1
|
Niu C, Zhang J, Okolo PI. The possible pathogenesis of liver fibrosis: therapeutic potential of natural polyphenols. Pharmacol Rep 2024; 76:944-961. [PMID: 39162986 DOI: 10.1007/s43440-024-00638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Liver fibrosis is the formation of a fibrous scar resulting from chronic liver injury, independently from etiology. Although many of the mechanical details remain unknown, activation of hepatic stellate cells (HSCs) is a central driver of liver fibrosis. Extracellular mechanisms such as apoptotic bodies, paracrine stimuli, inflammation, and oxidative stress are critical in activating HSCs. The potential for liver fibrosis to reverse after removing the causative agent has heightened interest in developing antifibrotic therapies. Polyphenols, the secondary plant metabolites, have gained attention because of their health-beneficial properties, including well-recognized antioxidant and anti-inflammatory activities, in the setting of liver fibrosis. In this review, we present an overview of the mechanisms underlying liver fibrosis with a specific focus on the activation of resident HSCs. We highlight the therapeutic potential and promising role of natural polyphenols to mitigate liver fibrosis pathogenesis, focusing on HSCs activation. We also discuss the translational gap from preclinical findings to clinical treatments involved in natural polyphenols in liver fibrosis.
Collapse
Affiliation(s)
- Chengu Niu
- Internal medicine residency program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, 2805 NE 129th St, Vancouver, WA, 98686, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Rochester General Hospital, Rochester, NY, 14621, USA
| |
Collapse
|
2
|
Blank V, Karlas T, Anderegg U, Wiegand J, Arnold J, Bundalian L, Le Duc GD, Körner C, Ebert T, Saalbach A. Thy-1 restricts steatosis and liver fibrosis in steatotic liver disease. Liver Int 2024; 44:2075-2090. [PMID: 38702958 DOI: 10.1111/liv.15956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND AND AIMS Steatotic liver disease (SLD) is generally considered to represent a hepatic manifestation of metabolic syndrome and includes a disease spectrum comprising isolated steatosis, metabolic dysfunction-associated steatohepatitis, liver fibrosis and ultimately cirrhosis. A better understanding of the detailed underlying pathogenic mechanisms of this transition is crucial for the design of new and efficient therapeutic interventions. Thymocyte differentiation antigen (Thy-1, also known as CD90) expression on fibroblasts controls central functions relevant to fibrogenesis, including proliferation, apoptosis, cytokine responsiveness, and myofibroblast differentiation. METHODS The impact of Thy-1 on the development of SLD and progression to fibrosis was investigated in high-fat diet (HFD)-induced SLD wild-type and Thy-1-deficient mice. In addition, the serum soluble Thy-1 (sThy-1) concentration was analysed in patients with metabolic dysfunction-associated SLD stratified according to steatosis, inflammation, or liver fibrosis using noninvasive markers. RESULTS We demonstrated that Thy-1 attenuates the development of fatty liver and the expression of profibrogenic genes in the livers of HFD-induced SLD mice. Mechanistically, Thy-1 directly inhibits the profibrotic activation of nonparenchymal liver cells. In addition, Thy-1 prevents palmitic acid-mediated amplification of the inflammatory response of myeloid cells, which might indirectly contribute to the pronounced development of liver fibrosis in Thy-1-deficient mice. Serum analysis of patients with metabolically associated steatotic liver disease syndrome revealed that sThy-1 expression is correlated with liver fibrosis status, as assessed by liver stiffness, the Fib4 score, and the NAFLD fibrosis score. CONCLUSION Our data strongly suggest that Thy-1 may function as a fibrosis-protective factor in mouse and human SLD.
Collapse
Affiliation(s)
- Valentin Blank
- Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
- Division of Interdisciplinary Ultrasound, Department of Internal Medicine I - Gastroenterology and Pneumology, University Hospital Halle, Halle, Germany
| | - Thomas Karlas
- Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Johannes Wiegand
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Josi Arnold
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Linnaeus Bundalian
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Gabriela-Diana Le Duc
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christiane Körner
- Division of Hepatology, Clinic of Oncology, Gastroenterology, Hepatology, and Pneumology, University Hospital Leipzig, Leipzig, Germany
| | - Thomas Ebert
- Division of Endocrinology, Department of Medicine III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Anja Saalbach
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
3
|
Chen L, Huang Y, Zhang N, Qu J, Fang Y, Fu J, Yuan Y, Zhang Q, Li H, Wen Z, Yuan L, Chen L, Xu Z, Li Y, Yan H, Izawa H, Li L, Xiang C. Single-cell RNA sequencing reveals reduced intercellular adhesion molecule crosstalk between activated hepatic stellate cells and neutrophils alleviating liver fibrosis in hepatitis B virus transgenic mice post menstrual blood-derived mesenchymal stem cell transplantation. MedComm (Beijing) 2024; 5:e654. [PMID: 39040848 PMCID: PMC11261812 DOI: 10.1002/mco2.654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
Liver fibrosis can cause hepatitis B virus (HBV)-associated hepatocellular carcinoma. Menstrual blood-derived mesenchymal stem cells (MenSCs) can ameliorate liver fibrosis through paracrine. Single-cell RNA sequencing (scRNA-seq) may be used to explore the roadmap of activated hepatic stellate cell (aHSC) inactivation to target liver fibrosis. This study established HBV transgenic (HBV-Tg) mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis and demonstrated that MenSCs migrated to the injured liver to improve serological indices and reduce fibrotic accumulation. RNA-bulk analysis revealed that MenSCs mediated extracellular matrix accumulation and cell adhesion. Liver parenchymal cells and nonparenchymal cells were identified by scRNA-seq in the control, CCl4, and MenSC groups, revealing the heterogeneity of fibroblasts/HSCs. A CellChat analysis revealed that diminished intercellular adhesion molecule (ICAM) signaling is vital for MenSC therapy. Specifically, Icam1 in aHSCs acted on Itgal/Itgb2 and Itgam/Itgb2 in neutrophils, causing decreased adhesion. The expression of Itgal, Itgam, and Itgb2 was higher in CCl4 group than in the control group and decreased after MenSC therapy in neutrophil clusters. The Lcn2, Pglyrp1, Wfdc21, and Mmp8 had high expression and may be potential targets in neutrophils. This study highlights interacting cells, corresponding molecules, and underlying targets for MenSCs in treating HBV-associated liver fibrosis.
Collapse
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Research Units of Infectious Disease and MicroecologyChinese Academy of Medical SciencesBeijingChina
| | - Yuqi Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingjing Qu
- Department of Respiratory DiseaseThoracic Disease CentreThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiamin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hang Li
- Innovative Precision Medicine (IPM) GroupHangzhouChina
| | - Zuoshi Wen
- Department of CardiologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Li Yuan
- Innovative Precision Medicine (IPM) GroupHangzhouChina
| | - Lu Chen
- Innovative Precision Medicine (IPM) GroupHangzhouChina
| | - Zhenyu Xu
- Innovative Precision Medicine (IPM) GroupHangzhouChina
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Research Units of Infectious Disease and MicroecologyChinese Academy of Medical SciencesBeijingChina
| | - Huadong Yan
- Infectious Disease DepartmentShulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical CollegeHangzhouChina
| | | | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Research Units of Infectious Disease and MicroecologyChinese Academy of Medical SciencesBeijingChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Research Units of Infectious Disease and MicroecologyChinese Academy of Medical SciencesBeijingChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| |
Collapse
|
4
|
Yin X, Rong J, Shao M, Zhang S, Yin L, He Z, Wang X. Aptamer-functionalized nanomaterials (AFNs) for therapeutic management of hepatocellular carcinoma. J Nanobiotechnology 2024; 22:243. [PMID: 38735927 PMCID: PMC11089756 DOI: 10.1186/s12951-024-02486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents one of the deadliest cancers globally, making the search for more effective diagnostic and therapeutic approaches particularly crucial. Aptamer-functionalized nanomaterials (AFNs), an innovative nanotechnology, have paved new pathways for the targeted diagnosis and treatment of HCC. Initially, we outline the epidemiological background of HCC and the current therapeutic challenges. Subsequently, we explore in detail how AFNs enhance diagnostic and therapeutic efficiency and reduce side effects through the specific targeting of HCC cells and the optimization of drug delivery. Furthermore, we address the challenges faced by AFNs in clinical applications and future research directions, with a particular focus on enhancing their biocompatibility and assessing long-term effects. In summary, AFNs represent an avant-garde therapeutic approach, opening new avenues and possibilities for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xiujuan Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jing Rong
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Min Shao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Saisai Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Likang Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Zhenqiang He
- Clinical Medical College, Hebei University, Baoding, 071002, Hebei, China
| | - Xiao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
5
|
Wehrli M, Guinn S, Birocchi F, Kuo A, Sun Y, Larson RC, Almazan AJ, Scarfò I, Bouffard AA, Bailey SR, Anekal PV, Llopis PM, Nieman LT, Song Y, Xu KH, Berger TR, Kann MC, Leick MB, Silva H, Salas-Benito D, Kienka T, Grauwet K, Armstrong TD, Zhang R, Zhu Q, Fu J, Schmidts A, Korell F, Jan M, Choi BD, Liss AS, Boland GM, Ting DT, Burkhart RA, Jenkins RW, Zheng L, Jaffee EM, Zimmerman JW, Maus MV. Mesothelin CAR T Cells Secreting Anti-FAP/Anti-CD3 Molecules Efficiently Target Pancreatic Adenocarcinoma and its Stroma. Clin Cancer Res 2024; 30:1859-1877. [PMID: 38393682 PMCID: PMC11062832 DOI: 10.1158/1078-0432.ccr-23-3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE Targeting solid tumors with chimeric antigen receptor (CAR) T cells remains challenging due to heterogenous target antigen expression, antigen escape, and the immunosuppressive tumor microenvironment (TME). Pancreatic cancer is characterized by a thick stroma generated by cancer-associated fibroblasts (CAF), which may contribute to the limited efficacy of mesothelin-directed CAR T cells in early-phase clinical trials. To provide a more favorable TME for CAR T cells to target pancreatic ductal adenocarcinoma (PDAC), we generated T cells with an antimesothelin CAR and a secreted T-cell-engaging molecule (TEAM) that targets CAF through fibroblast activation protein (FAP) and engages T cells through CD3 (termed mesoFAP CAR-TEAM cells). EXPERIMENTAL DESIGN Using a suite of in vitro, in vivo, and ex vivo patient-derived models containing cancer cells and CAF, we examined the ability of mesoFAP CAR-TEAM cells to target PDAC cells and CAF within the TME. We developed and used patient-derived ex vivo models, including patient-derived organoids with patient-matched CAF and patient-derived organotypic tumor spheroids. RESULTS We demonstrated specific and significant binding of the TEAM to its respective antigens (CD3 and FAP) when released from mesothelin-targeting CAR T cells, leading to T-cell activation and cytotoxicity of the target cell. MesoFAP CAR-TEAM cells were superior in eliminating PDAC and CAF compared with T cells engineered to target either antigen alone in our ex vivo patient-derived models and in mouse models of PDAC with primary or metastatic liver tumors. CONCLUSIONS CAR-TEAM cells enable modification of tumor stroma, leading to increased elimination of PDAC tumors. This approach represents a promising treatment option for pancreatic cancer.
Collapse
Affiliation(s)
- Marc Wehrli
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Samantha Guinn
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Filippo Birocchi
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Adam Kuo
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Yi Sun
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Rebecca C. Larson
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Antonio J. Almazan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Irene Scarfò
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Amanda A. Bouffard
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Stefanie R. Bailey
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | | | | | - Linda T. Nieman
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Yuhui Song
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Katherine H. Xu
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Trisha R. Berger
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Michael C. Kann
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Mark B. Leick
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Blood and Marrow Transplant Program, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Harrison Silva
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Diego Salas-Benito
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Tamina Kienka
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Korneel Grauwet
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Todd D. Armstrong
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Rui Zhang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Qingfeng Zhu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Juan Fu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Andrea Schmidts
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Felix Korell
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Max Jan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School; Boston, MA, USA
| | - Bryan D. Choi
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School; Boston, MA, USA
| | - Andrew S. Liss
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Genevieve M. Boland
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School; Boston, MA, USA
| | - David T. Ting
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Richard A. Burkhart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Russell W. Jenkins
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Elizabeth M. Jaffee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Jacquelyn W. Zimmerman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Marcela V. Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Blood and Marrow Transplant Program, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| |
Collapse
|
6
|
Kim HY, Sakane S, Eguileor A, Carvalho Gontijo Weber R, Lee W, Liu X, Lam K, Ishizuka K, Rosenthal SB, Diggle K, Brenner DA, Kisseleva T. The Origin and Fate of Liver Myofibroblasts. Cell Mol Gastroenterol Hepatol 2023; 17:93-106. [PMID: 37743012 PMCID: PMC10665929 DOI: 10.1016/j.jcmgh.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Liver fibrosis of different etiologies is a serious health problem worldwide. There is no effective therapy available for liver fibrosis except the removal of the underlying cause of injury or liver transplantation. Development of liver fibrosis is caused by fibrogenic myofibroblasts that are not present in the normal liver, but rather activate from liver resident mesenchymal cells in response to chronic toxic or cholestatic injury. Many studies indicate that liver fibrosis is reversible when the causative agent is removed. Regression of liver fibrosis is associated with the disappearance of activated myofibroblasts and resorption of the fibrous scar. In this review, we discuss the results of genetic tracing and cell fate mapping of hepatic stellate cells and portal fibroblasts, their specific characteristics, and potential phenotypes. We summarize research progress in the understanding of the molecular mechanisms underlying the development and reversibility of liver fibrosis, including activation, apoptosis, and inactivation of myofibroblasts.
Collapse
Affiliation(s)
- Hyun Young Kim
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Sadatsugu Sakane
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Alvaro Eguileor
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Raquel Carvalho Gontijo Weber
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Wonseok Lee
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Xiao Liu
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Kevin Lam
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Kei Ishizuka
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, California
| | - Karin Diggle
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - David A Brenner
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego School of Medicine, La Jolla, California.
| |
Collapse
|
7
|
Zhang X, Hartmann P. How to calculate sample size in animal and human studies. Front Med (Lausanne) 2023; 10:1215927. [PMID: 37663663 PMCID: PMC10469945 DOI: 10.3389/fmed.2023.1215927] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
One of the most important statistical analyses when designing animal and human studies is the calculation of the required sample size. In this review, we define central terms in the context of sample size determination, including mean, standard deviation, statistical hypothesis testing, type I/II error, power, direction of effect, effect size, expected attrition, corrected sample size, and allocation ratio. We also provide practical examples of sample size calculations for animal and human studies based on pilot studies, larger studies similar to the proposed study-or if no previous studies are available-estimated magnitudes of the effect size per Cohen and Sawilowsky.
Collapse
Affiliation(s)
- Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, United States
| | - Phillipp Hartmann
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Rady Children's Hospital San Diego, San Diego, CA, United States
| |
Collapse
|
8
|
Haas AR, Golden RJ, Litzky LA, Engels B, Zhao L, Xu F, Taraszka JA, Ramones M, Granda B, Chang WJ, Jadlowsky J, Shea KM, Runkle A, Chew A, Dowd E, Gonzalez V, Chen F, Liu X, Fang C, Jiang S, Davis MM, Sheppard NC, Zhao Y, Fraietta JA, Lacey SF, Plesa G, Melenhorst JJ, Mansfield K, Brogdon JL, Young RM, Albelda SM, June CH, Tanyi JL. Two cases of severe pulmonary toxicity from highly active mesothelin-directed CAR T cells. Mol Ther 2023; 31:2309-2325. [PMID: 37312454 PMCID: PMC10422001 DOI: 10.1016/j.ymthe.2023.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/13/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
Multiple clinical studies have treated mesothelin (MSLN)-positive solid tumors by administering MSLN-directed chimeric antigen receptor (CAR) T cells. Although these products are generally safe, efficacy is limited. Therefore, we generated and characterized a potent, fully human anti-MSLN CAR. In a phase 1 dose-escalation study of patients with solid tumors, we observed two cases of severe pulmonary toxicity following intravenous infusion of this product in the high-dose cohort (1-3 × 108 T cells per m2). Both patients demonstrated progressive hypoxemia within 48 h of infusion with clinical and laboratory findings consistent with cytokine release syndrome. One patient ultimately progressed to grade 5 respiratory failure. An autopsy revealed acute lung injury, extensive T cell infiltration, and accumulation of CAR T cells in the lungs. RNA and protein detection techniques confirmed low levels of MSLN expression by benign pulmonary epithelial cells in affected lung and lung samples obtained from other inflammatory or fibrotic conditions, indicating that pulmonary pneumocyte and not pleural expression of mesothelin may lead to dose-limiting toxicity. We suggest patient enrollment criteria and dosing regimens of MSLN-directed therapies consider the possibility of dynamic expression of mesothelin in benign lung with a special concern for patients with underlying inflammatory or fibrotic conditions.
Collapse
Affiliation(s)
- Andrew R Haas
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Ryan J Golden
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Leslie A Litzky
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Boris Engels
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Linlin Zhao
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Fangmin Xu
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - John A Taraszka
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Melissa Ramones
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Brian Granda
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Wan-Jung Chang
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Julie Jadlowsky
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kim-Marie Shea
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Adam Runkle
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Anne Chew
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Emily Dowd
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vanessa Gonzalez
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Fang Chen
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xiaojun Liu
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chongyun Fang
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shuguang Jiang
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Megan M Davis
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neil C Sheppard
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yangbing Zhao
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon F Lacey
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - J Joseph Melenhorst
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keith Mansfield
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | | | - Regina M Young
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven M Albelda
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janos L Tanyi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Saalbach A, Anderegg U, Wendt R, Beige J, Bachmann A, Klöting N, Blüher M, Zhang MZ, Harris RC, Stumvoll M, Tönjes A, Ebert T. Antifibrotic Soluble Thy-1 Correlates with Renal Dysfunction in Chronic Kidney Disease. Int J Mol Sci 2023; 24:1896. [PMID: 36768219 PMCID: PMC9916214 DOI: 10.3390/ijms24031896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Kidney fibrosis is a major culprit in the development and progression of chronic kidney disease (CKD), ultimately leading to the irreversible loss of organ function. Thymocyte differentiation antigen-1 (Thy-1) controls many core functions of fibroblasts relevant to fibrogenesis but is also found in a soluble form (sThy-1) in serum and urine. We investigated the association of sThy-1 with clinical parameters in patients with CKD receiving hemodialysis treatment compared to individuals with a preserved renal function. Furthermore, Thy-1 tissue expression was detected in a mouse model of diabetic CKD (eNOS-/-; db/db) and non-diabetic control mice (eNOS-/-). Serum and urinary sThy-1 concentrations significantly increased with deteriorating renal function, independent of the presence of diabetes. Serum creatinine is the major, independent, and inverse predictor of serum sThy-1 levels. Moreover, sThy-1 is not only predicted by markers of renal function but is also itself an independent and strong predictor of markers of renal function, i.e., serum creatinine. Mice with severe diabetic CKD show increased Thy-1 mRNA and protein expression in the kidney compared to control animals, as well as elevated urinary sThy-1 levels. Pro-fibrotic mediators, such as interleukin (IL)-4, IL-13, IL-6 and transforming growth factor β, increase Thy-1 gene expression and release of sThy-1 from fibroblasts. Our data underline the role of Thy-1 in the control of kidney fibrosis in CKD and raise the opportunity that Thy-1 may function as a renal antifibrotic factor.
Collapse
Affiliation(s)
- Anja Saalbach
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Ralph Wendt
- Hospital St. Georg, Division of Nephrology and Kuratorium for Dialysis and Transplantation, 04129 Leipzig, Germany
| | - Joachim Beige
- Hospital St. Georg, Division of Nephrology and Kuratorium for Dialysis and Transplantation, 04129 Leipzig, Germany
- Department for Internal Medicine, Medical Clinic 2, Martin-Luther-University Halle/Wittenberg, 06108 Halle, Germany
| | - Anette Bachmann
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Matthias Blüher
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Ming-Zhi Zhang
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
- Department of Medicine, Nashville Veterans Affairs Hospital, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Raymond C. Harris
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
- Department of Medicine, Nashville Veterans Affairs Hospital, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Michael Stumvoll
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Anke Tönjes
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Thomas Ebert
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| |
Collapse
|
10
|
Nishio T, Koyama Y, Fuji H, Ishizuka K, Iwaisako K, Taura K, Hatano E, Brenner DA, Kisseleva T. The Role of Mesothelin in Activation of Portal Fibroblasts in Cholestatic Liver Injury. BIOLOGY 2022; 11:1589. [PMID: 36358290 PMCID: PMC9687690 DOI: 10.3390/biology11111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Fibrosis is a common consequence of abnormal wound healing, which is characterized by infiltration of myofibroblasts and formation of fibrous scar. In liver fibrosis, activated Hepatic Stellate Cells (aHSCs) and activated Portal Fibroblasts (aPFs) are the major contributors to the origin of hepatic myofibroblasts. aPFs are significantly involved in the pathogenesis of cholestatic fibrosis, suggesting that aPFs may be a primary target for anti-fibrotic therapy in cholestatic injury. aPFs are distinguishable from aHSCs by specific markers including mesothelin (Msln), Mucin 16 (Muc16), and Thymus cell antigen 1 (Thy1, CD90) as well as fibulin 2, elastin, Gremlin 1, ecto-ATPase nucleoside triphosphate diphosphohydrolase 2. Msln plays a critical role in activation of PFs, via formation of Msln-Muc16-Thy1 complex that regulates TGFβ1/TGFβRI-mediated fibrogenic signaling. The opposing pro- and anti-fibrogenic effects of Msln and Thy1 are key components of the TGFβ1-induced activation pathway in aPFs. In addition, aPFs and activated lung and kidney fibroblasts share similarities across different organs with expression of common markers and activation cascade including Msln-Thy1 interaction. Here, we summarize the potential function of Msln in activation of PFs and development of cholestatic fibrosis, offering a novel perspective for anti-fibrotic therapy targeting Msln.
Collapse
Affiliation(s)
- Takahiro Nishio
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yukinori Koyama
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroaki Fuji
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| | - Kei Ishizuka
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| | - Keiko Iwaisako
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0394, Japan
| | - Kojiro Taura
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, 2-4-20 Ogimachi, Kita-ku, Osaka 530-8480, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - David A. Brenner
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Wang Q, Gong R. Immunotherapy targeting mesothelin in acute myeloid leukemia. J Leukoc Biol 2022; 112:813-821. [PMID: 35946307 DOI: 10.1002/jlb.5mr0622-483r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/06/2022] [Indexed: 11/08/2022] Open
Abstract
Mesothelin (MSLN) is an emerging target that exists in soluble and membrane-associated forms. It is usually used for the diagnosis and treatment of MSLN-positive solid tumors. Interestingly, recent studies have shown that MSLN is highly expressed in 36% of acute myeloid leukemia (AML) patients and barely expressed in normal hematopoietic cells, which makes MSLN a promising target for the treatment of AML. It has been shown that MSLN is detectable as a diagnostic marker in its soluble form. Although the mechanism of action is unclear, MSLN remains a promising target for immunotherapy. Most MSLN research has been conducted in solid tumors, and less research has been conducted in hematopoietic tumors. Increasing research on MSLN is underway in AML, a hematopoietic neoplasm. For example, MSLN is related to extramedullary disease, minimal residual disease, and relapse in AML patients. Decreasing the expression of MSLN reduces the severity of the disease course. This information suggests that MSLN may be an ideal target for the treatment of many AML-related diseases to improve the prognosis and survival rate. At present, there are a few immunotherapies targeting MSLN in AML in preclinical and clinical trials, such as antibody-drug conjugates, bispecific T-cell engagers, and chimeric antigen receptor-T cells, which opens new room for the treatment of MSLN-related AML.
Collapse
Affiliation(s)
- Qingguang Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Hu P, Leyton L, Hagood JS, Barker TH. Thy-1-Integrin Interactions in cis and Trans Mediate Distinctive Signaling. Front Cell Dev Biol 2022; 10:928510. [PMID: 35733855 PMCID: PMC9208718 DOI: 10.3389/fcell.2022.928510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Thy-1 is a cell surface glycosylphosphatidylinositol (GPI)-anchored glycoprotein that bears a broad mosaic of biological roles across various cell types. Thy-1 displays strong physiological and pathological implications in development, cancer, immunity, and tissue fibrosis. Quite uniquely, Thy-1 is capable of mediating integrin-related signaling through direct trans- and cis-interaction with integrins. Both interaction types have shown distinctive roles, even when interacting with the same type of integrin, where binding in trans or in cis often yields divergent signaling events. In this review, we will revisit recent progress and discoveries of Thy-1–integrin interactions in trans and in cis, highlight their pathophysiological consequences and explore other potential binding partners of Thy-1 within the integrin regulation/signaling paradigm.
Collapse
Affiliation(s)
- Ping Hu
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, United States
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile and Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - James S. Hagood
- Department of Pediatrics, Division of Pulmonology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Program for Rare and Interstitial Lung Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Thomas H. Barker
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, United States
- *Correspondence: Thomas H. Barker,
| |
Collapse
|
13
|
Shin WR, Park DY, Kim JH, Lee JP, Thai NQ, Oh IH, Sekhon SS, Choi W, Kim SY, Cho BK, Kim SC, Min J, Ahn JY, Kim YH. Structure based innovative approach to analyze aptaprobe-GPC3 complexes in hepatocellular carcinoma. J Nanobiotechnology 2022; 20:204. [PMID: 35477501 PMCID: PMC9044640 DOI: 10.1186/s12951-022-01391-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan, is a biomarker of hepatocellular carcinoma (HCC) progression. Aptamers specifically binding to target biomolecules have recently emerged as clinical disease diagnosis targets. Here, we describe 3D structure-based aptaprobe platforms for detecting GPC3, such as aptablotting, aptaprobe-based sandwich assay (ALISA), and aptaprobe-based imaging analysis. RESULTS For preparing the aptaprobe-GPC3 platforms, we obtained 12 high affinity aptamer candidates (GPC3_1 to GPC3_12) that specifically bind to target GPC3 molecules. Structure-based molecular interactions identified distinct aptatopic residues responsible for binding to the paratopic nucleotide sequences (nt-paratope) of GPC3 aptaprobes. Sandwichable and overlapped aptaprobes were selected through structural analysis. The aptaprobe specificity for using in HCC diagnostics were verified through Aptablotting and ALISA. Moreover, aptaprobe-based imaging showed that the binding property of GPC3_3 and their GPC3 specificity were maintained in HCC xenograft models, which may indicate a new HCC imaging diagnosis. CONCLUSION Aptaprobe has the potential to be used as an affinity reagent to detect the target in vivo and in vitro diagnosing system.
Collapse
Affiliation(s)
- Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Dae-Young Park
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jin-Pyo Lee
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Nguyen Quang Thai
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - In-Hwan Oh
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Simranjeet Singh Sekhon
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Wooil Choi
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sung Yeon Kim
- College of Pharmacy, Wonkwang University, Shinyoung-dong 344-2, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
14
|
Fuji H, Miller G, Nishio T, Koyama Y, Lam K, Zhang V, Loomba R, Brenner D, Kisseleva T. The role of Mesothelin signaling in Portal Fibroblasts in the pathogenesis of cholestatic liver fibrosis. Front Mol Biosci 2021; 8:790032. [PMID: 34966784 PMCID: PMC8710774 DOI: 10.3389/fmolb.2021.790032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023] Open
Abstract
Liver fibrosis develops in response to chronic toxic or cholestatic injury, and is characterized by apoptosis of damaged hepatocytes, development of inflammatory responses, and activation of Collagen Type I producing myofibroblasts that make liver fibrotic. Two major cell types, Hepatic Stellate Cells (HSCs) and Portal Fibroblasts (PFs) are the major source of hepatic myofibroblasts. Hepatotoxic liver injury activates Hepatic Stellate Cells (aHSCs) to become myofibroblasts, while cholestatic liver injury activates both aHSCs and Portal Fibroblasts (aPFs). aPFs comprise the major population of myofibroblasts at the onset of cholestatic injury, while aHSCs are increasingly activated with fibrosis progression. Here we summarize our current understanding of the role of aPFs in the pathogenesis of cholestatic fibrosis, their unique features, and outline the potential mechanism of targeting aPFs in fibrotic liver.
Collapse
Affiliation(s)
- Hiroaki Fuji
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Grant Miller
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Takahiro Nishio
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukinori Koyama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kevin Lam
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Vivian Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Rohit Loomba
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - David Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|