1
|
Deng J, Wang Z, Wu L, Song Z, Bahlol HS, Li X, Zhao L, Han H. Metal-Phenolic Network Hydrogel Vaccine Platform for Enhanced Humoral Immunity against Lethal Rabies Virus. ACS NANO 2025; 19:9042-9052. [PMID: 40025824 DOI: 10.1021/acsnano.4c17759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Rabies, caused by rabies virus (RABV), is a zoonotic disease with a high mortality rate that has attracted global attention with the goal of eradication by 2030. However, rabies can only be prevented by appropriate and multiple vaccinations, which impede widespread vaccination in developing countries due to its high expenditure. Designing single-dose vaccines is a pressing challenge in the prevention of rabies and other infectious diseases. Herein, a metal-phenolic network (MPN)-based hydrogel vaccine (designated as CGMR) was developed to stimulate potent humoral immunity against RABV infection by a single immunization, resulting in 4.3-fold and 1.8-fold enhancements of virus-neutralizing antibody compared with that induced by inactivated RABV and alum adjuvant. The CGMR, cross-linked by phenol-modified chitosan with manganese ion, could prolong residence time by confining the antigen to the network of hydrogel, acting as a "hydrogel antigen depot". It also stimulated the activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon gene (STING) pathway, facilitating dendritic cell maturation and antigen presentation. The vaccine formulation recruited immunocytes and activated the germinal center, enhancing and sustaining humoral immune responses against the virulent RABV challenge. Collectively, this injectable manganese-based hydrogel vaccine provides a universal and ideal avenue for rabies and other infectious diseases.
Collapse
Affiliation(s)
- Jiamin Deng
- The National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zongmei Wang
- The National Key Laboratory of Agricultural Microbiology, The Hubei Hongshan Laboratory, The Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Liqin Wu
- The National Key Laboratory of Agricultural Microbiology, The Hubei Hongshan Laboratory, The Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhiyong Song
- The National Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hagar Shendy Bahlol
- The National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Xun Li
- The National Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ling Zhao
- The National Key Laboratory of Agricultural Microbiology, The Hubei Hongshan Laboratory, The Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Heyou Han
- The National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
2
|
Tong L, Ozes B, Moss K, Myers M, Attia Z, Vetter TA, Trapp BD, Sahenk Z. AAV1.NT3 gene therapy mitigates the severity of autoimmune encephalomyelitis in the mouse model for multiple sclerosis. Gene Ther 2025:10.1038/s41434-025-00518-9. [PMID: 39972161 DOI: 10.1038/s41434-025-00518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 02/21/2025]
Abstract
Multiple sclerosis (MS) is an immune-mediated chronic inflammatory and neurodegenerative disease of the central nervous system (CNS) affecting more than 2.5 million patients worldwide. Chronic demyelination in the CNS has an important role in perpetuating axonal loss and increases difficulty in promoting remyelination. Therefore, regenerative, and neuroprotective strategies are essential to overcome this impediment to rescue axonal integrity and function. Neurotrophin 3 (NT-3) has immunomodulatory and anti-inflammatory properties, in addition to its well-recognized function in nervous system development, myelination, neuroprotection, and regeneration. For this study, scAAV1.tMCK.NT-3 was delivered to the gastrocnemius muscle of experimental autoimmune encephalomyelitis (EAE) mice, the chronic relapsing mouse model of MS, at 3 weeks post EAE induction. Measurable NT-3 levels were found in serum at 7-weeks post gene delivery. The treated cohort showed improved clinical scores and performed significantly better in rotarod, and grip strength tests compared to their untreated counterparts. Histopathologic studies showed improved remyelination and axon protection. These data correlated with reduced expression of the pro-inflammatory cytokines in brain and spinal cord, and increased percentage of regulatory T cells in the spleens and lymph nodes. Collectively, these findings demonstrate the translational potential of AAV-delivered NT-3 for chronic progressive MS.
Collapse
Affiliation(s)
- Lingying Tong
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Burcak Ozes
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kyle Moss
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Morgan Myers
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Zayed Attia
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Tatyana A Vetter
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zarife Sahenk
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA.
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
3
|
He G, Long H, He J, Zhu C. The Immunomodulatory Effects and Applications of Probiotic Lactiplantibacillus plantarum in Vaccine Development. Probiotics Antimicrob Proteins 2024; 16:2229-2250. [PMID: 39101975 DOI: 10.1007/s12602-024-10338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is a lactic acid bacterium that exists in various niches. L. plantarum is a food-grade microorganism that is commonly considered a safe and beneficial microorganism. It is widely used in food fermentation, agricultural enhancement, and environmental protection. L. plantarum is also part of the normal flora that can regulate the intestinal microflora and promote intestinal health. Some strains of L. plantarum are powerful probiotics that induce and modulate the innate and adaptive immune responses. Due to its outstanding immunoregulatory capacities, an increasing number of studies have examined the use of probiotic L. plantarum strains as natural immune adjuvants or alternative live vaccine carriers. The present review summarizes the main immunomodulatory characteristics of L. plantarum and discusses the preliminary immunological effects of L. plantarum as a vaccine adjuvant and delivery carrier. Different methods for improving the immune capacities of recombinant vector vaccines are also discussed.
Collapse
Affiliation(s)
- Guiting He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Huanbing Long
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Jiarong He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China.
| |
Collapse
|
4
|
Zhang Z, De X, Sun W, Liu R, Li Y, Yang Z, Liu N, Wu J, Miao Y, Wang J, Wang F, Ge J. Biogenic Selenium Nanoparticles Synthesized by L. brevis 23017 Enhance Aluminum Adjuvanticity and Make Up for its Disadvantage in Mice. Biol Trace Elem Res 2024; 202:4640-4653. [PMID: 38273184 DOI: 10.1007/s12011-023-04042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/24/2023] [Indexed: 01/27/2024]
Abstract
The most popular vaccine adjuvants are aluminum ones, which have significantly reduced the incidence and mortality of many diseases. However, aluminum-adjuvanted vaccines are constrained by their limited capacity to elicit cellular and mucosal immune responses, thus constraining their broader utilization. Biogenic selenium nanoparticles are a low-cost, environmentally friendly, low-toxicity, and highly bioactive form of selenium supplementation. Here, we purified selenium nanoparticles synthesized by Levilactobacillus brevis 23017 (L-SeNP) and characterized them using Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results indicate that the L-SeNP has a particle size ranging from 30 to 200 nm and is coated with proteins and polysaccharides. Subsequently, we assessed the immune-enhancing properties of L-SeNP in combination with an adjuvant-inactivated Clostridium perfringens type A vaccine using a mouse model. The findings demonstrate that L-SeNP can elevate the IgG and SIgA titers in immunized mice and modulate the Th1/Th2 immune response, thereby enhancing the protective effect of aluminum-adjuvanted vaccines. Furthermore, we observed that L-SeNP increases selenoprotein expression and regulates oxidative stress in immunized mice, which may be how L-SeNP regulates immunity. In conclusion, L-SeNP has the potential to augment the immune response of aluminum adjuvant vaccines and compensate for their limitations in eliciting Th1 and mucosal immune responses.
Collapse
Affiliation(s)
- Zheng Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xinqi De
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Weijiao Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Runhang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yifan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zaixing Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jingyi Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yaxin Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaqi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Fang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, 150030, China.
| |
Collapse
|
5
|
Niu L, Gao M, Ren H, De X, Jiang Z, Zhou X, Liu R, Li H, Duan H, Zhang C, Wang F, Ge J. A novel bacterium-like particles platform displaying antigens by new anchoring proteins induces efficacious immune responses. Front Microbiol 2024; 15:1395837. [PMID: 38841059 PMCID: PMC11150769 DOI: 10.3389/fmicb.2024.1395837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Bacterium-like particles (BLP) are the peptidoglycan skeleton particles of lactic acid bacteria, which have high safety, mucosal delivery efficiency, and adjuvant effect. It has been widely used in recent years in the development of vaccines. Existing anchoring proteins for BLP surfaces are few in number, so screening and characterization of new anchoring proteins are necessary. In this research, we created the OACD (C-terminal domain of Escherichia coli outer membrane protein A) to serve as an anchoring protein on the surface of BLP produced by the immunomodulatory bacteria Levilactobacillus brevis 23017. We used red fluorescent protein (RFP) to demonstrate the novel surface display system's effectiveness, stability, and ability to be adapted to a wide range of lactic acid bacteria. Furthermore, this study employed this surface display method to develop a novel vaccine (called COB17) by using the multi-epitope antigen of Clostridium perfringens as the model antigen. The vaccine can induce more than 50% protection rate against C. perfringens type A challenge in mice immunized with a single dose and has been tested through three routes. The vaccine yields protection rates of 75% for subcutaneous, 50% for intranasal, and 75% for oral immunization. Additionally, it elicits a strong mucosal immune response, markedly increasing levels of specific IgG, high-affinity IgG, specific IgA, and SIgA antibodies. Additionally, we used protein anchors (PA) and OACD simultaneous to show several antigens on the BLP surface. The discovery of novel BLP anchoring proteins may expand the possibilities for creating mucosal immunity subunit vaccines. Additionally, it may work in concert with PA to provide concepts for the creation of multivalent or multiple vaccines that may be used in clinical practice to treat complex illnesses.
Collapse
Affiliation(s)
- Lingdi Niu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingchun Gao
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hongkun Ren
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinqi De
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhigang Jiang
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinyao Zhou
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Runhang Liu
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hai Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haoyuan Duan
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chuankun Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fang Wang
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junwei Ge
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Fu W, Guo M, Zhou X, Wang Z, Sun J, An Y, Guan T, Hu M, Li J, Chen Z, Ye J, Gao X, Gao GF, Dai L, Wang Y, Chen C. Injectable Hydrogel Mucosal Vaccine Elicits Protective Immunity against Respiratory Viruses. ACS NANO 2024; 18:11200-11216. [PMID: 38620102 DOI: 10.1021/acsnano.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Intranasal vaccines, eliciting mucosal immune responses, can prevent early invasion, replication, and transmission of pathogens in the respiratory tract. However, the effective delivery of antigens through the nasal barrier and boosting of a robust systematic and mucosal immune remain challenges in intranasal vaccine development. Here, we describe an intranasally administered self-healing hydrogel vaccine with a reversible strain-dependent sol-gel transition by precisely modulating the self-assembly processes between the natural drug rhein and aluminum ions. The highly bioadhesive hydrogel vaccine enhances antigen stability and prolongs residence time in the nasal cavity and lungs by confining the antigen to the surface of the nasal mucosa, acting as a "mucosal mask". The hydrogel also stimulates superior immunoenhancing properties, including antigen internalization, cross-presentation, and dendritic cell maturation. Furthermore, the formulation recruits immunocytes to the nasal mucosa and nasal-associated lymphoid tissue (NALT) while enhancing antigen-specific humoral, cellular, and mucosal immune responses. Our findings present a promising strategy for preparing intranasal vaccines for infectious diseases or cancer.
Collapse
Affiliation(s)
- Wenjiao Fu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Xuemei Zhou
- School of Life Sciences, Hebei University, Baoding 071002, People's Republic of China
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Jiufeng Sun
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, People's Republic of China
| | - Yaling An
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tong Guan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Mingdi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiayang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Ziwei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Jinmin Ye
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, People's Republic of China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, People's Republic of China
| |
Collapse
|
7
|
Yang ZH, Song YL, Pei J, Li SZ, Liu RL, Xiong Y, Wu J, Liu YL, Fan HF, Wu JH, Wang ZJ, Guo J, Meng SL, Chen XQ, Lu J, Shen S. Measles Virus-Based Vaccine Expressing Membrane-Anchored Spike of SARS-CoV-2 Inducing Efficacious Systemic and Mucosal Humoral Immunity in Hamsters. Viruses 2024; 16:559. [PMID: 38675901 PMCID: PMC11054861 DOI: 10.3390/v16040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
As SARS-CoV-2 continues to evolve and COVID-19 cases rapidly increase among children and adults, there is an urgent need for a safe and effective vaccine that can elicit systemic and mucosal humoral immunity to limit the emergence of new variants. Using the Chinese Hu191 measles virus (MeV-hu191) vaccine strain as a backbone, we developed MeV chimeras stably expressing the prefusion forms of either membrane-anchored, full-length spike (rMeV-preFS), or its soluble secreted spike trimers with the help of the SP-D trimerization tag (rMeV-S+SPD) of SARS-CoV-2 Omicron BA.2. The two vaccine candidates were administrated in golden Syrian hamsters through the intranasal or subcutaneous routes to determine the optimal immunization route for challenge. The intranasal delivery of rMeV-S+SPD induced a more robust mucosal IgA antibody response than the subcutaneous route. The mucosal IgA antibody induced by rMeV-preFS through the intranasal routine was slightly higher than the subcutaneous route, but there was no significant difference. The rMeV-preFS vaccine stimulated higher mucosal IgA than the rMeV-S+SPD vaccine through intranasal or subcutaneous administration. In hamsters, intranasal administration of the rMeV-preFS vaccine elicited high levels of NAbs, protecting against the SARS-CoV-2 Omicron BA.2 variant challenge by reducing virus loads and diminishing pathological changes in vaccinated animals. Encouragingly, sera collected from the rMeV-preFS group consistently showed robust and significantly high neutralizing titers against the latest variant XBB.1.16. These data suggest that rMeV-preFS is a highly promising COVID-19 candidate vaccine that has great potential to be developed into bivalent vaccines (MeV/SARS-CoV-2).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jia Lu
- Wuhan Institute of Biological Products Co. Ltd., Wuhan 430207, China; (Z.-H.Y.); (Y.-L.S.); (J.P.); (S.-Z.L.); (R.-L.L.); (Y.X.); (J.W.); (Y.-L.L.); (H.-F.F.); (J.-H.W.); (Z.-J.W.); (J.G.); (S.-L.M.); (X.-Q.C.)
| | - Shuo Shen
- Wuhan Institute of Biological Products Co. Ltd., Wuhan 430207, China; (Z.-H.Y.); (Y.-L.S.); (J.P.); (S.-Z.L.); (R.-L.L.); (Y.X.); (J.W.); (Y.-L.L.); (H.-F.F.); (J.-H.W.); (Z.-J.W.); (J.G.); (S.-L.M.); (X.-Q.C.)
| |
Collapse
|
8
|
Jia Z, Liu R, Chang Q, Zhou X, De X, Yang Z, Li Y, Zhang C, Wang F, Ge J. Proof of concept in utilizing the peptidoglycan skeleton of pathogenic bacteria as antigen delivery platform for enhanced immune response. Int J Biol Macromol 2024; 264:130591. [PMID: 38437938 DOI: 10.1016/j.ijbiomac.2024.130591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Subunit vaccines are becoming increasingly important because of their safety and effectiveness. However, subunit vaccines often exhibit limited immunogenicity, necessitating the use of suitable adjuvants to elicit robust immune responses. In this study, we demonstrated for the first time that pathogenic bacteria can be prepared into a purified peptidoglycan skeleton without nucleic acids and proteins, presenting bacterium-like particles (pBLP). Our results showed that the peptidoglycan skeletons screened from four pathogens could activate Toll-like receptor1/2 receptors better than bacterium-like particles from Lactococcus lactis in macrophages. We observed that pBLP was safe in mouse models of multiple ages. Furthermore, pBLP improved the performance of two commercial vaccines in vivo. We confirmed that pBLP successfully loaded antigens onto the surface and proved to be an effective antigen delivery platform with enhanced antibody titers, antibody avidity, balanced subclass distribution, and mucosal immunity. These results indicate that the peptidoglycan skeleton of pathogenic bacteria represents a new strategy for developing subunit vaccine delivery systems.
Collapse
Affiliation(s)
- Zheng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Runhang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150086, China
| | - Qingru Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Xinyao Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Xinqi De
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Zaixing Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Yifan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Chuankun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Fang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150086, China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China; Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China.
| |
Collapse
|
9
|
Guo M, Xiong M, Peng J, Guan T, Su H, Huang Y, Yang CG, Li Y, Boraschi D, Pillaiyar T, Wang G, Yi C, Xu Y, Chen C. Multi-omics for COVID-19: driving development of therapeutics and vaccines. Natl Sci Rev 2023; 10:nwad161. [PMID: 37936830 PMCID: PMC10627145 DOI: 10.1093/nsr/nwad161] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 11/09/2023] Open
Abstract
The ongoing COVID-19 pandemic caused by SARS-CoV-2 has raised global concern for public health and economy. The development of therapeutics and vaccines to combat this virus is continuously progressing. Multi-omics approaches, including genomics, transcriptomics, proteomics, metabolomics, epigenomics and metallomics, have helped understand the structural and molecular features of the virus, thereby assisting in the design of potential therapeutics and accelerating vaccine development for COVID-19. Here, we provide an up-to-date overview of the latest applications of multi-omics technologies in strategies addressing COVID-19, in order to provide suggestions towards the development of highly effective knowledge-based therapeutics and vaccines.
Collapse
Affiliation(s)
- Mengyu Guo
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Muya Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Tong Guan
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 528107, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Diana Boraschi
- Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli 80131, Italy
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Guanbo Wang
- Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 528107, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
10
|
Wang X, Zhang J, Wu Y, Xu Y, Zheng J. SIgA in various pulmonary diseases. Eur J Med Res 2023; 28:299. [PMID: 37635240 PMCID: PMC10464380 DOI: 10.1186/s40001-023-01282-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/12/2023] [Indexed: 08/29/2023] Open
Abstract
Secretory immunoglobulin A (SIgA) is one of the most abundant immunoglobulin subtypes among mucosa, which plays an indispensable role in the first-line protection against invading pathogens and antigens. Therefore, the role of respiratory SIgA in respiratory mucosal immune diseases has attracted more and more attention. Although the role of SIgA in intestinal mucosal immunity has been widely studied, the cell types responsible for SIgA and the interactions between cells are still unclear. Here, we conducted a wide search of relevant studies and sorted out the relationship between SIgA and some pulmonary diseases (COPD, asthma, tuberculosis, idiopathic pulmonary fibrosis, COVID-19, lung cancer), which found SIgA is involved in the pathogenesis and progression of various lung diseases, intending to provide new ideas for the prevention, diagnosis, and treatment of related lung diseases.
Collapse
Affiliation(s)
- Xintian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Jingkou District, Zhenjiang, Jiangsu China
| | - Jun Zhang
- Department of Respiratory and Critical Care Medicine, Aoyang Hospital Affiliated to Jiangsu University, No. 279, Jingang Avenue, Zhangjiagang, Suzhou, Jiangsu China
| | - Yan Wu
- Department of Respiratory Medicine, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Jingkou District, Zhenjiang, Jiangsu China
| | - Yuncong Xu
- Department of Respiratory Medicine, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Jingkou District, Zhenjiang, Jiangsu China
| | - Jinxu Zheng
- Department of Respiratory Medicine, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Jingkou District, Zhenjiang, Jiangsu China
| |
Collapse
|
11
|
Halsey G, Sinha D, Dhital S, Wang X, Vyavahare N. Role of elastic fiber degradation in disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166706. [PMID: 37001705 PMCID: PMC11659964 DOI: 10.1016/j.bbadis.2023.166706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Elastin is a crucial extracellular matrix protein that provides structural integrity to tissues. Crosslinked elastin and associated microfibrils, named elastic fiber, contribute to biomechanics by providing the elasticity required for proper function. During aging and disease, elastic fiber can be progressively degraded and since there is little elastin synthesis in adults, degraded elastic fiber is not regenerated. There is substantial evidence linking loss or damage of elastic fibers to the clinical manifestation and pathogenesis of a variety of diseases. Disruption of elastic fiber networks by hereditary mutations, aging, or pathogenic stimuli results in systemic ailments associated with the production of elastin degradation products, inflammatory responses, and abnormal physiology. Due to its longevity, unique mechanical properties, and widespread distribution in the body, elastic fiber plays a central role in homeostasis of various physiological systems. While pathogenesis related to elastic fiber degradation has been more thoroughly studied in elastic fiber rich tissues such as the vasculature and the lungs, even tissues containing relatively small quantities of elastic fibers such as the eyes or joints may be severely impacted by elastin degradation. Elastic fiber degradation is a common observation in certain hereditary, age, and specific risk factor exposure induced diseases representing a converging point of pathological clinical phenotypes which may also help explain the appearance of co-morbidities. In this review, we will first cover the role of elastic fiber degradation in the manifestation of hereditary diseases then individually explore the structural role and degradation effects of elastic fibers in various tissues and organ systems. Overall, stabilizing elastic fiber structures and repairing lost elastin may be effective strategies to reverse the effects of these diseases.
Collapse
Affiliation(s)
- Gregory Halsey
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Dipasha Sinha
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Saphala Dhital
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Xiaoying Wang
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Naren Vyavahare
- Department of Bioengineering, Clemson University, SC 29634, United States of America.
| |
Collapse
|
12
|
Eddins DJ, Yang J, Kosters A, Giacalone VD, Pechuan-Jorge X, Chandler JD, Eum J, Babcock BR, Dobosh BS, Hernández MR, Abdulkhader F, Collins GL, Orlova DY, Ramonell RP, Sanz I, Moussion C, Eun-Hyung Lee F, Tirouvanziam RM, Ghosn EEB. Transcriptional reprogramming of infiltrating neutrophils drives lung pathology in severe COVID-19 despite low viral load. Blood Adv 2023; 7:778-799. [PMID: 36399523 PMCID: PMC9906672 DOI: 10.1182/bloodadvances.2022008834] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Troubling disparities in COVID-19-associated mortality emerged early, with nearly 70% of deaths confined to Black/African American (AA) patients in some areas. However, targeted studies on this vulnerable population are scarce. Here, we applied multiomics single-cell analyses of immune profiles from matching airways and blood samples of Black/AA patients during acute SARS-CoV-2 infection. Transcriptional reprogramming of infiltrating IFITM2+/S100A12+ mature neutrophils, likely recruited via the IL-8/CXCR2 axis, leads to persistent and self-sustaining pulmonary neutrophilia with advanced features of acute respiratory distress syndrome (ARDS) despite low viral load in the airways. In addition, exacerbated neutrophil production of IL-8, IL-1β, IL-6, and CCL3/4, along with elevated levels of neutrophil elastase and myeloperoxidase, were the hallmarks of transcriptionally active and pathogenic airway neutrophilia. Although our analysis was limited to Black/AA patients and was not designed as a comparative study across different ethnicities, we present an unprecedented in-depth analysis of the immunopathology that leads to acute respiratory distress syndrome in a well-defined patient population disproportionally affected by severe COVID-19.
Collapse
Affiliation(s)
- Devon J. Eddins
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA
| | - Junkai Yang
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
| | - Astrid Kosters
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
| | - Vincent D. Giacalone
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA
| | - Ximo Pechuan-Jorge
- Cancer Immunotherapy Discovery, Genentech, Inc., South San Francisco, CA
| | - Joshua D. Chandler
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA
| | - Jinyoung Eum
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
- School of Biological Sciences, Georgia Institute of Technology, Bioinformatics Graduate Program, Atlanta, GA
| | - Benjamin R. Babcock
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
| | - Brian S. Dobosh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA
| | - Mindy R. Hernández
- Division of Pulmonary, Department of Medicine, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Fathma Abdulkhader
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
| | - Genoah L. Collins
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA
| | - Darya Y. Orlova
- Cancer Immunotherapy Discovery, Genentech, Inc., South San Francisco, CA
| | - Richard P. Ramonell
- Division of Pulmonary, Department of Medicine, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Ignacio Sanz
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
- Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA
- Division of Rheumatology, Department of Medicine, Emory Autoimmunity Center of Excellence, Emory University School of Medicine, Atlanta, GA
| | - Christine Moussion
- Cancer Immunotherapy Discovery, Genentech, Inc., South San Francisco, CA
| | - F. Eun-Hyung Lee
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
- Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA
- Division of Pulmonary, Department of Medicine, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Rabindra M. Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA
| | - Eliver E. B. Ghosn
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA
- School of Biological Sciences, Georgia Institute of Technology, Bioinformatics Graduate Program, Atlanta, GA
| |
Collapse
|
13
|
Liu R, Sun W, Sun T, Zhang W, Nan Y, Zhang Z, Xiang K, Yang H, Wang F, Ge J. Nano selenium-enriched probiotic Lactobacillus enhances alum adjuvanticity and promotes antigen-specific systemic and mucosal immunity. Front Immunol 2023; 14:1116223. [PMID: 36793732 PMCID: PMC9922588 DOI: 10.3389/fimmu.2023.1116223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 02/17/2023] Open
Abstract
Nano selenium-enriched probiotics have been identified to improve immune responses, such as alleviating inflammation, antioxidant function, treatment of tumors, anticancer activity, and regulating intestinal flora. However, so far, there is little information on improving the immune effect of the vaccine. Here, we prepared nano selenium-enriched Levilactobacillus brevis 23017 (SeL) and heat-inactivated nano selenium-enriched L. brevis 23017 (HiSeL) and evaluated their immune enhancing functions on the alum-adjuvanted, inactivated Clostridium perfringens type A vaccine in mouse and rabbit models, respectively. We found that SeL enhanced immune responses of the vaccine by inducing a more rapid antibody production, eliciting higher immunoglobulin G (IgG) antibody titers, improving secretory immunoglobulin A (SIgA) antibody level and cellular immune response, and regulating Th1/Th2 immune response, thus helping to induce better protective efficacy after challenge. Moreover, we confirmed that the immunoenhancement effects are related to regulating oxidative stress, cytokine secretion, and selenoprotein expression. Meanwhile, similar effects were observed in HiSeL. In addition, they show enhanced humoral immune response at 1/2 and 1/4 standard vaccine doses, which confirms their prominent immune enhancement effect. Finally, the effect of improving vaccine immune responses was further confirmed in rabbits, which shows that SeL stimulates the production of IgG antibodies, generates α toxin-neutralizing antibodies rapidly, and reduces the pathological damage to intestine tissue. Our study demonstrates that nano selenium-enriched probiotics improve the immune effect of the alum adjuvants vaccine and highlight its potential usage in remedying the disadvantages of alum adjuvants.
Collapse
Affiliation(s)
- Runhang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Weijiao Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianzhi Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenzhi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongchao Nan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zheng Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Kongrui Xiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hongliang Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China,*Correspondence: Fang Wang, ; Junwei Ge,
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China,Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, China,*Correspondence: Fang Wang, ; Junwei Ge,
| |
Collapse
|
14
|
Zhang Y, Lu M, Mahesh KC, Kim E, Shamseldin MM, Ye C, Dravid P, Chamblee M, Park JG, Hall JM, Trivedi S, Chaiwatpongsakorn S, Kenny AD, Murthy SS, Sharma H, Liang X, Yount JS, Kapoor A, Martinez-Sobrido L, Dubey P, Boyaka PN, Peeples ME, Li J. A highly efficacious live attenuated mumps virus-based SARS-CoV-2 vaccine candidate expressing a six-proline stabilized prefusion spike. Proc Natl Acad Sci U S A 2022; 119:e2201616119. [PMID: 35895717 PMCID: PMC9388148 DOI: 10.1073/pnas.2201616119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
With the rapid increase in SARS-CoV-2 cases in children, a safe and effective vaccine for this population is urgently needed. The MMR (measles/mumps/rubella) vaccine has been one of the safest and most effective human vaccines used in infants and children since the 1960s. Here, we developed live attenuated recombinant mumps virus (rMuV)-based SARS-CoV-2 vaccine candidates using the MuV Jeryl Lynn (JL2) vaccine strain backbone. The soluble prefusion SARS-CoV-2 spike protein (preS) gene, stablized by two prolines (preS-2P) or six prolines (preS-6P), was inserted into the MuV genome at the P-M or F-SH gene junctions in the MuV genome. preS-6P was more efficiently expressed than preS-2P, and preS-6P expression from the P-M gene junction was more efficient than from the F-SH gene junction. In mice, the rMuV-preS-6P vaccine was more immunogenic than the rMuV-preS-2P vaccine, eliciting stronger neutralizing antibodies and mucosal immunity. Sera raised in response to the rMuV-preS-6P vaccine neutralized SARS-CoV-2 variants of concern, including the Delta variant equivalently. Intranasal and/or subcutaneous immunization of IFNAR1-/- mice and golden Syrian hamsters with the rMuV-preS-6P vaccine induced high levels of neutralizing antibodies, mucosal immunoglobulin A antibody, and T cell immune responses, and were completely protected from challenge by both SARS-CoV-2 USA-WA1/2020 and Delta variants. Therefore, rMuV-preS-6P is a highly promising COVID-19 vaccine candidate, warranting further development as a tetravalent MMR vaccine, which may include protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Yuexiu Zhang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Mijia Lu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - K C Mahesh
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Eunsoo Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Mohamed M. Shamseldin
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Chengjin Ye
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Piyush Dravid
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Jun-Gyu Park
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Jesse M. Hall
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Supranee Chaiwatpongsakorn
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Adam D. Kenny
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Satyapramod Srinivasa Murthy
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Himanshu Sharma
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
| | - Xueya Liang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Luis Martinez-Sobrido
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| | - Prosper N. Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| | - Mark E. Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
15
|
Fragoso-Saavedra M, Ramírez-Estudillo C, Peláez-González DL, Ramos-Flores JO, Torres-Franco G, Núñez-Muñoz L, Marcelino-Pérez G, Segura-Covarrubias MG, González-González R, Ruiz-Medrano R, Xoconostle-Cázares B, Gayosso-Vázquez A, Reyes-Maya S, Ramírez-Andoney V, Alonso-Morales RA, Vega-López MA. Combined Subcutaneous-Intranasal Immunization With Epitope-Based Antigens Elicits Binding and Neutralizing Antibody Responses in Serum and Mucosae Against PRRSV-2 and SARS-CoV-2. Front Immunol 2022; 13:848054. [PMID: 35432364 PMCID: PMC9008747 DOI: 10.3389/fimmu.2022.848054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
New vaccine design approaches, platforms, and immunization strategies might foster antiviral mucosal effector and memory responses to reduce asymptomatic infection and transmission in vaccinated individuals. Here, we investigated a combined parenteral and mucosal immunization scheme to induce local and serum antibody responses, employing the epitope-based antigens 3BT and NG19m. These antigens target the important emerging and re-emerging viruses PRRSV-2 and SARS-CoV-2, respectively. We assessed two versions of the 3BT protein, which contains conserved epitopes from the GP5 envelope protein of PRRSV-2: soluble and expressed by the recombinant baculovirus BacDual-3BT. On the other hand, NG19m, comprising the receptor-binding motif of the S protein of SARS-CoV-2, was evaluated as a soluble recombinant protein only. Vietnamese mini-pigs were immunized employing different inoculation routes: subcutaneous, intranasal, or a combination of both (s.c.-i.n.). Animals produced antigen-binding and neut1ralizing antibodies in serum and mucosal fluids, with varying patterns of concentration and activity, depending on the antigen and the immunization schedule. Soluble 3BT was a potent immunogen to elicit binding and neutralizing antibodies in serum, nasal mucus, and vaginal swabs. The vectored immunogen BacDual-3BT induced binding antibodies in serum and mucosae, but PRRSV-2 neutralizing activity was found in nasal mucus exclusively when administered intranasally. NG19m promoted serum and mucosal binding antibodies, which showed differing neutralizing activity. Only serum samples from subcutaneously immunized animals inhibited RBD-ACE2 interaction, while mini-pigs inoculated intranasally or via the combined s.c.-i.n. scheme produced subtle neutralizing humoral responses in the upper and lower respiratory mucosae. Our results show that intranasal immunization, alone or combined with subcutaneous delivery of epitope-based antigens, generates local and systemic binding and neutralizing antibodies. Further investigation is needed to evaluate the capability of the induced responses to prevent infection and reduce transmission.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Carmen Ramírez-Estudillo
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Diana L. Peláez-González
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Jorge O. Ramos-Flores
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gustavo Torres-Franco
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Leandro Núñez-Muñoz
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gabriel Marcelino-Pérez
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María G. Segura-Covarrubias
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Rogelio González-González
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Roberto Ruiz-Medrano
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Beatriz Xoconostle-Cázares
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Amanda Gayosso-Vázquez
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Silvia Reyes-Maya
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Vianey Ramírez-Andoney
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rogelio A. Alonso-Morales
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marco A. Vega-López
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
16
|
Coria LM, Saposnik LM, Pueblas Castro C, Castro EF, Bruno LA, Stone WB, Pérez PS, Darriba ML, Chemes LB, Alcain J, Mazzitelli I, Varese A, Salvatori M, Auguste AJ, Álvarez DE, Pasquevich KA, Cassataro J. A Novel Bacterial Protease Inhibitor Adjuvant in RBD-Based COVID-19 Vaccine Formulations Containing Alum Increases Neutralizing Antibodies, Specific Germinal Center B Cells and Confers Protection Against SARS-CoV-2 Infection in Mice. Front Immunol 2022; 13:844837. [PMID: 35296091 PMCID: PMC8919065 DOI: 10.3389/fimmu.2022.844837] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/01/2022] [Indexed: 01/18/2023] Open
Abstract
In this work, we evaluated recombinant receptor binding domain (RBD)-based vaccine formulation prototypes with potential for further clinical development. We assessed different formulations containing RBD plus alum, AddaS03, AddaVax, or the combination of alum and U-Omp19: a novel Brucella spp. protease inhibitor vaccine adjuvant. Results show that the vaccine formulation composed of U-Omp19 and alum as adjuvants has a better performance: it significantly increased mucosal and systemic neutralizing antibodies in comparison to antigen plus alum, AddaVax, or AddaS03. Antibodies induced with the formulation containing U-Omp19 and alum not only increased their neutralization capacity against the ancestral virus but also cross-neutralized alpha, lambda, and gamma variants with similar potency. Furthermore, the addition of U-Omp19 to alum vaccine formulation increased the frequency of RBD-specific geminal center B cells and plasmablasts. Additionally, U-Omp19+alum formulation induced RBD-specific Th1 and CD8+ T-cell responses in spleens and lungs. Finally, this vaccine formulation conferred protection against an intranasal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge of K18-hACE2 mice.
Collapse
Affiliation(s)
- Lorena M. Coria
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Lucas M. Saposnik
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Celeste Pueblas Castro
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Eliana F. Castro
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
- Instituto de Virología e Innovaciones Tecnológicas (IVIT), Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura A. Bruno
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - William B. Stone
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Paula S. Pérez
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS, Universidad de Buenos Aires-CONICET), Buenos Aires, Argentina
| | - Maria Laura Darriba
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Lucia B. Chemes
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Julieta Alcain
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Ignacio Mazzitelli
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS, Universidad de Buenos Aires-CONICET), Buenos Aires, Argentina
| | - Augusto Varese
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS, Universidad de Buenos Aires-CONICET), Buenos Aires, Argentina
| | - Melina Salvatori
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS, Universidad de Buenos Aires-CONICET), Buenos Aires, Argentina
| | - Albert J. Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Diego E. Álvarez
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
| | - Karina A. Pasquevich
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
- *Correspondence: Karina A. Pasquevich, ; Juliana Cassataro,
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Argentina
- *Correspondence: Karina A. Pasquevich, ; Juliana Cassataro,
| |
Collapse
|
17
|
Zhang N, Li K, Liu Z, Nandakumar KS, Jiang S. A Perspective on the Roles of Adjuvants in Developing Highly Potent COVID-19 Vaccines. Viruses 2022; 14:v14020387. [PMID: 35215980 PMCID: PMC8875727 DOI: 10.3390/v14020387] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Several countries have made unremitting efforts to develop an optimal vaccine in the fight against coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the increasing occurrence of SARS-CoV-2 variants, current vaccines show decreased neutralizing activities, especially towards the Omicron variant. In this context, adding appropriate adjuvants to COVID-19 vaccines can substantially reduce the number of required doses and improve efficacy or cross-neutralizing protection. We mainly focus on research progress and achievements associated with adjuvanted COVID-19 subunit and inactivated vaccines. We further compare the advantages and disadvantages of different adjuvant formulations in order to provide a scientific reference for designing an effective strategy for future vaccine development.
Collapse
Affiliation(s)
- Naru Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China;
- Correspondence: (N.Z.); (S.J.)
| | - Kangchen Li
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China;
| | - Zezhong Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China;
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden;
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China;
- Correspondence: (N.Z.); (S.J.)
| |
Collapse
|
18
|
The roles of cellular protease interactions in viral infections and programmed cell death: a lesson learned from the SARS-CoV-2 outbreak and COVID-19 pandemic. Pharmacol Rep 2022; 74:1149-1165. [PMID: 35997950 PMCID: PMC9395814 DOI: 10.1007/s43440-022-00394-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022]
Abstract
The unprecedented pandemic of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), which leads to COVID-19, is threatening global health. Over the last 2 years, we have witnessed rapid progress in research focusing on developing new antiviral vaccines and drugs, as well as in academic and clinical efforts to understand the biology and pathology of COVID-19. The roles of proteases among master regulators of SARS-CoV-2 invasion and replication and their pivotal roles in host defence against this pathogen, including programmed cell death, have not been well established. Our understanding of protease function in health and disease has increased considerably over the last two decades, with caspases, matrix metalloproteases, and transmembrane serine proteases representing the most prominent examples. Therefore, during the COVID-19 pandemic, these enzymes have been investigated as potential molecular targets for therapeutic interventions. Proteases that are responsible for SARS-CoV-2 cell entry and replication, such as TMPRSS2, ACE2 or cathepsins, are screened with inhibitor libraries to discover lead structures for further drug design that would prevent virus multiplication. On the other hand, proteases that orchestrate programmed cell death can also be harnessed to enhance the desired demise of infected cells through apoptosis or to attenuate highly inflammatory lytic cell death that leads to undesired cytokine storms, a major hallmark of severe COVID-19. Given the prominent role of proteases in SARS-CoV-2-induced cell death, we discuss the individual roles of these enzymes and their catalytic interactions in the pathology of COVID-19 in this article. We provide a rationale for targeting proteases participating in cell death as potential COVID-19 treatments and identify knowledge gaps that might be investigated to better understand the mechanism underlying SARS-CoV-2-induced cell death.
Collapse
|