1
|
Xie Y, Jiao L, Sun Q. Dengue virus and lipid metabolism: unravelling the interplay for future therapeutic approaches. Emerg Microbes Infect 2025; 14:2477647. [PMID: 40059731 PMCID: PMC11983527 DOI: 10.1080/22221751.2025.2477647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
In recent years, Dengue virus (DENV) has continued to pose significant health risks in tropical and subtropical areas worldwide, raising health alerts worldwide. It can cause hyperviremia in humans and can even lead to fatal clinical diseases. The life cycle of DENV is intricately linked to cellular lipids, and the virus selectively utilizes relevant enzymes involved in lipid metabolism to modulate the existing metabolic system in host cells during entry, replication, assembly, and other stages, thereby creating an environment conducive to its complete replication cycle. At present, there is a lack of effective and specific anti-DENV treatment measures. This review summarizes the recently identified lipid metabolism molecules and metabolic related diseases that affect DENV infection, explores the dependence of DENV on lipid metabolism and provides potential targets for the treatment of dengue fever (DF).
Collapse
Affiliation(s)
- Ying Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People's Republic of China
- Kunming Medical University, Kunming, People’s Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, People’s Republic of China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, Yunnan Province, People’s Republic of China
| | - Li Jiao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, People’s Republic of China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, Yunnan Province, People’s Republic of China
- Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, Yunnan Province, People’s Republic of China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, People’s Republic of China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, Yunnan Province, People’s Republic of China
- Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, Yunnan Province, People’s Republic of China
| |
Collapse
|
2
|
Tian P, Zhao L, Zhang G, Chen S, Zhang W, Ou M, Sun Y, Chen Y. A global lipid map of severe fever with thrombocytopenia syndrome virus infection reveals glycerophospholipids as novel prognosis biomarkers. mBio 2024; 15:e0262824. [PMID: 39535228 PMCID: PMC11633121 DOI: 10.1128/mbio.02628-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a rapidly progressing infectious disease caused by a novel bunyavirus characterized by high fever, thrombocytopenia, and multiple organ damage. While lipids play an important role in viral infections, the specific alterations in lipid metabolism during SFTSV infection remain unclear. This study aimed to elucidate the global lipid metabolic profiles of SFTS patients with mild, severe, and fatal outcomes. A total of 60 SFTS patients, consisting of 30 mild, 15 severe and 15 fatal patients, and 30 healthy controls, were enrolled for the investigation of global lipidomics in serum using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our findings revealed global alterations in the lipid signature induced by SFTSV infection and further confirmed that the glycerophospholipid metabolism pathway was profoundly affected during the progression of mild, severe, and fatal outcomes in SFTS patients. Importantly, LysoPC (20:0) and LysoPC (P-16:0) are strongly correlated with the clinical parameters of SFTSV infection. Furthermore, we demonstrated the substantial prognostic value of LysoPC (20:0) and LysoPC (P-16:0) by receiver operating characteristic (ROC) curve analysis, providing evidence for their remarkable value as prognostic biomarkers for predicting SFTS clinical outcomes. In particular, LysoPC (20:0) and LysoPC (P-16:0), along with APTT, yielded superior prognostic performance for fatal SFTS [area under the curve (AUC) = 98.4%], outperforming routine clinical parameters. Collectively, our findings revealed the lipidomic landscape after SFTSV infection, which offers new insights into the mechanisms of SFTS disease progression and suggests that targeting lipid metabolism may serve as a potential therapeutic strategy. IMPORTANCE This study systematically investigated the lipid landscape profile of SFTS-infected patients with different clinical outcomes. Our results revealed a global alteration in the lipid signature, particularly the glycerophospholipid metabolic pathway, induced by SFTSV infection. Notably, LysoPC (20:0) and LysoPC (P-16:0) presented remarkable prognostic value as novel biomarkers for SFTSV infection and may contribute to the prognosis of SFTS progression and appropriate interventions.
Collapse
Affiliation(s)
- Panpan Tian
- Department of Laboratory Medicine, Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Liwei Zhao
- Department of Laboratory Medicine, Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Guiting Zhang
- Department of Laboratory Medicine, Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shixing Chen
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Wanying Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingrong Ou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yidan Sun
- Department of Laboratory Medicine, Nanjing Pukou People’s Hospital, Nanjing, Jiangsu, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Visser B, Scheifler M. Insect Lipid Metabolism in the Presence of Symbiotic and Pathogenic Viruses and Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39548000 DOI: 10.1007/5584_2024_833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Insects, like most animals, have intimate interactions with microorganisms that can influence the insect host's lipid metabolism. In this chapter, we describe what is known so far about the role prokaryotic microorganisms play in insect lipid metabolism. We start exploring microbe-insect lipid interactions focusing on endosymbionts, and more specifically the gut microbiota that has been predominantly studied in Drosophila melanogaster. We then move on to an overview of the work done on the common and well-studied endosymbiont Wolbachia pipientis, also in interaction with other microbes. Taking a slightly different angle, we then look at the effect of human pathogens, including dengue and other viruses, on the lipids of mosquito vectors. We extend the work on human pathogens and include interactions with the endosymbiont Wolbachia that was identified as a natural tool to reduce the spread of mosquito-borne diseases. Research on lipid metabolism of plant disease vectors is up and coming and we end this chapter by highlighting current knowledge in that field.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium.
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
4
|
Hehner J, Schneider L, Woitalla A, Ott B, Vu KCT, Schöbel A, Hain T, Schwudke D, Herker E. Glycerophospholipid remodeling is critical for orthoflavivirus infection. Nat Commun 2024; 15:8683. [PMID: 39375358 PMCID: PMC11458896 DOI: 10.1038/s41467-024-52979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
Flavivirus infection is tightly connected to host lipid metabolism. Here, we performed shotgun lipidomics of cells infected with neurotropic Zika, West Nile, and tick-borne encephalitis virus, as well as dengue and yellow fever virus. Early in infection specific lipids accumulate, e.g., neutral lipids in Zika and some lysophospholipids in all infections. Ceramide levels increase following infection with viruses that cause a cytopathic effect. In addition, fatty acid desaturation as well as glycerophospholipid metabolism are significantly altered. Importantly, depletion of enzymes involved in phosphatidylserine metabolism as well as phosphatidylinositol biosynthesis reduce orthoflavivirus titers and cytopathic effects while inhibition of fatty acid monounsaturation only rescues from virus-induced cell death. Interestingly, interfering with ceramide synthesis has opposing effects on virus replication and cytotoxicity depending on the targeted enzyme. Thus, lipid remodeling by orthoflaviviruses includes distinct changes but also common patterns shared by several viruses that are needed for efficient infection and replication.
Collapse
Affiliation(s)
- Julia Hehner
- Institute of Virology, University of Marburg, Marburg, Germany
| | - Laura Schneider
- Institute of Virology, University of Marburg, Marburg, Germany
| | - Anna Woitalla
- Division of Bioanalytical Chemistry, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Benjamin Ott
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Kim Chi Thi Vu
- Institute of Virology, University of Marburg, Marburg, Germany
| | - Anja Schöbel
- Institute of Virology, University of Marburg, Marburg, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel - Leibniz Lung Center, Borstel, Germany.
- Thematic Translational Unit Tuberculosis, German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Site Research Center Borstel - Leibniz Lung Center, Borstel, Germany.
| | - Eva Herker
- Institute of Virology, University of Marburg, Marburg, Germany.
| |
Collapse
|
5
|
Huang YN, Lee KY, Shiao SH, Chen CH, Yu GY, Yu MJ. Bloodmeals fuel dengue virus replication in the female mosquito Aedes aegypti. J Virol 2024; 98:e0070124. [PMID: 38888345 PMCID: PMC11265399 DOI: 10.1128/jvi.00701-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Vector competence defines the ability of a vector to acquire, host, and transmit a pathogen. Understanding the molecular determinants of the mosquitos' competence to host dengue virus (DENV) holds promise to prevent its transmission. To this end, we employed RNA-seq to profile mRNA transcripts of the female Aedes aegypti mosquitos feeding on naïve vs viremic mouse. While most transcripts (12,634) did not change their abundances, 360 transcripts showed decreases. Biological pathway analysis revealed representatives of the decreased transcripts involved in the wnt signaling pathway and hippo signaling pathway. One thousand three hundred fourteen transcripts showed increases in abundance and participate in 21 biological pathways including amino acid metabolism, carbon metabolism, fatty acid metabolism, and oxidative phosphorylation. Inhibition of oxidative phosphorylation with antimycin A reduced oxidative phosphorylation activity and ATP concentration associated with reduced DENV replication in the Aedes aegypti cells. Antimycin A did not affect the amounts of the non-structural proteins 3 and 5, two major components of the replication complex. Ribavirin, an agent that reduces GTP concentration, recapitulated the effects of reduced ATP concentration on DENV replication. Knocking down one of the oxidative phosphorylation components, ATP synthase subunit β, reduced DENV replication in the mosquitos. In summary, our results suggest that DENV enhances metabolic pathways in the female Aedes aegypti mosquitos to supply nutrients and energy for virus replication. ATP synthase subunit β knockdown might be exploited to reduce the mosquitos' competence to host and transmit DENV. IMPORTANCE Through evolution, the mosquito-borne viruses have adapted to the blood-feeding behaviors of their opportunist hosts to fulfill a complete lifecycle in humans and mosquitos. Disruption in the mosquitos' ability to host these viruses offers strategies to prevent diseases caused by them. With the advent of genomic tools, we discovered that dengue virus (DENV) benefited from the female mosquitos' bloodmeals for metabolic and energetic supplies for replication. Chemical or genetic disruption in these supplies reduced DENV replication in the female mosquitos. Our discovery can be exploited to produce genetically modified mosquitos, in which DENV infection leads to disruption in the supplies and thereby reduces replication and transmission. Our discovery might be extrapolated to prevent mosquito-borne virus transmission and the diseases they cause.
Collapse
Affiliation(s)
- Yu-Ning Huang
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan
| | - Kuan-Ying Lee
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan
| | - Shin-Hong Shiao
- Department of Tropical Medicine and Parasitology, National Taiwan University, Taipei, Taiwan
| | - Chun-Hong Chen
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Ming-Jiun Yu
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Gao L, Yang W, Wang J. Implications of mosquito metabolism on vector competence. INSECT SCIENCE 2024; 31:674-682. [PMID: 37907431 DOI: 10.1111/1744-7917.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023]
Abstract
Mosquito-borne diseases (MBDs) annually kill nearly half a million people. Due to the lack of effective vaccines and drugs on most MBDs, disease prevention relies primarily on controlling mosquitoes. Despite huge efforts having been put into mosquito control, eco-friendly and sustainable mosquito-control strategies are still lacking and urgently demanded. Most mosquito-transmitted pathogens have lost the capacity of de novo nutrition biosynthesis, and rely on their vertebrate and invertebrate hosts for sustenance during the long-term obligate parasitism process. Therefore, a better understanding of the metabolic interactions between mosquitoes and pathogens will contribute to the discovery of novel metabolic targets or regulators that lead to reduced mosquito populations or vector competence. This review summarizes the current knowledge about the effects of mosquito metabolism on the transmission of multiple pathogens. We also discuss that research in this area remains to be explored to develop multiple biological prevention and control strategies for MBDs.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenxu Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Phengchat R, Pakparnich P, Pethrak C, Pengon J, Sartsanga C, Chotiwan N, Uppakara K, Suksirisawat K, Lambrechts L, Jupatanakul N. Differential intra-host infection kinetics in Aedes aegypti underlie superior transmissibility of African relative to Asian Zika virus. mSphere 2023; 8:e0054523. [PMID: 37943061 PMCID: PMC10732021 DOI: 10.1128/msphere.00545-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE The recent Zika virus (ZIKV) epidemic in the Americas highlights its potential public health threat. While the Asian ZIKV lineage has been identified as the main cause of the epidemic, the African lineage, which has been primarily confined to Africa, has shown evidence of higher transmissibility in Aedes mosquitoes. To gain a deeper understanding of this differential transmissibility, our study employed a combination of tissue-level infection kinetics and single-cell-level infection kinetics using in situ immunofluorescent staining. We discovered that the African ZIKV lineage propagates more rapidly and spreads more efficiently within mosquito cells and tissues than its Asian counterpart. This information lays the groundwork for future exploration of the viral and host determinants driving these variations in propagation efficiency.
Collapse
Affiliation(s)
- Rinyaporn Phengchat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Phonchanan Pakparnich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Chatpong Pethrak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Jutharat Pengon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Channarong Sartsanga
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Nunya Chotiwan
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Kwanchanok Uppakara
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Kittitat Suksirisawat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Natapong Jupatanakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| |
Collapse
|
8
|
Harrison RE, Yang X, Eum JH, Martinson VG, Dou X, Valzania L, Wang Y, Boyd BM, Brown MR, Strand MR. The mosquito Aedes aegypti requires a gut microbiota for normal fecundity, longevity and vector competence. Commun Biol 2023; 6:1154. [PMID: 37957247 PMCID: PMC10643675 DOI: 10.1038/s42003-023-05545-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Mosquitoes shift from detritus-feeding larvae to blood-feeding adults that can vector pathogens to humans and other vertebrates. The sugar and blood meals adults consume are rich in carbohydrates and protein but are deficient in other nutrients including B vitamins. Facultatively hematophagous insects like mosquitoes have been hypothesized to avoid B vitamin deficiencies by carryover of resources from the larval stage. However, prior experimental studies have also used adults with a gut microbiota that could provision B vitamins. Here, we used Aedes aegypti, which is the primary vector of dengue virus (DENV), to ask if carryover effects enable normal function in adults with no microbiota. We show that adults with no gut microbiota produce fewer eggs, live longer with lower metabolic rates, and exhibit reduced DENV vector competence but are rescued by provisioning B vitamins or recolonizing the gut with B vitamin autotrophs. We conclude carryover effects do not enable normal function.
Collapse
Affiliation(s)
- Ruby E Harrison
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Xiushuai Yang
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Jai Hoon Eum
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Vincent G Martinson
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Xiaoyi Dou
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Luca Valzania
- Institut Curie, 20 Rue d'Ulm, 75238, Paris, Cedex 05, France
| | - Yin Wang
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Bret M Boyd
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Mark R Brown
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Michael R Strand
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
9
|
Accoti A, Multini LC, Diouf B, Becker M, Vulcan J, Sylla M, Yap DY, Khanipov K, Diallo M, Gaye A, Dickson LB. The influence of the larval microbiome on susceptibility to Zika virus is mosquito genotype-dependent. PLoS Pathog 2023; 19:e1011727. [PMID: 37903174 PMCID: PMC10635568 DOI: 10.1371/journal.ppat.1011727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/09/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023] Open
Abstract
The microbiome of the mosquito Aedes aegypti is largely determined by the environment and influences mosquito susceptibility for arthropod-borne viruses (arboviruses). Larval interactions with different bacteria can have carry-over effects on adult Ae. aegypti replication of arboviruses, but little is known about the role that mosquito host genetics play in determining how larval-bacterial interactions shape Ae aegypti susceptibility to arboviruses. To address this question, we isolated single bacterial isolates and complex microbiomes from Ae. aegypti larvae from various field sites in Senegal. Either single bacterial isolates or complex microbiomes were added to two different genetic backgrounds of Ae. aegypti in a gnotobiotic larval system. Using 16S amplicon sequencing we showed that the bacterial community structure differs between the two genotypes of Ae. aegypti when given identical microbiomes, and the abundance of single bacterial taxa differed between Ae. aegypti genotypes. Using single bacterial isolates or the entire preserved complex microbiome, we tested the ability of specific larval microbiomes to drive differences in infection rates for Zika virus in different genetic backgrounds of Ae. aegypti. We observed that the proportion of Zika virus-infected adults was dependent on the interaction between the larval microbiome and Ae. aegypti host genetics. By using the larval microbiome as a component of the environment, these results demonstrate that interactions between the Ae. aegypti genotype and its environment can influence Zika virus infection. As Ae. aegypti expands and adapts to new environments under climate change, an understanding of how different genotypes interact with the same environment will be crucial for implementing arbovirus transmission control strategies.
Collapse
Affiliation(s)
- Anastasia Accoti
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Laura C. Multini
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Babakar Diouf
- Medical Zoology Unit, Institute Pasteur Dakar, Dakar, Senegal
| | - Margaret Becker
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
| | - Julia Vulcan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Massamba Sylla
- Laboratory Vectors & Parasites, Department of Livestock Sciences and Techniques Sine Saloum University El Hadji Ibrahima NIASS (USSEIN), Kaffrine, Senegal
| | - Dianne Y. Yap
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mawlouth Diallo
- Medical Zoology Unit, Institute Pasteur Dakar, Dakar, Senegal
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
| | - Alioune Gaye
- Medical Zoology Unit, Institute Pasteur Dakar, Dakar, Senegal
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
| | - Laura B. Dickson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Vector-borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
10
|
Elliott K, Caicedo PA, Haunerland NH, Lowenberger C. Profiling lipidomic changes in dengue-resistant and dengue-susceptible strains of Colombian Aedes aegypti after dengue virus challenge. PLoS Negl Trop Dis 2023; 17:e0011676. [PMID: 37847671 PMCID: PMC10581493 DOI: 10.1371/journal.pntd.0011676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
The mosquito Aedes aegypti is the primary vector for all four serotypes of dengue viruses (DENV1-4), which infect millions across the globe each year. Traditional insecticide programs have been transiently effective at minimizing cases; however, insecticide resistance and habitat expansion have caused cases of DENV to surge over the last decade. There is an urgent need to develop novel vector control measures, but these are contingent on a detailed understanding of host-parasite interactions. Here, we have utilized lipidomics to survey the profiles of naturally DENV-resistant (Cali-MIB) or susceptible (Cali-S) populations of Ae. aegypti, isolated from Cali, Colombia, when fed on blood meals containing DENV. Control insects were fed on a DENV-free blood meal. Midguts were dissected from Cali-MIB and Cali-S females at three time points post-infectious blood meal, 18, 24 and 36h, to identify changes in the lipidome at key times associated with the entry, replication and exit of DENV from midgut cells. We used principal component analysis to visualize broad patterns in lipidomic profiles between the treatment groups, and significance analysis of microarray to determine lipids that were altered in response to viral challenge. These data can be used to identify molecules or metabolic pathways particular to the susceptible or refractory phenotypes, and possibly lead to the generation of stable, DENV-resistant strains of Ae. aegypti.
Collapse
Affiliation(s)
- Keenan Elliott
- Simon Fraser University, Department of Biological Sciences, C2D2 Research Group, Burnaby, British Columbia, Canada
| | - Paola A. Caicedo
- Universidad Icesi, Natural Science Faculty, Department of Biology, Cali, Colombia
| | - Norbert H. Haunerland
- Simon Fraser University, Department of Biological Sciences, C2D2 Research Group, Burnaby, British Columbia, Canada
| | - Carl Lowenberger
- Simon Fraser University, Department of Biological Sciences, C2D2 Research Group, Burnaby, British Columbia, Canada
| |
Collapse
|
11
|
Accoti A, Multini LC, Diouf B, Becker M, Vulcan J, Sylla M, Yap DAY, Khanipov K, Weaver SC, Diallo M, Gaye A, Dickson LB. The influence of the larval microbiome on susceptibility to Zika virus is mosquito genotype dependent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540191. [PMID: 37215022 PMCID: PMC10197687 DOI: 10.1101/2023.05.10.540191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The microbiome of the mosquito Aedes aegypti is largely determined by the environment and influences mosquito susceptibility for arthropod-borne viruses (arboviruses). Larval interactions with different bacteria can influence adult Ae. aegypti replication of arboviruses, but little is known about the role that mosquito host genetics play in determining how larval-bacterial interactions shape Ae aegypti susceptibility to arboviruses. To address this question, we isolated single bacterial isolates and complex microbiomes from Ae. aegypti larvae from various field sites in Senegal. Either single bacterial isolates or complex microbiomes were added to two different genetic backgrounds of Ae. aegypti in a gnotobiotic larval system. Using 16S amplicon sequencing we show that similarities in bacterial community structures when given identical microbiomes between different genetic backgrounds of Ae. aegypti was dependent on the source microbiome, and the abundance of single bacterial taxa differed between Ae. aegypti genotypes. Using single bacterial isolates or the entire preserved complex microbiome, we tested the ability of specific microbiomes to drive differences in infection rates for Zika virus in different genetic backgrounds of Ae. aegypti . We observed that the proportion of Zika virus-infected adults was dependent on the interaction between the larval microbiome and Ae. aegypti host genetics. By using the larval microbiome as a component of the environment, these results demonstrate that interactions between the Ae. aegypti genotype and its environment can influence Zika virus infection. As Ae. aegypti expands and adapts to new environments under climate change, an understanding of how different genotypes interact with the same environment will be crucial for implementing arbovirus transmission control strategies.
Collapse
|
12
|
Ratnayake OC, Chotiwan N, Saavedra-Rodriguez K, Perera R. The buzz in the field: the interaction between viruses, mosquitoes, and metabolism. Front Cell Infect Microbiol 2023; 13:1128577. [PMID: 37360524 PMCID: PMC10289420 DOI: 10.3389/fcimb.2023.1128577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 06/28/2023] Open
Abstract
Among many medically important pathogens, arboviruses like dengue, Zika and chikungunya cause severe health and economic burdens especially in developing countries. These viruses are primarily vectored by mosquitoes. Having surmounted geographical barriers and threat of control strategies, these vectors continue to conquer many areas of the globe exposing more than half of the world's population to these viruses. Unfortunately, no medical interventions have been capable so far to produce successful vaccines or antivirals against many of these viruses. Thus, vector control remains the fundamental strategy to prevent disease transmission. The long-established understanding regarding the replication of these viruses is that they reshape both human and mosquito host cellular membranes upon infection for their replicative benefit. This leads to or is a result of significant alterations in lipid metabolism. Metabolism involves complex chemical reactions in the body that are essential for general physiological functions and survival of an organism. Finely tuned metabolic homeostases are maintained in healthy organisms. However, a simple stimulus like a viral infection can alter this homeostatic landscape driving considerable phenotypic change. Better comprehension of these mechanisms can serve as innovative control strategies against these vectors and viruses. Here, we review the metabolic basis of fundamental mosquito biology and virus-vector interactions. The cited work provides compelling evidence that targeting metabolism can be a paradigm shift and provide potent tools for vector control as well as tools to answer many unresolved questions and gaps in the field of arbovirology.
Collapse
Affiliation(s)
- Oshani C. Ratnayake
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Nunya Chotiwan
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Karla Saavedra-Rodriguez
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rushika Perera
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
13
|
Cell Type Variability in the Incorporation of Lipids in the Dengue Virus Virion. Viruses 2022; 14:v14112566. [PMID: 36423175 PMCID: PMC9698084 DOI: 10.3390/v14112566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
A lipid bilayer produced from the host membrane makes up around 20% of the weight of the dengue virus (DENV) virion and is crucial for virus entry. Despite its significance, the virion's lipid composition is still poorly understood. In tandem with lipid profiles of the cells utilised to generate the virions, this work determined a partial lipid profile of DENV virions derived from two cell lines (C6/36 and LLC-MK2). The results showed distinctive profiles between the two cell types. In the mammalian LLC-MK2 cells, 30.8% (73/237 identified lipid species; 31 upregulated, 42 downregulated) of lipid species were altered in response to infection, whilst in insect C6/36 cells only 12.0% (25/208; 19 upregulated, 6 downregulated) of lipid species showed alterations in response to infection. For virions from LLC-MK2 cells, 14 lipids were detected specifically in virions with a further seven lipids being enriched (over mock controls). For virions from C6/36 cells, 43 lipids were detected that were not seen in mock preparations, with a further 16 being specifically enriched (over mock control). These results provide the first lipid description of DENV virions produced in mammalian and mosquito cells, as well as the lipid changes in the corresponding infected cells.
Collapse
|
14
|
da Costa RA, da Rocha JAP, Pinheiro AS, da Costa ADSS, da Rocha ECM, Silva RC, Gonçalves ADS, Santos CBR, Brasil DDSB. A Computational Approach Applied to the Study of Potential Allosteric Inhibitors Protease NS2B/NS3 from Dengue Virus. Molecules 2022; 27:molecules27134118. [PMID: 35807364 PMCID: PMC9268547 DOI: 10.3390/molecules27134118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
Dengue virus (DENV) is a danger to more than 400 million people in the world, and there is no specific treatment. Thus, there is an urgent need to develop an effective method to combat this pathology. NS2B/NS3 protease is an important biological target due it being necessary for viral replication and the fact that it promotes the spread of the infection. Thus, this study aimed to design DENV NS2B/NS3pro allosteric inhibitors from a matrix compound. The search was conducted using the Swiss Similarity tool. The compounds were subjected to molecular docking calculations, molecular dynamics simulations (MD) and free energy calculations. The molecular docking results showed that two compounds, ZINC000001680989 and ZINC000001679427, were promising and performed important hydrogen interactions with the Asn152, Leu149 and Ala164 residues, showing the same interactions obtained in the literature. In the MD, the results indicated that five residues, Lys74, Leu76, Asn152, Leu149 and Ala166, contribute to the stability of the ligand at the allosteric site for all of the simulated systems. Hydrophobic, electrostatic and van der Waals interactions had significant effects on binding affinity. Physicochemical properties, lipophilicity, water solubility, pharmacokinetics, druglikeness and medicinal chemistry were evaluated for four compounds that were more promising, showed negative indices for the potential penetration of the Blood Brain Barrier and expressed high human intestinal absorption, indicating a low risk of central nervous system depression or drowsiness as the the side effects. The compound ZINC000006694490 exhibited an alert with a plausible level of toxicity for the purine base chemical moiety, indicating hepatotoxicity and chromosome damage in vivo in mouse, rat and human organisms. All of the compounds selected in this study showed a synthetic accessibility (SA) score lower than 4, suggesting the ease of new syntheses. The results corroborate with other studies in the literature, and the computational approach used here can contribute to the discovery of new and potent anti-dengue agents.
Collapse
Affiliation(s)
- Renato A. da Costa
- Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.S.P.); (A.d.S.S.d.C.); (D.d.S.B.B.)
- Federal Institute of Education, Science and Technology of Pará Campus Castanhal, Castanhal 68740-970, PA, Brazil
- Correspondence: ; Tel.: +55-91-985484622
| | - João A. P. da Rocha
- Federal Institute of Education, Science and Technology of Pará—Campus Bragança, Bragança 68600-000, PA, Brazil; (J.A.P.d.R.); (E.C.M.d.R.)
| | - Alan S. Pinheiro
- Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.S.P.); (A.d.S.S.d.C.); (D.d.S.B.B.)
| | - Andréia do S. S. da Costa
- Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.S.P.); (A.d.S.S.d.C.); (D.d.S.B.B.)
| | - Elaine C. M. da Rocha
- Federal Institute of Education, Science and Technology of Pará—Campus Bragança, Bragança 68600-000, PA, Brazil; (J.A.P.d.R.); (E.C.M.d.R.)
| | - Rai. C. Silva
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil;
| | - Arlan da S. Gonçalves
- Federal Institute of Education, Science and Technology of Espírito Santo, Vila Velha 29106-010, ES, Brazil;
| | - Cleydson B. R. Santos
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil;
| | - Davi do S. B. Brasil
- Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.S.P.); (A.d.S.S.d.C.); (D.d.S.B.B.)
| |
Collapse
|
15
|
Li Y, Li Y, Wang G, Li J, Zhang M, Wu J, Liang C, Zhou H, Tang J, Zhu G. Differential metabolome responses to deltamethrin between resistant and susceptible Anopheles sinensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113553. [PMID: 35483147 DOI: 10.1016/j.ecoenv.2022.113553] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Insecticide-based vector control measures play an important role in the prevention and control of insect-borne infectious diseases such as malaria; however, insecticide resistance has become a severe global problem for vector control. To date, the metabolic mechanism by which Anopheles sinensis, the most widely distributed malaria vector in China and Asia, detoxifies insecticides is not clear. In this study, the molecular metabolite changes in both the larval and adult stages of deltamethrin susceptible (DS) and deltamethrin-resistant (DR) An. sinensis mosquitoes were analysed by using liquid chromatography tandem mass spectrometry (LC-MS/MS) after exposure to deltamethrin. There were 127 differential metabolites in larval DR An. sinensis and 168 in adults. Five metabolites (glycerophosphocholine, deoxyguanosine, DL-methionine sulfoxide, D-myo-inositol-3-phosphate and N-acetyl-alpha-D-glucosamine1-phosphate) were downregulated in both DR larvae and adults, and one metabolite (aspartyl-glutamine) was upregulated, and the ratio of down- and up-regulation of these metabolites was 5:1. The differential metabolites between the DS and DR mosquitos were mainly classified into organic oxygen compounds, carboxylic acids and their derivatives, glycerophospholipids and purine nucleotides, and the common pathway enriched in both the larval and adult DR An. sinensis was glycerophospholipid metabolism. The findings of this study provide further mechanistic understanding of insecticide resistance in An. sinensis.
Collapse
Affiliation(s)
- Yueyue Li
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Yashu Li
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Guanxi Wang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Julin Li
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Meihua Zhang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Jingyao Wu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Cheng Liang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Huayun Zhou
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Jianxia Tang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Guoding Zhu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
16
|
Kumar S, Bhardwaj VK, Singh R, Das P, Purohit R. Identification of acridinedione scaffolds as potential inhibitor of DENV-2 C protein: An in silico strategy to combat dengue. J Cell Biochem 2022; 123:935-946. [PMID: 35315127 DOI: 10.1002/jcb.30237] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/22/2022]
Abstract
Dengue is a prominent viral disease transmitted by mosquitoes to humans that affects mainly tropical and subtropical countries worldwide. The global spread of dengue virus (DENV) is mainly occurred by Aedes aegypti and Aedes albopictus mosquitoes. The dengue virus serotypes-2 (DENV-2) is a widely prevalent serotype of DENV, that causes the hemorrhagic fever and bleeding in the mucosa, which can be fatal. In the life cycle of DENV-2, a structural capsid (DENV-2 C) protein forms the nucleocapsid assembly and bind to the viral progeny RNA. For DENV-2 maturation, the nucleocapsid is a vital component. We used virtual ligand screening to filter out the best in-house synthesized acridinedione analogs (DSPD molecules) that could efficiently bind to DENV-2 C protein. The molecular docking and dynamics simulations studies were performed to analyze the effect of DSPD molecules on DENV-2 C protein after binding. Our findings showed that DSPD molecules strongly interacted with DENV-2 C protein, as evident from molecular interactions and several time-dependent molecular dynamics-driven analyses. Moreover, this study was also supported by the thermodynamic binding free energy and steered molecular dynamics simulations. Therefore, we intend to suggest that the DSPD3 molecule could be used as a potential therapeutic molecule against dengue complications as compared to the cocrystallized inhibitor ST-148. However, further studies are required to demonstrate the ability of DSPD3 to induce DENV-2 C tetramer formation.
Collapse
Affiliation(s)
- Sachin Kumar
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vijay K Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Rahul Singh
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Pralay Das
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.,Department of Natural Product Chemistry and Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
17
|
Giraud É, Varet H, Legendre R, Sismeiro O, Aubry F, Dabo S, Dickson LB, Moro CV, Lambrechts L. Mosquito-bacteria interactions during larval development trigger metabolic changes with carry-over effects on adult fitness. Mol Ecol 2021; 31:1444-1460. [PMID: 34905257 DOI: 10.1111/mec.16327] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
In animals with distinct life stages such as holometabolous insects, adult phenotypic variation is often shaped by the environment of immature stages, including their interactions with microbes colonizing larval habitats. Such carry-over effects were previously observed for several adult traits of the mosquito Aedes aegypti after larval exposure to different bacteria, but the mechanistic underpinnings are unknown. Here, we investigated the molecular changes triggered by gnotobiotic larval exposure to different bacteria in Ae. aegypti. We initially screened a panel of 16 bacterial isolates from natural mosquito breeding sites to determine their ability to influence adult life-history traits. We subsequently focused on four bacterial isolates (belonging to Flavobacterium, Lysobacter, Paenibacillus, and Enterobacteriaceae) with significant carry-over effects on adult survival and found that they were associated with distinct transcriptomic profiles throughout mosquito development. Moreover, we detected carry-over effects at the level of gene expression for the Flavobacterium and Paenibacillus isolates. The most prominent transcriptomic changes in gnotobiotic larvae reflected a profound remodeling of lipid metabolism, which translated into phenotypic differences in lipid storage and starvation resistance at the adult stage. Together, our findings indicate that larval exposure to environmental bacteria trigger substantial physiological changes that impact adult fitness, uncovering a possible mechanism underlying carry-over effects of mosquito-bacteria interactions during larval development.
Collapse
Affiliation(s)
- Émilie Giraud
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, 75015, Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, 75015, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, 75015, Paris, France
| | - Rachel Legendre
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, 75015, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, 75015, Paris, France
| | - Odile Sismeiro
- Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, 75015, Paris, France.,Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS, UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, 75015, Paris, France
| | - Fabien Aubry
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, 75015, Paris, France
| | - Stéphanie Dabo
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, 75015, Paris, France
| | - Laura B Dickson
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, 75015, Paris, France.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Claire Valiente Moro
- Univ Lyon, CNRS, INRAE, UMR Écologie Microbienne, Université Claude Bernard Lyon 1, VetAgro Sup, F-69622, Villeurbanne, France
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, 75015, Paris, France
| |
Collapse
|
18
|
Vial T, Marti G, Missé D, Pompon J. Lipid Interactions Between Flaviviruses and Mosquito Vectors. Front Physiol 2021; 12:763195. [PMID: 34899388 PMCID: PMC8660100 DOI: 10.3389/fphys.2021.763195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
Mosquito-borne flaviviruses, such as dengue (DENV), Zika (ZIKV), yellow fever (YFV), West Nile (WNV), and Japanese encephalitis (JEV) viruses, threaten a large part of the human populations. In absence of therapeutics and effective vaccines against each flaviviruses, targeting viral metabolic requirements in mosquitoes may hold the key to new intervention strategies. Development of metabolomics in the last decade opened a new field of research: mosquito metabolomics. It is now clear that flaviviruses rely on mosquito lipids, especially phospholipids, for their cellular cycle and propagation. Here, we review the biosyntheses of, biochemical properties of and flaviviral interactions with mosquito phospholipids. Phospholipids are structural lipids with a polar headgroup and apolar acyl chains, enabling the formation of lipid bilayer that form plasma- and endomembranes. Phospholipids are mostly synthesized through the de novo pathway and remodeling cycle. Variations in headgroup and acyl chains influence phospholipid physicochemical properties and consequently the membrane behavior. Flaviviruses interact with cellular membranes at every step of their cellular cycle. Recent evidence demonstrates that flaviviruses reconfigure the phospholipidome in mosquitoes by regulating phospholipid syntheses to increase virus multiplication. Identifying the phospholipids involved and understanding how flaviviruses regulate these in mosquitoes is required to design new interventions.
Collapse
Affiliation(s)
- Thomas Vial
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,UMR 152 PHARMADEV-IRD, Université Paul Sabatier, Toulouse, France
| | - Guillaume Marti
- LRSV (UMR 5546), CNRS, Université de Toulouse, Toulouse, France.,MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Dorothée Missé
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| | - Julien Pompon
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
19
|
Siriphanitchakorn T, Kini RM, Ooi EE, Choy MM. Revisiting dengue virus-mosquito interactions: molecular insights into viral fitness. J Gen Virol 2021; 102. [PMID: 34845981 PMCID: PMC8742994 DOI: 10.1099/jgv.0.001693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV), like other viruses, closely interacts with the host cell machinery to complete its life cycle. Over the course of infection, DENV interacts with several host factors with pro-viral activities to support its infection. Meanwhile, it has to evade or counteract host factors with anti-viral activities which inhibit its infection. These molecular virus-host interactions play a crucial role in determining the success of DENV infection. Deciphering such interactions is thus paramount to understanding viral fitness in its natural hosts. While DENV-mammalian host interactions have been extensively studied, not much has been done to characterize DENV-mosquito host interactions despite its importance in controlling DENV transmission. Here, to provide a snapshot of our current understanding of DENV-mosquito interactions, we review the literature that identified host factors and cellular processes related to DENV infection in its mosquito vectors, Aedes aegypti and Aedes albopictus, with a particular focus on DENV-mosquito omics studies. This knowledge provides fundamental insights into the DENV life cycle, and could contribute to the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Tanamas Siriphanitchakorn
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, 117558 Singapore, Singapore
| | - R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117558 Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, 117549 Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Milly M Choy
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore, Singapore
| |
Collapse
|
20
|
Horvath TD, Dagan S, Scaraffia PY. Unraveling mosquito metabolism with mass spectrometry-based metabolomics. Trends Parasitol 2021; 37:747-761. [PMID: 33896683 PMCID: PMC8282712 DOI: 10.1016/j.pt.2021.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Nearly half a million people die annually due to mosquito-borne diseases. Despite aggressive mosquito population-control efforts, current strategies are limited in their ability to control these vectors. A better understanding of mosquito metabolism through modern approaches can contribute to the discovery of novel metabolic targets and/or regulators and lead to the development of better mosquito-control strategies. Currently, cutting-edge technologies such as gas or liquid chromatography-mass spectrometry-based metabolomics are considered 'mature technologies' in many life-science disciplines but are still an emerging area of research in medical entomology. This review primarily discusses recent developments and progress in the application of mass spectrometry-based metabolomics to answer multiple biological questions related to mosquito metabolism.
Collapse
Affiliation(s)
- Thomas D Horvath
- Department of Immunology and Pathology, Baylor College of Medicine, and Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Shai Dagan
- Israel Institute for Biological Research, Ness Ziona, Israel, 74100, Israel
| | - Patricia Y Scaraffia
- Department of Tropical Medicine and Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
21
|
Marconcini M, Pischedda E, Houé V, Palatini U, Lozada-Chávez N, Sogliani D, Failloux AB, Bonizzoni M. Profile of Small RNAs, vDNA Forms and Viral Integrations in Late Chikungunya Virus Infection of Aedes albopictus Mosquitoes. Viruses 2021; 13:553. [PMID: 33806250 PMCID: PMC8066115 DOI: 10.3390/v13040553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/07/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
The Asian tiger mosquito Aedes albopictus is contributing to the (re)-emergence of Chikungunya virus (CHIKV). To gain insights into the molecular underpinning of viral persistence, which renders a mosquito a life-long vector, we coupled small RNA and whole genome sequencing approaches on carcasses and ovaries of mosquitoes sampled 14 days post CHIKV infection and investigated the profile of small RNAs and the presence of vDNA fragments. Since Aedes genomes harbor nonretroviral Endogenous Viral Elements (nrEVEs) which confers tolerance to cognate viral infections in ovaries, we also tested whether nrEVEs are formed after CHIKV infection. We show that while small interfering (si)RNAs are evenly distributed along the full viral genome, PIWI-interacting (pi)RNAs mostly arise from a ~1000 bp window, from which a unique vDNA fragment is identified. CHIKV infection does not result in the formation of new nrEVEs, but piRNAs derived from existing nrEVEs correlate with differential expression of an endogenous transcript. These results demonstrate that all three RNAi pathways contribute to the homeostasis during the late stage of CHIKV infection, but in different ways, ranging from directly targeting the viral sequence to regulating the expression of mosquito transcripts and expand the role of nrEVEs beyond immunity against cognate viruses.
Collapse
Affiliation(s)
- Michele Marconcini
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Elisa Pischedda
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Vincent Houé
- Arbovirus and Insect Vectors Unit, Department of Virology, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France; (V.H.); (A.-B.F.)
| | - Umberto Palatini
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Nabor Lozada-Chávez
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Davide Sogliani
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Anna-Bella Failloux
- Arbovirus and Insect Vectors Unit, Department of Virology, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France; (V.H.); (A.-B.F.)
| | - Mariangela Bonizzoni
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| |
Collapse
|