1
|
Melville DW, Meyer M, Kümmerle C, Alvarado-Barrantes KA, Wilhelm K, Sommer S, Tschapka M, Risely A. Delayed feeding disrupts diurnal oscillations in the gut microbiome of a neotropical bat in captivity. FEMS Microbiol Ecol 2025; 101:fiaf012. [PMID: 39844346 PMCID: PMC11783575 DOI: 10.1093/femsec/fiaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/05/2025] [Accepted: 01/21/2025] [Indexed: 01/24/2025] Open
Abstract
Diurnal rhythms of the gut microbiota are emerging as an important yet often overlooked facet of microbial ecology. Feeding is thought to stimulate gut microbial rhythmicity, but this has not been explicitly tested. Moreover, the role of the gut environment is entirely unexplored, with rhythmic changes to gut pH rather than feeding per se possibly affecting gut microbial fluctuations. In this study, we experimentally manipulated the feeding schedule of captive lesser long-nosed bats, Leptonycteris yerbabuenae, to dissociate photic and feeding cues, and measured the faecal microbiota and gut pH every 2 h. We detected strong diurnal rhythms in both microbial alpha diversity and beta diversity as well as in pH within the control group. However, a delay in feeding disrupted oscillations of gut microbial diversity and composition, but did not affect rhythms in gut pH. The oscillations of some genera, such as Streptococcus, which aid in metabolizing nutrients, shifted in accordance with the delayed-feeding cue and were correlated with pH. For other bacterial genera, oscillations were disturbed and no connection to pH was found. Our findings suggest that the rhythmic proliferation of bacteria matches peak feeding times, providing evidence that diurnal rhythms of the gut microbiota likely evolved to optimize their metabolic support to the host's circadian phenotype.
Collapse
Affiliation(s)
- Dominik W Melville
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Magdalena Meyer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Corbinian Kümmerle
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | | | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Alice Risely
- School of Science, Engineering and Environment, Salford University, M5 4WT Manchester, United Kingdom
| |
Collapse
|
2
|
Yu Q, Wong KK, Lei OK, Armada-da-Silva PAS, Wu Z, Nie J, Shi Q, Kong Z. Acute ketone monoester supplementation in young adults: modulating metabolic and neurocognitive functions across body weights. Appl Physiol Nutr Metab 2025; 50:1-12. [PMID: 39418669 DOI: 10.1139/apnm-2024-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This study investigated the acute effects of ketone monoester on metabolic and neurocognitive indicators and underlying metabolism-brain-cognition interactions among young adults of healthy weight (HW) and those with overweight/obesity (OW). Forty participants were divided into two groups: HW (n = 20, age 23.80 ± 3.96 years, body mass index (BMI) 21.49 ± 1.80 kg/m2) and OW (n = 20, age 22.00 ± 2.13 years, BMI 28.23 ± 3.48 kg/m2). Each participant completed two trials (ketone monoester vs. placebo, 395 mg/kg dose) in a randomized order. Metabolic indicators (blood beta-hydroxybutyrate (BHB) and glucose) and neurocognitive function (causal density via functional near-infrared spectroscopy and cognitive interference via the Stroop task) were measured at baseline, 30 min, and 90 min post-supplementation. A chain mediation model was constructed to test the indirect effects of BHB level on cognitive interference through mediators like blood glucose and causal density. In the linear mixed models, significant effects were observed for trial (β = -0.92, 0.20, -0.04, 25.53) and assessment time (β = 0.50, -0.14, 0.09, -62.88) in BHB, glucose, causal density, and cognitive interference (p < 0.05), but not for group factors. Compared to OW, the effects of ketone monoester on prefrontal connectomes were more enduring in the HW (p < 0.05). Elevated BHB level improved cognitive function through decreasing glucose level and increasing causal density, with an estimate of -0.63. Acute ketone monoester supplementation elevated levels of blood BHB and prefrontal connectomes and decreased levels of glucose and cognitive interference, regardless of weight status. Elevated blood BHB enhanced cognitive function through multi-tiered neurometabolic pathways. Clinical trial registration: ClinicalTrials.gov (ID: NCT06368297).
Collapse
Affiliation(s)
- Qian Yu
- Faculty of Education, University of Macau, Macao, China
| | - Ka Kit Wong
- Faculty of Education, University of Macau, Macao, China
| | - On Kei Lei
- Faculty of Education, University of Macau, Macao, China
| | | | - Zongze Wu
- Faculty of Education, University of Macau, Macao, China
- Faculty of Sport, University of Porto, Portugal
| | - Jinlei Nie
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, China
| | - Qingde Shi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, China
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao, China
| |
Collapse
|
3
|
Helbling JC, Ginieis R, Mortessagne P, Ruiz-Gayo M, Bakoyiannis I, Ducourneau EG, Ciocca D, Bouleté IM, Favereaux A, Ces A, Montalban E, Capuron L, Jeanneteau F, Ferreira G, Challet E, Moisan MP. Time-restricted feeding prevents memory impairments induced by obesogenic diet consumption, via hippocampal thyroid hormone signaling. Mol Metab 2024; 90:102061. [PMID: 39515608 DOI: 10.1016/j.molmet.2024.102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE The early consumption of calorie-rich diet disrupts circadian rhythms and has adverse effects on memory, yet the effects of time-restricted feeding (TRF) and the underlying molecular mechanisms are unknown. Here, we set out to identify the behavioral and molecular circadian rhythms disruptions generated by juvenile obesogenic diet consumption and their restoration by TRF in male mice. METHODS Metabolic rhythms were measured by indirect calorimetry and memory performances by behavioral tasks. Hippocampal translatome (pS6_TRAP), enrichment and co-regulated gene network analyses were conducted to identify the molecular pathways involved in memory impairments and their restoration by TRF. Differential exon usage analyses, mass spectrometry and pharmacological intervention were used to confirm thyroid hormone signaling involvement. RESULTS We show that four weeks of TRF restore the rhythmicity of metabolic parameters and prevents memory impairments in mice fed a high fat-high sucrose (HFS) diet since weaning, independently of body fat levels. Hippocampal translatome and differential exon usage analyses indicate that impaired memory of mice under ad libitum HFS diet is accompanied by reduced thyroid hormone signaling and altered expression of astrocytic genes regulating glutamate neurotransmission. TRF restored the diurnal expression variation of part of these genes and intra-hippocampal infusion of T3, the active form of thyroid hormone, rescues memory performances and astrocytic gene expression of ad libitum HFS diet-fed mice. CONCLUSIONS Thus, thyroid hormones contribute to the TRF positive effects on both metabolism and memory in mice fed an obesogenic diet, highlighting this nutritional approach as a powerful tool in addressing obesity brain comorbidities and paving the way for further mechanistic studies on hippocampal thyroid signaling.
Collapse
Affiliation(s)
- Jean-Christophe Helbling
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Teams NutriPsy & FoodCircus, Bordeaux, France
| | - Rachel Ginieis
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Teams NutriPsy & FoodCircus, Bordeaux, France
| | - Pierre Mortessagne
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Teams NutriPsy & FoodCircus, Bordeaux, France
| | - Mariano Ruiz-Gayo
- Department of Health and Pharmaceutical Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Ioannis Bakoyiannis
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Teams NutriPsy & FoodCircus, Bordeaux, France
| | - Eva-Gunnel Ducourneau
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Teams NutriPsy & FoodCircus, Bordeaux, France
| | - Dominique Ciocca
- Chronobiotron, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France
| | - Illona-Marie Bouleté
- Chronobiotron, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France
| | - Alexandre Favereaux
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Aurélia Ces
- Institute of Cellular and Integrative Neurosciences, CNRS, University of Strasbourg, France
| | - Enrica Montalban
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Teams NutriPsy & FoodCircus, Bordeaux, France
| | - Lucile Capuron
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Teams NutriPsy & FoodCircus, Bordeaux, France
| | - Freddy Jeanneteau
- Institut de Génomique Fonctionnelle, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Guillaume Ferreira
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Teams NutriPsy & FoodCircus, Bordeaux, France
| | - Etienne Challet
- Institute of Cellular and Integrative Neurosciences, CNRS, University of Strasbourg, France
| | - Marie-Pierre Moisan
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Teams NutriPsy & FoodCircus, Bordeaux, France.
| |
Collapse
|
4
|
Bai H, Zuo X, Zhao C, Zhang S, Feng X. Non-nutritive Sweetener Aspartame Disrupts Circadian Behavior and Causes Memory Impairment in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23478-23492. [PMID: 39382230 DOI: 10.1021/acs.jafc.4c05394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
As a non-nutritive sweetener, aspartame is widely used in everyday life. However, its safety is highly controversial, especially its effects on neurobehavior. We evaluated the effects of chronic daily oral administration of aspartame-containing drinking water (at doses equivalent to 7-28% of the FDA-recommended human DIV) on memory and rhythm behaviors in mice and further investigated changes at the molecular level in the brains. Our results demonstrated that mice exposed to aspartame exhibited memory impairment. Disorders of hippocampal neurotransmitter metabolism and pathological damage may be responsible for the aspartame-induced memory impairment via inhibition of the BDNF/TrkB pathway. Furthermore, our findings suggested that disturbed clock gene expression in the hypothalamus after aspartame exposure led to altered rest-activity behavior, and this disruption of the circadian rhythm may exacerbate memory impairment. This study highlights the negative neurobehavioral effects of aspartame and provides valuable insights into its rational and safe use.
Collapse
Affiliation(s)
- Huijuan Bai
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiang Zuo
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Chengtian Zhao
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shuhui Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xizeng Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Chen K, Ashtiani KC, Monfared RV, Baldi P, Alachkar A. Circadian cilia transcriptome in mouse brain across physiological and pathological states. Mol Brain 2024; 17:67. [PMID: 39304885 PMCID: PMC11414107 DOI: 10.1186/s13041-024-01143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Primary cilia are dynamic sensory organelles that continuously undergo structural modifications in response to environmental and cellular signals, many of which exhibit rhythmic patterns. Building on our previous findings of rhythmic cilia-related gene expression in diurnal primates (baboon), this study extends the investigation to the nocturnal mouse brain to identify circadian patterns of cilia gene expression across brain regions. We used computational techniques and transcriptomic data from four publicly available databases, to examine the circadian expression of cilia-associated genes within six brain areas: brainstem, cerebellum, hippocampus, hypothalamus, striatum, and suprachiasmatic nucleus. Our analysis reveals that a substantial proportion of cilia transcripts exhibit circadian rhythmicity across the examined regions, with notable overrepresentation in the striatum, hippocampus, and cerebellum. We also demonstrate region-specific variations in the abundance and timing of circadian cilia genes' peaks, indicating an adaptation to the distinct physiological roles of each brain region. Additionally, we show that the rhythmic patterns of cilia transcripts are shifted under various physiological and pathological conditions, including modulation of the dopamine system, high-fat diet, and epileptic conditions, indicating the adaptable nature of cilia transcripts' oscillation. While limited to a few mouse brain regions, our study provides initial insights into the distinct circadian patterns of cilia transcripts and highlights the need for future research to expand the mapping across wider brain areas to fully understand the role of cilia's spatiotemporal dynamics in brain functions.
Collapse
Affiliation(s)
- Kiki Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, 356A Med Surge II, Irvine, CA, 92697-4625, USA
| | - Kousha Changizi Ashtiani
- Departments of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA, 92697-4625, USA
| | - Roudabeh Vakil Monfared
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, 356A Med Surge II, Irvine, CA, 92697-4625, USA
| | - Pierre Baldi
- Departments of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA, 92697-4625, USA.
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, 92697, USA.
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, 356A Med Surge II, Irvine, CA, 92697-4625, USA.
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
6
|
Wu K, Li X, Bai Y, Heng BC, Zhang X, Deng X. The circadian clock in enamel development. Int J Oral Sci 2024; 16:56. [PMID: 39242565 PMCID: PMC11379899 DOI: 10.1038/s41368-024-00317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 09/09/2024] Open
Abstract
Circadian rhythms are self-sustaining oscillations within biological systems that play key roles in a diverse multitude of physiological processes. The circadian clock mechanisms in brain and peripheral tissues can oscillate independently or be synchronized/disrupted by external stimuli. Dental enamel is a type of mineralized tissue that forms the exterior surface of the tooth crown. Incremental Retzius lines are readily observable microstructures of mature tooth enamel that indicate the regulation of amelogenesis by circadian rhythms. Teeth enamel is formed by enamel-forming cells known as ameloblasts, which are regulated and orchestrated by the circadian clock during amelogenesis. This review will first examine the key roles of the circadian clock in regulating ameloblasts and amelogenesis. Several physiological processes are involved, including gene expression, cell morphology, metabolic changes, matrix deposition, ion transportation, and mineralization. Next, the potential detrimental effects of circadian rhythm disruption on enamel formation are discussed. Circadian rhythm disruption can directly lead to Enamel Hypoplasia, which might also be a potential causative mechanism of amelogenesis imperfecta. Finally, future research trajectory in this field is extrapolated. It is hoped that this review will inspire more intensive research efforts and provide relevant cues in formulating novel therapeutic strategies for preventing tooth enamel developmental abnormalities.
Collapse
Affiliation(s)
- Ke Wu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- 4th Division, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.
- Oral Translational Medicine Research Center Joint Training base for Shanxi Provincial Key Laboratory in Oral and Maxillofacial Repair Reconstruction and Regeneration The First People's Hospital of Jinzhong, Jinzhong, China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.
| |
Collapse
|
7
|
Duan J, Ngo MN, Karri SS, Tsoi LC, Gudjonsson JE, Shahbaba B, Lowengrub J, Andersen B. tauFisher predicts circadian time from a single sample of bulk and single-cell pseudobulk transcriptomic data. Nat Commun 2024; 15:3840. [PMID: 38714698 PMCID: PMC11076472 DOI: 10.1038/s41467-024-48041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/16/2024] [Indexed: 05/10/2024] Open
Abstract
As the circadian clock regulates fundamental biological processes, disrupted clocks are often observed in patients and diseased tissues. Determining the circadian time of the patient or the tissue of focus is essential in circadian medicine and research. Here we present tauFisher, a computational pipeline that accurately predicts circadian time from a single transcriptomic sample by finding correlations between rhythmic genes within the sample. We demonstrate tauFisher's performance in adding timestamps to both bulk and single-cell transcriptomic samples collected from multiple tissue types and experimental settings. Application of tauFisher at a cell-type level in a single-cell RNAseq dataset collected from mouse dermal skin implies that greater circadian phase heterogeneity may explain the dampened rhythm of collective core clock gene expression in dermal immune cells compared to dermal fibroblasts. Given its robustness and generalizability across assay platforms, experimental setups, and tissue types, as well as its potential application in single-cell RNAseq data analysis, tauFisher is a promising tool that facilitates circadian medicine and research.
Collapse
Affiliation(s)
- Junyan Duan
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, CA, USA
| | - Michelle N Ngo
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, CA, USA
| | - Satya Swaroop Karri
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Lam C Tsoi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Mary H Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Johann E Gudjonsson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Mary H Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Babak Shahbaba
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, USA.
- Department of Statistics, University of California Irvine, Irvine, CA, USA.
| | - John Lowengrub
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, USA.
- Department of Mathematics, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| | - Bogi Andersen
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, USA.
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA.
- Department of Medicine, Division of Endocrinology, School of Medicine, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
8
|
Wang Y, Narasimamurthy R, Qu M, Shi N, Guo H, Xue Y, Barker N. Circadian regulation of cancer stem cells and the tumor microenvironment during metastasis. NATURE CANCER 2024; 5:546-556. [PMID: 38654103 DOI: 10.1038/s43018-024-00759-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/07/2024] [Indexed: 04/25/2024]
Abstract
The circadian clock regulates daily rhythms of numerous physiological activities through tightly coordinated modulation of gene expression and biochemical functions. Circadian disruption is associated with enhanced tumor formation and metastasis via dysregulation of key biological processes and modulation of cancer stem cells (CSCs) and their specialized microenvironment. Here, we review how the circadian clock influences CSCs and their local tumor niches in the context of different stages of tumor metastasis. Identifying circadian therapeutic targets could facilitate the development of new treatments that leverage circadian modulation to ablate tumor-resident CSCs, inhibit tumor metastasis and enhance response to current therapies.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rajesh Narasimamurthy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Meng Qu
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Nuolin Shi
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haidong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuezhen Xue
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Nick Barker
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Duan J, Ngo MN, Karri SS, Tsoi LC, Gudjonsson JE, Shahbaba B, Lowengrub J, Andersen B. tauFisher accurately predicts circadian time from a single sample of bulk and single-cell transcriptomic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535473. [PMID: 37066246 PMCID: PMC10104027 DOI: 10.1101/2023.04.04.535473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
As the circadian clock regulates fundamental biological processes, disrupted clocks are often observed in patients and diseased tissues. Determining the circadian time of the patient or the tissue of focus is essential in circadian medicine and research. Here we present tau-Fisher, a computational pipeline that accurately predicts circadian time from a single transcriptomic sample by finding correlations between rhythmic genes within the sample. We demonstrate tauFisher's out-standing performance in both bulk and single-cell transcriptomic data collected from multiple tissue types and experimental settings. Application of tauFisher at a cell-type level in a single-cell RNA-seq dataset collected from mouse dermal skin implies that greater circadian phase heterogeneity may explain the dampened rhythm of collective core clock gene expression in dermal immune cells compared to dermal fibroblasts. Given its robustness and generalizability across assay platforms, experimental setups, and tissue types, as well as its potential application in single-cell RNA-seq data analysis, tauFisher is a promising tool that facilitates circadian medicine and research.
Collapse
|
10
|
Guan S, Wang Z, Zhang R, Chen S, Bu X, Lu J. 3-MCPD Induced Mitochondrial Damage of Renal Cells Via the Rhythmic Protein BMAL1 Targeting SIRT3/SOD2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14351-14364. [PMID: 37750480 DOI: 10.1021/acs.jafc.3c04358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Biorhythm regulates a variety of physiological functions and enables organisms to adapt to changing environments. 3-Monochloro-1,2-propanediol (3-MCPD) is a common food thermal processing contaminant, and the kidney is its toxic target organ. However, the nephrotoxicity mechanism of 3-MCPD has not been fully elucidated. In the study, we found that 3-MCPD caused mitochondrial damage in renal cells by inhibiting the SIRT3/SOD2 pathway. Further, we found that 3-MCPD could interfere with rhythm protein BMAL1 expression at protein and mRNA levels in mice kidney and NRK-52E cells. Simultaneously, the balance of the daily oscillation of SIRT3/SOD2 pathway proteins was impeded under 3-MCPD treatment. To determine the role of BAML1 in mitochondrial damage, we overexpressed the BMAL1 protein. The data showed that BMAL1 overexpression upregulated SIRT3 and SOD2 expression and attenuated mitochondrial damage caused by 3-MCPD. These results indicated that 3-MCPD inhibited the SIRT3/SOD2 pathway by affecting the expression of the rhythm protein BMAL1, thereby inducing mitochondrial damage in renal cells. Taken together, our work reveals that 3-MCPD may possess a toxic effect via circadian clock mechanisms.
Collapse
Affiliation(s)
- Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Ziyi Wang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Ranran Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shanshan Chen
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Xiujuan Bu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
11
|
Whittaker DS, Akhmetova L, Carlin D, Romero H, Welsh DK, Colwell CS, Desplats P. Circadian modulation by time-restricted feeding rescues brain pathology and improves memory in mouse models of Alzheimer's disease. Cell Metab 2023; 35:1704-1721.e6. [PMID: 37607543 PMCID: PMC10591997 DOI: 10.1016/j.cmet.2023.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Circadian disruptions impact nearly all people with Alzheimer's disease (AD), emphasizing both their potential role in pathology and the critical need to investigate the therapeutic potential of circadian-modulating interventions. Here, we show that time-restricted feeding (TRF) without caloric restriction improved key disease components including behavioral timing, disease pathology, hippocampal transcription, and memory in two transgenic (TG) mouse models of AD. We found that TRF had the remarkable capability of simultaneously reducing amyloid deposition, increasing Aβ42 clearance, improving sleep and memory, and normalizing daily transcription patterns of multiple genes, including those associated with AD and neuroinflammation. Thus, our study unveils for the first time the pleiotropic nature of timed feeding on AD, which has far-reaching effects beyond metabolism, ameliorating neurodegeneration and the misalignment of circadian rhythmicity. Since TRF can substantially modify disease trajectory, this intervention has immediate translational potential, addressing the urgent demand for accessible approaches to reduce or halt AD progression.
Collapse
Affiliation(s)
- Daniel S Whittaker
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA
| | - Laila Akhmetova
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Carlin
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA
| | - Haylie Romero
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA
| | - David K Welsh
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Paula Desplats
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Zou S, Liu J, Si H, Huang D, Qi D, Pei X, Lu D, Huang S, Li Z. High-fat intake reshapes the circadian transcriptome profile and metabolism in murine meibomian glands. Front Nutr 2023; 10:1146916. [PMID: 37006922 PMCID: PMC10062204 DOI: 10.3389/fnut.2023.1146916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Background Nutritional and food components reshape the peripheral clock and metabolism. However, whether food challenges affect the circadian clock and metabolism of meibomian glands (MGs) has not been fully explored. This study was designed to analyze alterations in the rhythmic transcriptome and metabolism of MGs of murine fed a balanced diet or a high-fat diet (HFD). Methods Male C57BL/6J mice were maintained on a 12/12 h light/dark cycle and fed ad libitum on normal chow (NC) or HFD for 4 weeks. MGs were collected from sacrificed animals at 3-h intervals throughout a 24-h circadian cycle. The circadian transcriptome of MGs was analyzed via bioinformatics approaches using high-throughput RNA sequencing (RNA-seq). In addition, circadian oscillations of lipid components in MGs were analyzed. Results Meibomian glands displayed robust transcriptome rhythmicity. HFD feeding significantly altered the circadian transcriptome profile of MGs-including composition and phase-and spatiotemporally affected the enriched signaling pathways. In addition, HFD feeding significantly altered the normal rhythmic oscillations of lipid components in MGs. Conclusion Our data show that HFD significantly affects MGs' rhythmicity, which reveals a high sensitivity of MGs' clocks to lipid composition in food.
Collapse
Affiliation(s)
- Sen Zou
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Jiangman Liu
- Department of Ophthalmology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Hongli Si
- Department of Ophthalmology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Duliurui Huang
- Department of Ophthalmology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
13
|
Abstract
Biomedical research on mammals has traditionally neglected females, raising the concern that some scientific findings may generalize poorly to half the population. Although this lack of sex inclusion has been broadly documented, its extent within circadian genomics remains undescribed. To address this gap, we examined sex inclusion practices in a comprehensive collection of publicly available transcriptome studies on daily rhythms. Among 148 studies having samples from mammals in vivo, we found strong underrepresentation of females across organisms and tissues. Overall, only 23 of 123 studies in mice, 0 of 10 studies in rats, and 9 of 15 studies in humans included samples from females. In addition, studies having samples from both sexes tended to have more samples from males than from females. These trends appear to have changed little over time, including since 2016, when the US National Institutes of Health began requiring investigators to consider sex as a biological variable. Our findings highlight an opportunity to dramatically improve representation of females in circadian research and to explore sex differences in daily rhythms at the genome level.
Collapse
Affiliation(s)
- Dora Obodo
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elliot H. Outland
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jacob J. Hughey
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee,Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee,Jacob J. Hughey, Department of Biomedical Informatics, Vanderbilt University Medical Center, 2525 West End Ave., Suite 1475, Nashville, TN 37232, USA; e-mail:
| |
Collapse
|
14
|
Cornuti S, Chen S, Lupori L, Finamore F, Carli F, Samad M, Fenizia S, Caldarelli M, Damiani F, Raimondi F, Mazziotti R, Magnan C, Rocchiccioli S, Gastaldelli A, Baldi P, Tognini P. Brain histone beta-hydroxybutyrylation couples metabolism with gene expression. Cell Mol Life Sci 2023; 80:28. [PMID: 36607453 PMCID: PMC11072080 DOI: 10.1007/s00018-022-04673-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
Little is known about the impact of metabolic stimuli on brain tissue at a molecular level. The ketone body beta-hydroxybutyrate (BHB) can be a signaling molecule regulating gene transcription. Thus, we assessed lysine beta-hydroxybutyrylation (K-bhb) levels in proteins extracted from the cerebral cortex of mice undergoing a ketogenic metabolic challenge (48 h fasting). We found that fasting enhanced K-bhb in a variety of proteins including histone H3. ChIP-seq experiments showed that K9 beta-hydroxybutyrylation of H3 (H3K9-bhb) was significantly enriched by fasting on more than 8000 DNA loci. Transcriptomic analysis showed that H3K9-bhb on enhancers and promoters correlated with active gene expression. One of the most enriched functional annotations both at the epigenetic and transcriptional level was "circadian rhythms''. Indeed, we found that the diurnal oscillation of specific transcripts was modulated by fasting at distinct zeitgeber times both in the cortex and suprachiasmatic nucleus. Moreover, specific changes in locomotor activity daily features were observed during re-feeding after 48-h fasting. Thus, our results suggest that fasting remarkably impinges on the cerebral cortex transcriptional and epigenetic landscape, and BHB acts as a powerful epigenetic molecule in the brain through direct and specific histone marks remodeling in neural tissue cells.
Collapse
Affiliation(s)
- Sara Cornuti
- Bio@SNS Lab, Scuola Normale Superiore, Pisa, Italy
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | | | - Francesco Finamore
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Muntaha Samad
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | - Simona Fenizia
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Matteo Caldarelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Raffaele Mazziotti
- Institute of Neuroscience, National Research Council, Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Christophe Magnan
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | | | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | - Paola Tognini
- Bio@SNS Lab, Scuola Normale Superiore, Pisa, Italy.
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
15
|
Spagnuolo MS, Mazzoli A, Nazzaro M, Troise AD, Gatto C, Tonini C, Colardo M, Segatto M, Scaloni A, Pallottini V, Iossa S, Cigliano L. Long-Lasting Impact of Sugar Intake on Neurotrophins and Neurotransmitters from Adolescence to Young Adulthood in Rat Frontal Cortex. Mol Neurobiol 2023; 60:1004-1020. [PMID: 36394711 PMCID: PMC9849314 DOI: 10.1007/s12035-022-03115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
The detrimental impact of fructose, a widely used sweetener in industrial foods, was previously evidenced on various brain regions. Although adolescents are among the highest consumers of sweet foods, whether brain alterations induced by the sugar intake during this age persist until young adulthood or are rescued returning to a healthy diet remains largely unexplored. To shed light on this issue, just weaned rats were fed with a fructose-rich or control diet for 3 weeks. At the end of the treatment, fructose-fed rats underwent a control diet for a further 3 weeks until young adulthood phase and compared with animals that received from the beginning the healthy control diet. We focused on the consequences induced by the sugar on the main neurotrophins and neurotransmitters in the frontal cortex, as its maturation continues until late adolescence, thus being the last brain region to achieve a full maturity. We observed that fructose intake induces inflammation and oxidative stress, alteration of mitochondrial function, and changes of brain-derived neurotrophic factor (BDNF) and neurotrophin receptors, synaptic proteins, acetylcholine, dopamine, and glutamate levels, as well as increased formation of the glycation end-products Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL). Importantly, many of these alterations (BDNF, CML, CEL, acetylcholinesterase activity, dysregulation of neurotransmitters levels) persisted after switching to the control diet, thus pointing out to the adolescence as a critical phase, in which extreme attention should be devoted to limit an excessive consumption of sweet foods that can affect brain physiology also in the long term.
Collapse
Affiliation(s)
- Maria Stefania Spagnuolo
- grid.419162.90000 0004 1781 6305Institute for the Animal Production System in the Mediterranean Environment, National Research Council, P.le E.Fermi 1, 80055 Portici, Italy
| | - Arianna Mazzoli
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Martina Nazzaro
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Antonio Dario Troise
- grid.419162.90000 0004 1781 6305Institute for the Animal Production System in the Mediterranean Environment, National Research Council, P.le E.Fermi 1, 80055 Portici, Italy
| | - Cristina Gatto
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Claudia Tonini
- grid.8509.40000000121622106Department of Science, Biomedical and Technology Science Section, University Roma Tre, Rome, Italy
| | - Mayra Colardo
- grid.10373.360000000122055422Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Marco Segatto
- grid.10373.360000000122055422Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Andrea Scaloni
- grid.419162.90000 0004 1781 6305Institute for the Animal Production System in the Mediterranean Environment, National Research Council, P.le E.Fermi 1, 80055 Portici, Italy
| | - Valentina Pallottini
- grid.8509.40000000121622106Department of Science, Biomedical and Technology Science Section, University Roma Tre, Rome, Italy ,grid.417778.a0000 0001 0692 3437Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Susanna Iossa
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Luisa Cigliano
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| |
Collapse
|
16
|
Chrononutrition-When We Eat Is of the Essence in Tackling Obesity. Nutrients 2022; 14:nu14235080. [PMID: 36501110 PMCID: PMC9739590 DOI: 10.3390/nu14235080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is a chronic and relapsing public health problem with an extensive list of associated comorbidities. The worldwide prevalence of obesity has nearly tripled over the last five decades and continues to pose a serious threat to wider society and the wellbeing of future generations. The pathogenesis of obesity is complex but diet plays a key role in the onset and progression of the disease. The human diet has changed drastically across the globe, with an estimate that approximately 72% of the calories consumed today come from foods that were not part of our ancestral diets and are not compatible with our metabolism. Additionally, multiple nutrient-independent factors, e.g., cost, accessibility, behaviours, culture, education, work commitments, knowledge and societal set-up, influence our food choices and eating patterns. Much research has been focused on 'what to eat' or 'how much to eat' to reduce the obesity burden, but increasingly evidence indicates that 'when to eat' is fundamental to human metabolism. Aligning feeding patterns to the 24-h circadian clock that regulates a wide range of physiological and behavioural processes has multiple health-promoting effects with anti-obesity being a major part. This article explores the current understanding of the interactions between the body clocks, bioactive dietary components and the less appreciated role of meal timings in energy homeostasis and obesity.
Collapse
|
17
|
Galinde AAS, Al-Mughales F, Oster H, Heyde I. Different levels of circadian (de)synchrony -- where does it hurt? F1000Res 2022; 11:1323. [PMID: 37125019 PMCID: PMC10130703 DOI: 10.12688/f1000research.127234.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
A network of cellular timers ensures the maintenance of homeostasis by temporal modulation of physiological processes across the day. These so-called circadian clocks are synchronized to geophysical time by external time cues (or zeitgebers). In modern societies, natural environmental cycles are disrupted by artificial lighting, around-the-clock availability of food or shiftwork. Such contradictory zeitgeber input promotes chronodisruption, i.e., the perturbation of internal circadian rhythms, resulting in adverse health outcomes. While this phenomenon is well described, it is still poorly understood at which level of organization perturbed rhythms impact on health and wellbeing. In this review, we discuss different levels of chronodisruption and what is known about their health effects. We summarize the results of disrupted phase coherence between external and internal time vs. misalignment of tissue clocks amongst each other, i.e., internal desynchrony. Last, phase incoherence can also occur at the tissue level itself. Here, alterations in phase coordination can emerge between cellular clocks of the same tissue or between different clock genes within the single cell. A better understanding of the mechanisms of circadian misalignment and its effects on physiology will help to find effective tools to prevent or treat disorders arising from modern-day chronodisruptive environments.
Collapse
Affiliation(s)
- Ankita AS. Galinde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Faheem Al-Mughales
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
- Biochemistry Department, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Isabel Heyde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| |
Collapse
|
18
|
Galinde AAS, Al-Mughales F, Oster H, Heyde I. Different levels of circadian (de)synchrony -- where does it hurt? F1000Res 2022; 11:1323. [PMID: 37125019 PMCID: PMC10130703 DOI: 10.12688/f1000research.127234.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
A network of cellular timers ensures the maintenance of homeostasis by temporal modulation of physiological processes across the day. These so-called circadian clocks are synchronized to geophysical time by external time cues (or zeitgebers). In modern societies, natural environmental cycles are disrupted by artificial lighting, around-the-clock availability of food or shift work. Such contradictory zeitgeber input promotes chronodisruption, i.e., the perturbation of internal circadian rhythms, resulting in adverse health outcomes. While this phenomenon is well described, it is still poorly understood at which level of organization perturbed rhythms impact on health and wellbeing. In this review, we discuss different levels of chronodisruption and what is known about their health effects. We summarize the results of disrupted phase coherence between external and internal time vs. misalignment of tissue clocks amongst each other, i.e., internal desynchrony. Last, phase incoherence can also occur at the tissue level itself. Here, alterations in phase coordination can emerge between cellular clocks of the same tissue or between different clock genes within the single cell. A better understanding of the mechanisms of circadian misalignment and its effects on physiology will help to find effective tools to prevent or treat disorders arising from modern-day chronodisruptive environments.
Collapse
Affiliation(s)
- Ankita AS. Galinde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Faheem Al-Mughales
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
- Biochemistry Department, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Isabel Heyde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| |
Collapse
|
19
|
Petrus P, Cervantes M, Samad M, Sato T, Chao A, Sato S, Koronowski KB, Park G, Alam Y, Mejhert N, Seldin MM, Monroy Kuhn JM, Dyar KA, Lutter D, Baldi P, Kaiser P, Jang C, Sassone-Corsi P. Tryptophan metabolism is a physiological integrator regulating circadian rhythms. Mol Metab 2022; 64:101556. [PMID: 35914650 PMCID: PMC9382333 DOI: 10.1016/j.molmet.2022.101556] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE The circadian clock aligns physiology with the 24-hour rotation of Earth. Light and food are the main environmental cues (zeitgebers) regulating circadian rhythms in mammals. Yet, little is known about the interaction between specific dietary components and light in coordinating circadian homeostasis. Herein, we focused on the role of essential amino acids. METHODS Mice were fed diets depleted of specific essential amino acids and their behavioral rhythms were monitored and tryptophan was selected for downstream analyses. The role of tryptophan metabolism in modulating circadian homeostasis was studied using isotope tracing as well as transcriptomic- and metabolomic- analyses. RESULTS Dietary tryptophan depletion alters behavioral rhythms in mice. Furthermore, tryptophan metabolism was shown to be regulated in a time- and light- dependent manner. A multi-omics approach and combinatory diet/light interventions demonstrated that tryptophan metabolism modulates temporal regulation of metabolism and transcription programs by buffering photic cues. Specifically, tryptophan metabolites regulate central circadian functions of the suprachiasmatic nucleus and the core clock machinery in the liver. CONCLUSIONS Tryptophan metabolism is a modulator of circadian homeostasis by integrating environmental cues. Our findings propose tryptophan metabolism as a potential point for pharmacologic intervention to modulate phenotypes associated with disrupted circadian rhythms.
Collapse
Affiliation(s)
- Paul Petrus
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| | - Marlene Cervantes
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| | - Muntaha Samad
- Institute for Genomics and Bioinformatics, Department of Computer Science, University of California Irvine (UCI), Irvine, CA, USA
| | - Tomoki Sato
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Alina Chao
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | - Shogo Sato
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Kevin B Koronowski
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Grace Park
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | - Yasmine Alam
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, C2-94, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Marcus M Seldin
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - José Manuel Monroy Kuhn
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum Munich - German Research Center for Environmental Health, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Kenneth A Dyar
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Metabolic Physiology, Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Zentrum Munich - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Dominik Lutter
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum Munich - German Research Center for Environmental Health, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, Department of Computer Science, University of California Irvine (UCI), Irvine, CA, USA
| | - Peter Kaiser
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
20
|
Chen X, Li J, Gao Z, Yang Y, Kuang W, Dong Y, Chua GH, Huang X, Jiang B, Tian H, Wang Y, Huang X, Li Y, Lam SM, Shui G. Endogenous ceramide phosphoethanolamine modulates circadian rhythm via neural-glial coupling in Drosophila. Natl Sci Rev 2022; 9:nwac148. [PMID: 36713590 PMCID: PMC9875363 DOI: 10.1093/nsr/nwac148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/08/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
While endogenous lipids are known to exhibit rhythmic oscillations, less is known about how specific lipids modulate circadian behavior. Through a series of loss-of-function and gain-of-function experiments on ceramide phosphoethanolamine (CPE) synthase of Drosophila, we demonstrated that pan-glial-specific deficiency in membrane CPE, the structural analog of mammalian sphingomyelin (SM), leads to arrhythmic locomotor behavior and shortens lifespan, while the reverse is true for increasing CPE. Comparative proteomics uncovered dysregulated synaptic glutamate utilization and transport in CPE-deficient flies. An extensive genetic screen was conducted to verify the role of differentially expressed proteins in circadian regulation. Arrhythmic locomotion under cpes1 mutant background was rescued only by restoring endogenous CPE or SM through expressing their respective synthases. Our results underscore the essential role of CPE in maintaining synaptic glutamate homeostasis and modulating circadian behavior in Drosophila. The findings suggest that region-specific elevations of functional membrane lipids can benefit circadian regulation.
Collapse
Affiliation(s)
| | | | - Zhongbao Gao
- University of Chinese Academy of Sciences, Beijing 100049, China,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Yang
- University of Chinese Academy of Sciences, Beijing 100049, China,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenqing Kuang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Dong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gek Huey Chua
- LipidALL Technologies Company Limited, Changzhou213022, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Binhua Jiang
- LipidALL Technologies Company Limited, Changzhou213022, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- University of Chinese Academy of Sciences, Beijing 100049, China,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
21
|
Samad M, Agostinelli F, Sato T, Shimaji K, Baldi P. CircadiOmics: circadian omic web portal. Nucleic Acids Res 2022; 50:W183-W190. [PMID: 35657089 PMCID: PMC9252794 DOI: 10.1093/nar/gkac419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/14/2022] [Accepted: 06/01/2022] [Indexed: 11/12/2022] Open
Abstract
Circadian rhythms are a foundational aspect of biology. These rhythms are found at the molecular level in every cell of every living organism and they play a fundamental role in homeostasis and a variety of physiological processes. As a result, biomedical research of circadian rhythms continues to expand at a rapid pace. To support this research, CircadiOmics (http://circadiomics.igb.uci.edu/) is the largest annotated repository and analytic web server for high-throughput omic (e.g. transcriptomic, metabolomic, proteomic) circadian time series experimental data. CircadiOmics contains over 290 experiments and over 100 million individual measurements, across >20 unique tissues/organs, and 11 different species. Users are able to visualize and mine these datasets by deriving and comparing periodicity statistics for oscillating molecular species including: period, amplitude, phase, P-value and q-value. These statistics are obtained from BIO_CYCLE and JTK_CYCLE and are intuitively aggregated and displayed for comparison. CircadiOmics is the most up-to-date and cutting-edge web portal for searching and analyzing circadian omic data and is used by researchers around the world.
Collapse
Affiliation(s)
- Muntaha Samad
- Department of Computer Science, University of California Irvine, Irvine, CA 92697, USA.,Institute for Genomics and Bioinformatics, University of California, Irvine CA 92697, USA
| | - Forest Agostinelli
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Tomoki Sato
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Kohei Shimaji
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Pierre Baldi
- Department of Computer Science, University of California Irvine, Irvine, CA 92697, USA.,Institute for Genomics and Bioinformatics, University of California, Irvine CA 92697, USA
| |
Collapse
|
22
|
Zou S, Jiao X, Liu J, Qi D, Pei X, Lu D, Huang S, Li Z. High-Fat Nutritional Challenge Reshapes Circadian Signatures in Murine Extraorbital Lacrimal Glands. Invest Ophthalmol Vis Sci 2022; 63:23. [PMID: 35588356 PMCID: PMC9123521 DOI: 10.1167/iovs.63.5.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose A high-fat diet (HFD) increases the risk of developing many systemic diseases; however, the effects of high fat intake on lacrimal gland functions and the molecular mechanisms underlying these effects are unknown. We explored the effects of an HFD on the circadian rhythms of the extraorbital lacrimal glands (ELGs). Methods Male C57BL/6J mice maintained on a 12/12-hour light/dark cycle were fed an ad libitum HFD or normal chow (NC) for 2 weeks. The ELGs were collected from euthanized animals every 3 hours throughout the circadian cycle (24 hours). Using high-throughput RNA-sequencing (RNA-Seq), we studied the circadian transcriptomic profile of the ELGs. Circadian oscillations in cell size, secretion response, lipid deposition, and immune cell trafficking of the ELGs were also analyzed. Results An HFD modulated the circadian transcriptomic profile of the ELGs, including the composition, phase, and amplitude of cyclical transcript oscillations, and affected the associated signaling pathways at spatiotemporal levels. HFD feeding significantly altered the normal rhythmic oscillations of ELG cell size, immune cell trafficking, secretion response, and lipid deposition. After dietary reversal in HFD-fed animals, the activity, core temperature, and lipid accumulation in lacrimal glands recovered partially to the level of NC-fed animals. However, the average cell size of the ELGs, the recruitment of immune cells, and the rhythm of lacrimal secretion did not return to the levels of the NC-fed group. Conclusions HFD perturbation interferes with the cyclical transcriptomic profile, cell size, immune cell trafficking, and secretion function of the ELGs with a strikingly high sensitivity.
Collapse
Affiliation(s)
- Sen Zou
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Jiangman Liu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, China
| |
Collapse
|
23
|
Kinouchi K, Miyashita K, Itoh H. Chromatin Immunoprecipitation and Circadian Rhythms. Methods Mol Biol 2022; 2482:341-351. [PMID: 35610438 DOI: 10.1007/978-1-0716-2249-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organisms exhibit daily changes of physiology and behavior to exert homeostatic adaptations to day-night cycles. The cyclic fluctuation also takes place at transcriptional levels, giving rise to rhythmic gene expression. Central to this oscillatory transcription is the core clock machinery which constitutes a circuit of transcriptional-translational feedback and achieves circadian functions accordingly. Chromatin immunoprecipitation provides understanding of such mechanisms that clock and non-clock transcription factors along with co-regulators and chromatin modifications dictate circadian epigenome through cyclic alterations of chromatin structures and molecular functions in a concerted fashion. Besides, innovation of high-throughput sequencing technology has broadened our horizon and renewed perspectives in circadian research. This article summarizes the methodology of a chromatin immunoprecipitation experiment in light of circadian rhythm research.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Kazutoshi Miyashita
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Samad M, Agostinelli F, Baldi P. Bioinformatics and Systems Biology of Circadian Rhythms: BIO_CYCLE and CircadiOmics. Methods Mol Biol 2022; 2482:81-94. [PMID: 35610420 DOI: 10.1007/978-1-0716-2249-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Circadian rhythms are fundamental to biology and medicine and today these can be studied at the molecular level in high-throughput fashion using various omic technologies. We briefly present two resources for the study of circadian omic (e.g. transcriptomic, metabolomic, proteomic) time series. First, BIO_CYCLE is a deep-learning-based program and web server that can analyze omic time series and statistically assess their periodic nature and, when periodic, accurately infer the corresponding period, amplitude, and phase. Second, CircadiOmics is the larges annotated repository of circadian omic time series, containing over 260 experiments and 90 million individual measurements, across multiple organs and tissues, and across 9 different species. In combination, these tools enable powerful bioinformatics and systems biology analyses. The are currently being deployed in a host of different projects where they are enabling significant discoveries: both tools are publicly available over the web at: http://circadiomics.ics.uci.edu/ .
Collapse
Affiliation(s)
- Muntaha Samad
- Department of Computer Science, University of California Irvine, Irvine, CA, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA, USA
| | - Forest Agostinelli
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
| | - Pierre Baldi
- Department of Computer Science, University of California Irvine, Irvine, CA, USA.
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA, USA.
| |
Collapse
|
25
|
Multi-Modal Regulation of Circadian Physiology by Interactive Features of Biological Clocks. BIOLOGY 2021; 11:biology11010021. [PMID: 35053019 PMCID: PMC8772734 DOI: 10.3390/biology11010021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
The circadian clock is a fundamental biological timing mechanism that generates nearly 24 h rhythms of physiology and behaviors, including sleep/wake cycles, hormone secretion, and metabolism. Evolutionarily, the endogenous clock is thought to confer living organisms, including humans, with survival benefits by adapting internal rhythms to the day and night cycles of the local environment. Mirroring the evolutionary fitness bestowed by the circadian clock, daily mismatches between the internal body clock and environmental cycles, such as irregular work (e.g., night shift work) and life schedules (e.g., jet lag, mistimed eating), have been recognized to increase the risk of cardiac, metabolic, and neurological diseases. Moreover, increasing numbers of studies with cellular and animal models have detected the presence of functional circadian oscillators at multiple levels, ranging from individual neurons and fibroblasts to brain and peripheral organs. These oscillators are tightly coupled to timely modulate cellular and bodily responses to physiological and metabolic cues. In this review, we will discuss the roles of central and peripheral clocks in physiology and diseases, highlighting the dynamic regulatory interactions between circadian timing systems and multiple metabolic factors.
Collapse
|
26
|
He J, Jiao X, Sun X, Huang Y, Xu P, Xue Y, Fu T, Liu J, Li Z. Short-Term High Fructose Intake Impairs Diurnal Oscillations in the Murine Cornea. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 34415987 PMCID: PMC8383902 DOI: 10.1167/iovs.62.10.22] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Endogenous and exogenous stressors, including nutritional challenges, may alter circadian rhythms in the cornea. This study aimed to determine the effects of high fructose intake (HFI) on circadian homeostasis in murine cornea. Methods Corneas of male C57BL/6J mice subjected to 10 days of HFI (15% fructose in drinking water) were collected at 3-hour intervals over a 24-hour circadian cycle. Total extracted RNA was subjected to high-throughput RNA sequencing. Rhythmic transcriptional data were analyzed to determine the phase, rhythmicity, unique signature, metabolic pathways, and cell signaling pathways of transcripts with temporally coordinated expression. Corneas of HFI mice were collected for whole-mounted techniques after immunofluorescent staining to quantify mitotic cell number in the epithelium and trafficking of neutrophils and γδ-T cells to the limbal region over a circadian cycle. Results HFI significantly reprogrammed the circadian transcriptomic profiles of the normal cornea and reorganized unique temporal and clustering enrichment pathways, but did not affect core-clock machinery. HFI altered the distribution pattern and number of corneal epithelial mitotic cells and enhanced recruitment of neutrophils and γδ-T cell immune cells to the limbus across a circadian cycle. Cell cycle, immune function, metabolic processes, and neuronal-related transcription and associated pathways were altered in the corneas of HFI mice. Conclusions HFI significantly reprograms diurnal oscillations in the cornea based on temporal and spatial distributions of epithelial mitosis, immune cell trafficking, and cell signaling pathways. Our findings reveal novel molecular targets for treating pathologic alterations in the cornea after HFI.
Collapse
Affiliation(s)
- Jingxin He
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinwei Jiao
- Department of Pathophysiology, Jinan University Medical School, Guangzhou, China
| | - Xin Sun
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yijia Huang
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Pengyang Xu
- Department of Pathophysiology, Jinan University Medical School, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
27
|
Kinouchi K, Mikami Y, Kanai T, Itoh H. Circadian rhythms in the tissue-specificity from metabolism to immunity; insights from omics studies. Mol Aspects Med 2021; 80:100984. [PMID: 34158177 DOI: 10.1016/j.mam.2021.100984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/31/2022]
Abstract
Creatures on earth have the capacity to preserve homeostasis in response to changing environments. The circadian clock enables organisms to adapt to daily predictable rhythms in surrounding conditions. In mammals, circadian clocks constitute hierarchical network, where the central pacemaker in hypothalamic suprachiasmatic nucleus (SCN) serves as a time-keeping machinery and governs peripheral clocks in every other organ through descending neural and humoral factors. The central clock in SCN is reset by light, whilst peripheral clocks are entrained by feeding-fasting rhythms, emphasizing the point that temporal patterns of nutrient availability specifies peripheral clock functions. Indeed, emerging evidence revealed various types of diets or timing of food intake reprogram circadian rhythms in a tissue specific manner. This advancement in understanding of mechanisms underlying tissue specific responsiveness of circadian oscillators to nutrients at the genomic and epigenomic levels is largely owing to employment of state-of-the-art technologies. Specifically, high-throughput transcriptome, proteome, and metabolome have provided insights into how genes, proteins, and metabolites behave over circadian cycles in a given tissue under a certain dietary condition in an unbiased fashion. Additionally, combinations with specialized types of sequencing such as nascent-seq and ribosomal profiling allow us to dissect how circadian rhythms are generated or obliterated at each step of gene regulation. Importantly, chromatin immunoprecipitation followed by deep sequencing methods provide chromatin landscape in terms of regulatory mechanisms of circadian gene expression. In this review, we outline recent discoveries on temporal genomic and epigenomic regulation of circadian rhythms, discussing entrainment of the circadian rhythms by feeding as a fundamental new comprehension of metabolism and immune response, and as a potential therapeutic strategy of metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| |
Collapse
|
28
|
Eeza MN, Singer R, Höfling C, Matysik J, de Groot HJ, Roβner S, Alia A. Metabolic Profiling of Suprachiasmatic Nucleus Reveals Multifaceted Effects in an Alzheimer's Disease Mouse Model. J Alzheimers Dis 2021; 81:797-808. [PMID: 33843677 PMCID: PMC8203226 DOI: 10.3233/jad-201575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Circadian rhythm disturbance is commonly observed in Alzheimer's disease (AD). In mammals, these rhythms are orchestrated by the superchiasmatic nucleus (SCN). Our previous study in the Tg2576 AD mouse model suggests that inflammatory responses, most likely manifested by low GABA production, may be one of the underlying perpetrators for the changes in circadian rhythmicity and sleep disturbance in AD. However, the mechanistic connections between SCN dysfunction, GABA modulation, and inflammation in AD is not fully understood. OBJECTIVE To reveal influences of amyloid pathology in Tg2576 mouse brain on metabolism in SCN and to identify key metabolic sensors that couple SCN dysfunction with GABA modulation and inflammation. METHODS High resolution magic angle spinning (HR-MAS) NMR in conjunction with multivariate analysis was applied for metabolic profiling in SCN of control and Tg2576 female mice. Immunohistochemical analysis was used to detect neurons, astrocytes, expression of GABA transporter 1 (GAT1) and Bmal1. RESULTS Metabolic profiling revealed significant metabolic deficits in SCN of Tg2576 mice. Reductions in glucose, glutamate, GABA, and glutamine provide hints toward an impaired GABAergic glucose oxidation and neurotransmitter cycling in SCN of AD mice. In addition, decreased redox co-factor NADPH and glutathione support a redox disbalance. Immunohistochemical examinations showed low expression of the core clock protein, Bmal1, especially in activated astrocytes. Moreover, decreased expression of GAT1 in astrocytes indicates low GABA recycling in this cell type. CONCLUSION Our results suggest that redox disbalance and compromised GABA signaling are important denominators and connectors between neuroinflammation and clock dysfunction in AD.
Collapse
Affiliation(s)
- Muhamed N.H. Eeza
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Rico Singer
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Jörg Matysik
- Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Huub J.M. de Groot
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Steffen Roβner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - A. Alia
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
29
|
Hurley JM. Can your diet change your clock? Sci Transl Med 2020. [DOI: 10.1126/scitranslmed.abf7520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
High-fat diets disturb circadian metabolic rhythms in the brain.
Collapse
Affiliation(s)
- Jennifer M. Hurley
- Biological Sciences, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
30
|
Hühne A, Hoch E, Landgraf D. DAILY-A Personalized Circadian Zeitgeber Therapy as an Adjunctive Treatment for Alcohol Use Disorder Patients: Study Protocol for a Randomized Controlled Trial. Front Psychiatry 2020; 11:569864. [PMID: 33519541 PMCID: PMC7840704 DOI: 10.3389/fpsyt.2020.569864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/09/2020] [Indexed: 01/23/2023] Open
Abstract
Background: Hallmarks of alcohol use disorder (AUD) are disturbances of circadian rhythms and everyday structures. While circadian rhythms dictate the timing of daily recurring activities such as sleep, activity, and meals, conversely, these activities represent time cues, so called Zeitgebers, that the circadian system uses to synchronize with the environment. Here we present a study protocol for our newly developed therapy approach for AUD patients, in which we take advantage of this mutual influence and stabilize and strengthen their circadian system by creating strict daily schedules for daily Zeitgeber activities. Since every person has a circadian system with its own characteristics and is subject to social obligations, the daily plans are personalized for each test person. Our hypothesis is that a regular exposure to Zeitgebers stabilizes behavioral and physiological circadian rhythms and thereby reduces the risk of alcohol relapses and depressive symptoms and facilitates physical recovery in AUD patients during the 1st weeks of their addiction therapy. Methods/design: The study is a 6-weeks single site trial with a controlled, randomized, single-blinded, parallel-group design including patients with a diagnosis of AUD. The study runs parallel to the standard addiction therapy of the clinic. Patients are randomly assigned to either an intervention group (DAILY) or a sham control group (placebo treatment). Questionnaires and physiological assessments of both groups are conducted before and immediately after the intervention or control treatment. According to our hypothesis, the primary outcomes of this study are improvements of regularity, alcohol consumption, and relapse rate in AUD patients compared to AUD patients receiving control treatment. Secondary outcomes are reduced depressive symptoms and increased physical recovery. Discussion: This study is a randomized controlled trial to investigate the efficacy of a personalized circadian Zeitgeber therapy as an adjunctive treatment for alcohol use disorder patients. The overall goal of this and more extended future studies is the development of an adjunctive therapy for AUD patients that is uncomplicated in its use and easy to implement in the clinical and everyday routine. Trial registration: This study is registered at the German Clinical Trial Register with the trial number DRKS00019093 on November 28, 2019.
Collapse
Affiliation(s)
- Anisja Hühne
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University, Munich, Germany.,Munich Medical Research School, Ludwig Maximilian University, Munich, Germany
| | - Eva Hoch
- Cannabinoid Research and Treatment Group, Division of Clinical Psychology and Psychological Treatment, Department of Psychology, Clinic of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Dominic Landgraf
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|