1
|
Tourapi C, Christoforou E, Gaudêncio SP, Vasquez MI. Aquatic Biomaterial Repositories: Comprehensive Guidelines, Recommendations, and Best Practices for Their Development, Establishment, and Sustainable Operation. Mar Drugs 2024; 22:427. [PMID: 39330308 PMCID: PMC11433314 DOI: 10.3390/md22090427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
The alarming pace of species extinction severely threatens terrestrial and aquatic ecosystems, undermining the crucial ecological services vital for environmental sustainability and human well-being. Anthropogenic activities, such as urbanization, agriculture, industrialization, and those inducing climate change, intensify these risks, further imperiling biodiversity. Of particular importance are aquatic organisms, pivotal in biodiscovery and biotechnology. They contribute significantly to natural product chemistry, drug development, and various biotechnological applications. To safeguard these invaluable resources, establishing and maintaining aquatic biomaterial repositories (ABRs) is imperative. This review explores the complex landscape of ABRs, emphasizing the need for standardized procedures from collection to distribution. It identifies key legislative and regulatory frameworks, such as the Nagoya Protocol and EU directives, essential for ensuring responsible and equitable biorepository operations. Drawing on extensive literature and database searches, this study compiles existing recommendations and practices into a cohesive framework with which to guide the establishment and sustainable management of ABRs. Through collaborative efforts and adherence to best practices, ABRs can play a transformative role in the future of marine biotechnology and environmental conservation.
Collapse
Affiliation(s)
- Christiana Tourapi
- Department of Chemical Engineering, Cyprus University of Technology, Archiepiskopou Kyprianou 30, 3036 Limassol, Cyprus; (C.T.); (E.C.)
| | - Eleni Christoforou
- Department of Chemical Engineering, Cyprus University of Technology, Archiepiskopou Kyprianou 30, 3036 Limassol, Cyprus; (C.T.); (E.C.)
| | - Susana P. Gaudêncio
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, 2819-516 Lisbon, Portugal;
- Research Unit on Applied Molecular Biosciences, UCIBIO, Chemistry Department, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, 2819-516 Lisbon, Portugal
| | - Marlen I. Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, Archiepiskopou Kyprianou 30, 3036 Limassol, Cyprus; (C.T.); (E.C.)
| |
Collapse
|
2
|
Vieira H, Lestre GM, Solstad RG, Cabral AE, Botelho A, Helbig C, Coppola D, de Pascale D, Robbens J, Raes K, Lian K, Tsirtsidou K, Leal MC, Scheers N, Calado R, Corticeiro S, Rasche S, Altintzoglou T, Zou Y, Lillebø AI. Current and Expected Trends for the Marine Chitin/Chitosan and Collagen Value Chains. Mar Drugs 2023; 21:605. [PMID: 38132926 PMCID: PMC10744996 DOI: 10.3390/md21120605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Chitin/chitosan and collagen are two of the most important bioactive compounds, with applications in the pharmaceutical, veterinary, nutraceutical, cosmetic, biomaterials, and other industries. When extracted from non-edible parts of fish and shellfish, by-catches, and invasive species, their use contributes to a more sustainable and circular economy. The present article reviews the scientific knowledge and publication trends along the marine chitin/chitosan and collagen value chains and assesses how researchers, industry players, and end-users can bridge the gap between scientific understanding and industrial applications. Overall, research on chitin/chitosan remains focused on the compound itself rather than its market applications. Still, chitin/chitosan use is expected to increase in food and biomedical applications, while that of collagen is expected to increase in biomedical, cosmetic, pharmaceutical, and nutritional applications. Sustainable practices, such as the reuse of waste materials, contribute to strengthen both value chains; the identified weaknesses include the lack of studies considering market trends, social sustainability, and profitability, as well as insufficient examination of intellectual property rights. Government regulations, market demand, consumer preferences, technological advancements, environmental challenges, and legal frameworks play significant roles in shaping both value chains. Addressing these factors is crucial for seizing opportunities, fostering sustainability, complying with regulations, and maintaining competitiveness in these constantly evolving value chains.
Collapse
Affiliation(s)
- Helena Vieira
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.V.); (G.M.L.); (S.C.)
| | - Gonçalo Moura Lestre
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.V.); (G.M.L.); (S.C.)
| | - Runar Gjerp Solstad
- Nofima Norwegian Institute of Food Fisheries and Aquaculture Research, Muninbakken 9-13, 9019 Tromsø, Norway; (R.G.S.); (K.L.); (T.A.)
| | - Ana Elisa Cabral
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| | - Anabela Botelho
- GOVCOPP—Research Unit on Governance, Competitiveness and Public Policies, DEGEIT, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Carlos Helbig
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany; (C.H.); (S.R.)
| | - Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (D.C.); (D.d.P.)
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (D.C.); (D.d.P.)
| | - Johan Robbens
- Flanders Research Institute for Agriculture, Fisheries and Food, ILVO, Aquatic Environment and Quality, Jacobsenstraat 1, 8400 Ostend, Belgium; (J.R.); (K.T.)
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium; (K.R.); (Y.Z.)
| | - Kjersti Lian
- Nofima Norwegian Institute of Food Fisheries and Aquaculture Research, Muninbakken 9-13, 9019 Tromsø, Norway; (R.G.S.); (K.L.); (T.A.)
| | - Kyriaki Tsirtsidou
- Flanders Research Institute for Agriculture, Fisheries and Food, ILVO, Aquatic Environment and Quality, Jacobsenstraat 1, 8400 Ostend, Belgium; (J.R.); (K.T.)
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium; (K.R.); (Y.Z.)
| | - Miguel C. Leal
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| | - Nathalie Scheers
- Department of Life Sciences, Chalmers University of Technology, 412 96 Göteborg, Sweden;
| | - Ricardo Calado
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| | - Sofia Corticeiro
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.V.); (G.M.L.); (S.C.)
| | - Stefan Rasche
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany; (C.H.); (S.R.)
| | - Themistoklis Altintzoglou
- Nofima Norwegian Institute of Food Fisheries and Aquaculture Research, Muninbakken 9-13, 9019 Tromsø, Norway; (R.G.S.); (K.L.); (T.A.)
| | - Yang Zou
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium; (K.R.); (Y.Z.)
| | - Ana I. Lillebø
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| |
Collapse
|
3
|
Calado R, Mamede R, Cruz S, Leal MC. Updated Trends on the Biodiscovery of New Marine Natural Products from Invertebrates. Mar Drugs 2022; 20:md20060389. [PMID: 35736192 PMCID: PMC9228037 DOI: 10.3390/md20060389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
From 1990–2019, a total of 15,442 New Marine Natural Products from Invertebrates (NMNPIs) were reported. The 2010s saw the most prolific decade of biodiscovery, with 5630 NMNPIs recorded. The phyla that contributed most biomolecules were the Porifera (sponges) (47.2%, 2659 NMNPIs) and the Cnidaria (35.3%, 1989 NMNPIs). The prevalence of these two phyla as the main sources of NMNPIs became more pronounced in the 2010s. The tropical areas of the Pacific Ocean yielded more NMNPIs, most likely due to the remarkable biodiversity of coral reefs. The Indo-Burma biodiversity hotspot (BH) was the most relevant area for the biodiscovery of NMNPIs in the 2010s, accounting for nearly one-third (1819 NMNPIs) of the total and surpassing the top BH from the 1990s and the 2000s (the Sea of Japan and the Caribbean Islands, respectively). The Chinese exclusive economic zone (EEZ) alone contributed nearly one-quarter (24.7%) of all NMNPIs recorded during the 2010s, displacing Japan’s leading role from the 1990s and the 2000s. With the biodiscovery of these biomolecules steadily decreasing since 2012, it is uncertain whether this decline has been caused by lower bioprospecting efforts or the potential exhaustion of chemodiversity from traditional marine invertebrate sources.
Collapse
|
4
|
Molimau-Samasoni S, Woolner VH, Foliga ST, Robichon K, Patel V, Andreassend SK, Sheridan JP, Te Kawa T, Gresham D, Miller D, Sinclair DJ, La Flamme AC, Melnik AV, Aron A, Dorrestein PC, Atkinson PH, Keyzers RA, Munkacsi AB. Functional genomics and metabolomics advance the ethnobotany of the Samoan traditional medicine "matalafi". Proc Natl Acad Sci U S A 2021; 118:e2100880118. [PMID: 34725148 PMCID: PMC8609454 DOI: 10.1073/pnas.2100880118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/30/2021] [Indexed: 11/18/2022] Open
Abstract
The leaf homogenate of Psychotria insularum is widely used in Samoan traditional medicine to treat inflammation associated with fever, body aches, swellings, wounds, elephantiasis, incontinence, skin infections, vomiting, respiratory infections, and abdominal distress. However, the bioactive components and underlying mechanisms of action are unknown. We used chemical genomic analyses in the model organism Saccharomyces cerevisiae (baker's yeast) to identify and characterize an iron homeostasis mechanism of action in the traditional medicine as an unfractionated entity to emulate its traditional use. Bioactivity-guided fractionation of the homogenate identified two flavonol glycosides, rutin and nicotiflorin, each binding iron in an ion-dependent molecular networking metabolomics analysis. Translating results to mammalian immune cells and traditional application, the iron chelator activity of the P. insularum homogenate or rutin decreased proinflammatory and enhanced anti-inflammatory cytokine responses in immune cells. Together, the synergistic power of combining traditional knowledge with chemical genomics, metabolomics, and bioassay-guided fractionation provided molecular insight into a relatively understudied Samoan traditional medicine and developed methodology to advance ethnobotany.
Collapse
Affiliation(s)
- Seeseei Molimau-Samasoni
- Plant and Postharvest Technologies, Scientific Research Organization of Samoa, Apia, Samoa;
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Victoria Helen Woolner
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Su'emalo Talie Foliga
- Division of Environment and Conservation, Ministry of Natural Resources and Environment, Apia, Samoa
| | - Katharina Robichon
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Vimal Patel
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Sarah K Andreassend
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeffrey P Sheridan
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Tama Te Kawa
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - David Gresham
- Centre of Genomic and Systems Biology, New York University, New York, NY 10003
| | - Darach Miller
- Department of Genetics, Stanford University Palo Alto, CA 94305
| | - Daniel J Sinclair
- School of Geography, Environmental and Earth Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Anne C La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Alexey V Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Allegra Aron
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Paul H Atkinson
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand;
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
5
|
Rodrigo AP, Mendes VM, Manadas B, Grosso AR, Alves de Matos AP, Baptista PV, Costa PM, Fernandes AR. Specific Antiproliferative Properties of Proteinaceous Toxin Secretions from the Marine Annelid Eulalia sp. onto Ovarian Cancer Cells. Mar Drugs 2021; 19:31. [PMID: 33445445 PMCID: PMC7827603 DOI: 10.3390/md19010031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
As Yondelis joins the ranks of approved anti-cancer drugs, the benefit from exploring the oceans' biodiversity becomes clear. From marine toxins, relevant bioproducts can be obtained due to their potential to interfere with specific pathways. We explored the cytotoxicity of toxin-bearing secretions of the polychaete Eulalia onto a battery of normal and cancer human cell lines and discovered that the cocktail of proteins is more toxic towards an ovarian cancer cell line (A2780). The secretions' main proteins were identified by proteomics and transcriptomics: 14-3-3 protein, Hsp70, Rab3, Arylsulfatase B and serine protease, the latter two being known toxins. This mixture of toxins induces cell-cycle arrest at G2/M phase after 3h exposure in A2780 cells and extrinsic programmed cell death. These findings indicate that partial re-activation of the G2/M checkpoint, which is inactivated in many cancer cells, can be partly reversed by the toxic mixture. Protein-protein interaction networks partake in two cytotoxic effects: cell-cycle arrest with a link to RAB3C and RAF1; and lytic activity of arylsulfatases. The discovery of both mechanisms indicates that venomous mixtures may affect proliferating cells in a specific manner, highlighting the cocktails' potential in the fine-tuning of anti-cancer therapeutics targeting cell cycle and protein homeostasis.
Collapse
Affiliation(s)
- Ana P. Rodrigo
- UCIBIO–Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.G.); (P.V.B.)
| | - Vera M. Mendes
- CNC–Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal; (V.M.M.); (B.M.)
| | - Bruno Manadas
- CNC–Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal; (V.M.M.); (B.M.)
| | - Ana R. Grosso
- UCIBIO–Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.G.); (P.V.B.)
| | - António P. Alves de Matos
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Quinta da Granja, Monte de Caparica, 2829-516 Caparica, Portugal;
| | - Pedro V. Baptista
- UCIBIO–Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.G.); (P.V.B.)
| | - Pedro M. Costa
- UCIBIO–Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.G.); (P.V.B.)
| | - Alexandra R. Fernandes
- UCIBIO–Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.G.); (P.V.B.)
| |
Collapse
|