMFs) of ≧20 T. The aim of this study was to assess the biological effects of 7.0-33.0 T SMFs in healthy adult mice. This was a prospective study, in which 104 healthy adult C57BL/6 mice were divided into control, sham control, and 7.0-33.0 T SMF-exposed groups.The sham control group and SMF group were handled identically, except for the electric current for producing SMF. A separate control group was placed outside the magnet and their data were used as normal range. After 1 h exposure, all mice were routinely fed for another 2 months while their body weight and food/water consumption were monitored. After 2 months, their complete blood count, blood biochemistry, key organ weight, and histomorphology were examined. All data are normally distributed. Differences between the sham and SMF-exposed groups were evaluated by unpaired t test. Most indicators did not show statistically significant changes or were still within the normal ranges, with only a few exceptions. For example, mono % in Group 2 (11.1 T) is 6.03 ± 1.43% while the normal range is 6.60-9.90% (p < 0.05). The cholesterol level in 33 T group is 3.38 ± 0.36 mmol/L while the normal range is 2.48-3.29 mmol/L (p < 0.05). The high-density lipoprotein cholesterol level in 33 T group is 2.54 ± 0.29 mmol/L while the normal reference range is 1.89-2.43 mmol/L (p < 0.01). Exposure to 7.0-33.0 T for 1 h did not have detrimental effects on normal adult mice. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Xiaofei Tian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yue Lv
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yixiang Fan
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Ze Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Biao Yu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Chao Song
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Qingyou Lu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China.,Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, Hefei, China
| | - Chuanying Xi
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Li Pi
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| |
Collapse
|