1
|
Tatarko AR, Vannette RL, Frese S, Leonard A. A wild bumble bee shows intraspecific differences in sensitivity to multiple pesticides. ROYAL SOCIETY OPEN SCIENCE 2025; 12:250281. [PMID: 40568547 PMCID: PMC12187421 DOI: 10.1098/rsos.250281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/19/2025] [Accepted: 05/22/2025] [Indexed: 06/28/2025]
Abstract
Wild pollinator declines are increasingly linked to pesticide exposure, yet it is unclear how intraspecific differences contribute to observed variation in sensitivity, and the role gut microbes play in the sensitivity of wild bees is largely unexplored. Here, we investigate site-level differences in survival and microbiome structure of a wild bumble bee exposed to multiple pesticides, both individually and in combination. We collected wild Bombus vosnesenskii foragers (N = 175) from an alpine meadow, a valley lake shoreline and a suburban park and maintained them on a diet containing a herbicide (glyphosate), a fungicide (tebuconazole), an insecticide (imidacloprid) or a combination of these chemicals. Alpine bees had the highest overall survival, followed by shoreline bees then suburban bees. This was in part explained by body size differences across sites and the presence of conopid parasitoids at two of the sites. Notably, site of origin impacted bee survival on the herbicide, fungicide and combination treatment. We did not find evidence of gut microbiome differences across pesticide treatment, nor a site-by-treatment interaction. Regardless, the survival differences we observed emphasize the importance of considering population of origin when studying pesticide toxicity of wild bees.
Collapse
Affiliation(s)
- Anna R. Tatarko
- Department of Biological Sciences, University of Nevada Reno, Reno, NV, USA
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Rachel L. Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| | - Steven Frese
- Department of Nutrition, University of Nevada Reno, Reno, NV, USA
| | - Anne Leonard
- Department of Biological Sciences, University of Nevada Reno, Reno, NV, USA
| |
Collapse
|
2
|
Newbold T, Kerr J, Soroye P, Williams JJ. Bumble Bee Probability of Occurrence Responds to Interactions Between Local and Landscape Land Use, Climatic Niche Properties and Climate Change. Ecol Lett 2025; 28:e70145. [PMID: 40421585 PMCID: PMC12107511 DOI: 10.1111/ele.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/28/2025]
Abstract
Insect biodiversity is changing rapidly, driven by a suite of pressures, notably land use, land-use intensification and increasingly climate change. We lack large-scale evidence on how land use and climate change interact to drive insect biodiversity changes. We assess bumble bee responses to interactive effects of land use and climate pressures across North America and Europe. The probability of occurrence increases in landscapes with a higher proportion of natural habitat and a shorter history of human disturbance. Responses to climate warming relative to historical conditions are weakly negative in natural habitats but positive in human land uses, while human land use reduces the probability of occurrence most in the centre of species' temperature niches. We estimate that the combined pressures have reduced bumble bee probability of occurrence by 44% across sampled natural habitats and 55% across human land uses, highlighting the pervasive influence that human pressures have had on biodiversity across habitats.
Collapse
Affiliation(s)
- Tim Newbold
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Jeremy Kerr
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Peter Soroye
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Jessica J. Williams
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| |
Collapse
|
3
|
Vélez-Trujillo L, Carisio L, Popiela E, Straub L, Tosi S. Romance in peril: A common pesticide impairs mating behaviours and male fertility of solitary bees (Osmiabicornis). CHEMOSPHERE 2025; 377:144335. [PMID: 40209421 DOI: 10.1016/j.chemosphere.2025.144335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 04/12/2025]
Abstract
Mating behaviour and fertility are strong selective forces, driving the reproductive trends of animals. Mating disorders may therefore contribute to the recent decline in insect and pollinators health worldwide. While the impact of pesticides on pollinators is widely considered as a driving factor for reducing pollinators health, their effect on mating behaviour and male fertility remains widely overlooked. Here, we assessed the effects of field-realistic exposure to a common pesticide used as a neonicotinoid substitute worldwide, sulfoxaflor, on the behaviour and male physiology of the solitary bee, Osmia bicornis. We measured a variety of parameters focusing on behaviours occurring before, and during mating, as well as sperm quantity. For the first time, we demonstrate that short-term chronic, field-realistic exposure to a common pesticide reduced pre-copulatory display (-36 %) and sounds (-27 %), increased the number of copulations (+110 %) and the mating duration (+166 %), while finally reducing sperm quantity (-25 %) and mating success (-43 %). Our research raises considerable concern on the impact of field-realistic, low sublethal pesticide levels on the fertility and reproductive success of pollinators. Assessing the impact of pesticides on fitness parameters and implementing more sustainable agricultural solutions would allow mitigating the ongoing threat of pesticide pollution on wild insect populations and the broader environment.
Collapse
Affiliation(s)
- Luis Vélez-Trujillo
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Italy
| | - Luca Carisio
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Italy; Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Ewa Popiela
- Department of Environmental Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Simone Tosi
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Italy.
| |
Collapse
|
4
|
Khan MK, Rolff J. Insect immunity in the Anthropocene. Biol Rev Camb Philos Soc 2025; 100:698-723. [PMID: 39500735 PMCID: PMC11885697 DOI: 10.1111/brv.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 03/08/2025]
Abstract
Anthropogenic activities result in global change, including climate change, landscape degradation and pollution, that can alter insect physiology and immune defences. These changes may have contributed to global insect decline and the dynamics of insect-transmitted diseases. The ability of insects to mount immune responses upon infection is crucial for defence against pathogens and parasites. Suppressed immune defences reduce fitness by causing disease-driven mortality and elevated immune responses reduce energy available to invest in other fitness traits such as reproduction. Understanding the impact of anthropogenic factors on insect-pathogen interactions is therefore key to determining the contribution of anthropogenic global change to pathogen-driven global insect decline and the emergence and transmission of insect-borne diseases. Here, we synthesise evidence of the impact of anthropogenic factors on insect immunity. We found evidence that anthropogenic factors, such as insecticides and heavy metals, directly impacting insect immune responses by inhibiting immune activation pathways. Alternatively, factors such as global warming, heatwaves, elevated CO2 and landscape degradation can indirectly reduce insect immune responses via reducing the energy available for immune function. We further review how anthropogenic factors impact pathogen clearance and contribute to an increase in vector-borne diseases. We discuss the fitness cost of anthropogenic factors via pathogen-driven mortality and reduced reproductive output and how this can contribute to species extinction. We found that most research has determined the impact of a single anthropogenic factor on insect immune responses or pathogen resistance. We recommend studying the combined impact of multiple stressors on immune response and pathogen resistance to understand better how anthropogenic factors affect insect immunity. We conclude by highlighting the importance of initiatives to mitigate the impact of anthropogenic factors on insect immunity, to reduce the spread of vector-borne diseases, and to protect vulnerable ecosystems from emerging diseases.
Collapse
Affiliation(s)
- Md Kawsar Khan
- Institute of BiologyFreie Universität BerlinKönigin‐Luise‐Str. 1‐3Berlin14195Germany
- School of Natural SciencesMacquarie University18 Wally's Walk, North Ryde‐2109SydneyNSWAustralia
| | - Jens Rolff
- Institute of BiologyFreie Universität BerlinKönigin‐Luise‐Str. 1‐3Berlin14195Germany
| |
Collapse
|
5
|
Zhang B, Mu H, Li H, Zhang X, Yang G, Chen W, Yan Y, An W, Yang M. Nationwide prediction of pesticide residual levels in soil: Implications on the resulting risk and prioritization framework. ENVIRONMENT INTERNATIONAL 2025; 197:109355. [PMID: 40058304 DOI: 10.1016/j.envint.2025.109355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/19/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Pesticides are widely accumulated in agricultural soils in China under successive applications, causing negative impacts on non-target species and environmental qualities. However, a nationwide overview of the residual levels of pesticides in soil, and the ecological risks to non-target soil species are lacking. In this study, we calculated geographically gridded concentrations of 107 pesticide active ingredients (AIs) in soils in China based on the Computational Pesticide Input (CPI) model and further assessed the ecological risks to soil biota. In the end, we proposed an integrated usage-impact model to identify prioritize control pesticides based on the usage, risk and persistence of pesticides. Pesticide concentrations were calculated in a range from 0.01 mg kg-1 to over 185 mg kg-1. Glyphosate is the most prevalent pesticide that exists in most locations. The ecological risks were mostly assessed as medium risk, with extreme high- and high risk found in 1 % and 21 % of soils. Supervision and management of azoxystrbin, boscalid, butachlor and chlorpyrifos need to be prioritized. The results of this study provide guidance to local governments for the designation more accurate risk mitigation strategies across regions.
Collapse
Affiliation(s)
- Bin Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China 100190
| | - Hongyu Mu
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands; College of Resources and Environmental Sciences; National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, China 100193
| | - Hua Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China 102206
| | - Xianghua Zhang
- School of Economics and Management, Northeast Forestry University, Harbin, China 150040
| | - Guang Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China 100085
| | - Wenxiu Chen
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China 100190
| | - Yan Yan
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China 100085
| | - Wei An
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China 100190
| | - Min Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China 100190
| |
Collapse
|
6
|
Hung KLJ, Ternest JJ, Wood TJ, Ingwell LL, Bloom EH, Szendrei Z, Kaplan I, Goodell K. Plant versus pollinator protection: balancing pest management against floral contamination for insecticide use in Midwestern US cucurbits. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:262-273. [PMID: 39278632 PMCID: PMC11818373 DOI: 10.1093/jee/toae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024]
Abstract
Controlling crop pests while conserving pollinators is challenging, particularly when prophylactically applying broad-spectrum, systemic insecticides such as neonicotinoids. Systemic insecticides are often used in conventional agriculture in commercial settings, but the conditions that optimally balance pest management and pollination are poorly understood. We investigated how insecticide application strategies control pests and expose pollinators to insecticides with an observational study of cucurbit crops in the Midwestern United States. To define the window of protection and potential pollinator exposure resulting from alternative insecticide application strategies, we surveyed 62 farms cultivating cucumber, watermelon, or pumpkin across 2 yr. We evaluated insecticide regimes, abundance of striped and spotted cucumber beetles (Acalymma vittatum [Fabricius] and Diabrotica undecimpunctata Mannerheim), and insecticide residues in leaves, pollen, and nectar. We found that growers used neonicotinoids (thiamethoxam and imidacloprid) at planting in all cucumber and pumpkin and approximately half of watermelon farms. In cucumber, foliar thiamethoxam levels were orders of magnitude higher than the other crops, excluding nearly all beetles from fields. In watermelon and pumpkin, neonicotinoids applied at planting resulted in 4-8 wk of protection before beetle populations increased. Floral insecticide concentrations correlated strongly with foliar concentrations across all crops, resulting in high potential exposure to pollinators in cucumber and low-moderate exposure in pumpkin and watermelon. Thus, the highest-input insecticide regimes maintained cucumber beetles far below economic thresholds while also exposing pollinators to the highest pollen and nectar insecticide concentrations. In cucurbits, reducing pesticide inputs will likely better balance crop protection and pollination, reduce costs, and improve yields.
Collapse
Affiliation(s)
- Keng-Lou James Hung
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Newark, OH, USA
- Oklahoma Biological Survey, School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - John J Ternest
- Department of Entomology, Purdue University, West Lafayette, IN, USA
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Thomas J Wood
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- NL Biodiversity and Society, Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Laura L Ingwell
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Elias H Bloom
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Department of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Zsofia Szendrei
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Ian Kaplan
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Karen Goodell
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Newark, OH, USA
| |
Collapse
|
7
|
Mamy L, Pesce S, Sanchez W, Aviron S, Bedos C, Berny P, Bertrand C, Betoulle S, Charles S, Chaumot A, Coeurdassier M, Coutellec MA, Crouzet O, Faburé J, Fritsch C, Gonzalez P, Hedde M, Leboulanger C, Margoum C, Mougin C, Munaron D, Nélieu S, Pelosi C, Rault M, Sucré E, Thomas M, Tournebize J, Leenhardt S. Impacts of neonicotinoids on biodiversity: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2794-2829. [PMID: 38036909 DOI: 10.1007/s11356-023-31032-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
Neonicotinoids are the most widely used class of insecticides in the world, but they have raised numerous concerns regarding their effects on biodiversity. Thus, the objective of this work was to do a critical review of the contamination of the environment (soil, water, air, biota) by neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid, thiamethoxam) and of their impacts on terrestrial and aquatic biodiversity. Neonicotinoids are very frequently detected in soils and in freshwater, and they are also found in the air. They have only been recently monitored in coastal and marine environments, but some studies already reported the presence of imidacloprid and thiamethoxam in transitional or semi-enclosed ecosystems (lagoons, bays, and estuaries). The contamination of the environment leads to the exposure and to the contamination of non-target organisms and to negative effects on biodiversity. Direct impacts of neonicotinoids are mainly reported on terrestrial invertebrates (e.g., pollinators, natural enemies, earthworms) and vertebrates (e.g., birds) and on aquatic invertebrates (e.g., arthropods). Impacts on aquatic vertebrate populations and communities, as well as on microorganisms, are less documented. In addition to their toxicity to directly exposed organisms, neonicotinoid induce indirect effects via trophic cascades as demonstrated in several species (terrestrial and aquatic invertebrates). However, more data are needed to reach firmer conclusions and to get a clearer picture of such indirect effects. Finally, we identified specific knowledge gaps that need to be filled to better understand the effects of neonicotinoids on terrestrial, freshwater, and marine organisms, as well as on ecosystem services associated with these biotas.
Collapse
Affiliation(s)
- Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France.
| | | | | | | | - Carole Bedos
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Philippe Berny
- UR ICE Vetagro Sup, Campus Vétérinaire, 69280, Marcy‑L'Etoile, France
| | - Colette Bertrand
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, 51100, Reims, France
| | | | | | - Michael Coeurdassier
- Laboratoire Chrono-Environnement, UMR 6249 CNRS-Université de Franche-Comté, 25000, Besançon, France
| | - Marie-Agnès Coutellec
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, L'Institut Agro, Ifremer, 35042, Rennes, France
| | - Olivier Crouzet
- OFB, Direction de la Recherche et Appui Scientifique (DRAS), 78610, Auffargis, France
| | - Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS-Université de Franche-Comté, 25000, Besançon, France
| | - Patrice Gonzalez
- CNRS, Bordeaux INP, EPOC, UMR 5805, Univ. Bordeaux, 33600, Pessac, France
| | - Mickael Hedde
- Eco&Sols, Univ. Montpellier, INRAE, IRD, CIRAD, Institut Agro Montpellier, 34060, Montpellier, France
| | | | | | - Christian Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | - Sylvie Nélieu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Céline Pelosi
- INRAE, Avignon Université, UMR EMMAH, 84000, Avignon, France
| | - Magali Rault
- Université d'Avignon, Université Aix-Marseille, CNRS, IRD, IMBE, Pôle Agrosciences, 84916, Avignon, France
| | - Elliott Sucré
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 34200, Sète, France
- Centre Universitaire de Formation Et de Recherche de Mayotte (CUFR), 97660, Dembeni, Mayotte, France
| | - Marielle Thomas
- Université de Lorraine, INRAE, UR AFPA, 54000, Nancy, France
| | | | | |
Collapse
|
8
|
Honert C, Mauser K, Jäger U, Brühl CA. Exposure of insects to current use pesticide residues in soil and vegetation along spatial and temporal distribution in agricultural sites. Sci Rep 2025; 15:1817. [PMID: 39838035 PMCID: PMC11751026 DOI: 10.1038/s41598-024-84811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/27/2024] [Indexed: 01/23/2025] Open
Abstract
Current use pesticides (CUPs) are recognised as the largest deliberate input of bioactive substances into terrestrial ecosystems and one of the main factors responsible for the current decline in insects in agricultural areas. To quantify seasonal insect exposure in the landscape at a regional scale (Rhineland-Palatine in Germany), we analysed the presence of multiple (93) active ingredients in CUPs across three different agricultural cultivation types (with each three fields: arable, vegetable, viticulture) and neighbouring meadows. We collected monthly soil and vegetation samples over a year. A total of 71 CUP residues in different mixtures was detected, with up to 28 CUPs in soil and 25 in vegetation in single samples. The concentrations and numbers of CUPs in vegetation fluctuated over the sampling period, peaking in the summer months in the vegetation but remaining almost constant in topsoil. We calculated in-field additive risks for earthworms, collembola, and soil-living wild bees using the measured soil concentrations of CUPs. Our results call for the need to assess CUP mixture risks at low concentrations, as multiple residues are chronically present in agricultural areas. Since this risk is not addressed in regulation, we emphasise the urgent need to implement global pesticide reduction targets.
Collapse
Affiliation(s)
- Carolina Honert
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau, Landau, Germany.
| | - Ken Mauser
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau, Landau, Germany
| | - Ursel Jäger
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau, Landau, Germany
| | - Carsten A Brühl
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau, Landau, Germany
| |
Collapse
|
9
|
St Clair AL, Dolezal AG, Cass RP, Hendriksma HP, Stein DS, Borchardt KE, Hodgson EW, O'Neal ME, Toth AL. Insecticide application prevents honey bees from realizing benefits of native forage in an agricultural landscape. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178146. [PMID: 39718070 DOI: 10.1016/j.scitotenv.2024.178146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 12/25/2024]
Abstract
Health and population status of bees is negatively affected by anthropogenic stressors, many of which co-occur in agricultural settings. While pollinator habitat (often involving plantings of native forbs) holds promise to benefit both managed and wild bees, important issues remain unresolved. These include whether conventional, broad-spectrum insecticide use negates these benefits and how non-native, managed honey bees affect wild bees in these areas. We conducted a three-year replicated study in a Midwestern corn and soybean production region (i.e., Iowa, USA). We assessed acute and delayed effects of commercial-scale spraying of a commonly used, foliar-applied insecticide (λ-cyhalothrin) in soybean on the productivity of honey bee colonies kept within these fields. Colony health metrics showed no immediate significant differences between insecticide treated and untreated crop fields. As expected, health metrics declined in all colonies after soybean ceased flowering. Interestingly, the subset of colonies from untreated fields given access to restored prairies rebounded. However, colonies from insecticide-treated fields showed reduced growth, queen egg-laying, and survival, even when given access to prairies. In addition, we did not observe a detectable impact of honey bee apiaries on wild bee abundance or diversity at these prairies over a three-year period. Our findings underscore the complex interactions between agricultural practices and bee health, highlighting the necessity of integrated pest management and the conservation of native floral resources to support pollinator populations and sustainable beekeeping in agroecosystems.
Collapse
Affiliation(s)
- Ashley L St Clair
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA; Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA; Department of Entomology, University of Illinois Urbana-Champaign, IL, USA
| | - Adam G Dolezal
- Department of Entomology, University of Illinois Urbana-Champaign, IL, USA
| | - Randall P Cass
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| | - Harmen P Hendriksma
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - David S Stein
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Kate E Borchardt
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Erin W Hodgson
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| | - Matthew E O'Neal
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| | - Amy L Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA; Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
10
|
Timmis K, Karahan ZC, Ramos JL, Koren O, Pérez‐Cobas AE, Steward K, de Lorenzo V, Caselli E, Douglas M, Schwab C, Rivero V, Giraldo R, Garmendia J, Turner RJ, Perlmutter J, Borrero de Acuña JM, Nikel PI, Bonnet J, Sessitsch A, Timmis JK, Pruzzo C, Prieto MA, Isazadeh S, Huang WE, Clarke G, Ercolini D, Häggblom M. Microbes Saving Lives and Reducing Suffering. Microb Biotechnol 2025; 18:e70068. [PMID: 39844583 PMCID: PMC11754571 DOI: 10.1111/1751-7915.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/24/2025] Open
Affiliation(s)
- Kenneth Timmis
- Institute of MicrobiologyTechnical University BraunschweigBraunschweigGermany
| | - Zeynep Ceren Karahan
- Department of Medical Microbiology and Ibn‐i Sina Hospital Central Microbiology LaboratoryAnkara University School of MedicineAnkaraTurkey
| | - Juan Luis Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del ZaidínGranadaSpain
| | - Omry Koren
- Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | - Ana Elena Pérez‐Cobas
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS)Ramón y Cajal University HospitalMadridSpain
- CIBER in Infectious Diseases (CIBERINFEC)MadridSpain
| | | | - Victor de Lorenzo
- Department of Systems BiologyNational Centre of Biotechnology CSICMadridSpain
| | - Elisabetta Caselli
- Section of Microbiology, Department of Environmental and Prevention SciencesUniversity of FerraraFerraraItaly
| | - Margaret Douglas
- Usher InstituteUniversity of Edinburgh Medical School, and Public Health ScotlandEdinburghUK
| | - Clarissa Schwab
- Department of Biological and Chemical EngineeringAarhus UniversityAarhusDenmark
| | - Virginia Rivero
- Polymer Biotechnology Lab, Biological Research Center Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
| | - Rafael Giraldo
- Department of Microbial BiotechnologyNational Centre for Biotechnology (CNB‐CSIC)MadridSpain
| | - Junkal Garmendia
- Instituto de AgrobiotecnologíaConsejo Superior de Investigaciones Científicas (IdAB‐CSIC)‐Gobierno de Navarra, MutilvaMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Raymond J. Turner
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | | | | | - Pablo Ivan Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Jerome Bonnet
- Centre de Biochimie Structurale, INSERM/CNRSUniversity of MontpellierMontpellierFrance
| | - Angela Sessitsch
- Bioresources UnitAIT Austrian Institute of TechnologyViennaAustria
| | - James K. Timmis
- Department of Political ScienceUniversity of FreiburgFreiburgGermany
- Athena Institute for Research on Innovation and Communication in Health and Life SciencesVrije UniversiteitAmsterdamThe Netherlands
| | - Carla Pruzzo
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenovaItaly
| | - M. Auxiliadora Prieto
- Polymer Biotechnology Lab, Biological Research Center Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
| | - Siavash Isazadeh
- Corporate Technical & PerformanceVeolia North AmericaParamusNew JerseyUSA
| | - Wei E. Huang
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Gerard Clarke
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of Psychiatry & Neurobehavioral SciencesUniversity College CorkCorkIreland
| | - Danilo Ercolini
- Department of Agricultural SciencesUniversity of Naples Federico IINaplesItaly
| | - Max Häggblom
- Department of Biochemistry and Microbiology, RutgersThe State University of New JerseyNew BrunswickNew JerseyUSA
| |
Collapse
|
11
|
Amsalem E, Derstine N, Murray C. Hormetic response to pesticides in diapausing bees. Biol Lett 2025; 21:20240612. [PMID: 39837491 PMCID: PMC11750372 DOI: 10.1098/rsbl.2024.0612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Pollinators face declines and diversity loss associated with multiple stressors, particularly pesticides. Most pollination services are provided by annual bees that undergo winter diapause, and many common pesticides are highly soluble in water and move through soil and plants where bees hibernate and feed, yet the effects of pesticides on pollinators' diapause survival and performance are poorly understood. Pesticides may have complex effects in bees, and some were shown to induce hormetic effects on various traits characterized by high-dose inhibition coupled with low-dose stimulation. Here, we examined the occurrence of hormesis in the responses of bees to imidacloprid. We found that while longevity and reproduction were reduced following exposure to imidacloprid, the survival length of new queens (gynes) was greater. Diapause is a critical period in the life cycle of most bees with profound effects on their health. Exposure to sublethal doses of pesticides may increase bees' resistance to stress/cold during diapause but may also trade off with reduced reproductive performance later in life. Identifying these trade-offs is crucial to understanding how stressors affect pollinator health and should be accounted for when assessing pesticide risk, designing studies and facilitating conservation and management tools for supporting annual bees during diapause.
Collapse
Affiliation(s)
- Etya Amsalem
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Nathan Derstine
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Cameron Murray
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
12
|
Chai Y, Wang X, Wang H, Zhang Y, Dai Z, Yang J. Tire wear particle leachate exhibits trophic and multi-generational amplification: Potential threat to population viability. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136497. [PMID: 39541880 DOI: 10.1016/j.jhazmat.2024.136497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The toxic additives leached from tire wear particles (TWPs) in road runoff can directly poison aquatic organism through high-dose exposure in sporadic hotspots. Given the ubiquity of road runoff carrying TWPs, it is necessary to assess whether there are lagging effects from low-dose exposure, as the toxicity of TWPs leachate can be transferred and amplified across multi-generations and different trophic levels: microalgae, zooplankton and larval fish. In this study, Chlorella pyrenoidesa exposed to different concentrations of TWPs leachate were fed to rotifer Brachionus calyciflorus, which were subsequently used as the initial feeding for fry of Cyprinus carpio. Below 1000 mg/L, the growth of microalgae was not influenced by TWPs leachate. Rotifer fed with contaminated microalgae for a single generation exhibited hormesis in their reproduction. After multigenerational feeding, the microalgae from 500 mg/L treatment were sufficient to suppress reproduction of rotifer since the third generation. For the secondary consumer carp fry, survival, growth, and feeding rate were significantly inhibited at first generation when consuming the rotifers fed with microalgae exposed to 250 mg/L TWPs leachate. So, evidence was presented for the generational and trophic amplification of toxicity in TWPs leachate within the food chain. A seemingly innocuous low dose can exhibit evident ecotoxicity after trophic and generational transfer, which could decline population viability of the aquatic organisms in the future.
Collapse
Affiliation(s)
- Yanchao Chai
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xin Wang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Haiqing Wang
- School of Marine Biology and Fisheries, Hainan University, 58 People Road, Haikou 570228, China.
| | - Yu Zhang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhongqi Dai
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jiaxin Yang
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
13
|
Bruckner S, Straub L, Villamar-Bouza L, Beneduci ZJ, Neumann P, Williams GR. Life stage dependent effects of neonicotinoid exposure on honey bee hypopharyngeal gland development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117337. [PMID: 39561561 DOI: 10.1016/j.ecoenv.2024.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
Functional Apis mellifera honey bee colonies rely on collaborative brood care typically performed by nurse bees with well-developed hypopharyngeal glands (HPGs). Neonicotinoids, widely used insecticides, have been shown to negatively affect HPG development when worker bees were exposed to field-realistic concentrations either as brood or adults. To date, it is unknown whether timing of neonicotinoid exposure influences the severity of these observed negative effects on HPGs. To address this, we conducted a fully-crossed field experiment assessing potential effects of a neonicotinoid blend (clothianidin and thiamethoxam combined) on worker HPGs when exposed during different life stages. We found that neonicotinoid exposure during the brood stage, but not the adult stage, significantly influenced subsequent HPG development. Since HPG morphogenesis begins during the brood stage, neonicotinoid-induced stress possibly impaired this process, resulting in smaller glands once these individuals became adult nurses. Because HPG productivity is correlated to their size, smaller glands as a result of neonicotinoid exposure could negatively affect colony functionality.
Collapse
Affiliation(s)
- Selina Bruckner
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, USA; Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom.
| | - Laura Villamar-Bouza
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; European Food Safety Authority (EFSA), Pesticide Unit, Parma, Italy
| | - Zachary J Beneduci
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, USA.
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Swiss Bee Research Center, Agroscope, Bern, Switzerland.
| | - Geoffrey R Williams
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, USA; Swiss Bee Research Center, Agroscope, Bern, Switzerland.
| |
Collapse
|
14
|
Basu P, Ngo HT, Aizen MA, Garibaldi LA, Gemmill-Herren B, Imperatriz-Fonseca V, Klein AM, Potts SG, Seymour CL, Vanbergen AJ. Pesticide impacts on insect pollinators: Current knowledge and future research challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176656. [PMID: 39366587 DOI: 10.1016/j.scitotenv.2024.176656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
With the need to intensify agriculture to meet growing food demand, there has been significant rise in pesticide use to protect crops, but at different rates in different world regions. In 2016, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) global assessment on pollinators, pollination and food production identified pesticides as one of the major drivers of pollinator decline. This assessment highlighted that studies on the effects of pesticides on pollinating insects have been limited to only a few species, primarily from developed countries. Given the worldwide variation in the scale of intensive agricultural practices, pesticide application intensities are likely to vary regionally and consequently the associated risks for insect pollinators. We provide the first long-term, global analysis of inter-regional trends in the use of different classes of pesticide between 1995 and 2020 (FAOSTAT) and a review of literature since the IPBES pollination assessment (2016). All three pesticide classes use rates varied greatly with some countries seeing increased use by 3000 to 4000 % between 1995 and 2020, while for most countries, growth roughly doubled. We present forecast models to predict regional trends of different pesticides up to 2030. Use of all three pesticide classes is to increase in Africa and South America. Herbicide use is to increase in North America and Central Asia. Fungicide use is to increase across all Asian regions. In each of the respective regions, we also examined the number of studies since 2016 in relation to pesticide use trends over the past twenty-five years. Additionally, we present a comprehensive update on the status of knowledge on pesticide impacts on different pollinating insects from literature published during 2016-2022. Finally, we outline several research challenges and knowledge gaps with respect to pesticides and highlight some regional and international conservation efforts and initiatives that address pesticide reduction and/or elimination.
Collapse
Affiliation(s)
- P Basu
- Department of Zoology, University of Calcutta, Kolkata, India.
| | - H T Ngo
- Food and Agriculture Organization of the United Nations (UN FAO), Regional Office for Latin America and the Caribbean (RLC), Región Metropolitana, Santiago, Chile
| | - M A Aizen
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - L A Garibaldi
- National University of Río Negro, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, San Carlos de Bariloche, Río Negro, Argentina; National Council of Scientific and Technical Research, Institute of Research in Natural Resources, Agroecology and Rural Development, San Carlos de Bariloche, Río Negro, Argentina
| | | | | | - A M Klein
- Nature Conservation and Landscape Ecology, University of Freiburg, 79106 Freiburg, Germany
| | | | - C L Seymour
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont 7735, South Africa; FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - A J Vanbergen
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne-Franche-Comté, Dijon, France
| |
Collapse
|
15
|
Siviter H, DeVore J, Gray LK, Ivers NA, Lopez EA, Riddington IM, Stuligross C, Jha S, Muth F. A novel pesticide has lethal consequences for an important pollinator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175935. [PMID: 39218110 DOI: 10.1016/j.scitotenv.2024.175935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Wild bees pollinate crops and wildflowers where they are frequently exposed to pesticides. Neonicotinoids are the most commonly used insecticide globally, but restrictions on their use and rising pest resistance have increased the demand for alternative pesticides. Flupyradifurone is a novel insecticide that has been licenced globally for use on bee-visited crops. Here, in a semi-field experiment, we exposed solitary bees (Osmia lignaria) to a commercial pesticide formulation (Sivanto Prime) containing flupyradifurone at label-recommended rates. We originally designed the experiment to examine sublethal effects, but contrary to our expectations, 100 % of bees released into pesticide-treated cages died within 3 days of exposure, compared to 0 % in control plots. Bees exposed to flupyradifurone a few days after the initial application survived but endured prolonged sublethal effects, including lower nesting success, impairment to foraging efficiency, and higher mortality. These results demonstrate that exposure to this novel insecticide poses significant threats to solitary bees and add to a growing body of evidence indicating that this pesticide can have negative impacts on wild bees at field-realistic concentrations. In the short-term, we recommend that commercial formulations containing flupyradifurone should be restricted to non-flowering crops while a reassessment of its safety can be conducted. In the long-term, environmental risk assessors should continue to develop risk assessments that are truly holistic and incorporate the ecological and life history traits of multiple pollinator species.
Collapse
Affiliation(s)
- Harry Siviter
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; School of Biological Sciences, University of Bristol, 24, Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Jennie DeVore
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Lily K Gray
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Nicholas A Ivers
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Entomology, Pennsylvania State University, 547 ASI Bldg., University Park, PA 16802, USA
| | - Elizabeth A Lopez
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Ian M Riddington
- Department of Chemistry, The University of Texas at Austin, 105 E 24(th) St., Austin, TX 78712-1224, USA
| | - Clara Stuligross
- Department of Entomology and Nematology, University of California, Davis, 1 Shields Ave., Davis, CA 95616, USA; Department of Entomology, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Shalene Jha
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Lady Bird Johnson Wildflower Center, Austin, TX 78739, USA
| | - Felicity Muth
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA; Department of Neurobiology, Physiology, and Behavior, 196 Briggs Hall, University of California, Davis, CA 95616, USA
| |
Collapse
|
16
|
Naujokaitis-Lewis I, Endicott S, Gaudreault E, Maisonneuve F, Robinson SA. Milkweed in agricultural field margins - A neonicotinoid exposure route for pollinators at multiple life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175622. [PMID: 39163943 DOI: 10.1016/j.scitotenv.2024.175622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Neonicotinoid insecticides move from targeted crops to wildflowers located in adjacent field margins, acting as a potential exposure source for wild pollinators and insect species of conservation concern, including monarch butterflies. Monarchs rely on milkweed over multiple life stages, including as a host plant for eggs and a food source for both larvae (leaves) and adults (flowers). Milkweeds, which are closely associated with field margins, can contain neonicotinoid residues, but previous assessments are constrained to a single plant tissue type. In 2017 and 2018, we sampled milkweeds from 95 field margins adjacent to crop fields (corn, soybean, hay, wheat, and barley) in agricultural landscapes of eastern Ontario, Canada. Milkweeds were sampled during the flower blooming period and leaves and flower tissues were analysed. The neonicotinoids acetamiprid, clothianidin, thiamethoxam, and thiacloprid were detected. Maximum concentrations in leaf samples included 10.30 ng/g of clothianidin in 2017, and 24.4 ng/g of thiamethoxam in 2018. Clothianidin and thiamethoxam percent detections in flowers (72 % and 61 %, respectively) were significantly higher than detections in leaves (24 % and 31 %, respectively). Thiamethoxam concentrations were significantly higher in paired flower samples than leaf samples (median 0.33 ng/g vs <0.07 ng/g) while clothianidin concentrations also trended higher in flowers (median 0.18-0.55 ng/g vs <0.18 ng/g). Only thiamethoxam showed significant differences between years, and we found no effect of crop type, with hay, soybean and corn fields all yielding 50-56 % detections in leaves. We found significantly higher concentrations in older milkweed flowers than young flowers or leaves (medians 0.87 ng/g vs <0.18 ng/g and 0.45 ng/g vs <0.07 ng/g for clothianidin and thiamethoxam, respectively). Our results highlight the importance of considering variation in milkweed tissue type and age of flowers in neonicotinoid exposure risk assessments. Efforts to increase milkweed availability in agricultural landscapes should consider how exposure to neonicotinoids can be mitigated.
Collapse
Affiliation(s)
- Ilona Naujokaitis-Lewis
- Landscape Science and Technology Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, Canada.
| | - Sarah Endicott
- Landscape Science and Technology Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Emma Gaudreault
- Production Insurance, Business Risk Management Branch, Ministry of Agriculture and Food, Kelowna, BC, Canada
| | - France Maisonneuve
- Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Stacey A Robinson
- Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, Canada.
| |
Collapse
|
17
|
Han G, Kong R, Liu C, Huang K, Xu Q, Wu J, Fei J, Zhang H, Su G, Letcher RJ, Shi J, Rohr JR. Field and Laboratory Evidence That Chlorpyrifos Exposure Reduced the Population Density of a Freshwater Snail by Increasing Juvenile Mortality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17543-17554. [PMID: 39231302 DOI: 10.1021/acs.est.4c04202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Pesticides have been frequently detected in global freshwater ecosystems, but attempts to document changes in population dynamics of organisms upon exposure to pesticides, establish a causal relationship between exposure and population effects, and identify the key toxic events within individuals under natural field conditions remain rare. Here, we used a field survey, a reciprocal cross-transplant experiment, and a laboratory toxicity experiment to build a compelling case that exposure to the insecticide chlorpyrifos was responsible for differences in snail (Bellamya aeruginosa) densities in eastern (ELL) and western basins of Liangzi Lake in China. Our field survey and reciprocal cross-transplant experiment revealed significant differences in snail densities, juvenile percentage, survival, and relative telomere length (RTL) in the two basins. The insecticide chlorpyrifos detected in snail tissues was negatively correlated with snail densities, the percentage of juvenile snails, and RTL and had an extremely high risk quotient in ELL. In the laboratory experiment, tissue concentrations of chlorpyrifos detected in ELL were associated with reduced RTL and increased juvenile mortality in B. aeruginosa. These results support the hypothesis that chlorpyrifos exposure in ELL reduced the density of snails by reducing juvenile survival and, consequently, recruitment to the adult population.
Collapse
Affiliation(s)
- Guixin Han
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren Kong
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Chunsheng Liu
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Kai Huang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Qiaolin Xu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiamin Fei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Guanyong Su
- School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Robert J Letcher
- Department of Chemistry and Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jianbo Shi
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jason R Rohr
- Department of Biological Science, Environmental Change Initiative, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
18
|
Cullen G, Delargy E, Dearden PK. Development of germline progenitors in larval queen honeybee ovaries. Biol Open 2024; 13:bio060511. [PMID: 39263864 PMCID: PMC11413931 DOI: 10.1242/bio.060511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
Honeybees (Apis mellifera) are a keystone species for managed pollination and the production of hive products. Eusociality in honeybees leads to much of the reproduction in a hive driven by the queen. Queen bees have two large active ovaries that can produce large numbers of eggs if conditions are appropriate. These ovaries are also active throughout the long lives of these insects, up to 5 years in some cases. Recent studies have indicated that the germline precursors of the adult honeybee queen ovary are organized into 8-cell clusters, joined together by a polyfusome; a cytoplasmic bridge. To understand the origin of these clusters, and trace the development of the honeybee queen ovary, we examined the cell types and regionalization of the developing larval and pupal queen ovaries. We used established (nanos and castor), and novel (odd skipped) gene expression markers to determine regions of the developing ovary. Primordial germline cells develop in the honeybee embryo and are organized into ovary structures before the embryo hatches. The ovary is regionalized by larval stage 3 into terminal filaments and germaria. At this stage, clusters of germline cells in the germaria are joined by fusomes and are dividing synchronously. The origin of the 8-cell clusters in the adult germarium is therefore during larval stages. On emergence, the queen ovary has terminal filaments and germaria but has not yet developed any vitellaria, which are produced after the queen embarks on a nuptial flight. The lack of germaria, and the storing of germline progenitors as clusters, may be adaptions for queen bees to endure the metabolic demands of a nuptial flight, as well as rapidly lay large numbers of eggs to establish a hive.
Collapse
Affiliation(s)
- Georgia Cullen
- Genomics Aotearoa, Bioprotection Aotearoa and Biochemistry Department, University of Otago, Dunedin 9016, Aotearoa, New Zealand
| | - Erin Delargy
- Genomics Aotearoa, Bioprotection Aotearoa and Biochemistry Department, University of Otago, Dunedin 9016, Aotearoa, New Zealand
| | - Peter K. Dearden
- Genomics Aotearoa, Bioprotection Aotearoa and Biochemistry Department, University of Otago, Dunedin 9016, Aotearoa, New Zealand
| |
Collapse
|
19
|
McCabe LM, Boyle NK, Pitts-Singer TL. Osmia lignaria (Hymenoptera: Megachilidae) increase pollination of Washington sweet cherry and pear crops. ENVIRONMENTAL ENTOMOLOGY 2024; 53:698-705. [PMID: 38961657 DOI: 10.1093/ee/nvae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
Apis mellifera Linnaeus (Hymenoptera: Apis), honey bees, are the most widely used managed crop pollinators. However, their high rental cost and uncertain availability for North American orchard crops have motivated growers to explore alternative pollination options. We examined whether adding solitary, spring-flying Osmia lignaria Say (Hymenoptera: Megachilidae), blue orchard bees, as co-pollinators with A. mellifera in Washington sweet cherry and pear orchards enhances fruit set and yield compared to the use of A. mellifera alone. We added managed O. lignaria to orchard sites where A. mellifera hives were already present. Fruit set, fruit yield, and O. lignaria reproduction at O. lignaria-supplemented sites were compared to nearby, paired sites pollinated only by A. mellifera (3 paired cherry and 3 paired pear sites). For both crops, the addition of O. lignaria significantly increased fruit set but did not yield at harvest. Microscopic inspection of pollen grains from O. lignaria nest cell provisions confirmed that O. lignaria primarily visited orchard flowers. Mean retention of O. lignaria in cherry orchards was slightly higher (65%) than O. lignaria retention reported in other orchard crops (30%-60%). However, retention in pear orchards was much lower (≤20%). These results show that supplementing hives with O. lignaria in Washington spring orchard crops can increase overall pollination, but that trees fail to bear developing fruit to maturity. The strategy of using co-pollinators, O. lignaria and A. mellifera, in US orchards may act as "pollination insurance" when A. mellifera hives are in low supply or when the weather is not amenable for A. mellifera flight during the bloom period.
Collapse
Affiliation(s)
| | - Natalie K Boyle
- Pollinating Insects Research Unit, USDA ARS, Logan, UT, USA
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
20
|
Drummond FA, Averill AL, Eitzer BD. Pesticide Contamination in Native North American Crops, Part II-Comparison of Flower, Honey Bee Workers, and Native Bee Residues in Lowbush Blueberry. INSECTS 2024; 15:567. [PMID: 39194772 DOI: 10.3390/insects15080567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
In lowbush blueberry fields, we conducted residue analysis comparing flowers, trapped pollen (honey bee and Osmia spp.), and collected bees (honey bee workers, bumble bee queens, and non-Bombus spp. wild native bees). The study was conducted from 2012 to 2014. The number of pesticide residues, total concentrations, and risk to honey bees (Risk Quotient) on flowers were not significantly different from those determined for trapped honey bee pollen (except in one study year when residues detected in flower samples were significantly lower than residue numbers detected in trapped pollen). The compositions of residues were similar on flowers and trapped pollen. The number of residues detected in honey bee pollen was significantly greater than the number detected in Osmia spp. pollen, while the total concentration of residue was not different between the two types of pollen. The risk to honey bees was higher in trapped honey bee pollen than in trapped Osmia spp. pollen. The analysis of honey bee workers, native bumble bee queens, and native solitary bees showed that although more pesticide residues were detected on honey bee workers, there were no differences among the bee taxa in total residue concentrations or risk (as estimated in terms of risk to honey bees).
Collapse
Affiliation(s)
- Francis A Drummond
- School of Biology and Ecology, and Cooperative Extension, University of Maine, Orono, ME 04469, USA
| | - Anne L Averill
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA 01003, USA
| | - Brian D Eitzer
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| |
Collapse
|
21
|
Rondeau S, Raine NE. Size-dependent responses of colony-founding bumblebee (Bombus impatiens) queens to exposure to pesticide residues in soil during hibernation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174852. [PMID: 39029756 DOI: 10.1016/j.scitotenv.2024.174852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Bumblebees and other key pollinators are experiencing global declines, a phenomenon driven by multiple environmental stressors, including pesticide exposure. While bumblebee queens spend most of their life hibernating underground, no study to date has examined how exposure to pesticide-contaminated soils might affect bumblebee queens during this solitary phase of their lifecycle. We exposed Bombus impatiens queens (n = 303) to soil treated with field-realistic concentrations of two diamide insecticides (chlorantraniliprole and cyantraniliprole) and two fungicides (boscalid and difenoconazole), alone or combined, during a 30-week hibernation period. We found that exposure to boscalid residues in soil doubled the likelihood of queens surviving through the colony initiation period (after successful hibernation) and laying eggs. Our data also revealed complex interactions between pesticide exposure and queen body mass on aspects of colony founding. Among others, exposure to cyantraniliprole led to lethal and sublethal post-hibernation effects that were dependent on queen size, with larger queens showing higher mortality rates, delayed emergence of their first brood, and producing smaller workers. Our results show that effects of pesticide exposure depend on intrinsic traits of bumblebee queen physiology and challenge our understanding of how bees respond to pesticides under environmentally realistic exposure scenarios.
Collapse
Affiliation(s)
- Sabrina Rondeau
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada.
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
22
|
Strang CG, Rondeau S, Baert N, McArt SH, Raine NE, Muth F. Field agrochemical exposure impacts locomotor activity in wild bumblebees. Ecology 2024; 105:e4310. [PMID: 38828716 DOI: 10.1002/ecy.4310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/21/2023] [Accepted: 02/19/2024] [Indexed: 06/05/2024]
Abstract
Agricultural intensification has been identified as one of the key causes of global insect biodiversity losses. These losses have been further linked to the widespread use of agrochemicals associated with modern agricultural practices. Many of these chemicals are known to have negative sublethal effects on commercial pollinators, such as managed honeybees and bumblebees, but less is known about the impacts on wild bees. Laboratory-based studies with commercial pollinators have consistently shown that pesticide exposure can impact bee behavior, with cascading effects on foraging performance, reproductive success, and pollination services. However, these studies typically assess only one chemical, neglecting the complexity of real-world exposure to multiple agrochemicals and other stressors. In the summer of 2020, we collected wild-foraging workers of the common eastern bumblebee, Bombus impatiens, from five squash (Cucurbita) agricultural sites (organic and conventional farms), selected to represent a range of agrochemical, including neonicotinoid insecticide, use. For each bee, we measured two behaviors relevant to foraging success and previously shown to be impacted by pesticide exposure: sucrose responsiveness and locomotor activity. Following behavioral testing, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) chemical analysis to detect and quantify the presence of 92 agrochemicals in each bumblebee. Bees collected from our sites did not vary in pesticide exposure as expected. While we found a limited occurrence of neonicotinoids, two fungicides (azoxystrobin and difenoconazole) were detected at all sites, and the pesticide synergist piperonyl butoxide (PBO) was present in all 123 bees. We found that bumblebees that contained higher levels of PBO were less active, and this effect was stronger for larger bumblebee workers. While PBO is unlikely to be the direct cause of the reduction in bee activity, it could be an indicator of exposure to pyrethroids and/or other insecticides that we were unable to directly quantify, but which PBO is frequently tank-mixed with during pesticide applications on crops. We did not find a relationship between agrochemical exposure and bumblebee sucrose responsiveness. To our knowledge, this is the first evidence of a sublethal behavioral impact of agrochemical exposure on wild-foraging bees.
Collapse
Affiliation(s)
- Caroline G Strang
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| | - Sabrina Rondeau
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nicolas Baert
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Scott H McArt
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Felicity Muth
- Department of Integrative Biology, University of Texas, Austin, Texas, USA
| |
Collapse
|
23
|
Sattayawat P, Inwongwan S, Noirungsee N, Li J, Guo J, Disayathanoowat T. Engineering Gut Symbionts: A Way to Promote Bee Growth? INSECTS 2024; 15:369. [PMID: 38786925 PMCID: PMC11121833 DOI: 10.3390/insects15050369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Bees play a crucial role as pollinators, contributing significantly to ecosystems. However, the honeybee population faces challenges such as global warming, pesticide use, and pathogenic microorganisms. Promoting bee growth using several approaches is therefore crucial for maintaining their roles. To this end, the bacterial microbiota is well-known for its native role in supporting bee growth in several respects. Maximizing the capabilities of these microorganisms holds the theoretical potential to promote the growth of bees. Recent advancements have made it feasible to achieve this enhancement through the application of genetic engineering. In this review, we present the roles of gut symbionts in promoting bee growth and collectively summarize the engineering approaches that would be needed for future applications. Particularly, as the engineering of bee gut symbionts has not been advanced, the dominant gut symbiotic bacteria Snodgrassella alvi and Gilliamella apicola are the main focus of the paper, along with other dominant species. Moreover, we propose engineering strategies that will allow for the improvement in bee growth with listed gene targets for modification to further encourage the use of engineered gut symbionts to promote bee growth.
Collapse
Affiliation(s)
- Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nuttapol Noirungsee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jilian Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
24
|
Gray LK, Hulsey M, Siviter H. A novel insecticide impairs bumblebee memory and sucrose responsiveness across high and low nutrition. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231798. [PMID: 38721128 PMCID: PMC11076119 DOI: 10.1098/rsos.231798] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 07/31/2024]
Abstract
Wild bees are important pollinators of crops and wildflowers but are exposed to a myriad of different anthropogenic stressors, such as pesticides and poor nutrition, as a consequence of intensive agriculture. These stressors do not act in isolation, but interact, and may exacerbate one another. Here, we assessed whether a field-realistic concentration of flupyradifurone, a novel pesticide that has been labelled as 'bee safe' by regulators, influenced bumblebee sucrose responsiveness and long-term memory. In a fully crossed experimental design, we exposed individual bumblebees (Bombus impatiens) to flupyradifurone at high (50% (w/w)) or low (15% (w/w)) sucrose concentrations, replicating diets that are either carbohydrate rich or poor, respectively. We found that flupyradifurone impaired sucrose responsiveness and long-term memory at both sucrose concentrations, indicating that better nutrition did not buffer the negative impact of flupyradifurone. We found no individual impact of sugar deficiency on bee behaviour and no significant interactions between pesticide exposure and poor nutrition. Our results add to a growing body of evidence demonstrating that flupyradifurone has significant negative impacts on pollinators, indicating that this pesticide is not 'bee safe'. This suggests that agrochemical risk assessments are not protecting pollinators from the unintended consequences of pesticide use.
Collapse
Affiliation(s)
- Lily K. Gray
- Department of Integrative Biology, University of Texas at Austin, Austin, TX78712, USA
| | - Marcus Hulsey
- Department of Integrative Biology, University of Texas at Austin, Austin, TX78712, USA
- University of Oklahoma, Norman, OK73019, USA
| | - Harry Siviter
- Department of Integrative Biology, University of Texas at Austin, Austin, TX78712, USA
- School of Biological Sciences, University of Bristol, BristolBS8 1TQ, UK
| |
Collapse
|
25
|
Nicholson CC, Knapp J, Kiljanek T, Albrecht M, Chauzat MP, Costa C, De la Rúa P, Klein AM, Mänd M, Potts SG, Schweiger O, Bottero I, Cini E, de Miranda JR, Di Prisco G, Dominik C, Hodge S, Kaunath V, Knauer A, Laurent M, Martínez-López V, Medrzycki P, Pereira-Peixoto MH, Raimets R, Schwarz JM, Senapathi D, Tamburini G, Brown MJF, Stout JC, Rundlöf M. Pesticide use negatively affects bumble bees across European landscapes. Nature 2024; 628:355-358. [PMID: 38030722 PMCID: PMC11006599 DOI: 10.1038/s41586-023-06773-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023]
Abstract
Sustainable agriculture requires balancing crop yields with the effects of pesticides on non-target organisms, such as bees and other crop pollinators. Field studies demonstrated that agricultural use of neonicotinoid insecticides can negatively affect wild bee species1,2, leading to restrictions on these compounds3. However, besides neonicotinoids, field-based evidence of the effects of landscape pesticide exposure on wild bees is lacking. Bees encounter many pesticides in agricultural landscapes4-9 and the effects of this landscape exposure on colony growth and development of any bee species remains unknown. Here we show that the many pesticides found in bumble bee-collected pollen are associated with reduced colony performance during crop bloom, especially in simplified landscapes with intensive agricultural practices. Our results from 316 Bombus terrestris colonies at 106 agricultural sites across eight European countries confirm that the regulatory system fails to sufficiently prevent pesticide-related impacts on non-target organisms, even for a eusocial pollinator species in which colony size may buffer against such impacts10,11. These findings support the need for postapproval monitoring of both pesticide exposure and effects to confirm that the regulatory process is sufficiently protective in limiting the collateral environmental damage of agricultural pesticide use.
Collapse
Affiliation(s)
| | - Jessica Knapp
- Department of Biology, Lund University, Lund, Sweden.
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
| | - Tomasz Kiljanek
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Puławy, Poland
| | | | - Marie-Pierre Chauzat
- Laboratory for Animal Health, ANSES, Paris-Est University, Maisons-Alfort, France
| | - Cecilia Costa
- Council for Agricultural Research and Economics-Agriculture and Environment Research Centre, Bologna, Italy
| | - Pilar De la Rúa
- Department of Zoology and Physical Anthropology, University of Murcia, Murcia, Spain
| | - Alexandra-Maria Klein
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - Marika Mänd
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Simon G Potts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Oliver Schweiger
- Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Irene Bottero
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Elena Cini
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gennaro Di Prisco
- Council for Agricultural Research and Economics-Agriculture and Environment Research Centre, Bologna, Italy
- Institute for Sustainable Plant Protection, The Italian National Research Council, Portici, Italy
| | - Christophe Dominik
- Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Simon Hodge
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Vera Kaunath
- Department of Biology, Lund University, Lund, Sweden
| | - Anina Knauer
- Agroscope, Agroecology and Environment, Zurich, Switzerland
| | - Marion Laurent
- Unit of Honey Bee Pathology, Sophia Antipolis Laboratory, ANSES, Sophia Antipolis, France
| | | | - Piotr Medrzycki
- Council for Agricultural Research and Economics-Agriculture and Environment Research Centre, Bologna, Italy
| | | | - Risto Raimets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | | | - Deepa Senapathi
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Giovanni Tamburini
- Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
- Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy
| | - Mark J F Brown
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Jane C Stout
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden.
| |
Collapse
|
26
|
Rondeau S, Raine NE. Single and combined exposure to 'bee safe' pesticides alter behaviour and offspring production in a ground-nesting solitary bee ( Xenoglossa pruinosa). Proc Biol Sci 2024; 291:20232939. [PMID: 38503336 PMCID: PMC10950463 DOI: 10.1098/rspb.2023.2939] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 02/23/2024] [Indexed: 03/21/2024] Open
Abstract
Mounting evidence supporting the negative impacts of exposure to neonicotinoids on bees has prompted the registration of novel 'bee-friendly' insecticides for agricultural use. Flupyradifurone (FPF) is a butenolide insecticide that shares the same mode of action as neonicotinoids and has been assessed to be 'practically non-toxic to adult honeybees' using current risk assessment procedures. However, these assessments overlook some routes of exposure specific to wild bees, such as contact with residues in soil for ground-nesters. Co-exposure with other pesticides may also lead to detrimental synergistic effects. In a fully crossed experiment, we assessed the possible lethal and sublethal effects of chronic exposure to two pesticides used on Cucurbita crops, the insecticide Sivanto Prime (FPF) and the fungicide Quadris Top (azoxystrobin and difenoconazole), alone or combined, on solitary ground-nesting squash bees (Xenoglossa pruinosa). Squash bees exposed to Quadris Top collected less pollen per flower visit, while Sivanto-exposed bees produced larger offspring. Pesticide co-exposure induced hyperactivity in female squash bees relative to both the control and single pesticide exposure, and reduced the number of emerging offspring per nest compared to individual pesticide treatments. This study demonstrates that 'low-toxicity' pesticides can adversely affect squash bees under field-realistic exposure, alone or in combination.
Collapse
Affiliation(s)
- Sabrina Rondeau
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Nigel E. Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
27
|
Xie H, Cheng Y, Cai Y, Ren T, Zhang B, Chen N, Wang J. A H 2O 2-specific fluorescent probe for evaluating oxidative stress in pesticides-treated cells, rice roots and zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133426. [PMID: 38185089 DOI: 10.1016/j.jhazmat.2024.133426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Hydrogen peroxide (H2O2) plays an irreplaceable role in the evaluation of the redox status in versatile circumstances. The levels of H2O2 can be affected by both internal and external stimuli, including environmental hazards. Abnormal production of H2O2 is a common characteristic of pesticide-caused damage. Therefore, H2O2 levels can intuitively and conveniently reflect the oxidative stress caused by various pesticides in cells and organisms. However, reliable and convenient monitoring of H2O2 in living cells is still limited by the lack of specific imaging probes. In this study, a fluorescent probe (HBTM-HP) was developed for in situ observation of H2O2 fluctuations caused by pesticide treatment over time in mammalian cells, rice roots and zebrafish. HBTM-HP showed high sensitivity and selectivity for H2O2. Fluorescence imaging results confirmed that HBTM-HP could be applied to reveal H2O2 production induced by multiple pesticides. This study revealed that HBTM-HP could serves as a versatile tool to monitor the redox status related to H2O2 both in vitro and in vivo upon exposure to pesticides, and also provides a basis for clarifying the mechanisms of pesticides in physiological and pathological processes.
Collapse
Affiliation(s)
- Hui Xie
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China; Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Yuchun Cheng
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Yiheng Cai
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Tianrui Ren
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Bo Zhang
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Nan Chen
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China.
| | - Jian Wang
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China.
| |
Collapse
|
28
|
Abstract
Bees are essential pollinators of many crops and wild plants, and pesticide exposure is one of the key environmental stressors affecting their health in anthropogenically modified landscapes. Until recently, almost all information on routes and impacts of pesticide exposure came from honey bees, at least partially because they were the only model species required for environmental risk assessments (ERAs) for insect pollinators. Recently, there has been a surge in research activity focusing on pesticide exposure and effects for non-Apis bees, including other social bees (bumble bees and stingless bees) and solitary bees. These taxa vary substantially from honey bees and one another in several important ecological traits, including spatial and temporal activity patterns, foraging and nesting requirements, and degree of sociality. In this article, we review the current evidence base about pesticide exposure pathways and the consequences of exposure for non-Apis bees. We find that the insights into non-Apis bee pesticide exposure and resulting impacts across biological organizations, landscapes, mixtures, and multiple stressors are still in their infancy. The good news is that there are many promising approaches that could be used to advance our understanding, with priority given to informing exposure pathways, extrapolating effects, and determining how well our current insights (limited to very few species and mostly neonicotinoid insecticides under unrealistic conditions) can be generalized to the diversity of species and lifestyles in the global bee community. We conclude that future research to expand our knowledge would also be beneficial for ERAs and wider policy decisions concerning pollinator conservation and pesticide regulation.
Collapse
Affiliation(s)
- Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada;
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden;
| |
Collapse
|
29
|
Chen X, Li A, Yin L, Ke L, Dai P, Liu YJ. Early-Life Sublethal Thiacloprid Exposure to Honey Bee Larvae: Enduring Effects on Adult Bee Cognitive Abilities. TOXICS 2023; 12:18. [PMID: 38250974 PMCID: PMC10820931 DOI: 10.3390/toxics12010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
Honey bees have significant ecological and economic value as important pollinators, but they are continuously exposed to various environmental stressors, including insecticides, which can impair their health and cause colony decline. (1) Background: Cognitive abilities are vital for the functional maintenance of honey bees; however, it remains unknown if chronic, low-dose exposure to thiacloprid during the larval stage impairs the cognitive abilities of emerged adult honey bees. (2) Methods: To explore this question, honey bee larvae were fed 0, 0.5, and 1.0 mg/L thiacloprid during their developmental phase. Then, the cognitive (i.e., olfactory learning and memory) abilities of adult honey bees were quantified to assess the delayed impacts of early-stage thiacloprid exposure on adult honey bee cognition. Neural apoptosis and transcriptomic level were also evaluated to explore the neurological mechanisms underlying these effects. (3) Results: Our results revealed that chronic larval exposure to sublethal thiacloprid impaired the learning and memory abilities of adult honey bees by inducing neuronal apoptosis and transcriptomic alterations. (4) Conclusions: We highlighted a previously unknown impairment caused by thiacloprid in honey bees.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong-Jun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
30
|
Sheridan AB, Johnson EJ, Vallat-Michel AJ, Glauser G, Harris JW, Neumann P, Straub L. Thiamethoxam soil contaminations reduce fertility of soil-dwelling beetles, Aethina tumida. CHEMOSPHERE 2023; 339:139648. [PMID: 37506888 DOI: 10.1016/j.chemosphere.2023.139648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
There in increasing evidence for recent global insect declines. This is of major concern as insects play a critical role in ecosystem functionality and human food security. Even though environmental pollutants are known to reduce insect fertility, their potential effects on insect fitness remain poorly understood - especially for soil-dwelling species. Here, we show that fertility of soil-dwelling beetles, Aethina tumida, is reduced, on average, by half due to field-realistic neonicotinoid soil contaminations. In the laboratory, pupating beetles were exposed via soil to concentrations of the neonicotinoid thiamethoxam that reflect global pollution of agricultural and natural habitats. Emerged adult phenotypes and reproduction were measured, and even the lowest concentration reported from natural habitats reduced subsequent reproduction by 50%. The data are most likely a conservative estimate as the beetles were only exposed during pupation. Since the tested concentrations reflect ubiquitous soil pollution, the data reveal a plausible mechanism for ongoing insect declines. An immediate reduction in environmental pollutants is urgently required if our aim is to mitigate the prevailing loss of species biodiversity.
Collapse
Affiliation(s)
- Audrey B Sheridan
- Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, USA
| | - Elijah J Johnson
- Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, USA
| | | | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jeffrey W Harris
- Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, USA
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Swiss Bee Research Center, Agroscope, Bern, Switzerland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong, Thailand; Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom.
| |
Collapse
|
31
|
Tatarko AR, Leonard AS, Mathew D. A neonicotinoid pesticide alters Drosophila olfactory processing. Sci Rep 2023; 13:10606. [PMID: 37391495 PMCID: PMC10313779 DOI: 10.1038/s41598-023-37589-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023] Open
Abstract
Neonicotinoid pesticides are well-known for their sublethal effects on insect behavior and physiology. Recent work suggests neonicotinoids can impair insect olfactory processing, with potential downstream effects on behavior and possibly survival. However, it is unclear whether impairment occurs during peripheral olfactory detection, during information processing in central brain regions, or in both contexts. We used Drosophila melanogaster to explore the potential for neonicotinoids to disrupt olfaction by conducting electrophysiological analyses of single neurons and whole antennae of flies exposed to varying concentrations of the neonicotinoid imidacloprid (IMD) that were shown to cause relative differences in fly survival. Our results demonstrated that IMD exposure significantly reduced the activity of a single focal olfactory neuron and delayed the return to baseline activity of the whole antenna. To determine if IMD also impacts olfactory-guided behavior, we compared flies' relative preference for odor sources varying in ethanol content. Flies exposed to IMD had a greater relative preference for ethanol-laced pineapple juice than control flies, demonstrating that neuronal shifts induced by IMD that we observed are associated with changes in relative preference. Given the interest in the sensory impacts of agrochemical exposure on wild insect behavior and physiology, we highlight the potential of Drosophila as a tractable model for investigating the effects of pesticides at scales ranging from single-neuron physiology to olfactory-guided behavior.
Collapse
Affiliation(s)
- Anna R Tatarko
- Department of Biology, University of Nevada-Reno, Reno, NV, 89557, USA.
| | - Anne S Leonard
- Department of Biology, University of Nevada-Reno, Reno, NV, 89557, USA
| | - Dennis Mathew
- Department of Biology, University of Nevada-Reno, Reno, NV, 89557, USA
| |
Collapse
|
32
|
Martín-Blázquez R, Calhoun AC, Sadd BM, Cameron SA. Gene expression in bumble bee larvae differs qualitatively between high and low concentration imidacloprid exposure levels. Sci Rep 2023; 13:9415. [PMID: 37296299 PMCID: PMC10256756 DOI: 10.1038/s41598-023-36232-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Neonicotinoid pesticides negatively impact bumble bee health, even at sublethal concentrations. Responses to the neonicotinoid imidacloprid have been studied largely at individual adult and colony levels, focusing mostly on behavioral and physiological effects. Data from developing larvae, whose health is critical for colony success, are deficient, particularly at the molecular level where transcriptomes can reveal disruption of fundamental biological pathways. We investigated gene expression of Bombus impatiens larvae exposed through food provisions to two field-realistic imidacloprid concentrations (0.7 and 7.0 ppb). We hypothesized both concentrations would alter gene expression, but the higher concentration would have greater qualitative and quantitative effects. We found 678 genes differentially expressed under both imidacloprid exposures relative to controls, including mitochondrial activity, development, and DNA replication genes. However, more genes were differentially expressed with higher imidacloprid exposure; uniquely differentially expressed genes included starvation response and cuticle genes. The former may partially result from reduced pollen use, monitored to verify food provision use and provide additional context to results. A smaller differentially expressed set only in lower concentration larvae, included neural development and cell growth genes. Our findings show varying molecular consequences under different field-realistic neonicotinoid concentrations, and that even low concentrations may affect fundamental biological processes.
Collapse
Affiliation(s)
- Rubén Martín-Blázquez
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Evolutionary Ecology, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Isla de la Cartuja, Seville, Spain.
| | - Austin C Calhoun
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Sydney A Cameron
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
33
|
Zhang J, Ruan H, Wang Y, Wang Y, Ke T, Guo M, Tian J, Huang Y, Luo J, Yang M. Broad-specificity monoclonal antibody against neonicotinoid insecticides via a multi-immunogen strategy and development of a highly sensitive GNP-based multi-residue immunoassay in ginseng and tomato. Food Chem 2023; 420:136115. [PMID: 37062080 DOI: 10.1016/j.foodchem.2023.136115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
Neonicotinoid insecticides (NNIs) are extensively used across the agricultural products and foods. In order to meet the rapid detection requirements, a novel broad-specificity monoclonal antibody against NNIs was developed for the first time using a multi-immunogen strategy. The antibody's high affinity and its ability to bind target molecules were verified by ic-ELISA. Furthermore, molecular docking was used to evaluate the pivotal forces affecting binding affinity and to determine binding sites. Subsequently, a highly sensitive gold nanoparticle-based immunochromatographic assay was established for the rapid detection of eight NNIs and the IC50 values were 0.03-1.61 ng/mL. The limits of detection for ginseng and tomato ranged from 0.76 to 30.19 μg/kg and 0.87 to 31.57 μg/kg, respectively. The spiked recovery ranged from 72.04% to 120.74%, and the coefficient of variation were less than 9.0%. This study provides a new direction for the development of multiple NNIs residue immunoassays.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yunyun Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yudan Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tongwei Ke
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mengyue Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiao Tian
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
34
|
Knapp JL, Nicholson CC, Jonsson O, de Miranda JR, Rundlöf M. Ecological traits interact with landscape context to determine bees' pesticide risk. Nat Ecol Evol 2023; 7:547-556. [PMID: 36849537 PMCID: PMC10089916 DOI: 10.1038/s41559-023-01990-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/22/2022] [Indexed: 03/01/2023]
Abstract
Widespread contamination of ecosystems with pesticides threatens non-target organisms. However, the extent to which life-history traits affect pesticide exposure and resulting risk in different landscape contexts remains poorly understood. We address this for bees across an agricultural land-use gradient based on pesticide assays of pollen and nectar collected by Apis mellifera, Bombus terrestris and Osmia bicornis, representing extensive, intermediate and limited foraging traits. We found that extensive foragers (A. mellifera) experienced the highest pesticide risk-additive toxicity-weighted concentrations. However, only intermediate (B. terrestris) and limited foragers (O. bicornis) responded to landscape context-experiencing lower pesticide risk with less agricultural land. Pesticide risk correlated among bee species and between food sources and was greatest in A. mellifera-collected pollen-useful information for future postapproval pesticide monitoring. We provide foraging trait- and landscape-dependent information on the occurrence, concentration and identity of pesticides that bees encounter to estimate pesticide risk, which is necessary for more realistic risk assessment and essential information for tracking policy goals to reduce pesticide risk.
Collapse
Affiliation(s)
- Jessica L Knapp
- Department of Biology, Lund University, Lund, Sweden.
- Department of Botany, Trinity College Dublin, Dublin, Ireland.
| | | | - Ove Jonsson
- Department of Aquatic Sciences and Assessment, SLU Centre for Pesticides in the Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden.
| |
Collapse
|
35
|
Stuligross C, Melone GG, Wang L, Williams NM. Sublethal behavioral impacts of resource limitation and insecticide exposure reinforce negative fitness outcomes for a solitary bee. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161392. [PMID: 36621507 DOI: 10.1016/j.scitotenv.2023.161392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Contemporary landscapes present numerous challenges for bees and other beneficial insects that play critical functional roles in natural ecosystems and agriculture. Pesticides and the loss of food resources from flowering plants are two stressors known to act together to impair bee fitness. The impact of these stressors on key behaviors like foraging and nesting can limit pollination services and population persistence, making it critical to understand these sublethal effects. We investigated the effects of insecticide exposure and floral resource limitation on the foraging and nesting behavior of the solitary blue orchard bee, Osmia lignaria. Bees in field cages foraged on wildflowers at high or low densities, some treated with the common insecticide, imidacloprid, in a fully crossed design. Both stressors influenced behavior, but they had differential impacts. Bees with limited food resources made fewer, but longer foraging trips and misidentified their nests more often. Insecticide exposure reduced bee foraging activity. Additionally, insecticides interacted with bee age to influence antagonistic behavior among neighboring females, such that insecticide-exposed bees were less antagonistic with age. Our findings point towards mechanisms underlying effects on populations and ecosystem function and reinforce the importance of studying multiple drivers to understand the consequences of anthropogenic change.
Collapse
Affiliation(s)
- Clara Stuligross
- Graduate Group in Ecology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA; Department of Entomology and Nematology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA.
| | - Grace G Melone
- Department of Entomology and Nematology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Li Wang
- Department of Entomology and Nematology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Neal M Williams
- Graduate Group in Ecology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA; Department of Entomology and Nematology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
36
|
Chua PYS, Bourlat SJ, Ferguson C, Korlevic P, Zhao L, Ekrem T, Meier R, Lawniczak MKN. Future of DNA-based insect monitoring. Trends Genet 2023:S0168-9525(23)00038-0. [PMID: 36907721 DOI: 10.1016/j.tig.2023.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023]
Abstract
Insects are crucial for ecosystem health but climate change and pesticide use are driving massive insect decline. To mitigate this loss, we need new and effective monitoring techniques. Over the past decade there has been a shift to DNA-based techniques. We describe key emerging techniques for sample collection. We suggest that the selection of tools should be broadened, and that DNA-based insect monitoring data need to be integrated more rapidly into policymaking. We argue that there are four key areas for advancement, including the generation of more complete DNA barcode databases to interpret molecular data, standardisation of molecular methods, scaling up of monitoring efforts, and integrating molecular tools with other technologies that allow continuous, passive monitoring based on images and/or laser imaging, detection, and ranging (LIDAR).
Collapse
Affiliation(s)
- Physilia Y S Chua
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Sarah J Bourlat
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Adenauerallee 127, 53113 Bonn, Germany
| | - Cameron Ferguson
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Petra Korlevic
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Leia Zhao
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Torbjørn Ekrem
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rudolf Meier
- Museum für Naturkunde, Center for Integrative Biodiversity Discovery, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Mara K N Lawniczak
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
37
|
Donelan SC, Ogburn MB, Breitburg D. Legacy of past exposure to hypoxia and warming regulates an ecosystem service provided by oysters. GLOBAL CHANGE BIOLOGY 2023; 29:1328-1339. [PMID: 36541067 DOI: 10.1111/gcb.16571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 05/26/2023]
Abstract
Climate change is having substantial impacts on organism fitness and ability to deliver critical ecosystem services, but these effects are often examined only in response to current environments. Past exposure to stress can also affect individuals via carryover effects, and whether these effects scale from individuals to influence ecosystem function and services is unknown. We explored within-generation carryover effects of two coastal climate change stressors-hypoxia and warming-on oyster (Crassostrea virginica) growth and nitrogen bioassimilation, an important ecosystem service. Oysters were exposed to a factorial combination of two temperature and two diel-cycling dissolved oxygen treatments at 3-months-old and again 1 year later. Carryover effects of hypoxia and warming influenced oyster growth and nitrogen storage in complex and context-dependent ways. When operating, carryover effects of single stressors generally reduced oyster nitrogen bioassimilation and relative investment in tissue versus shell growth, particularly in warm environments, while early life exposure to multiple stressors generally allowed oysters to perform as well as control oysters. When extrapolated to the reef scale, carryover effects decreased nitrogen stored by modeled oyster reefs in most conditions, with reductions as large as 41%, a substantial decline in a critical ecosystem service. In some scenarios, however, carryover effects increased nitrogen storage by modeled oyster reefs, again highlighting the complexity of these effects. Hence, even brief exposure to climate change stressors early in life may have persistent effects on an ecosystem service 1 year later. Our results show for the first time that within-generation carryover effects on individual phenotypes can impact processes at the ecosystem scale and may therefore be an overlooked factor determining ecosystem service delivery in response to anthropogenic change.
Collapse
Affiliation(s)
- Sarah C Donelan
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Matthew B Ogburn
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Denise Breitburg
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| |
Collapse
|
38
|
Dilts TE, Black SH, Hoyle SM, Jepsen SJ, May EA, Forister ML. Agricultural margins could enhance landscape connectivity for pollinating insects across the Central Valley of California, U.S.A. PLoS One 2023; 18:e0267263. [PMID: 36763674 PMCID: PMC9916620 DOI: 10.1371/journal.pone.0267263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/25/2022] [Indexed: 02/12/2023] Open
Abstract
One of the defining features of the Anthropocene is eroding ecosystem services, decreases in biodiversity, and overall reductions in the abundance of once-common organisms, including many insects that play innumerable roles in natural communities and agricultural systems that support human society. It is now clear that the preservation of insects cannot rely solely on the legal protection of natural areas far removed from the densest areas of human habitation. Instead, a critical challenge moving forward is to intelligently manage areas that include intensively farmed landscapes, such as the Central Valley of California. Here we attempt to meet this challenge with a tool for modeling landscape connectivity for insects (with pollinators in particular in mind) that builds on available information including lethality of pesticides and expert opinion on insect movement. Despite the massive fragmentation of the Central Valley, we find that connectivity is possible, especially utilizing the restoration or improvement of agricultural margins, which (in their summed area) exceed natural areas. Our modeling approach is flexible and can be used to address a wide range of questions regarding both changes in land cover as well as changes in pesticide application rates. Finally, we highlight key steps that could be taken moving forward and the great many knowledge gaps that could be addressed in the field to improve future iterations of our modeling approach.
Collapse
Affiliation(s)
- Thomas E. Dilts
- Department of Natural Resources and Environmental Science, University of Nevada Reno, Reno, NV, United States of America
- * E-mail:
| | - Scott H. Black
- Xerces Society for Invertebrate Conservation, Portland, OR, United States of America
| | - Sarah M. Hoyle
- Xerces Society for Invertebrate Conservation, Portland, OR, United States of America
| | - Sarina J. Jepsen
- Xerces Society for Invertebrate Conservation, Portland, OR, United States of America
| | - Emily A. May
- Xerces Society for Invertebrate Conservation, Portland, OR, United States of America
| | - Matthew L. Forister
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of Nevada Reno, Reno, NV, United States of America
| |
Collapse
|
39
|
Abstract
There is growing awareness of pollinator declines worldwide. Conservation efforts have mainly focused on finding the direct causes, while paying less attention to building a systemic understanding of the fragility of these communities of pollinators. To fill this gap, we need operational measures of network resilience that integrate two different approaches in theoretical ecology. First, we should consider the range of conditions compatible with the stable coexistence of all of the species in a community. Second, we should address the rate and shape of network collapse once this safe operational space is exited. In this review, we describe this integrative approach and consider several mechanisms that may enhance the resilience of pollinator communities, chiefly rewiring the network of interactions, increasing heterogeneity, allowing variance, and enhancing coevolution. The most pressing need is to develop ways to reduce the gap between these theoretical recommendations and practical applications. This perspective shifts the emphasis from traditional approaches focusing on the equilibrium states to strategies that allow pollination networks to cope with global environmental change.
Collapse
Affiliation(s)
- Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland;
| | - Marten Scheffer
- Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
40
|
Leroy C, Brunet JL, Henry M, Alaux C. Using physiology to better support wild bee conservation. CONSERVATION PHYSIOLOGY 2023; 11:coac076. [PMID: 36632323 PMCID: PMC9825782 DOI: 10.1093/conphys/coac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
There is accumulating evidence that wild bees are experiencing a decline in terms of species diversity, abundance or distribution, which leads to major concerns about the sustainability of both pollination services and intrinsic biodiversity. There is therefore an urgent need to better understand the drivers of their decline, as well as design conservation strategies. In this context, the current approach consists of linking observed occurrence and distribution data of species to environmental features. While useful, a highly complementary approach would be the use of new biological metrics that can link individual bee responses to environmental alteration with population-level responses, which could communicate the actual bee sensitivity to environmental changes and act as early warning signals of bee population decline or sustainability. We discuss here through several examples how the measurement of bee physiological traits or performance can play this role not only in better assessing the impact of anthropogenic pressures on bees, but also in guiding conservation practices with the help of the documentation of species' physiological needs. Last but not least, because physiological changes generally occur well in advance of demographic changes, we argue that physiological traits can help in predicting and anticipating future population trends, which would represent a more proactive approach to conservation. In conclusion, we believe that future efforts to combine physiological, ecological and population-level knowledge will provide meaningful contributions to wild bee conservation-based research.
Collapse
Affiliation(s)
| | - Jean-Luc Brunet
- INRAE, UR 406 Abeilles et Environnement, 84 914 Avignon, France
| | - Mickael Henry
- INRAE, UR 406 Abeilles et Environnement, 84 914 Avignon, France
| | - Cedric Alaux
- INRAE, UR 406 Abeilles et Environnement, 84 914 Avignon, France
| |
Collapse
|
41
|
Leach A, Kaplan I. Prioritizing pollinators over pests: wild bees are more important than beetle damage for watermelon yield. Proc Biol Sci 2022; 289:20221279. [PMID: 36350210 PMCID: PMC9653259 DOI: 10.1098/rspb.2022.1279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2023] Open
Abstract
Insect pests and pollinators can interact directly and indirectly to affect crop production; however, impacts of these interactions on marketable yield are little known. Thus, the evaluation of interactions between pests and pollinators are needed to best prioritize management efforts. Over 2 years, we evaluated the impact of pollinator visitation and/or beetle (Acalymma vittatum) infestation on fruit set and yield in seedless watermelon production. In 2020, we tested the main effect of pollinator visitation: two or eight honeybee visits, two wild bee visits, hand pollinated and open pollinated. In 2021, we crossed wild and managed pollinator visitation (two or four honeybee visits, two or four wild bee visits, hand pollinated and open pollinated) with varying beetle infestation levels (0, 3, 6 and 9 beetles/plant). In both years, wild bees contributed significantly to high fruit yields, and exclusive visitation from wild bees increased yield by a factor of 1.5-3 compared to honeybees. In 2021, pollination was the only significant factor for fruit set and marketable yield even when compared to the varying beetle infestation levels. These data advocate for a reprioritization of management, to conserve and protect wild bee pollination, which could be more critical than avoiding pest damage for ensuring high yields.
Collapse
Affiliation(s)
- Ashley Leach
- Department of Entomology, Ohio State University, Wooster, OH 44691, USA
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA
| | - Ian Kaplan
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
42
|
Chirgwin E, Yang Q, Umina PA, Gill A, Soleimannejad S, Gu X, Ross P, Hoffmann AA. Fungicides have transgenerational effects on Rhopalosiphum padi but not their endosymbionts. PEST MANAGEMENT SCIENCE 2022; 78:4709-4718. [PMID: 35866313 DOI: 10.1002/ps.7091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND While several agricultural fungicides are known to directly affect invertebrate pests, including aphids, the mechanisms involved are often unknown. One hypothesis is that fungicides with antibacterial activity suppress bacterial endosymbionts present in aphids which are important for aphid survival. Endosymbiont-related effects are expected to be transgenerational, given that these bacteria are maternally inherited. Here, we test for these associations using three fungicides (chlorothalonil, pyraclostrobin and trifloxystrobin) against the bird cherry-oat aphid, Rhopalosiphum padi, using a microinjected strain that carried both the primary endosymbiont Buchnera and the secondary endosymbiont Rickettsiella. RESULTS We show that the fungicide chlorothalonil did not cause an immediate effect on aphid survival, whereas both strobilurin fungicides (pyraclostrobin and trifloxystrobin) decreased survival after 48 h exposure. However, chlorothalonil substantially reduced the lifespan and fecundity of the F1 generation. Trifloxystrobin also reduced the lifespan and fecundity of F1 offspring, however, pyraclostrobin did not affect these traits. None of the fungicides consistently altered the density of Buchnera or Rickettsiella in whole aphids. CONCLUSIONS Our results suggest fungicides have sublethal impacts on R. padi that are not fully realized until the generation after exposure, and these sublethal impacts are not associated with the density of endosymbionts harbored by R. padi. However, we cannot rule out other effects of fungicides on endosymbionts that might influence fitness, like changes in their tissue distribution. We discuss these results within the context of fungicidal effects on aphid suppression across generations and point to potential field applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Qiong Yang
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Paul A Umina
- Cesar Australia, Victoria, Australia
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Alex Gill
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | | | - Xinyue Gu
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Perran Ross
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Ary A Hoffmann
- School of BioSciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Schunck F, Liess M. Time between Sequential Exposures to Multiple Stress Turns Antagonism into Synergism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14660-14667. [PMID: 36170596 DOI: 10.1021/acs.est.2c04345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aquatic communities are exposed to repeated pulses of toxicants and environmental stressors. We hypothesize that the dose, order, and timing of stress events shape the interactions of these communities. For this, we conducted a fully-crossed, four-factorial, multiple stress exposure experiment to study the combined effects of Esfenvalerate and ultraviolet-B (UV-B) radiation related to the exposure timing and order on Daphnia magna. We revealed that initial exposure to low stress doses, independent of the stress type (UV-B or Esfenvalerate), significantly increased the resistance toward the second stressor. This beneficial effect was apparent only when the second stressor was applied immediately after the first stressor (p < 0.01). When the period between stressor applications was extended to 2 days, the antagonism between the two stressors turned into synergism. The stressor interaction could be predicted with an abstract-mechanistic model of the temporal dynamics of the early-stage stress response. With this model, the timing and order of exposures were able to successfully explain interactions observed in all treatments (model-R2 = 1.0). We conclude that especially the duration of a break between exposures and the exposure dose have a decisive influence on interactions between toxicants and environmental stressors.
Collapse
Affiliation(s)
- Florian Schunck
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Ecology & Computational Life Science, Rheinisch-Westfälische Technische Hochschule (RWTH), Templergraben 55, 52056 Aachen, Germany
| | - Matthias Liess
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Ecology & Computational Life Science, Rheinisch-Westfälische Technische Hochschule (RWTH), Templergraben 55, 52056 Aachen, Germany
| |
Collapse
|
44
|
Schwarz JM, Knauer AC, Allan MJ, Dean RR, Ghazoul J, Tamburini G, Wintermantel D, Klein AM, Albrecht M. No evidence for impaired solitary bee fitness following pre-flowering sulfoxaflor application alone or in combination with a common fungicide in a semi-field experiment. ENVIRONMENT INTERNATIONAL 2022; 164:107252. [PMID: 35483184 DOI: 10.1016/j.envint.2022.107252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Pesticide exposure is considered a major driver of pollinator decline and the use of neonicotinoid insecticides has been restricted by regulatory authorities due to their risks for pollinators. Impacts of new alternative sulfoximine-based compounds on solitary bees and their potential interactive effects with other commonly applied pesticides in agriculture remain unclear. Here, we conducted a highly replicated full-factorial semi-field experiment with the solitary bee Osmia bicornis, an important pollinator of crops and wild plants in Europe, and Phacelia tanacetifolia as a model crop. We show that spray applications of the insecticide sulfoxaflor (product Closer) and the fungicide azoxystrobin (product Amistar), both alone and combined, had no significant negative impacts on adult female survival or the production, mortality, sex ratio and body size of offspring when sulfoxaflor was applied five days before crop flowering. Our results indicate that for O. bicornis (1) the risk of adverse impacts of sulfoxaflor (Closer) on fitness is small when applied at least five days before crop flowering and (2) that azoxystrobin (Amistar) has a low potential of exacerbating sulfoxaflor effects under field-realistic conditions.
Collapse
Affiliation(s)
- Janine Melanie Schwarz
- Agroscope, Agroecology and Environment, Zurich, Switzerland; ETH Zurich, Institute for Terrestrial Ecosystems, Ecosystem Management, Zurich, Switzerland.
| | - Anina C Knauer
- Agroscope, Agroecology and Environment, Zurich, Switzerland
| | | | - Robin R Dean
- Red Beehive Company, Bishops Waltham, United Kingdom
| | - Jaboury Ghazoul
- ETH Zurich, Institute for Terrestrial Ecosystems, Ecosystem Management, Zurich, Switzerland
| | - Giovanni Tamburini
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany; University of Bari, Department of Soil, Plant and Food Sciences (DiSSPA - Entomology), Bari, Italy
| | - Dimitry Wintermantel
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany
| | - Alexandra-Maria Klein
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany
| | | |
Collapse
|
45
|
|