1
|
Mejias J, Margets A, Bredow M, Foster J, Khwanbua E, Goshon J, Maier TR, Whitham SA, Innes RW, Baum TJ. A novel toolbox of GATEWAY-compatible vectors for rapid functional gene analysis in soybean composite plants. PLANT CELL REPORTS 2025; 44:72. [PMID: 40063264 DOI: 10.1007/s00299-025-03458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/17/2025] [Indexed: 04/12/2025]
Abstract
KEY MESSAGE We developed a set of GATEWAY vectors to accelerate gene function analysis in soybean composite plants to rapidly screen transgenic roots and investigate subcellular localization, protein-protein interactions, and root-pathogen interactions. The generation of transgenic plants is essential for plant biology research to investigate plant physiology, pathogen interactions, and gene function. However, producing stable transgenic plants for plants such as soybean is a laborious and time-consuming process, which can impede research progress. Composite plants consisting of wild-type shoots and transgenic roots are an alternative method for generating transgenic plant tissues that can facilitate functional analysis of genes-of-interest involved in root development or root-microbe interactions. In this report, we introduce a novel set of GATEWAY-compatible vectors that enable a wide range of molecular biology uses in roots of soybean composite plants. These vectors incorporate in-frame epitope fusions of green fluorescent protein, 3x-HA, or miniTurbo-ID, which can be easily fused to a gene-of-interest using the GATEWAY cloning system. Moreover, these vectors allow for the identification of transgenic roots using either mCherry fluorescence or the RUBY marker. We demonstrate the functionality of these vectors by expressing subcellular markers in soybean, providing evidence of their effectiveness in generating protein fusions in composite soybean plants. Furthermore, we show how these vectors can be used for gene function analysis by expressing the bacterial effector, AvrPphB in composite roots, enabling the identification of soybean targets via immunoprecipitation followed by mass spectrometry. Additionally, we demonstrate the successful expression of stable miniTurbo-ID fusion proteins in composite roots. Overall, this new set of vectors is a powerful tool that can be used to assess subcellular localization and perform gene function analyses in soybean roots without the need to generate stable transgenic plants.
Collapse
Affiliation(s)
- Joffrey Mejias
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
- CIRAD, UMR PHIM, Montpellier, France
| | - Alexandra Margets
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Melissa Bredow
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
- CIRAD, UMR PHIM, Montpellier, France
| | - Jessica Foster
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Ekkachai Khwanbua
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Jackson Goshon
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Thomas R Maier
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Steven A Whitham
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Thomas J Baum
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
2
|
Sanfaçon H. 3C-like proteases at the interface of plant-virus-vector interactions: Focus on potyvirid NIa proteases and secovirid proteases. Virology 2025; 602:110299. [PMID: 39579507 DOI: 10.1016/j.virol.2024.110299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Plant viruses of the families Potyviridae and Secoviridae encode 3C-like proteases (3CLpro) that are related to picornavirus 3C proteases. This review discusses recent advances in deciphering the multifunctional activities of plant virus 3CLpro. These proteases regulate viral polyprotein processing and facilitate virus replication. They are also determinants of host range, virulence, symptomatology and super-infection exclusion in some plant-virus interactions and facilitate aphid transmission. Potyvirid NIa-Pro proteases interact with host factors to interfere with a variety of defense mechanisms: salicylic acid-dependent signaling, ethylene-dependent signaling, transcriptional gene silencing and RNA decay. Potyvirid NIa-Pro also cleave host proteins at signature cleavage sites, although the biological impact of these cleavage remains to be determined. Recently, a plant defense mechanism was uncovered that inhibits the proteolytic activity of a comovirus 3CLpro. Future perspectives are discussed including using proteomic and degradomic techniques to elucidate the network of interactions of plant virus 3CLpro with the host proteome.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, V0H 1Z0, Summerland, BC, Canada.
| |
Collapse
|
3
|
Hershkovitz D, Chen EJ, Ensminger AW, Dugan AS, Conway KT, Joyce AC, Segal G, Isberg RR. Genetic evidence for a regulated cysteine protease catalytic triad in LegA7, a Legionella pneumophila protein that impinges on a stress response pathway. mSphere 2024; 9:e0022224. [PMID: 39166849 PMCID: PMC11423584 DOI: 10.1128/msphere.00222-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/30/2024] [Indexed: 08/23/2024] Open
Abstract
Legionella pneumophila grows within membrane-bound vacuoles in phylogenetically diverse hosts. Intracellular growth requires the function of the Icm/Dot type-IVb secretion system, which translocates more than 300 proteins into host cells. A screen was performed to identify L. pneumophila proteins that stimulate mitogen-activated protein kinase (MAPK) activation, using Icm/Dot translocated proteins ectopically expressed in mammalian cells. In parallel, a second screen was performed to identify L. pneumophila proteins expressed in yeast that cause growth inhibition in MAPK pathway-stimulatory high-osmolarity medium. LegA7 was shared in both screens, a protein predicted to be a member of the bacterial cysteine protease family that has five carboxyl-terminal ankyrin repeats. Three conserved residues in the predicted catalytic triad of LegA7 were mutated. These mutations abolished the ability of LegA7 to inhibit yeast growth. To identify other residues important for LegA7 function, a generalizable selection strategy in yeast was devised to isolate mutants that have lost function and no longer cause growth inhibition on a high-osmolarity medium. Mutations were isolated in the two carboxyl-terminal ankyrin repeats, as well as an inter-domain region located between the cysteine protease domain and the ankyrin repeats. These mutations were predicted by AlphaFold modeling to localize to the face opposite from the catalytic site, arguing that they interfere with the positive regulation of the catalytic activity. Based on our data, we present a model in which LegA7 harbors a cysteine protease domain with an inter-domain and two carboxyl-terminal ankyrin repeat regions that modulate the function of the catalytic domain. IMPORTANCE Legionella pneumophila grows in a membrane-bound compartment in macrophages during disease. Construction of the compartment requires a dedicated secretion system that translocates virulence proteins into host cells. One of these proteins, LegA7, is shown to activate a stress response pathway in host cells called the mitogen-activated protein kinase (MAPK) pathway. The effects on the mammalian MAPK pathway were reconstructed in yeast, allowing the development of a strategy to identify the role of individual domains of LegA7. A domain similar to cysteine proteases is demonstrated to be critical for impinging on the MAPK pathway, and the catalytic activity of this domain is required for targeting this path. In addition, a conserved series of repeats, called ankyrin repeats, controls this activity. Data are provided that argue the interaction of the ankyrin repeats with unknown targets probably results in activation of the cysteine protease domain.
Collapse
Affiliation(s)
- Dar Hershkovitz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Emy J Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Genetics, Molecular and Cellular Biology, Graduate School of Biomedical Sciences Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alexander W Ensminger
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aisling S Dugan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Kaleigh T Conway
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Genetics, Molecular and Cellular Biology, Graduate School of Biomedical Sciences Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alex C Joyce
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Gil Segal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Hershkovitz D, Chen EJ, Ensminger AW, Dugan AS, Conway KT, Joyce AC, Segal G, Isberg RR. Genetic evidence for a regulated cysteine protease catalytic triad in LegA7, a Legionella pneumophila protein that impinges on a stress response pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585421. [PMID: 38562771 PMCID: PMC10983931 DOI: 10.1101/2024.03.17.585421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Legionella pneumophila grows within membrane-bound vacuoles in phylogenetically diverse hosts. Intracellular growth requires the function of the Icm/Dot type-IVb secretion system, which translocates more than 300 proteins into host cells. A screen was performed to identify L. pneumophila proteins that stimulate MAPK activation, using Icm/Dot translocated proteins ectopically expressed in mammalian cells. In parallel, a second screen was performed to identify L. pneumophila proteins expressed in yeast that cause growth inhibition in MAPK pathway-stimulatory high osmolarity medium. LegA7 was shared in both screens, a protein predicted to be a member of the bacterial cysteine protease family that has five carboxyl-terminal ankyrin repeats. Three conserved residues in the predicted catalytic triad of LegA7 were mutated. These mutations abolished the ability of LegA7 to inhibit yeast growth. To identify other residues important for LegA7 function, a generalizable selection strategy in yeast was devised to isolate mutants that have lost function and no longer cause growth inhibition on high osmolarity medium. Mutations were isolated in the two carboxyl-terminal ankyrin repeats, as well as an inter-domain region located between the cysteine protease domain and the ankyrin repeats. These mutations were predicted by AlphaFold modeling to localize to the face opposite from the catalytic site, arguing that they interfere with the positive regulation of the catalytic activity. Based on our data, we present a model in which LegA7 harbors a cysteine protease domain with an inter-domain and two carboxyl-terminal ankyrin repeat regions that modulate the function of the catalytic domain.
Collapse
Affiliation(s)
- Dar Hershkovitz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Emy J. Chen
- Department of Molecular Biology and Microbiology
- Program in Genetics, Molecular and Cellular Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02115, USA
| | | | - Aisling S. Dugan
- Department of Molecular Biology and Microbiology
- Current Address: Dept. of Biology, Brown University, Providence, RI 02912
| | - Kaleigh T. Conway
- Department of Molecular Biology and Microbiology
- Program in Genetics, Molecular and Cellular Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02115, USA
| | | | - Gil Segal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | | |
Collapse
|
5
|
Iakovidis M, Chung EH, Saile SC, Sauberzweig E, El Kasmi F. The emerging frontier of plant immunity's core hubs. FEBS J 2023; 290:3311-3335. [PMID: 35668694 DOI: 10.1111/febs.16549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The ever-growing world population, increasingly frequent extreme weather events and conditions, emergence of novel devastating crop pathogens and the social strive for quality food products represent a huge challenge for current and future agricultural production systems. To address these challenges and find realistic solutions, it is becoming more important by the day to understand the complex interactions between plants and the environment, mainly the associated organisms, but in particular pathogens. In the past several years, research in the fields of plant pathology and plant-microbe interactions has enabled tremendous progress in understanding how certain receptor-based plant innate immune systems function to successfully prevent infections and diseases. In this review, we highlight and discuss some of these new ground-breaking discoveries and point out strategies of how pathogens counteract the function of important core convergence hubs of the plant immune system. For practical reasons, we specifically place emphasis on potential applications that can be detracted by such discoveries and what challenges the future of agriculture has to face, but also how these challenges could be tackled.
Collapse
Affiliation(s)
- Michail Iakovidis
- Horticultural Genetics and Biotechnology Department, Mediterranean Agricultural Institute of Chania, Greece
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, Korea
| | - Svenja C Saile
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Elke Sauberzweig
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Farid El Kasmi
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| |
Collapse
|
6
|
Ozhelvaci F, Steczkiewicz K. Identification and Classification of Papain-like Cysteine Proteinases. J Biol Chem 2023:104801. [PMID: 37164157 DOI: 10.1016/j.jbc.2023.104801] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Papain-like cysteine peptidases form a big and highly diverse superfamily of proteins involved in many important biological functions, such as protein turnover, deubiquitination, tissue remodeling, blood clotting, virulence, defense, and cell wall remodeling. High sequence and structure diversity observed within these proteins hinders their comprehensive classification as well as the identification of new representatives. Moreover, in general protein databases, many families already classified as papain-like lack details regarding their mechanism of action or biological function. Here, we use transitive remote homology searches and 3D modeling to newly classify 21 families to the papain-like cysteine peptidase superfamily. We attempt to predict their biological function, and provide structural chacterization of 89 protein clusters defined based on sequence similarity altogether spanning 106 papain-like families. Moreover, we systematically discuss observed diversity in sequences, structures, and catalytic sites. Eventually, we expand the list of human papain-related proteins by seven representatives, including dopamine receptor-interacting protein (DRIP1) as potential deubiquitinase, and centriole duplication regulating CEP76 as retaining catalytically active peptidase-like domain. The presented results not only provide structure-based rationales to already existing peptidase databases but also may inspire further experimental research focused on peptidase-related biological processes.
Collapse
Affiliation(s)
- Fatih Ozhelvaci
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Jiménez-Guerrero I, Medina C, Vinardell JM, Ollero FJ, López-Baena FJ. The Rhizobial Type 3 Secretion System: The Dr. Jekyll and Mr. Hyde in the Rhizobium–Legume Symbiosis. Int J Mol Sci 2022; 23:ijms231911089. [PMID: 36232385 PMCID: PMC9569860 DOI: 10.3390/ijms231911089] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 01/14/2023] Open
Abstract
Rhizobia are soil bacteria that can establish a symbiotic association with legumes. As a result, plant nodules are formed on the roots of the host plants where rhizobia differentiate to bacteroids capable of fixing atmospheric nitrogen into ammonia. This ammonia is transferred to the plant in exchange of a carbon source and an appropriate environment for bacterial survival. This process is subjected to a tight regulation with several checkpoints to allow the progression of the infection or its restriction. The type 3 secretion system (T3SS) is a secretory system that injects proteins, called effectors (T3E), directly into the cytoplasm of the host cell, altering host pathways or suppressing host defense responses. This secretion system is not present in all rhizobia but its role in symbiosis is crucial for some symbiotic associations, showing two possible faces as Dr. Jekyll and Mr. Hyde: it can be completely necessary for the formation of nodules, or it can block nodulation in different legume species/cultivars. In this review, we compile all the information currently available about the effects of different rhizobial effectors on plant symbiotic phenotypes. These phenotypes are diverse and highlight the importance of the T3SS in certain rhizobium–legume symbioses.
Collapse
|
8
|
Khan A, Wadood SF, Chen M, Wang Y, Xie ZP, Staehelin C. Effector-triggered inhibition of nodulation: A rhizobial effector protease targets soybean kinase GmPBS1-1. PLANT PHYSIOLOGY 2022; 189:2382-2395. [PMID: 35543503 PMCID: PMC9343005 DOI: 10.1093/plphys/kiac205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 05/14/2023]
Abstract
Type III protein secretion systems of nitrogen-fixing rhizobia deliver effector proteins into leguminous host cells to promote or inhibit the nodule symbiosis. However, mechanisms underlying effector-triggered inhibition of nodulation remain largely unknown. Nodulation outer protein T (NopT) of Sinorhizobium sp. NGR234 is an effector protease related to the Pseudomonas effector Avirulence protein Pseudomonas phaseolicola B (AvrPphB). Here, we constructed NGR234 mutants producing different NopT variants and found that protease activity of NopT negatively affects nodulation of smooth crotalaria (Crotalaria pallida). NopT variants lacking residues required for autocleavage and subsequent lipidation showed reduced symbiotic effects and were not targeted to the plasma membrane. We further noticed that Sinorhizobium fredii strains possess a mutated nopT gene. Sinorhizobium fredii USDA257 expressing nopT of NGR234 induced considerably fewer nodules in soybean (Glycine max) cv. Nenfeng 15 but not in other cultivars. Effector perception was further examined in NopT-expressing leaves of Arabidopsis (Arabidopsis thaliana) and found to be dependent on the protein kinase Arabidopsis AvrPphB Susceptible 1 (AtPBS1) and the associated resistance protein Arabidopsis Resistance to Pseudomonas syringae 5 (AtRPS5). Experiments with Nicotiana benthamiana plants indicated that the soybean homolog GmPBS1-1 associated with AtRPS5 can perceive NopT. Further analysis showed that NopT cleaves AtPBS1 and GmPBS1-1 and thus can activate these target proteins. Insertion of a DKM motif at the cleavage site of GmPBS1-1 resulted in increased proteolysis. Nodulation tests with soybeans expressing an autoactive GmPBS1-1 variant indicated that activation of a GmPBS1-1-mediated resistance pathway impairs nodule formation in cv. Nenfeng 15. Our findings suggest that legumes face an evolutionary dilemma of either developing effector-triggered immunity against pathogenic bacteria or establishing symbiosis with suboptimally adapted rhizobia producing pathogen-like effectors.
Collapse
Affiliation(s)
- Asaf Khan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China
| | - Syed F Wadood
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China
| | - Min Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China
| |
Collapse
|
9
|
Ruinelli M, Blom J, Smits THM, Pothier JF. Comparative Genomics of Prunus-Associated Members of the Pseudomonas syringae Species Complex Reveals Traits Supporting Co-evolution and Host Adaptation. Front Microbiol 2022; 13:804681. [PMID: 35592008 PMCID: PMC9111521 DOI: 10.3389/fmicb.2022.804681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Members of the Pseudomonas syringae species complex cause symptoms that are ranging from leaf spots to cankers on a multitude of plant species, including some of the genus Prunus. To date, a total of two species of the P. syringae species complex and six different pathovars have been associated with diseases on Prunus spp., which were shown to belong to different phylogenetic units (phylogroups, PG) based on sequence similarity of housekeeping genes or whole genomes, suggesting that virulence to Prunus spp. may be the result of convergent pathoadaptation. In this study, a comparative genomics approach was used to determine genes significantly associated with strains isolated from Prunus spp. across a phylogeny of 97 strains belonging to the P. syringae species complex. Our study revealed the presence of a set of orthologous proteins which were significantly associated with strains isolated from Prunus spp. than in strains isolated from other hosts or from non-agricultural environments. Among them, the type III effector HopAY predicted to encode for a C58 cysteine protease was found to be highly associated with strains isolated from Prunus spp. and revealed patterns supporting co-evolution and host adaptation.
Collapse
Affiliation(s)
- Michela Ruinelli
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Theo H. M. Smits
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| |
Collapse
|
10
|
Mobbs GW, Aziz AA, Dix SR, Blackburn GM, Sedelnikova SE, Minshull TC, Dickman MJ, Baker PJ, Nathan S, Raih MF, Rice DW. Molecular basis of specificity and deamidation of eIF4A by Burkholderia Lethal Factor 1. Commun Biol 2022; 5:272. [PMID: 35347220 PMCID: PMC8960835 DOI: 10.1038/s42003-022-03186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/17/2022] [Indexed: 12/22/2022] Open
Abstract
Burkholderiapseudomallei lethal factor 1 (BLF1) exhibits site-specific glutamine deamidase activity against the eukaryotic RNA helicase, eIF4A, thereby blocking mammalian protein synthesis. The structure of a complex between BLF1 C94S and human eIF4A shows that the toxin binds in the cleft between the two RecA-like eIF4A domains forming interactions with residues from both and with the scissile amide of the target glutamine, Gln339, adjacent to the toxin active site. The RecA-like domains adopt a radically twisted orientation compared to other eIF4A structures and the nature and position of conserved residues suggests this may represent a conformation associated with RNA binding. Comparison of the catalytic site of BLF1 with other deamidases and cysteine proteases reveals that they fall into two classes, related by pseudosymmetry, that present either the re or si faces of the target amide/peptide to the nucleophilic sulfur, highlighting constraints in the convergent evolution of their Cys-His active sites. The crystal structure of the toxin from the pathogenic bacterium Burkholderia pseudomallei in complex with its target, human eIF4A, provides insights into substrate specificity and may facilitate the design of inhibitors for the treatment of melioidosis.
Collapse
|
11
|
Viana F, Peringathara SS, Rizvi A, Schroeder GN. Host manipulation by bacterial type III and type IV secretion system effector proteases. Cell Microbiol 2021; 23:e13384. [PMID: 34392594 PMCID: PMC11475232 DOI: 10.1111/cmi.13384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023]
Abstract
Proteases are powerful enzymes, which cleave peptide bonds, leading most of the time to irreversible fragmentation or degradation of their substrates. Therefore they control many critical cell fate decisions in eukaryotes. Bacterial pathogens exploit this power and deliver protease effectors through specialised secretion systems into host cells. Research over the past years revealed that the functions of protease effectors during infection are diverse, reflecting the lifestyles and adaptations to specific hosts; however, only a small number of peptidase families seem to have given rise to most of these protease virulence factors by the evolution of different substrate-binding specificities, intracellular activation and subcellular targeting mechanisms. Here, we review our current knowledge about the enzymology and function of protease effectors, which Gram-negative bacterial pathogens translocate via type III and IV secretion systems to irreversibly manipulate host processes. We highlight emerging concepts such as signalling by protease cleavage products and effector-triggered immunity, which host cells employ to detect and defend themselves against a protease attack. TAKE AWAY: Proteases irreversibly cleave proteins to control critical cell fate decisions. Gram-negative bacteria use type III and IV secretion systems to inject effectors. Protease effectors are integral weapons for the manipulation of host processes. Effectors evolved from few peptidase families to target diverse substrates. Effector-triggered immunity upon proteolytic attack emerges as host defence.
Collapse
Affiliation(s)
- Flávia Viana
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| | - Shruthi Sachidanandan Peringathara
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| | - Arshad Rizvi
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| | - Gunnar N. Schroeder
- Wellcome‐Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast, Northern IrelandUK
| |
Collapse
|
12
|
Kumar J, Ramlal A, Kumar K, Rani A, Mishra V. Signaling Pathways and Downstream Effectors of Host Innate Immunity in Plants. Int J Mol Sci 2021; 22:ijms22169022. [PMID: 34445728 PMCID: PMC8396522 DOI: 10.3390/ijms22169022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Phytopathogens, such as biotrophs, hemibiotrophs and necrotrophs, pose serious stress on the development of their host plants, compromising their yields. Plants are in constant interaction with such phytopathogens and hence are vulnerable to their attack. In order to counter these attacks, plants need to develop immunity against them. Consequently, plants have developed strategies of recognizing and countering pathogenesis through pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). Pathogen perception and surveillance is mediated through receptor proteins that trigger signal transduction, initiated in the cytoplasm or at the plasma membrane (PM) surfaces. Plant hosts possess microbe-associated molecular patterns (P/MAMPs), which trigger a complex set of mechanisms through the pattern recognition receptors (PRRs) and resistance (R) genes. These interactions lead to the stimulation of cytoplasmic kinases by many phosphorylating proteins that may also be transcription factors. Furthermore, phytohormones, such as salicylic acid, jasmonic acid and ethylene, are also effective in triggering defense responses. Closure of stomata, limiting the transfer of nutrients through apoplast and symplastic movements, production of antimicrobial compounds, programmed cell death (PCD) are some of the primary defense-related mechanisms. The current article highlights the molecular processes involved in plant innate immunity (PII) and discusses the most recent and plausible scientific interventions that could be useful in augmenting PII.
Collapse
Affiliation(s)
- Jitendra Kumar
- Bangalore Bioinnovation Centre, Life Sciences Park, Electronics City Phase 1, Bengaluru 560100, India;
| | - Ayyagari Ramlal
- Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa Campus, New Delhi 110012, India;
| | - Kamal Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110066, India;
| | - Anita Rani
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India;
| | - Vachaspati Mishra
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India;
- Correspondence:
| |
Collapse
|
13
|
Schreiber KJ, Chau-Ly IJ, Lewis JD. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms 2021; 9:1029. [PMID: 34064647 PMCID: PMC8150971 DOI: 10.3390/microorganisms9051029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/05/2023] Open
Abstract
Phytopathogenic bacteria possess an arsenal of effector proteins that enable them to subvert host recognition and manipulate the host to promote pathogen fitness. The type III secretion system (T3SS) delivers type III-secreted effector proteins (T3SEs) from bacterial pathogens such as Pseudomonas syringae, Ralstonia solanacearum, and various Xanthomonas species. These T3SEs interact with and modify a range of intracellular host targets to alter their activity and thereby attenuate host immune signaling. Pathogens have evolved T3SEs with diverse biochemical activities, which can be difficult to predict in the absence of structural data. Interestingly, several T3SEs are activated following injection into the host cell. Here, we review T3SEs with documented enzymatic activities, as well as T3SEs that facilitate virulence-promoting processes either indirectly or through non-enzymatic mechanisms. We discuss the mechanisms by which T3SEs are activated in the cell, as well as how T3SEs modify host targets to promote virulence or trigger immunity. These mechanisms may suggest common enzymatic activities and convergent targets that could be manipulated to protect crop plants from infection.
Collapse
Affiliation(s)
- Karl J. Schreiber
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Ilea J. Chau-Ly
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Jennifer D. Lewis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
- Plant Gene Expression Center, United States Department of Agriculture, University of California, Berkeley, CA 94710, USA
| |
Collapse
|
14
|
Mooney BC, Mantz M, Graciet E, Huesgen PF. Cutting the line: manipulation of plant immunity by bacterial type III effector proteases. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3395-3409. [PMID: 33640987 DOI: 10.1093/jxb/erab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Pathogens and their hosts are engaged in an evolutionary arms race. Pathogen-derived effectors promote virulence by targeting components of a host's innate immune system, while hosts have evolved proteins that sense effectors and trigger a pathogen-specific immune response. Many bacterial effectors are translocated into host cells using type III secretion systems. Type III effector proteases irreversibly modify host proteins by cleavage of peptide bonds and are prevalent among both plant and animal bacterial pathogens. In plants, the study of model effector proteases has yielded important insights into the virulence mechanisms employed by pathogens to overcome their host's immune response, as well as into the mechanisms deployed by their hosts to detect these effector proteases and counteract their effects. In recent years, the study of a larger number of effector proteases, across a wider range of pathogens, has yielded novel insights into their functions and recognition. One key limitation that remains is the lack of methods to detect protease cleavage at the proteome-wide level. We review known substrates and mechanisms of plant pathogen type III effector proteases and compare their functions with those of known type III effector proteases of mammalian pathogens. Finally, we discuss approaches to uncover their function on a system-wide level.
Collapse
Affiliation(s)
- Brian C Mooney
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Emmanuelle Graciet
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Institute for Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Guo H, Zhang Y, Tong J, Ge P, Wang Q, Zhao Z, Zhu-Salzman K, Hogenhout SA, Ge F, Sun Y. An Aphid-Secreted Salivary Protease Activates Plant Defense in Phloem. Curr Biol 2020; 30:4826-4836.e7. [PMID: 33035482 DOI: 10.1016/j.cub.2020.09.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/25/2020] [Accepted: 09/07/2020] [Indexed: 01/11/2023]
Abstract
Recent studies have reported that aphids facilitate their colonization of host plants by secreting salivary proteins into host tissues during their initial probing and feeding. Some of these salivary proteins elicit plant defenses, but the molecular and biochemical mechanisms that underlie the activation of phloem-localized resistance remain poorly understood. The aphid Myzus persicae, which is a generalized phloem-sucking pest, encompasses a number of lineages that are associated with and adapted to specific host plant species. The current study found that a cysteine protease Cathepsin B3 (CathB3), and the associated gene CathB3, was upregulated in the salivary glands and saliva of aphids from a non-tobacco-adapted (NTA) aphid lineage, when compared to those of a tobacco-adapted lineage. Furthermore, the knockdown of CathB3 improved the performance of NTA lineages on tobacco, and the propeptide domain of CathB3 was found to bind to tobacco cytoplasmic kinase ENHANCED DISEASE RESISTANCE 1-like (EDR1-like), which triggers the accumulation of reactive oxygen species in tobacco phloem, thereby suppressing both phloem feeding and colonization by NTA lineages. These findings reveal a novel function for a cathepsin-type protease in aphid saliva that elicits effective host plant defenses and warranted the theory of host specialization for generalist aphids.
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjing Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahui Tong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Panpan Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinyang Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihua Zhao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Mei L, Qiu X, Jiang C, Yang A. Host Delipidation Mediated by Bacterial Effectors. Trends Microbiol 2020; 29:238-250. [PMID: 33092951 DOI: 10.1016/j.tim.2020.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
Protein lipidation, the covalent attachment of a lipid moiety to a target protein, plays a critical role in many cellular processes in eukaryotic cells. Bacterial pathogens secrete various effectors to subvert the host signaling pathway as a mechanism of microbial pathogenesis. An increasing number of effectors from diverse bacterial pathogens function as cysteine proteases to cause irreversible delipidation of host lipidated proteins. This in turn results in disruption of crucial lipidation-mediated host signal transduction, thereby enabling pathogen survival and replication. In this review, we discuss the role of the bacterial effectors in interactions with the host and highlight our knowledge of irreversible host delipidation, with a focus on the common concerted biochemical mechanisms of the bacterial effectors.
Collapse
Affiliation(s)
- Ligang Mei
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaofeng Qiu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Chen Jiang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Ultrafast Transient Materials Science Center, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
17
|
Pottinger SE, Innes RW. RPS5-Mediated Disease Resistance: Fundamental Insights and Translational Applications. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:139-160. [PMID: 32284014 DOI: 10.1146/annurev-phyto-010820-012733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Focusing on the discovery and characterization of the Arabidopsis disease resistance protein RPS5 and its guardee PBS1, this review discusses work done in the Innes laboratory from the initial identification of the RPS5 gene in 1995 to the recent deployment of the PBS1 decoy system in crops. This is done through discussion of the structure, function, and signaling environment of RPS5 and PBS1, highlighting collaborations and influential ideas along the way. RPS5, a nucleotide-binding leucine-rich repeat (NLR) protein, is activated by the proteolytic cleavage of PBS1. We have shown that the cleavage site within PBS1 can be altered to contain cleavage sites for other proteases, enabling RPS5 activation by these proteases, thereby conferring resistance to different pathogens. This decoy approach has since been translated into crop species using endogenous PBS1 orthologs and holds strong potential for GMO-free development of new genetic resistance against important crop pathogens.
Collapse
Affiliation(s)
- Sarah E Pottinger
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| |
Collapse
|
18
|
Crystal structure of the tubulin tyrosine carboxypeptidase complex VASH1-SVBP. Nat Struct Mol Biol 2019; 26:567-570. [PMID: 31270470 DOI: 10.1038/s41594-019-0254-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022]
Abstract
The cyclic enzymatic removal and ligation of the C-terminal tyrosine of α-tubulin generates heterogeneous microtubules and affects their functions. Here we describe the crystal and solution structure of the tubulin carboxypeptidase complex between vasohibin (VASH1) and small vasohibin-binding protein (SVBP), which folds in a long helix, which stabilizes the VASH1 catalytic domain. This structure, combined with molecular docking and mutagenesis experiments, reveals which residues are responsible for recognition and cleavage of the tubulin C-terminal tyrosine.
Collapse
|
19
|
Liao S, Rajendraprasad G, Wang N, Eibes S, Gao J, Yu H, Wu G, Tu X, Huang H, Barisic M, Xu C. Molecular basis of vasohibins-mediated detyrosination and its impact on spindle function and mitosis. Cell Res 2019; 29:533-547. [PMID: 31171830 DOI: 10.1038/s41422-019-0187-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022] Open
Abstract
α-Tubulin detyrosination, largely catalyzed by vasohibins, is involved in many microtubule (MT)-related cellular events. In this study, we identified a core heterodimeric complex of human small vasohibin-binding protein (SVBP) and vasohibin 1 (VASH1) (hereafter denoted as SVBP-VASH1) that catalyzes the detyrosination of a peptide derived from C-terminus of α-tubulin. We further solved the crystal structures of the SVBP-VASH1 heterodimer alone and in complex with either an inhibitor or a mutant substrate peptide. Our structural research, complemented by biochemical and mutagenesis experiments, resulted in identification of the key residues for VASH1 binding to SVBP and α-tubulin substrate. Our in vivo experiments reveal that MT detyrosination in general, as well as the interactions between SVBP, VASH1, and α-tubulin, are critical for spindle function and accurate chromosome segregation during mitosis. Furthermore, we found that the phenotypes caused by the depletion of vasohibins were largely rescued upon co-depletion of kinesin13/MCAK, suggesting the coordination between the MT depolymerase and MT detyrosination during mitosis. Thus our work not only provides structural insights into the molecular mechanism of α-tubulin detyrosination catalyzed by SVBP-bound vasohibins, but also uncovers the key role of vasohibins-mediated MT detyrosination in spindle morphology and chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Shanhui Liao
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Girish Rajendraprasad
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Na Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Susana Eibes
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Jun Gao
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Huijuan Yu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Gao Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaoming Tu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hongda Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark. .,Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Chao Xu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
20
|
Helm M, Qi M, Sarkar S, Yu H, Whitham SA, Innes RW. Engineering a Decoy Substrate in Soybean to Enable Recognition of the Soybean Mosaic Virus NIa Protease. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:760-769. [PMID: 30676230 DOI: 10.1094/mpmi-12-18-0324-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In Arabidopsis, recognition of the AvrPphB effector protease from Pseudomonas syringae is mediated by the disease resistance (R) protein RPS5, which is activated by AvrPphB-induced cleavage of the Arabidopsis protein kinase PBS1. The recognition specificity of RPS5 can be altered by substituting the AvrPphB cleavage site within PBS1 with cleavage sequences for other proteases, including proteases from viruses. AvrPphB also activates defense responses in soybean (Glycine max), suggesting that soybean may contain an R protein analogous to RPS5. It was unknown, however, whether this response is mediated by cleavage of a soybean PBS1-like protein. Here, we show that soybean contains three PBS1 orthologs and that their products are cleaved by AvrPphB. Further, transient expression of soybean PBS1 derivatives containing a five-alanine insertion at their AvrPphB cleavage sites activated cell death in soybean protoplasts, demonstrating that soybean likely contains an AvrPphB-specific resistance protein that is activated by a conformational change in soybean PBS1 proteins. Significantly, we show that a soybean PBS1 decoy protein modified to contain a cleavage site for the soybean mosaic virus (SMV) NIa protease triggers cell death in soybean protoplasts when cleaved by this protease, indicating that the PBS1 decoy approach will work in soybean, using endogenous PBS1 genes. Lastly, we show that activation of the AvrPphB-dependent cell death response effectively inhibits systemic spread of SMV in soybean. These data also indicate that decoy engineering may be feasible in other crop plant species that recognize AvrPphB protease activity.
Collapse
Affiliation(s)
- Matthew Helm
- 1 Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| | - Mingsheng Qi
- 2 Department of Pant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Shayan Sarkar
- 2 Department of Pant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Haiyue Yu
- 2 Department of Pant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Steven A Whitham
- 2 Department of Pant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Roger W Innes
- 1 Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| |
Collapse
|
21
|
A bacterial effector deubiquitinase specifically hydrolyses linear ubiquitin chains to inhibit host inflammatory signalling. Nat Microbiol 2019; 4:1282-1293. [PMID: 31110362 DOI: 10.1038/s41564-019-0454-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Linear ubiquitin (Ub) chains regulate many cellular processes, including NF-κB immune signalling. Pathogenic bacteria have evolved to secrete effector proteins that harbour deubiquitinase activity into host cells to disrupt host ubiquitination signalling. All previously identified effector deubiquitinases hydrolyse isopeptide-linked polyubiquitin (polyUb). It has been a long-standing question whether bacterial pathogens have evolved an effector deubiquitinase to directly cleave linear Ub chains. In this study, we performed extensive screening of bacterial pathogens and found that Legionella pneumophila-the causative agent of human Legionnaire's disease-encodes an effector protein, RavD, which harbours deubiquitinase activity exquisitely specific for linear Ub chains. RavD hydrolyses linear Ub chains but not any type of isopeptide-linked polyUb. The crystal structure of RavD with linear diubiquitin reveals that RavD adopts a papain-like fold with a Cys-His-Ser catalytic triad. The Ub-binding surface and specific interacting residues in RavD determine its specificity for Met1 linkages. RavD prevents the accumulation of linear Ub chains on Legionella-containing vacuoles established by the pathogen in host cells to inhibit the NF-κB pathway during infection. This study identified a unique linear Ub chain-specific effector deubiquitinase and indicates its potential application as a tool to dissect linear polyUb-mediated signalling in mammalian cells.
Collapse
|
22
|
Figaj D, Ambroziak P, Przepiora T, Skorko-Glonek J. The Role of Proteases in the Virulence of Plant Pathogenic Bacteria. Int J Mol Sci 2019; 20:ijms20030672. [PMID: 30720762 PMCID: PMC6386880 DOI: 10.3390/ijms20030672] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 12/17/2022] Open
Abstract
A pathogenic lifestyle is inextricably linked with the constant necessity of facing various challenges exerted by the external environment (both within and outside the host). To successfully colonize the host and establish infection, pathogens have evolved sophisticated systems to combat the host defense mechanisms and also to be able to withstand adverse environmental conditions. Proteases, as crucial components of these systems, are involved in a variety of processes associated with infection. In phytopathogenic bacteria, they play important regulatory roles and modulate the expression and functioning of various virulence factors. Secretory proteases directly help avoid recognition by the plant immune systems, and contribute to the deactivation of the defense response pathways. Finally, proteases are important components of protein quality control systems, and thus enable maintaining homeostasis in stressed bacterial cells. In this review, we discuss the known protease functions and protease-regulated signaling processes associated with virulence of plant pathogenic bacteria.
Collapse
Affiliation(s)
- Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Patrycja Ambroziak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Tomasz Przepiora
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | | |
Collapse
|
23
|
Kim BS. The Modes of Action of MARTX Toxin Effector Domains. Toxins (Basel) 2018; 10:toxins10120507. [PMID: 30513802 PMCID: PMC6315884 DOI: 10.3390/toxins10120507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022] Open
Abstract
Many Gram-negative bacterial pathogens directly deliver numerous effector proteins from the bacterium to the host cell, thereby altering the target cell physiology. The already well-characterized effector delivery systems are type III, type IV, and type VI secretion systems. Multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are another effector delivery platform employed by some genera of Gram-negative bacteria. These single polypeptide exotoxins possess up to five effector domains in a modular fashion in their central regions. Upon binding to the host cell plasma membrane, MARTX toxins form a pore using amino- and carboxyl-terminal repeat-containing arms and translocate the effector domains into the cells. Consequently, MARTX toxins affect the integrity of the host cells and often induce cell death. Thus, they have been characterized as crucial virulence factors of certain human pathogens. This review covers how each of the MARTX toxin effector domains exhibits cytopathic and/or cytotoxic activities in cells, with their structural features revealed recently. In addition, future directions for the comprehensive understanding of MARTX toxin-mediated pathogenesis are discussed.
Collapse
Affiliation(s)
- Byoung Sik Kim
- Department of Food Science and Engineering, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
24
|
Neale HC, Jackson RW, Preston GM, Arnold DL. Supercoiling of an excised genomic island represses effector gene expression to prevent activation of host resistance. Mol Microbiol 2018; 110:444-454. [PMID: 30152900 PMCID: PMC6220960 DOI: 10.1111/mmi.14111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2018] [Indexed: 01/18/2023]
Abstract
The plant pathogen Pseudomonas syringae pv. phaseolicola, which causes halo blight disease of beans, contains a 106 kb genomic island PPHGI‐1. PPHGI‐1 carries a gene, avrPphB, which encodes an effector protein that triggers a resistance response in certain bean cultivars. Previous studies have shown that when PPHGI‐1 is excised from the bacterial chromosome, avrPphB is downregulated and therefore the pathogen avoids triggering the host’s defence mechanism. Here, we investigate whether the downregulation of avrPphB is caused by the supercoiling of PPHGI‐1. We also investigate the effect of a PPHGI‐1‐encoded type 1A topoisomerase, TopB3, on island stability and bacterial pathogenicity in the plant. Supercoiling inhibitors significantly increased the expression of avrPphB but did not affect the excision of PPHGI‐1. An insertional mutant of topB3 displayed an increase in avrPphB expression and an increase in PPHGI‐1 excision as well as reduced population growth in resistant and susceptible cultivars of bean. These results suggest an important role for topoisomerases in the maintenance and stability of a bacterial‐encoded genomic island and demonstrate that supercoiling is involved in the downregulation of an effector gene once the island has been excised, allowing the pathogen to prevent further activation of the host defence response.
Collapse
Affiliation(s)
- Helen C Neale
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, The University of the West of England, Frenchay Campus, Bristol, BS16 1QY, UK
| | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Dawn L Arnold
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, The University of the West of England, Frenchay Campus, Bristol, BS16 1QY, UK
| |
Collapse
|
25
|
Gong X, Zhao X, Zhang W, Wang J, Chen X, Hameed MF, Zhang N, Ge H. Structural characterization of the hypothetical protein Lpg2622, a new member of the C1 family peptidases from Legionella pneumophila. FEBS Lett 2018; 592:2798-2810. [PMID: 30071124 DOI: 10.1002/1873-3468.13210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/23/2018] [Accepted: 07/29/2018] [Indexed: 12/14/2022]
Abstract
The Legionella pneumophila type II secretion system can promote bacterial growth under a wide variety of conditions and mediates the secretion of more than 25 proteins, including the uncharacterized effector Lpg2622. Here, we determined the crystal structures of apo-Lpg2622 and Lpg2622 in complex with the cysteine protease inhibitor E64. Structural analysis suggests that Lpg2622 belongs to the C1 family peptidases. Interestingly, unlike the other structurally resolved papain-like cysteine proteases, the propeptide of Lpg2622 forms a novel super-secondary structural fold (hairpin-turn-helix) and can be categorized into a new group. In addition, the N-terminal β-sheet of the Lpg2622 propeptide plays a regulatory role on enzymatic activity. This study enhances our understanding of the classification and regulatory mechanisms of the C1 family peptidases.
Collapse
Affiliation(s)
- Xiaojian Gong
- School of Life Sciences, Anhui University, Hefei, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China.,School of Chemistry and Chemical Engineering, Anhui University, Hefei, China
| | - Xiaolei Zhao
- School of Life Sciences, Anhui University, Hefei, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Wei Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Jinzhao Wang
- Department of Biology, Taiyuan Normal University, China
| | - Xiaofang Chen
- School of Life Sciences, Anhui University, Hefei, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China.,School of Chemistry and Chemical Engineering, Anhui University, Hefei, China
| | - Muhammad Fazal Hameed
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Nannan Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Honghua Ge
- School of Life Sciences, Anhui University, Hefei, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| |
Collapse
|
26
|
Kumar S, Hedrick V, Mattoo S. YopT domain of the PfhB2 toxin from Pasteurella multocida: protein expression, characterization, crystallization and crystallographic analysis. Acta Crystallogr F Struct Biol Commun 2018; 74:128-134. [PMID: 29497015 PMCID: PMC5947697 DOI: 10.1107/s2053230x18000857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/13/2018] [Indexed: 11/10/2022] Open
Abstract
Pasteurella multocida causes respiratory-tract infections in a broad range of animals, as well as opportunistic infections in humans. P. multocida secretes a multidomain toxin called PfhB2, which contains a YopT-like cysteine protease domain at its C-terminus. The YopT domain of PfhB2 contains a well conserved Cys-His-Asp catalytic triad that defines YopT family members, and shares high sequence similarity with the prototype YopT from Yersinia sp. To date, only one crystal structure of a YopT family member has been reported; however, additional structural information is needed to help characterize the varied substrate specificity and enzymatic action of this large protease family. Here, a catalytically inactive C3733S mutant of PfhB2 YopT that provides enhanced protein stability was used with the aim of gaining structural insight into the diversity within the YopT protein family. To this end, the C3733S mutant of PfhB2 YopT has been successfully cloned, overexpressed, purified and crystallized. Diffraction data sets were collected from native crystals to 3.5 Å resolution and a single-wavelength anomalous data set was collected from an iodide-derivative crystal to 3.2 Å resolution. Data pertaining to crystals belonging to space group P31, with unit-cell parameters a = 136.9, b = 136.9, c = 74.7 Å for the native crystals and a = 139.2, b = 139.2, c = 74.7 Å for the iodide-derivative crystals, are discussed.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Victoria Hedrick
- Bindley Biosciences Center, Purdue University, 1203 West State Street, West Lafayette, IN 47907, USA
| | - Seema Mattoo
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
27
|
Su J, Spears BJ, Kim SH, Gassmann W. Constant vigilance: plant functions guarded by resistance proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:637-650. [PMID: 29232015 DOI: 10.1111/tpj.13798] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 05/09/2023]
Abstract
Unlike animals, plants do not have an adaptive immune system and have instead evolved sophisticated and multi-layered innate immune mechanisms. To overcome plant immunity, pathogens secrete a diverse array of effectors into the apoplast and virtually all cellular compartments to dampen immune signaling and interfere with plant functions. Here we describe the scope of the arms race throughout the cell and summarize various strategies used by both plants and pathogens. Through studying the ongoing evolutionary battle between plants and key pathogens, we may yet uncover potential ways to achieve the ultimate goal of engineering broad-spectrum resistant crops without affecting food quality or productivity.
Collapse
Affiliation(s)
- Jianbin Su
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Benjamin J Spears
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Sang Hee Kim
- Division of Applied Life Science (BK 21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Division of Life Science, Gyeongsang National University, Jinju, 52828, Korea
| | - Walter Gassmann
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
28
|
Kourelis J, van der Hoorn RAL. Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function. THE PLANT CELL 2018; 30:285-299. [PMID: 29382771 PMCID: PMC5868693 DOI: 10.1105/tpc.17.00579] [Citation(s) in RCA: 475] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/14/2017] [Accepted: 01/29/2018] [Indexed: 05/18/2023]
Abstract
Plants have many, highly variable resistance (R) gene loci, which provide resistance to a variety of pathogens. The first R gene to be cloned, maize (Zea mays) Hm1, was published over 25 years ago, and since then, many different R genes have been identified and isolated. The encoded proteins have provided clues to the diverse molecular mechanisms underlying immunity. Here, we present a meta-analysis of 314 cloned R genes. The majority of R genes encode cell surface or intracellular receptors, and we distinguish nine molecular mechanisms by which R proteins can elevate or trigger disease resistance: direct (1) or indirect (2) perception of pathogen-derived molecules on the cell surface by receptor-like proteins and receptor-like kinases; direct (3) or indirect (4) intracellular detection of pathogen-derived molecules by nucleotide binding, leucine-rich repeat receptors, or detection through integrated domains (5); perception of transcription activator-like effectors through activation of executor genes (6); and active (7), passive (8), or host reprogramming-mediated (9) loss of susceptibility. Although the molecular mechanisms underlying the functions of R genes are only understood for a small proportion of known R genes, a clearer understanding of mechanisms is emerging and will be crucial for rational engineering and deployment of novel R genes.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| |
Collapse
|
29
|
Krishnan P, Ma X, McDonald BA, Brunner PC. Widespread signatures of selection for secreted peptidases in a fungal plant pathogen. BMC Evol Biol 2018; 18:7. [PMID: 29368587 PMCID: PMC5784588 DOI: 10.1186/s12862-018-1123-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fungal plant pathogens secrete a large arsenal of hydrolytic enzymes during the course of infection, including peptidases. Secreted peptidases have been extensively studied for their role as effectors. In this study, we combined transcriptomics, comparative genomics and evolutionary analyses to investigate all 39 secreted peptidases in the fungal wheat pathogen Zymoseptoria tritici and its close relatives Z. pseudotritici and Z. ardabiliae. RESULTS RNA-seq data revealed that a majority of the secreted peptidases displayed differential transcription during the course of Z. tritici infection, indicative of specialization for different stages in the life cycle. Evolutionary analyses detected widespread evidence of adaptive evolution acting on at least 28 of the peptidases. A few peptidases displayed lineage-specific rates of molecular evolution, suggesting altered selection pressure in Z. tritici following host specialization on domesticated wheat. The peptidases belonging to MEROPS families A1 and G1 emerged as a particularly interesting group that may play key roles in host-pathogen co-evolution, host adaptation and pathogenicity. Sister genes in the A1 and G1 families showed accelerated substitution rates after gene duplications. CONCLUSIONS These results suggest widespread evolution of secreted peptidases leading to novel gene functions, consistent with predicted models of "escape from adaptive conflict" and "neo-functionalization". Our analyses identified candidate genes worthy of functional analyses that may encode effector functions, for example by suppressing plant defenses during the biotrophic phase of infection.
Collapse
Affiliation(s)
- Parvathy Krishnan
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 2, -8092, Zurich, CH, Switzerland
| | - Xin Ma
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 2, -8092, Zurich, CH, Switzerland
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 2, -8092, Zurich, CH, Switzerland
| | - Patrick C Brunner
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 2, -8092, Zurich, CH, Switzerland.
| |
Collapse
|
30
|
Eshraghi A, Kim J, Walls AC, Ledvina HE, Miller CN, Ramsey KM, Whitney JC, Radey MC, Peterson SB, Ruhland BR, Tran BQ, Goo YA, Goodlett DR, Dove SL, Celli J, Veesler D, Mougous JD. Secreted Effectors Encoded within and outside of the Francisella Pathogenicity Island Promote Intramacrophage Growth. Cell Host Microbe 2017; 20:573-583. [PMID: 27832588 PMCID: PMC5384264 DOI: 10.1016/j.chom.2016.10.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/18/2016] [Accepted: 10/13/2016] [Indexed: 01/10/2023]
Abstract
The intracellular bacterial pathogen Francisella tularensis causes tularemia, a zoonosis that can be fatal. The type VI secretion system (T6SS) encoded by the Francisella pathogenicity island (FPI) is critical for the virulence of this organism. Existing studies suggest that the complete repertoire of T6SS effectors delivered to host cells is encoded by the FPI. Using a proteome-wide approach, we discovered that the FPI-encoded T6SS exports at least three effectors encoded outside of the island. These proteins share features with virulence determinants of other pathogens, and we provide evidence that they can contribute to intramacrophage growth. The remaining proteins that we identified are encoded within the FPI. Two of these FPI-encoded proteins constitute effectors, whereas the others form a unique complex required for core function of the T6SS apparatus. The discovery of secreted effectors mediating interactions between Francisella and its host significantly advances our understanding of the pathogenesis of this organism.
Collapse
Affiliation(s)
- Aria Eshraghi
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jungyun Kim
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C Walls
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hannah E Ledvina
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Cheryl N Miller
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - Kathryn M Ramsey
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John C Whitney
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Matthew C Radey
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - S Brook Peterson
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Brittany R Ruhland
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Bao Q Tran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Young Ah Goo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - David R Goodlett
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jean Celli
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - David Veesler
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Joseph D Mougous
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, School of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
31
|
Franceschetti M, Maqbool A, Jiménez-Dalmaroni MJ, Pennington HG, Kamoun S, Banfield MJ. Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity. Microbiol Mol Biol Rev 2017; 81:e00066-16. [PMID: 28356329 PMCID: PMC5485802 DOI: 10.1128/mmbr.00066-16] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungi and oomycetes are filamentous microorganisms that include a diversity of highly developed pathogens of plants. These are sophisticated modulators of plant processes that secrete an arsenal of effector proteins to target multiple host cell compartments and enable parasitic infection. Genome sequencing revealed complex catalogues of effectors of filamentous pathogens, with some species harboring hundreds of effector genes. Although a large fraction of these effector genes encode secreted proteins with weak or no sequence similarity to known proteins, structural studies have revealed unexpected similarities amid the diversity. This article reviews progress in our understanding of effector structure and function in light of these new insights. We conclude that there is emerging evidence for multiple pathways of evolution of effectors of filamentous plant pathogens but that some families have probably expanded from a common ancestor by duplication and diversification. Conserved folds, such as the oomycete WY and the fungal MAX domains, are not predictive of the precise function of the effectors but serve as a chassis to support protein structural integrity while providing enough plasticity for the effectors to bind different host proteins and evolve unrelated activities inside host cells. Further effector evolution and diversification arise via short linear motifs, domain integration and duplications, and oligomerization.
Collapse
Affiliation(s)
- Marina Franceschetti
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Abbas Maqbool
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Helen G Pennington
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
32
|
Grabowski B, Schmidt MA, Rüter C. Immunomodulatory Yersinia outer proteins (Yops)-useful tools for bacteria and humans alike. Virulence 2017; 8:1124-1147. [PMID: 28296562 DOI: 10.1080/21505594.2017.1303588] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human-pathogenic Yersinia produce plasmid-encoded Yersinia outer proteins (Yops), which are necessary to down-regulate anti-bacterial responses that constrict bacterial survival in the host. These Yops are effectively translocated directly from the bacterial into the target cell cytosol by the type III secretion system (T3SS). Cell-penetrating peptides (CPPs) in contrast are characterized by their ability to autonomously cross cell membranes and to transport cargo - independent of additional translocation systems. The recent discovery of bacterial cell-penetrating effector proteins (CPEs) - with the prototype being the T3SS effector protein YopM - established a new class of autonomously translocating immunomodulatory proteins. CPEs represent a vast source of potential self-delivering, anti-inflammatory therapeutics. In this review, we give an update on the characteristic features of the plasmid-encoded Yops and, based on recent findings, propose the further development of these proteins for potential therapeutic applications as natural or artificial cell-penetrating forms of Yops might be of value as bacteria-derived biologics.
Collapse
Affiliation(s)
- Benjamin Grabowski
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - M Alexander Schmidt
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - Christian Rüter
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| |
Collapse
|
33
|
Valueva TA, Zaichik BT, Kudryavtseva NN. Role of proteolytic enzymes in the interaction of phytopathogenic microorganisms with plants. BIOCHEMISTRY (MOSCOW) 2017; 81:1709-1718. [DOI: 10.1134/s0006297916130083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Grabe GJ, Zhang Y, Przydacz M, Rolhion N, Yang Y, Pruneda JN, Komander D, Holden DW, Hare SA. The Salmonella Effector SpvD Is a Cysteine Hydrolase with a Serovar-specific Polymorphism Influencing Catalytic Activity, Suppression of Immune Responses, and Bacterial Virulence. J Biol Chem 2016; 291:25853-25863. [PMID: 27789710 PMCID: PMC5207060 DOI: 10.1074/jbc.m116.752782] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/26/2016] [Indexed: 12/02/2022] Open
Abstract
Many bacterial pathogens secrete virulence (effector) proteins that interfere with immune signaling in their host. SpvD is a Salmonella enterica effector protein that we previously demonstrated to negatively regulate the NF-κB signaling pathway and promote virulence of S. enterica serovar Typhimurium in mice. To shed light on the mechanistic basis for these observations, we determined the crystal structure of SpvD and show that it adopts a papain-like fold with a characteristic cysteine-histidine-aspartate catalytic triad comprising Cys-73, His-162, and Asp-182. SpvD possessed an in vitro deconjugative activity on aminoluciferin-linked peptide and protein substrates in vitro A C73A mutation abolished SpvD activity, demonstrating that an intact catalytic triad is required for its function. Taken together, these results strongly suggest that SpvD is a cysteine protease. The amino acid sequence of SpvD is highly conserved across different S. enterica serovars, but residue 161, located close to the catalytic triad, is variable, with serovar Typhimurium SpvD having an arginine and serovar Enteritidis a glycine at this position. This variation affected hydrolytic activity of the enzyme on artificial substrates and can be explained by substrate accessibility to the active site. Interestingly, the SpvDG161 variant more potently inhibited NF-κB-mediated immune responses in cells in vitro and increased virulence of serovar Typhimurium in mice. In summary, our results explain the biochemical basis for the effect of virulence protein SpvD and demonstrate that a single amino acid polymorphism can affect the overall virulence of a bacterial pathogen in its host.
Collapse
Affiliation(s)
| | - Yue Zhang
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| | - Michal Przydacz
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| | | | - Yi Yang
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| | - Jonathan N Pruneda
- the Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, United Kingdom
| | - David Komander
- the Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, United Kingdom
| | | | - Stephen A Hare
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| |
Collapse
|
35
|
Liu M, Duan L, Wang M, Zeng H, Liu X, Qiu D. Crystal Structure Analysis and the Identification of Distinctive Functional Regions of the Protein Elicitor Mohrip2. FRONTIERS IN PLANT SCIENCE 2016; 7:1103. [PMID: 27507984 PMCID: PMC4960229 DOI: 10.3389/fpls.2016.01103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/12/2016] [Indexed: 05/31/2023]
Abstract
The protein elicitor MoHrip2, which was extracted from Magnaporthe oryzae as an exocrine protein, triggers the tobacco immune system and enhances blast resistance in rice. However, the detailed mechanisms by which MoHrip2 acts as an elicitor remain unclear. Here, we investigated the structure of MoHrip2 to elucidate its functions based on molecular structure. The three-dimensional structure of MoHrip2 was obtained. Overall, the crystal structure formed a β-barrel structure and showed high similarity to the pathogenesis-related (PR) thaumatin superfamily protein thaumatin-like xylanase inhibitor (TL-XI). To investigate the functional regions responsible for MoHrip2 elicitor activities, the full length and eight truncated proteins were expressed in Escherichia coli and were evaluated for elicitor activity in tobacco. Biological function analysis showed that MoHrip2 triggered the defense system against Botrytis cinerea in tobacco. Moreover, only MoHrip2M14 and other fragments containing the 14 amino acids residues in the middle region of the protein showed the elicitor activity of inducing a hypersensitive response and resistance related pathways, which were similar to that of full-length MoHrip2. These results revealed that the central 14 amino acid residues were essential for anti-pathogenic activity.
Collapse
Affiliation(s)
- Mengjie Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection – Chinese Academy of Agricultural SciencesBeijing, China
| | - Liangwei Duan
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Meifang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection – Chinese Academy of Agricultural SciencesBeijing, China
| | - Hongmei Zeng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection – Chinese Academy of Agricultural SciencesBeijing, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection – Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
36
|
Cooper B, Campbell KB, Beard HS, Garrett WM, Islam N. Putative Rust Fungal Effector Proteins in Infected Bean and Soybean Leaves. PHYTOPATHOLOGY 2016; 106:491-9. [PMID: 26780434 DOI: 10.1094/phyto-11-15-0310-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The plant-pathogenic fungi Uromyces appendiculatus and Phakopsora pachyrhizi cause debilitating rust diseases on common bean and soybean. These rust fungi secrete effector proteins that allow them to infect plants, but their effector repertoires are not understood. The discovery of rust fungus effectors may eventually help guide decisions and actions that mitigate crop production loss. Therefore, we used mass spectrometry to identify thousands of proteins in infected beans and soybeans and in germinated fungal spores. The comparative analysis between the two helped differentiate a set of 24 U. appendiculatus proteins targeted for secretion that were specifically found in infected beans and a set of 34 U. appendiculatus proteins targeted for secretion that were found in germinated spores and infected beans. The proteins specific to infected beans included family 26 and family 76 glycoside hydrolases that may contribute to degrading plant cell walls. There were also several types of proteins with structural motifs that may aid in stabilizing the specialized fungal haustorium cell that interfaces the plant cell membrane during infection. There were 16 P. pachyrhizi proteins targeted for secretion that were found in infected soybeans, and many of these proteins resembled the U. appendiculatus proteins found in infected beans, which implies that these proteins are important to rust fungal pathology in general. This data set provides insight to the biochemical mechanisms that rust fungi use to overcome plant immune systems and to parasitize cells.
Collapse
Affiliation(s)
- Bret Cooper
- First, second, and third authors: Soybean Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD 20705; fourth author: Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705; and fifth author: Department of Nutrition and Food Science, University of Maryland, College Park 20742
| | - Kimberly B Campbell
- First, second, and third authors: Soybean Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD 20705; fourth author: Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705; and fifth author: Department of Nutrition and Food Science, University of Maryland, College Park 20742
| | - Hunter S Beard
- First, second, and third authors: Soybean Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD 20705; fourth author: Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705; and fifth author: Department of Nutrition and Food Science, University of Maryland, College Park 20742
| | - Wesley M Garrett
- First, second, and third authors: Soybean Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD 20705; fourth author: Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705; and fifth author: Department of Nutrition and Food Science, University of Maryland, College Park 20742
| | - Nazrul Islam
- First, second, and third authors: Soybean Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD 20705; fourth author: Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705; and fifth author: Department of Nutrition and Food Science, University of Maryland, College Park 20742
| |
Collapse
|
37
|
Kim BS, Satchell KJF. MARTX effector cross kingdom activation by Golgi-associated ADP-ribosylation factors. Cell Microbiol 2016; 18:1078-93. [PMID: 26780191 DOI: 10.1111/cmi.12568] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/28/2015] [Accepted: 01/10/2016] [Indexed: 02/07/2023]
Abstract
Vibrio vulnificus infects humans and causes lethal septicemia. The primary virulence factor is a multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin consisting of conserved repeats-containing regions and various effector domains. Recent genomic analyses for the newly emerged V. vulnificus biotype 3 strain revealed that its MARTX toxin has two previously unknown effector domains. Herein, we characterized one of these domains, Domain X (DmXVv ). A structure-based homology search revealed that DmXVv belongs to the C58B cysteine peptidase subfamily. When ectopically expressed in cells, DmXVv was autoprocessed and induced cytopathicity including Golgi dispersion. When the catalytic cysteine or the region flanking the scissile bond was mutated, both autoprocessing and cytopathicity were significantly reduced indicating that DmXVv cytopathicity is activated by amino-terminal autoprocessing. Consistent with this, host cell protein export was affected by Vibrio cells producing a toxin with wild-type, but not catalytically inactive, DmXVv . DmXVv was found to localize to Golgi and to directly interact with Golgi-associated ADP-ribosylation factors ARF1, ARF3 and ARF4, although ARF binding was not necessary for the subcellular localization. Rather, this interaction was found to induce autoprocessing of DmXVv . These data demonstrate that the V. vulnificus hijacks the host ARF proteins to activate the cytopathic DmXVv effector domain of MARTX toxin.
Collapse
Affiliation(s)
- Byoung Sik Kim
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
38
|
Agarwal S, Agarwal S, Biancucci M, Satchell KJF. Induced autoprocessing of the cytopathic Makes caterpillars floppy-like effector domain of the Vibrio vulnificus MARTX toxin. Cell Microbiol 2015; 17:1494-509. [PMID: 25912102 DOI: 10.1111/cmi.12451] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 12/22/2022]
Abstract
The multifunctional-autoprocessing repeats-in-toxin (MARTX(Vv)) toxin that harbours a varied repertoire of effector domains is the primary virulence factor of Vibrio vulnificus. Although ubiquitously present among Biotype I toxin variants, the 'Makes caterpillars floppy-like' effector domain (MCF(Vv)) is previously unstudied. Using transient expression and protein delivery, MCF(Vv) and MCF(Ah) from the Aeromonas hydrophila MARTX(Ah)) toxin are shown for the first time to induce cell rounding. Alanine mutagenesis across the C-terminal subdomain of MCF(Vv) identified an Arg-Cys-Asp (RCD) tripeptide motif shown to comprise a cysteine protease catalytic site essential for autoprocessing of MCF(Vv). The autoprocessing could be recapitulated in vitro by the addition of host cell lysate to recombinant MCF(Vv), indicating induced autoprocessing by cellular factors. The RCD motif is also essential for cytopathicity, suggesting autoprocessing is essential first to activate the toxin and then to process a cellular target protein resulting in cell rounding. Sequence homology places MCF(Vv) within the C58 cysteine protease family that includes the type III secretion effectors YopT from Yersinia spp. and AvrPphB from Pseudomonas syringae. However, the catalytic site RCD motif is unique compared with other C58 peptidases and is here proposed to represent a new subgroup of autopeptidase found within a number of putative large bacterial toxins.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Shivani Agarwal
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Marco Biancucci
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
39
|
What a difference a Dalton makes: bacterial virulence factors modulate eukaryotic host cell signaling systems via deamidation. Microbiol Mol Biol Rev 2014; 77:527-39. [PMID: 24006474 DOI: 10.1128/mmbr.00013-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic bacteria commonly deploy enzymes to promote virulence. These enzymes can modulate the functions of host cell targets. While the actions of some enzymes can be very obvious (e.g., digesting plant cell walls), others have more subtle activities. Depending on the lifestyle of the bacteria, these subtle modifications can be crucially important for pathogenesis. In particular, if bacteria rely on a living host, subtle mechanisms to alter host cellular function are likely to dominate. Several bacterial virulence factors have evolved to use enzymatic deamidation as a subtle posttranslational mechanism to modify the functions of host protein targets. Deamidation is the irreversible conversion of the amino acids glutamine and asparagine to glutamic acid and aspartic acid, respectively. Interestingly, all currently characterized bacterial deamidases affect the function of the target protein by modifying a single glutamine residue in the sequence. Deamidation of target host proteins can disrupt host signaling and downstream processes by either activating or inactivating the target. Despite the subtlety of this modification, it has been shown to cause dramatic, context-dependent effects on host cells. Several crystal structures of bacterial deamidases have been solved. All are members of the papain-like superfamily and display a cysteine-based catalytic triad. However, these proteins form distinct structural subfamilies and feature combinations of modular domains of various functions. Based on the diverse pathogens that use deamidation as a mechanism to promote virulence and the recent identification of multiple deamidases, it is clear that this enzymatic activity is emerging as an important and widespread feature in bacterial pathogenesis.
Collapse
|
40
|
Qi D, Dubiella U, Kim SH, Sloss DI, Dowen RH, Dixon JE, Innes RW. Recognition of the protein kinase AVRPPHB SUSCEPTIBLE1 by the disease resistance protein RESISTANCE TO PSEUDOMONAS SYRINGAE5 is dependent on s-acylation and an exposed loop in AVRPPHB SUSCEPTIBLE1. PLANT PHYSIOLOGY 2014; 164:340-51. [PMID: 24225654 PMCID: PMC3875812 DOI: 10.1104/pp.113.227686] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/12/2013] [Indexed: 05/06/2023]
Abstract
The recognition of pathogen effector proteins by plants is typically mediated by intracellular receptors belonging to the nucleotide-binding leucine-rich repeat (NLR) family. NLR proteins often detect pathogen effector proteins indirectly by detecting modification of their targets. How NLR proteins detect such modifications is poorly understood. To address these questions, we have been investigating the Arabidopsis (Arabidopsis thaliana) NLR protein RESISTANCE TO PSEUDOMONAS SYRINGAE5 (RPS5), which detects the Pseudomonas syringae effector protein Avirulence protein Pseudomonas phaseolicolaB (AvrPphB). AvrPphB is a cysteine protease that specifically targets a subfamily of receptor-like cytoplasmic kinases, including the Arabidopsis protein kinase AVRPPHB Susceptible1 (PBS1). RPS5 is activated by the cleavage of PBS1 at the apex of its activation loop. Here, we show that RPS5 activation requires that PBS1 be localized to the plasma membrane and that plasma membrane localization of PBS1 is mediated by amino-terminal S-acylation. We also describe the development of a high-throughput screen for mutations in PBS1 that block RPS5 activation, which uncovered four new pbs1 alleles, two of which blocked cleavage by AvrPphB. Lastly, we show that RPS5 distinguishes among closely related kinases by the amino acid sequence (SEMPH) within an exposed loop in the C-terminal one-third of PBS1. The SEMPH loop is located on the opposite side of PBS1 from the AvrPphB cleavage site, suggesting that RPS5 associates with the SEMPH loop while leaving the AvrPphB cleavage site exposed. These findings provide support for a model of NLR activation in which NLR proteins form a preactivation complex with effector targets and then sense a conformational change in the target induced by effector modification.
Collapse
Affiliation(s)
| | | | | | - D. Isaiah Sloss
- Department of Biology, Indiana University, Bloomington, Indiana 47405 (D.Q., U.D., S.H.K., D.I.S., R.W.I.)
- Departments of Pharmacology, Cellular and Molecular Medicine, and Chemistry and Biochemistry and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093 (R.H.D, J.E.D.); and
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 (J.E.D.)
| | - Robert H. Dowen
- Department of Biology, Indiana University, Bloomington, Indiana 47405 (D.Q., U.D., S.H.K., D.I.S., R.W.I.)
- Departments of Pharmacology, Cellular and Molecular Medicine, and Chemistry and Biochemistry and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093 (R.H.D, J.E.D.); and
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 (J.E.D.)
| | - Jack E. Dixon
- Department of Biology, Indiana University, Bloomington, Indiana 47405 (D.Q., U.D., S.H.K., D.I.S., R.W.I.)
- Departments of Pharmacology, Cellular and Molecular Medicine, and Chemistry and Biochemistry and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093 (R.H.D, J.E.D.); and
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 (J.E.D.)
| | | |
Collapse
|
41
|
Abstract
Over the past decade, considerable advances have been made in understanding the molecular mechanisms that underpin the arms race between plant pathogens and their hosts. Alongside genomic, bioinformatic, proteomic, biochemical and cell biological analyses of plant-pathogen interactions, three-dimensional structural studies of virulence proteins deployed by pathogens to promote infection, in some cases complexed with their plant cell targets, have uncovered key insights into the functions of these molecules. Structural information on plant immune receptors, which regulate the response to pathogen attack, is also starting to emerge. Structural studies of bacterial plant pathogen-host systems have been leading the way, but studies of filamentous plant pathogens are gathering pace. In this Review, we summarize the key developments in the structural biology of plant pathogen-host interactions.
Collapse
|
42
|
A substrate-inspired probe monitors translocation, activation, and subcellular targeting of bacterial type III effector protease AvrPphB. ACTA ACUST UNITED AC 2013; 20:168-76. [PMID: 23438746 DOI: 10.1016/j.chembiol.2012.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 11/21/2022]
Abstract
The AvrPphB effector of Pseudomonas syringae is a papain-like protease that is injected into the host plant cell and cleaves specific kinases to disrupt immune signaling. Here, we used the unique substrate specificity of AvrPphB to generate a specific activity-based probe. This probe displays various AvrPphB isoforms in bacterial extracts, upon secretion and inside the host plant. We show that AvrPphB is secreted as a proprotease and that secretion requires the prodomain, but probably does not involve a pH-dependent unfolding mechanism. The prodomain removal is required for the ability of AvrPphB to trigger a hypersensitive cell death in resistant host plants, presumably since processing exposes a hidden acylation site required for subcellular targeting in the host cell. We detected two active isoforms of AvrPphB in planta, of which the major one localizes exclusively to membranes.
Collapse
|
43
|
Design, synthesis, evaluation and thermodynamics of 1-substituted pyridylimidazo[1,5-a]pyridine derivatives as cysteine protease inhibitors. PLoS One 2013; 8:e69982. [PMID: 23940536 PMCID: PMC3734177 DOI: 10.1371/journal.pone.0069982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/14/2013] [Indexed: 12/05/2022] Open
Abstract
Targeting papain family cysteine proteases is one of the novel strategies in the development of chemotherapy for a number of diseases. Novel cysteine protease inhibitors derived from 1-pyridylimidazo[1,5-a]pyridine representing pharmacologically important class of compounds are being reported here for the first time. The derivatives were initially designed and screened in silico by molecular docking studies against papain to explore the possible mode of action. The molecular interaction between the compounds and cysteine protease (papain) was found to be very similar to the interactions observed with the respective epoxide inhibitor (E-64c) of papain. Subsequently, compounds were synthesized to validate their efficacy in wet lab experiments. When characterized kinetically, these compounds show their Ki and IC50 values in the range of 13.75 to 99.30 µM and 13.40 to 96.50 µM, respectively. The thermodynamics studies suggest their binding with papain hydrophobically and entropically driven. These inhibitors also inhibit the growth of clinically important different types of Gram positive and Gram negative bacteria having MIC50 values in the range of 0.6–1.4 µg/ml. Based on Lipinski’s rule of Five, we also propose these compounds as potent antibacterial prodrugs. The most active antibacterial compound was found to be 1-(2-pyridyl)-3-(2-hydroxyphenyl)imidazo[1,5-a]pyridine (3a).
Collapse
|
44
|
Ballini E, Lauter N, Wise R. Prospects for advancing defense to cereal rusts through genetical genomics. FRONTIERS IN PLANT SCIENCE 2013; 4:117. [PMID: 23641250 PMCID: PMC3640194 DOI: 10.3389/fpls.2013.00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/15/2013] [Indexed: 05/03/2023]
Abstract
Rusts are one of the most severe threats to cereal crops because new pathogen races emerge regularly, resulting in infestations that lead to large yield losses. In 1999, a new race of stem rust, Puccinia graminis f. sp. tritici (Pgt TTKSK or Ug99), was discovered in Uganda. Most of the wheat and barley cultivars grown currently worldwide are susceptible to this new race. Pgt TTKSK has already spread northward into Iran and will likely spread eastward throughout the Indian subcontinent in the near future. This scenario is not unique to stem rust; new races of leaf rust (Puccinia triticina) and stripe rust (Puccinia striiformis) have also emerged recently. One strategy for countering the persistent adaptability of these pathogens is to stack complete- and partial-resistance genes, which requires significant breeding efforts in order to reduce deleterious effects of linkage drag. These varied resistance combinations are typically more difficult for the pathogen to defeat, since they would be predicted to apply lower selection pressure. Genetical genomics or expression Quantitative Trait Locus (eQTL) analysis enables the identification of regulatory loci that control the expression of many to hundreds of genes. Integrated deployment of these technologies coupled with efficient phenotyping offers significant potential to elucidate the regulatory nodes in genetic networks that orchestrate host defense responses. The focus of this review will be to present advances in genetical genomic experimental designs and analysis, particularly as they apply to the prospects for discovering partial disease resistance alleles in cereals.
Collapse
Affiliation(s)
| | | | - Roger Wise
- Corn Insects and Crop Genetics Research, Department of Plant Pathology and Microbiology, US Department of Agriculture - Agricultural Research Service, Center for Plant Responses to Environmental Stresses, Iowa State UniversityAmes, IA, USA
| |
Collapse
|
45
|
Fu P, Zhang X, Jin M, Xu L, Wang C, Xia Z, Zhu Y. Complex structure of OspI and Ubc13: the molecular basis of Ubc13 deamidation and convergence of bacterial and host E2 recognition. PLoS Pathog 2013; 9:e1003322. [PMID: 23633953 PMCID: PMC3636029 DOI: 10.1371/journal.ppat.1003322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/07/2013] [Indexed: 11/24/2022] Open
Abstract
Ubc13 is an important ubiquitin-conjugating (E2) enzyme in the NF-κB signaling pathway. The Shigella effector OspI targets Ubc13 and deamidates Gln100 of Ubc13 to a glutamic acid residue, leading to the inhibition of host inflammatory responses. Here we report the crystal structure of the OspI-Ubc13 complex at 2.3 Å resolution. The structure reveals that OspI uses two differently charged regions to extensively interact with the α1 helix, L1 loop and L2 loop of Ubc13. The Gln100 residue is bound within the hydrophilic catalytic pocket of OspI. A comparison between Ubc13-bound and wild-type free OspI structures revealed that Ubc13 binding induces notable structural reassembly of the catalytic pocket, suggesting that substrate binding might be involved in the catalysis of OspI. The OspI-binding sites in Ubc13 largely overlap with the binding residues for host ubiquitin E3 ligases and a deubiquitinating enzyme, which suggests that the bacterial effector and host proteins exploit the same surface on Ubc13 for specific recognition. Biochemical results indicate that both of the differently charged regions in OspI are important for the interaction with Ubc13, and the specificity determinants in Ubc13 for OspI recognition reside in the distinct residues in the α1 helix and L2 region. Our study reveals the molecular basis of Ubc13 deamidation by OspI, as well as a convergence of E2 recognition by bacterial and host proteins. The Gram-negative pathogenic bacterium Shigella infects human intestinal epithelium cells and causes severe inflammatory colitis (bacillary dysentery). Shigella harbors an approximately 220-kb virulence plasmid that encodes a type III secretion system (T3SS) protein secretion apparatus and many effector proteins. Using the T3SS, Shigella delivers the effector proteins into the host cells, targeting key signal molecules and manipulating the host physiological processes and thereby promoting infection and multiplication. OspI, a newly identified Shigella effector, targets the host Ubc13 protein, a critical ubiquitin-conjugating enzyme in the NF-κB signaling pathway. OspI deamidates Gln100 of Ubc13 to a glutamic acid residue, thereby disrupting TRAF6-catalyzed polyubiquitination and dampening host inflammatory responses. However, the structural mechanism of this specific deamidation is unclear. Through crystallography, we have determined the structure of the OspI-Ubc13 complex. The structure illustrates how OspI interacts with Ubc13 and how Ubc13 induces conformational changes in OspI. Combining structural analysis and biochemical assays, we revealed how OspI distinguishes Ubc13 from other ubiquitin conjugating enzymes and found that OspI binds to the same surface region on Ubc13 as host TRAF6, CHIP and OTUB1. Our study sheds light on the molecular mechanism of Ubc13 deamidation by OspI and provides new insights into E2 recognition by bacterial and host proteins.
Collapse
Affiliation(s)
- Panhan Fu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoqing Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengmeng Jin
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Xu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chong Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zongping Xia
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongqun Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
46
|
Nishide A, Kim M, Takagi K, Himeno A, Sanada T, Sasakawa C, Mizushima T. Structural basis for the recognition of Ubc13 by the Shigella flexneri effector OspI. J Mol Biol 2013; 425:2623-31. [PMID: 23542009 DOI: 10.1016/j.jmb.2013.02.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/23/2013] [Accepted: 02/27/2013] [Indexed: 11/24/2022]
Abstract
Ubc13 is a ubiquitin-conjugating enzyme that plays a key role in the nuclear factor-κB signal transduction pathway in human diseases. The Shigella flexneri effector OspI affects inflammatory responses by catalyzing the deamidation of a specific glutamine residue at position 100 in Ubc13 during infection. This modification prevents the activation of the TNF (tumor necrosis factor) receptor-associated factor 6, leading to modulation of the diacylglycerol-CBM (CARD-Bcl10-Malt1) complex-TNF receptor-associated factor 6-nuclear factor-κB signaling pathway. To elucidate the structural basis of OspI function, we determined the crystal structures of the catalytically inert OspI C62A mutant and its complex with Ubc13 at resolutions of 3.0 and 2.96Å, respectively. The structure of the OspI-Ubc13 complex revealed that the interacting surfaces between OspI and Ubc13 are a hydrophobic surface and a complementary charged surface. Furthermore, we predict that the complementary charged surface of OspI plays a key role in substrate specificity determination.
Collapse
Affiliation(s)
- Akira Nishide
- Picobiology Institute, Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Structural basis of eukaryotic cell targeting by type III secretion system (T3SS) effectors. Res Microbiol 2013; 164:605-19. [PMID: 23541478 DOI: 10.1016/j.resmic.2013.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/27/2013] [Indexed: 02/06/2023]
Abstract
Type III secretion systems (T3SS) are macromolecular complexes that translocate a wide number of effector proteins into eukaryotic host cells. Once within the cytoplasm, many T3SS effectors mimic the structure and/or function of eukaryotic proteins in order to manipulate signaling cascades, and thus play pivotal roles in colonization, invasion, survival and virulence. Structural biology techniques have played key roles in the unraveling of bacterial strategies employed for mimicry and targeting. This review provides an overall view of our current understanding of structure and function of T3SS effectors, as well as of the different classes of eukaryotic proteins that are targeted and the consequences for the infected cell.
Collapse
|
48
|
Sanseverino W, Ercolano MR. In silico approach to predict candidate R proteins and to define their domain architecture. BMC Res Notes 2012; 5:678. [PMID: 23216678 PMCID: PMC3532234 DOI: 10.1186/1756-0500-5-678] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/27/2012] [Indexed: 12/22/2022] Open
Abstract
Background Plant resistance genes, which encode R-proteins, constitute one of the most important and widely investigated gene families. Thanks to the use of both genetic and molecular approaches, more than 100 R genes have been cloned so far. Analysis of resistance proteins and investigation of domain properties may afford insights into their role and function. Moreover, genomic experiments and availability of high-throughput sequence data are very useful for discovering new R genes and establish hypotheses about R-genes architecture. Result We surveyed the PRGdb dataset to provide valuable information about hidden R-protein features. Through an in silico approach 4409 putative R-proteins belonging to 33 plant organisms were analysed for domain associations frequency. The proteins showed common domain associations as well as previously unknown classes. Interestingly, the number of proteins falling into each class was found inversely related to domain arrangement complexity. Out of 31 possible theoretical domain combinations, only 22 were found. Proteins retrieved were filtered to highlight, through the visualization of a Venn diagram, candidate classes able to exert resistance function. Detailed analyses performed on conserved profiles of those strong putative R proteins revealed interesting domain features. Finally, several atypical domain associations were identified. Conclusion The effort made in this study allowed us to approach the R-domains arrangement issue from a different point of view, sorting through the vast diversity of R proteins. Overall, many protein features were revealed and interesting new domain associations were found. In addition, insights on domain associations meaning and R domains modelling were provided.
Collapse
Affiliation(s)
- Walter Sanseverino
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici, 80055, Italy
| | | |
Collapse
|
49
|
Bhaskaran SS, Stebbins CE. Structure of the catalytic domain of the Salmonella virulence factor SseI. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1613-21. [PMID: 23151626 PMCID: PMC3498931 DOI: 10.1107/s0907444912039042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/12/2012] [Indexed: 11/15/2022]
Abstract
SseI is secreted into host cells by Salmonella and contributes to the establishment of systemic infections. The crystal structure of the C-terminal domain of SseI has been solved to 1.70 Å resolution, revealing it to be a member of the cysteine protease superfamily with a catalytic triad consisting of Cys178, His216 and Asp231 that is critical to its virulence activities. Structure-based analysis revealed that SseI is likely to possess either acyl hydrolase or acyltransferase activity, placing this virulence factor in the rapidly growing class of enzymes of this family utilized by bacterial pathogens inside eukaryotic cells.
Collapse
Affiliation(s)
- Shyam S. Bhaskaran
- Laboratory of Structural Microbiology, The Rockefeller University, New York, NY 10065, USA
| | - C. Erec Stebbins
- Laboratory of Structural Microbiology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
50
|
Sohn KH, Hughes RK, Piquerez SJ, Jones JDG, Banfield MJ. Distinct regions of the Pseudomonas syringae coiled-coil effector AvrRps4 are required for activation of immunity. Proc Natl Acad Sci U S A 2012; 109:16371-6. [PMID: 22988101 PMCID: PMC3479578 DOI: 10.1073/pnas.1212332109] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gram-negative phytopathogenic bacteria translocate effector proteins into plant cells to subvert host defenses. These effectors can be recognized by plant nucleotide-binding-leucine-rich repeat immune receptors, triggering defense responses that restrict pathogen growth. AvrRps4, an effector protein from Pseudomonas syringae pv. pisi, triggers RPS4-dependent immunity in resistant accessions of Arabidopsis. To better understand the molecular basis of AvrRps4-triggered immunity, we determined the crystal structure of processed AvrRps4 (AvrRps4(C), residues 134-221), revealing that it forms an antiparallel α-helical coiled coil. Structure-informed mutagenesis reveals an electronegative surface patch in AvrRps4(C) required for recognition by RPS4; mutations in this region can also uncouple triggering of the hypersensitive response from disease resistance. This uncoupling may result from a lower level of defense activation, sufficient for avirulence but not for triggering a hypersensitive response. Natural variation in AvrRps4 reveals distinct recognition specificities that involve a surface-exposed residue. Recently, a direct interaction between AvrRps4 and Enhanced Disease Susceptibility 1 has been implicated in activation of immunity. However, we were unable to detect direct interaction between AvrRps4 and Enhanced Disease Susceptibility 1 after coexpression in Nicotiana benthamiana or in yeast cells. How intracellular plant immune receptors activate defense upon effector perception remains an unsolved problem. The structure of AvrRps4(C), and identification of functionally important residues for its activation of plant immunity, advances our understanding of these processes in a well-defined model pathosystem.
Collapse
Affiliation(s)
- Kee Hoon Sohn
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Richard K. Hughes
- Department of Biological Chemistry, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Sophie J. Piquerez
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Jonathan D. G. Jones
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Mark J. Banfield
- Department of Biological Chemistry, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|