1
|
Zong QJ, Wang H, Zhang Q, Cheng X, He Y, Xu Q, Fischer A, Watanabe K, Taniguchi T, Rhodes DA, Xian L, Kennes DM, Rubio A, Yu G, Wang L. Quantum melting of generalized electron crystal in twisted bilayer MoSe 2. Nat Commun 2025; 16:4058. [PMID: 40307227 PMCID: PMC12044088 DOI: 10.1038/s41467-025-59365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
Electrons can form an ordered solid crystal phase ascribed to the interplay between Coulomb repulsion and kinetic energy. Tuning these energy scales can drive a phase transition from electron solid to liquid, i.e., melting of Wigner crystal. Generalized Wigner crystals (GWCs) pinned to moiré superlattices have been reported by optical and scanning-probe-based methods. Using transport measurements to investigate GWCs is vital to a complete characterization, however, still poses a significant challenge due to difficulties in making reliable electrical contacts. Here, we report the electrical transport detection of GWCs at fractional fillings ν = 2/5, 1/2, 3/5, 2/3, 8/9, 10/9, and 4/3 in twisted bilayer MoSe2. We further observe that these GWCs undergo continuous quantum melting transitions to liquid phases by tuning doping density, magnetic and displacement fields, manifested by quantum critical scaling behaviors. Our findings establish twisted bilayer MoSe2 as a novel system to study strongly correlated states of matter and their quantum phase transitions.
Collapse
Affiliation(s)
- Qi Jun Zong
- National Laboratory of Solid-State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Haolin Wang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, China.
- Guangzhou Institute of Technology, Xidian University, Guangzhou, China.
| | - Qi Zhang
- National Laboratory of Solid-State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Xinle Cheng
- Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, Aachen, Germany
| | - Yangchen He
- Department of Materials Science and Engineering, University of Wisconsin, Madison, USA
| | - Qiaoling Xu
- Songshan Lake Materials Laboratory, Dongguan, China
- College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu, China
| | - Ammon Fischer
- Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, Aachen, Germany
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Daniel A Rhodes
- Department of Materials Science and Engineering, University of Wisconsin, Madison, USA
| | - Lede Xian
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Dante M Kennes
- Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, Aachen, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science (CFEL), Hamburg, Germany
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science (CFEL), Hamburg, Germany.
- Center for Computational Quantum Physics, Simons Foundation Flatiron Institute, New York, USA.
| | - Geliang Yu
- National Laboratory of Solid-State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
- Jiangsu Physical Science Research Center, Nanjing, China.
| | - Lei Wang
- National Laboratory of Solid-State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
- Jiangsu Physical Science Research Center, Nanjing, China.
| |
Collapse
|
2
|
Smith C, Chen Y, Levy R, Yang Y, Morales MA, Zhang S. Unified Variational Approach Description of Ground-State Phases of the Two-Dimensional Electron Gas. PHYSICAL REVIEW LETTERS 2024; 133:266504. [PMID: 39879060 DOI: 10.1103/physrevlett.133.266504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 01/31/2025]
Abstract
The two-dimensional electron gas (2DEG) is a fundamental model, which is drawing increasing interest because of recent advances in experimental and theoretical studies of 2D materials. Current understanding of the ground state of the 2DEG relies on quantum Monte Carlo calculations, based on variational comparisons of different Ansätze for different phases. We use a single variational ansatz, a general backflow-type wave function using a message-passing neural quantum state architecture, for a unified description across the entire density range. The variational optimization consistently leads to lower ground-state energies than previous best results. Transition into a Wigner crystal (WC) phase occurs automatically at r_{s}=37±1, a density lower than currently believed. Between the liquid and WC phases, the same ansatz and variational search strongly suggest the existence of intermediate states in a broad range of densities, with enhanced short-range nematic spin correlations.
Collapse
Affiliation(s)
- Conor Smith
- Flatiron Institute, Center for Computational Quantum Physics, New York, New York 10010, USA
- University of New Mexico, Department of Electrical and Computer Engineering, Albuquerque, New Mexico 87131, USA
| | - Yixiao Chen
- Flatiron Institute, Center for Computational Quantum Physics, New York, New York 10010, USA
- Princeton University, Program in Applied and Computational Mathematics, Princeton, New Jersey 08544, USA
| | - Ryan Levy
- Flatiron Institute, Center for Computational Quantum Physics, New York, New York 10010, USA
| | - Yubo Yang
- Flatiron Institute, Center for Computational Quantum Physics, New York, New York 10010, USA
| | - Miguel A Morales
- Flatiron Institute, Center for Computational Quantum Physics, New York, New York 10010, USA
| | - Shiwei Zhang
- Flatiron Institute, Center for Computational Quantum Physics, New York, New York 10010, USA
| |
Collapse
|
3
|
Yang Y, Morales MA, Zhang S. Ferromagnetic Semimetal and Charge-Density Wave Phases of Interacting Electrons in a Honeycomb Moiré Potential. PHYSICAL REVIEW LETTERS 2024; 133:266501. [PMID: 39878996 DOI: 10.1103/physrevlett.133.266501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/16/2024] [Indexed: 01/31/2025]
Abstract
The exploration of quantum phases in moiré systems has drawn intense experimental and theoretical efforts. The realization of honeycomb symmetry has been a recent focus. The combination of strong interaction and honeycomb symmetry can lead to exotic electronic states such as fractional Chern insulator, unconventional superconductor, and quantum spin liquid. Accurate computations in such systems, with reliable treatment of long-ranged Coulomb interaction and approaching large system sizes to extract thermodynamic phases, are mostly missing. We study the two-dimensional electron gas on a honeycomb moiré lattice at quarter filling, using the fixed-phase diffusion Monte Carlo method. The ground state phases of this important model are determined in the parameter regime relevant to current experiments. With increasing moiré potential, the system transitions from a paramagnetic metal to an itinerant ferromagnetic semimetal then a charge-density-wave insulator.
Collapse
Affiliation(s)
- Yubo Yang
- Flatiron Institute, Center for Computational Quantum Physics, New York, New York 10010, USA
| | - Miguel A Morales
- Flatiron Institute, Center for Computational Quantum Physics, New York, New York 10010, USA
| | - Shiwei Zhang
- Flatiron Institute, Center for Computational Quantum Physics, New York, New York 10010, USA
| |
Collapse
|
4
|
Raines ZM, Glazman LI, Chubukov AV. Unconventional Discontinuous Transitions in Isospin Systems. PHYSICAL REVIEW LETTERS 2024; 133:146501. [PMID: 39423386 DOI: 10.1103/physrevlett.133.146501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/26/2024] [Indexed: 10/21/2024]
Abstract
We show that two-dimensional fermions with dispersion k^{2} or k^{4} undergo a first-order Stoner transition to a fully spin-polarized state despite the fact that the spin susceptibility diverges at the critical point. We extend our analysis to systems with dispersion k^{2α} and spin and valley isospin and show that there is a cascade of instabilities into fractional-metal states with some electron bands fully depleted; narrow intermediate ranges of partially depleted bands exist for α<1 or α>2. The susceptibility becomes large near each transition. We discuss applications to biased bi- and trilayer graphene and moiré systems.
Collapse
|
5
|
Valenti A, Calvera V, Kivelson SA, Berg E, Huber SD. Nematic Metal in a Multivalley Electron Gas: Variational Monte Carlo Analysis and Application to AlAs. PHYSICAL REVIEW LETTERS 2024; 132:266501. [PMID: 38996276 DOI: 10.1103/physrevlett.132.266501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 07/14/2024]
Abstract
The two-dimensional electron gas is of fundamental importance in quantum many-body physics. We study a minimal extension of this model with C_{4} (as opposed to full rotational) symmetry and an electronic dispersion with two valleys with anisotropic effective masses. Electrons in our model interact via Coulomb repulsion, screened by distant metallic gates. Using variational Monte Carlo simulations, we find a broad intermediate range of densities with a metallic valley-polarized, spin-unpolarized ground state. Our results are of direct relevance to the recently discovered "nematic" state in AlAs quantum wells. For the effective mass anisotropy relevant to this system, m_{x}/m_{y}≈5.2, we obtain a transition from an anisotropic metal to a valley-polarized metal at r_{s}≈12 (where r_{s} is the dimensionless Wigner-Seitz radius). At still lower densities, we find a (possibly metastable) valley and spin-polarized state with a reduced electronic anisotropy.
Collapse
|
6
|
Dolgirev PE, Esterlis I, Zibrov AA, Lukin MD, Giamarchi T, Demler E. Local Noise Spectroscopy of Wigner Crystals in Two-Dimensional Materials. PHYSICAL REVIEW LETTERS 2024; 132:246504. [PMID: 38949333 DOI: 10.1103/physrevlett.132.246504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/10/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024]
Abstract
We propose local electromagnetic noise spectroscopy as a versatile and noninvasive tool to study Wigner crystal phases of strongly interacting two-dimensional electronic systems. In-plane imaging of the local noise is predicted to enable single-site resolution of the electron crystal when the sample-probe distance is less than the interelectron separation. At larger sample-probe distances, noise spectroscopy encodes information about the low-energy Wigner crystal phonons, including the dispersion of the transverse shear mode, the pinning resonance due to disorder, and optical modes emerging, for instance, in bilayer crystals. We discuss the potential utility of local noise probes in analyzing the rich set of phenomena expected to occur in the vicinity of the melting transition.
Collapse
|
7
|
Zeng Y, Guerci D, Crépel V, Millis AJ, Cano J. Sublattice Structure and Topology in Spontaneously Crystallized Electronic States. PHYSICAL REVIEW LETTERS 2024; 132:236601. [PMID: 38905641 DOI: 10.1103/physrevlett.132.236601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
The prediction and realization of the quantum anomalous Hall effect are often intimately connected to honeycomb lattices in which the sublattice degree of freedom plays a central role in the nontrivial topology. Two-dimensional Wigner crystals, on the other hand, form triangular lattices without sublattice degrees of freedom, resulting in a topologically trivial state. Here, we discuss the possibility of spontaneously formed honeycomb-lattice crystals that exhibit the quantum anomalous Hall effect. Starting from a single-band system with nontrivial quantum geometry, we derive the mean-field energy functional of a class of crystal states and express it as a model of sublattice pseudospins in momentum space. We find that nontrivial quantum geometry leads to extra terms in the pseudospin model that break an effective "time-reversal symmetry" and favor a topologically nontrivial pseudospin texture. When the effects of these extra terms dominate over the ferromagnetic exchange coupling between pseudospins, the anomalous Hall crystal state becomes energetically favorable over the trivial Wigner crystal state.
Collapse
|
8
|
Tsui YC, He M, Hu Y, Lake E, Wang T, Watanabe K, Taniguchi T, Zaletel MP, Yazdani A. Direct observation of a magnetic-field-induced Wigner crystal. Nature 2024; 628:287-292. [PMID: 38600267 DOI: 10.1038/s41586-024-07212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/20/2024] [Indexed: 04/12/2024]
Abstract
Wigner predicted that when the Coulomb interactions between electrons become much stronger than their kinetic energy, electrons crystallize into a closely packed lattice1. A variety of two-dimensional systems have shown evidence for Wigner crystals2-11 (WCs). However, a spontaneously formed classical or quantum WC has never been directly visualized. Neither the identification of the WC symmetry nor direct investigation of its melting has been accomplished. Here we use high-resolution scanning tunnelling microscopy measurements to directly image a magnetic-field-induced electron WC in Bernal-stacked bilayer graphene and examine its structural properties as a function of electron density, magnetic field and temperature. At high fields and the lowest temperature, we observe a triangular lattice electron WC in the lowest Landau level. The WC possesses the expected lattice constant and is robust between filling factor ν ≈ 0.13 and ν ≈ 0.38 except near fillings where it competes with fractional quantum Hall states. Increasing the density or temperature results in the melting of the WC into a liquid phase that is isotropic but has a modulated structure characterized by the Bragg wavevector of the WC. At low magnetic fields, the WC unexpectedly transitions into an anisotropic stripe phase, which has been commonly anticipated to form in higher Landau levels. Analysis of individual lattice sites shows signatures that may be related to the quantum zero-point motion of electrons in the WC lattice.
Collapse
Affiliation(s)
- Yen-Chen Tsui
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA
| | - Minhao He
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA
| | - Yuwen Hu
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA
| | - Ethan Lake
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
| | - Taige Wang
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Michael P Zaletel
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ali Yazdani
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
9
|
Madathil PT, Wang C, Singh SK, Gupta A, Rosales KAV, Chung YJ, West KW, Baldwin KW, Pfeiffer LN, Engel LW, Shayegan M. Signatures of Correlated Defects in an Ultraclean Wigner Crystal in the Extreme Quantum Limit. PHYSICAL REVIEW LETTERS 2024; 132:096502. [PMID: 38489610 DOI: 10.1103/physrevlett.132.096502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
Low-disorder two-dimensional electron systems in the presence of a strong, perpendicular magnetic field terminate at very small Landau level filling factors in a Wigner crystal (WC), where the electrons form an ordered array to minimize the Coulomb repulsion. The nature of this exotic, many-body, quantum phase is yet to be fully understood and experimentally revealed. Here we probe one of WC's most fundamental parameters, namely, the energy gap that determines its low-temperature conductivity, in record mobility, ultrahigh-purity, two-dimensional electrons confined to GaAs quantum wells. The WC domains in these samples contain ≃1000 electrons. The measured gaps are a factor of three larger than previously reported for lower quality samples, and agree remarkably well with values predicted for the lowest-energy, intrinsic, hypercorrelated bubble defects in a WC made of flux-electron composite fermions, rather than bare electrons. The agreement is particularly noteworthy, given that the calculations are done for disorder-free composite fermion WCs, and there are no adjustable parameters. The results reflect the exceptionally high quality of the samples, and suggest that composite fermion WCs are indeed more stable compared to their electron counterparts.
Collapse
Affiliation(s)
- P T Madathil
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - C Wang
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - S K Singh
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - A Gupta
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K A Villegas Rosales
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L W Engel
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - M Shayegan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
10
|
Seifert UFP, Balents L. Spin Polarons and Ferromagnetism in Doped Dilute Moiré-Mott Insulators. PHYSICAL REVIEW LETTERS 2024; 132:046501. [PMID: 38335339 DOI: 10.1103/physrevlett.132.046501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/15/2023] [Accepted: 12/15/2023] [Indexed: 02/12/2024]
Abstract
Moiré heterostructures of transition metal dichalcogenides (TMDs) exhibit Mott-insulating behavior both at half filling as well as at fractional fillings, where electronic degrees of freedom form self-organized Wigner crystal states. An open question concerns magnetic states obtained by lifting the pseudospin-1/2 degeneracy of these states at lowest temperatures. While at half filling virtual hopping is expected to induce (weak) antiferromagnetic exchange interactions, these are strongly suppressed when considering dilute filling fractions. We argue that, instead, a small concentration of doped electrons leads to the formation of spin polarons, inducing ferromagnetic order at experimentally relevant temperatures, consistent with recently observed ferromagnetic states in moiré TMD systems. We predict explicit signatures of polaron formation in the magnetization profile.
Collapse
Affiliation(s)
- Urban F P Seifert
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | - Leon Balents
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
- Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
11
|
Zhao L, Lin W, Chung YJ, Gupta A, Baldwin KW, Pfeiffer LN, Liu Y. Dynamic Response of Wigner Crystals. PHYSICAL REVIEW LETTERS 2023; 130:246401. [PMID: 37390428 DOI: 10.1103/physrevlett.130.246401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
The Wigner crystal, an ordered array of electrons, is one of the very first proposed many-body phases stabilized by the electron-electron interaction. We examine this quantum phase with simultaneous capacitance and conductance measurements, and observe a large capacitive response while the conductance vanishes. We study one sample with four devices whose length scale is comparable with the crystal's correlation length, and deduce the crystal's elastic modulus, permittivity, pinning strength, etc. Such a systematic quantitative investigation of all properties on a single sample has a great promise to advance the study of Wigner crystals.
Collapse
Affiliation(s)
- Lili Zhao
- International Center for Quantum Materials, Peking University, Haidian, Beijing 100871, China
| | - Wenlu Lin
- International Center for Quantum Materials, Peking University, Haidian, Beijing 100871, China
| | - Yoon Jang Chung
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Adbhut Gupta
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Kirk W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Loren N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Yang Liu
- International Center for Quantum Materials, Peking University, Haidian, Beijing 100871, China
| |
Collapse
|
12
|
Kim KS, Murthy C, Pandey A, Kivelson SA. Interstitial-Induced Ferromagnetism in a Two-Dimensional Wigner Crystal. PHYSICAL REVIEW LETTERS 2022; 129:227202. [PMID: 36493455 DOI: 10.1103/physrevlett.129.227202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The two-dimensional Wigner crystal (WC) occurs in the strongly interacting regime (r_{s}≫1) of the two-dimensional electron gas (2DEG). The magnetism of a pure WC is determined by tunneling processes that induce multispin ring-exchange interactions, resulting in fully polarized ferromagnetism for large enough r_{s}. Recently, Hossain et al. [Proc. Natl. Acad. Sci. U.S.A. 117, 32244 (2020)PNASA60027-842410.1073/pnas.2018248117] reported the occurrence of a fully polarized ferromagnetic insulator at r_{s}≳35 in an AlAs quantum well, but at temperatures orders of magnitude larger than the predicted exchange energies for the pure WC. Here, we analyze the large r_{s} dynamics of an interstitial defect in the WC, and show that it produces local ferromagnetism with much higher energy scales. Three hopping processes are dominant, which favor a large, fully polarized ferromagnetic polaron. Based on the above results, we speculate concerning the phenomenology of the magnetism near the metal-insulator transition of the 2DEG.
Collapse
Affiliation(s)
- Kyung-Su Kim
- Department of Physics, Stanford University, Stanford, California 93405, USA
| | - Chaitanya Murthy
- Department of Physics, Stanford University, Stanford, California 93405, USA
| | - Akshat Pandey
- Department of Physics, Stanford University, Stanford, California 93405, USA
| | - Steven A Kivelson
- Department of Physics, Stanford University, Stanford, California 93405, USA
| |
Collapse
|
13
|
Ma MK, Wang C, Chung YJ, Pfeiffer LN, West KW, Baldwin KW, Winkler R, Shayegan M. Robust Quantum Hall Ferromagnetism near a Gate-Tuned ν=1 Landau Level Crossing. PHYSICAL REVIEW LETTERS 2022; 129:196801. [PMID: 36399735 DOI: 10.1103/physrevlett.129.196801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/12/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
In a low-disorder two-dimensional electron system, when two Landau levels of opposite spin or pseudospin cross at the Fermi level, the dominance of the exchange energy can lead to a ferromagnetic, quantum Hall ground state whose gap is determined by the exchange energy and has skyrmions as its excitations. This is normally achieved via applying either hydrostatic pressure or uniaxial strain. We study here a very high-quality, low-density, two-dimensional hole system, confined to a 30-nm-wide (001) GaAs quantum well, in which the two lowest-energy Landau levels can be gate tuned to cross at and near filling factor ν=1. As we tune the field position of the crossing from one side of ν=1 to the other by changing the hole density, the energy gap for the quantum Hall state at ν=1 remains exceptionally large, and only shows a small dip near the crossing. The gap overall follows a sqrt[B] dependence, expected for the exchange energy. Our data are consistent with a robust quantum Hall ferromagnet as the ground state.
Collapse
Affiliation(s)
- Meng K Ma
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Chengyu Wang
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - R Winkler
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA
| | - M Shayegan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
14
|
Hao K, Shreiner R, Kindseth A, High AA. Optically controllable magnetism in atomically thin semiconductors. SCIENCE ADVANCES 2022; 8:eabq7650. [PMID: 36179032 PMCID: PMC9524837 DOI: 10.1126/sciadv.abq7650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
We report evidence that ferromagnetic order in electrostatically doped, monolayer transition metal dichalcogenide (TMD) semiconductors can be stabilized and controlled at zero magnetic field by local optical pumping. We use circular dichroism (CD) in reflectivity from excitonic states as a spatially resolved probe of charge-carrier spin polarization. At electron densities ne ~ 1012 cm-2, a diffraction-limited, circularly polarized optical pump breaks symmetry between oppositely polarized magnetic states and stabilizes long-range magnetic order, with carrier polarization exceeding 80% over an 8 μm by 5 μm extent. In time-resolved measurements with pulsed optical excitation, we observe that magnetic interactions amplify the initial pump-induced spin polarization by more than an order of magnitude. The optical control of magnetism with local optical pumps will unlock advancements in spin and optical technologies and provides a versatile tool in the study of correlated phases in two-dimensional electron gases.
Collapse
Affiliation(s)
- Kai Hao
- Pritzker School of Molecular Engineering, University of Chicago , Chicago, IL 60637, USA
| | - Robert Shreiner
- Pritzker School of Molecular Engineering, University of Chicago , Chicago, IL 60637, USA
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - Andrew Kindseth
- Pritzker School of Molecular Engineering, University of Chicago , Chicago, IL 60637, USA
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - Alexander A. High
- Pritzker School of Molecular Engineering, University of Chicago , Chicago, IL 60637, USA
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
15
|
Hossain MS, Ma MK, Villegas-Rosales KA, Chung YJ, Pfeiffer LN, West KW, Baldwin KW, Shayegan M. Anisotropic Two-Dimensional Disordered Wigner Solid. PHYSICAL REVIEW LETTERS 2022; 129:036601. [PMID: 35905352 DOI: 10.1103/physrevlett.129.036601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The interplay between the Fermi sea anisotropy, electron-electron interaction, and localization phenomena can give rise to exotic many-body phases. An exciting example is an anisotropic two-dimensional (2D) Wigner solid (WS), where electrons form an ordered array with an anisotropic lattice structure. Such a state has eluded experiments up to now as its realization is extremely demanding: First, a WS entails very low densities where the Coulomb interaction dominates over the kinetic (Fermi) energy. Attaining such low densities while keeping the disorder low is very challenging. Second, the low-density requirement has to be fulfilled in a material that hosts an anisotropic Fermi sea. Here, we report transport measurements in a clean (low-disorder) 2D electron system with anisotropic effective mass and Fermi sea. The data reveal that at extremely low electron densities, when the r_{s} parameter, the ratio of the Coulomb to the Fermi energy, exceeds ≃38, the current-voltage characteristics become strongly nonlinear at small dc biases. Several key features of the nonlinear characteristics, including their anisotropic voltage thresholds, are consistent with the formation of a disordered, anisotropic WS pinned by the ubiquitous disorder potential.
Collapse
Affiliation(s)
- Md S Hossain
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M K Ma
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K A Villegas-Rosales
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M Shayegan
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
16
|
Wang QH, Bedoya-Pinto A, Blei M, Dismukes AH, Hamo A, Jenkins S, Koperski M, Liu Y, Sun QC, Telford EJ, Kim HH, Augustin M, Vool U, Yin JX, Li LH, Falin A, Dean CR, Casanova F, Evans RFL, Chshiev M, Mishchenko A, Petrovic C, He R, Zhao L, Tsen AW, Gerardot BD, Brotons-Gisbert M, Guguchia Z, Roy X, Tongay S, Wang Z, Hasan MZ, Wrachtrup J, Yacoby A, Fert A, Parkin S, Novoselov KS, Dai P, Balicas L, Santos EJG. The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS NANO 2022; 16:6960-7079. [PMID: 35442017 PMCID: PMC9134533 DOI: 10.1021/acsnano.1c09150] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/23/2022] [Indexed: 05/23/2023]
Abstract
Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations. In this comprehensive review, prominent authors with expertise in complementary fields of 2D magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and simulations) have joined together to provide a genome of current knowledge and a guideline for future developments in 2D magnetic materials research.
Collapse
Affiliation(s)
- Qing Hua Wang
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Amilcar Bedoya-Pinto
- NISE
Department, Max Planck Institute of Microstructure
Physics, 06120 Halle, Germany
- Instituto
de Ciencia Molecular (ICMol), Universitat
de València, 46980 Paterna, Spain
| | - Mark Blei
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Avalon H. Dismukes
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Assaf Hamo
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Sarah Jenkins
- Twist
Group,
Faculty of Physics, University of Duisburg-Essen, Campus Duisburg, 47057 Duisburg, Germany
| | - Maciej Koperski
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544 Singapore
| | - Yu Liu
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Qi-Chao Sun
- Physikalisches
Institut, University of Stuttgart, 70569 Stuttgart, Germany
| | - Evan J. Telford
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
- Department
of Physics, Columbia University, New York, New York 10027, United States
| | - Hyun Ho Kim
- School
of Materials Science and Engineering, Department of Energy Engineering
Convergence, Kumoh National Institute of
Technology, Gumi 39177, Korea
| | - Mathias Augustin
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
| | - Uri Vool
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- John Harvard
Distinguished Science Fellows Program, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Jia-Xin Yin
- Laboratory
for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, New Jersey 08544, United States
| | - Lu Hua Li
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Alexey Falin
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Cory R. Dean
- Department
of Physics, Columbia University, New York, New York 10027, United States
| | - Fèlix Casanova
- CIC nanoGUNE
BRTA, 20018 Donostia - San Sebastián, Basque
Country, Spain
- IKERBASQUE,
Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
| | - Richard F. L. Evans
- Department
of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Mairbek Chshiev
- Université
Grenoble Alpes, CEA, CNRS, Spintec, 38000 Grenoble, France
- Institut
Universitaire de France, 75231 Paris, France
| | - Artem Mishchenko
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, United Kingdom
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Cedomir Petrovic
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Rui He
- Department
of Electrical and Computer Engineering, Texas Tech University, 910 Boston Avenue, Lubbock, Texas 79409, United
States
| | - Liuyan Zhao
- Department
of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States
| | - Adam W. Tsen
- Institute
for Quantum Computing and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Brian D. Gerardot
- SUPA, Institute
of Photonics and Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, United Kingdom
| | - Mauro Brotons-Gisbert
- SUPA, Institute
of Photonics and Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, United Kingdom
| | - Zurab Guguchia
- Laboratory
for Muon Spin Spectroscopy, Paul Scherrer
Institute, CH-5232 Villigen PSI, Switzerland
| | - Xavier Roy
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sefaattin Tongay
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Ziwei Wang
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, United Kingdom
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - M. Zahid Hasan
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Princeton
Institute for Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Joerg Wrachtrup
- Physikalisches
Institut, University of Stuttgart, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Amir Yacoby
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- John A.
Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Albert Fert
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- Unité
Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
- Department
of Materials Physics UPV/EHU, 20018 Donostia - San Sebastián, Basque Country, Spain
| | - Stuart Parkin
- NISE
Department, Max Planck Institute of Microstructure
Physics, 06120 Halle, Germany
| | - Kostya S. Novoselov
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544 Singapore
| | - Pengcheng Dai
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Luis Balicas
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
- Department
of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Elton J. G. Santos
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- Higgs Centre
for Theoretical Physics, The University
of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
17
|
Spin effect on the low-temperature resistivity maximum in a strongly interacting 2D electron system. Sci Rep 2022; 12:5080. [PMID: 35332223 PMCID: PMC8948273 DOI: 10.1038/s41598-022-09034-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/16/2022] [Indexed: 11/08/2022] Open
Abstract
The increase in the resistivity with decreasing temperature followed by a drop by more than one order of magnitude is observed on the metallic side near the zero-magnetic-field metal-insulator transition in a strongly interacting two-dimensional electron system in ultra-clean SiGe/Si/SiGe quantum wells. We find that the temperature [Formula: see text], at which the resistivity exhibits a maximum, is close to the renormalized Fermi temperature. However, rather than increasing along with the Fermi temperature, the value [Formula: see text] decreases appreciably for spinless electrons in spin-polarizing (parallel) magnetic fields. The observed behaviour of [Formula: see text] cannot be described by existing theories. The results indicate the spin-related origin of the effect.
Collapse
|
18
|
Falson J, Sodemann I, Skinner B, Tabrea D, Kozuka Y, Tsukazaki A, Kawasaki M, von Klitzing K, Smet JH. Competing correlated states around the zero-field Wigner crystallization transition of electrons in two dimensions. NATURE MATERIALS 2022; 21:311-316. [PMID: 34949813 DOI: 10.1038/s41563-021-01166-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
The competition between kinetic energy and Coulomb interactions in electronic systems leads to complex many-body ground states with competing orders. Here we present zinc oxide-based two-dimensional electron systems as a high-mobility system to study the low-temperature phases of strongly interacting electrons. An analysis of the electronic transport provides evidence for competing correlated metallic and insulating states with varying degrees of spin polarization. Some features bear quantitative resemblance to quantum Monte Carlo simulation results, including the transition point from the paramagnetic Fermi liquid to Wigner crystal and the absence of a Stoner transition. At very low temperatures, we resolve a non-monotonic spin polarizability of electrons across the phase transition, pointing towards a low spin phase of electrons, and a two-order-of-magnitude positive magnetoresistance that is challenging to understand within traditional metallic transport paradigms. This work establishes zinc oxide as a platform for studying strongly correlated electrons in two dimensions.
Collapse
Affiliation(s)
- J Falson
- Max-Planck-Institute for Solid State Research, Stuttgart, Germany.
- Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA, USA.
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA.
| | - I Sodemann
- Institut für Theoretische Physik, Universität Leipzig, Leipzig, Germany
- Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
| | - B Skinner
- Department of Physics, Ohio State University, Columbus, OH, USA
| | - D Tabrea
- Max-Planck-Institute for Solid State Research, Stuttgart, Germany
| | - Y Kozuka
- Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science, Tsukuba, Japan
- PRESTO, JST, Kawaguchi, Japan
| | - A Tsukazaki
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - M Kawasaki
- Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
| | - K von Klitzing
- Max-Planck-Institute for Solid State Research, Stuttgart, Germany
| | - J H Smet
- Max-Planck-Institute for Solid State Research, Stuttgart, Germany
| |
Collapse
|
19
|
Hossain MS, Ma MK, Villegas-Rosales KA, Chung YJ, Pfeiffer LN, West KW, Baldwin KW, Shayegan M. Spontaneous Valley Polarization of Itinerant Electrons. PHYSICAL REVIEW LETTERS 2021; 127:116601. [PMID: 34558923 DOI: 10.1103/physrevlett.127.116601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Memory or transistor devices based on an electron's spin rather than its charge degree of freedom offer certain distinct advantages and comprise a cornerstone of spintronics. Recent years have witnessed the emergence of a new field, valleytronics, which seeks to exploit an electron's valley index rather than its spin. An important component in this quest would be the ability to control the valley index in a convenient fashion. Here we show that the valley polarization can be switched from zero to 1 by a small reduction in density, simply tuned by a gate bias, in a two-dimensional electron system. This phenomenon, which is akin to Bloch spin ferromagnetism, arises fundamentally as a result of electron-electron interaction in an itinerant, dilute electron system. Essentially, the kinetic energy favors an equal distribution of electrons over the available valleys, whereas the interaction between electrons prefers single-valley occupancy below a critical density. The gate-bias-tuned transition we observe is accompanied by a sudden, twofold change in sample resistance, making the phenomenon of interest for potential valleytronic transistor device applications. Our observation constitutes a quintessential demonstration of valleytronics in a very simple experiment.
Collapse
Affiliation(s)
- Md S Hossain
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M K Ma
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K A Villegas-Rosales
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M Shayegan
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
20
|
Zhou H, Xie T, Ghazaryan A, Holder T, Ehrets JR, Spanton EM, Taniguchi T, Watanabe K, Berg E, Serbyn M, Young AF. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 2021; 598:429-433. [PMID: 34469943 DOI: 10.1038/s41586-021-03938-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022]
Abstract
Ferromagnetism is most common in transition metal compounds where electrons occupy highly localized d orbitals. However, ferromagnetic order may also arise in low-density two-dimensional electron systems1-5. Here we show that gate-tuned van Hove singularities in rhombohedral trilayer graphene6 drive spontaneous ferromagnetic polarization of the electron system into one or more spin and valley flavours. Using capacitance and transport measurements, we observe a cascade of transitions tuned to the density and electronic displacement field between phases in which quantum oscillations have fourfold, twofold or onefold degeneracy, associated with a spin- and valley-degenerate normal metal, spin-polarized 'half-metal', and spin- and valley-polarized 'quarter-metal', respectively. For electron doping, the salient features of the data are well captured by a phenomenological Stoner model7 that includes valley-anisotropic interactions. For hole filling, we observe a richer phase diagram featuring a delicate interplay of broken symmetries and transitions in the Fermi surface topology. Finally, we introduce a moiré superlattice using a rotationally aligned hexagonal boron nitride substrate5,8. Remarkably, we find that the isospin order is only weakly perturbed, with the moiré potential catalysing the formation of topologically nontrivial gapped states whenever itinerant half- or quarter-metal states occur at half- or quarter-superlattice band filling. Our results show that rhombohedral graphene is an ideal platform for well-controlled tests of many-body theory, and reveal magnetism in moiré materials4,5,9,10 to be fundamentally itinerant in nature.
Collapse
Affiliation(s)
- Haoxin Zhou
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - Tian Xie
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - Areg Ghazaryan
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Tobias Holder
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - James R Ehrets
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - Eric M Spanton
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Erez Berg
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - Maksym Serbyn
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - Andrea F Young
- Department of Physics, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
21
|
Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature 2021; 595:48-52. [PMID: 34194017 DOI: 10.1038/s41586-021-03560-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
One of the first theoretically predicted manifestations of strong interactions in many-electron systems was the Wigner crystal1-3, in which electrons crystallize into a regular lattice. The crystal can melt via either thermal or quantum fluctuations4. Quantum melting of the Wigner crystal is predicted to produce exotic intermediate phases5,6 and quantum magnetism7,8 because of the intricate interplay of Coulomb interactions and kinetic energy. However, studying two-dimensional Wigner crystals in the quantum regime has often required a strong magnetic field9-11 or a moiré superlattice potential12-15, thus limiting access to the full phase diagram of the interacting electron liquid. Here we report the observation of bilayer Wigner crystals without magnetic fields or moiré potentials in an atomically thin transition metal dichalcogenide heterostructure, which consists of two MoSe2 monolayers separated by hexagonal boron nitride. We observe optical signatures of robust correlated insulating states at symmetric (1:1) and asymmetric (3:1, 4:1 and 7:1) electron doping of the two MoSe2 layers at cryogenic temperatures. We attribute these features to bilayer Wigner crystals composed of two interlocked commensurate triangular electron lattices, stabilized by inter-layer interaction16. The Wigner crystal phases are remarkably stable, and undergo quantum and thermal melting transitions at electron densities of up to 6 × 1012 per square centimetre and at temperatures of up to about 40 kelvin. Our results demonstrate that an atomically thin heterostructure is a highly tunable platform for realizing many-body electronic states and probing their liquid-solid and magnetic quantum phase transitions4-8,17.
Collapse
|
22
|
Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 2021; 595:53-57. [PMID: 34194018 DOI: 10.1038/s41586-021-03590-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/28/2021] [Indexed: 11/09/2022]
Abstract
When the Coulomb repulsion between electrons dominates over their kinetic energy, electrons in two-dimensional systems are predicted to spontaneously break continuous-translation symmetry and form a quantum crystal1. Efforts to observe2-12 this elusive state of matter, termed a Wigner crystal, in two-dimensional extended systems have primarily focused on conductivity measurements on electrons confined to a single Landau level at high magnetic fields. Here we use optical spectroscopy to demonstrate that electrons in a monolayer semiconductor with density lower than 3 × 1011 per centimetre squared form a Wigner crystal. The combination of a high electron effective mass and reduced dielectric screening enables us to observe electronic charge order even in the absence of a moiré potential or an external magnetic field. The interactions between a resonantly injected exciton and electrons arranged in a periodic lattice modify the exciton bandstructure so that an umklapp resonance arises in the optical reflection spectrum, heralding the presence of charge order13. Our findings demonstrate that charge-tunable transition metal dichalcogenide monolayers14 enable the investigation of previously uncharted territory for many-body physics where interaction energy dominates over kinetic energy.
Collapse
|
23
|
Kim KS, Kivelson SA. Discovery of an insulating ferromagnetic phase of electrons in two dimensions. Proc Natl Acad Sci U S A 2021; 118:e2023964118. [PMID: 33408156 PMCID: PMC7812785 DOI: 10.1073/pnas.2023964118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kyung-Su Kim
- Department of Physics, Stanford University, Stanford, CA 93405
| | | |
Collapse
|