1
|
Neopane D, Kushwaha P. Carvacrol in asthma management: a comprehensive review of its therapeutic potential and mechanisms of action. Pharmacol Rep 2025; 77:610-623. [PMID: 40067636 DOI: 10.1007/s43440-025-00709-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 05/13/2025]
Abstract
Asthma, a chronic inflammatory disorder of the airways, remains a significant global health concern. Current treatments focus on symptom management and inflammation control, but the search for more effective and safer therapies continues. Carvacrol, a naturally occurring monoterpenoid phenol found in essential oils of various plants, has emerged as a promising bioactive compound with potent anti-inflammatory, antioxidant, and bronchodilatory properties. This review explores the potential of carvacrol as a novel therapeutic agent for asthma management. We discuss its mechanisms of action, including modulation of inflammatory pathways, inhibition of oxidative stress, and relaxation of bronchial muscles. Additionally, preclinical and clinical studies evaluating the efficacy and safety of carvacrol in asthma treatment are analyzed. The integration of carvacrol into existing treatment regimens could offer a multifaceted approach to asthma management, enhancing therapeutic outcomes and improving patients' quality of life.
Collapse
Affiliation(s)
- Deepa Neopane
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India.
| |
Collapse
|
2
|
Yuan X, Wang H, Yan L, Huang X, Tang S. Comparison of key floral components between two Tilia species and among different processing technologies as revealed by widely targeted metabolomic profiling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:4504-4514. [PMID: 40007479 DOI: 10.1002/jsfa.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Tilia has a long history of cultivation and holds high ornamental and economic value. The volatile aroma compounds of Tilia flowers have significant characteristics that contribute to their ornamental appeal, and affect the flavor of floral tea. Here, widely targeted metabolomic analyses were conducted to investigate the aroma active compounds in the fresh inflorescences of Tilia cordata Mill. (Tc) and Tilia miqueliana Maxim. (Tm), and in samples prepared by freeze drying, air drying, and oven drying. RESULTS We identified 442 volatile organic compounds by headspace solid-phase microextraction gas chromatography-mass spectrometry. Terpenoids were the most abundant and diverse group, while heterocyclic compounds were the main contributors to the aroma profile. Notably, 46 aroma compounds were identified as primary contributors to the characteristic aroma of Tilia, including abhexon, 2-isobutyl-3-methoxypyrazine, (Z)-6-nonenal, methyl benzoate, (E)-2-hexenal, 1-hexanol, 2-thiophenemethanethiol, p-cymene, furaneol, and (Z)-4-heptenal. The concentration of volatile organic compounds was higher in Tc than in Tm, indicating a more pronounced aroma character of Tc. For both Tc and Tm, the aroma compounds were better preserved and present at higher concentrations in freeze-dried samples than in air-dried and oven-dried samples. CONCLUSION These results provide a foundation for further research on the molecular mechanisms of aroma formation in Tilia flowers and on aroma as a cue for insect pollination. Furthermore, the results provide a basis for the development and commercialization of Tilia floral teas and other related products. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao Yuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanli Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| | - Lingjun Yan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| | - Xi Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| | - Shijie Tang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China
| |
Collapse
|
3
|
Zhang Y, Zhang J, Miao J, Sun G, Bai H, Xiao J, Sun M, Shi L. Micromorphology and Molecular Insights Into Glandular Trichomes in Two Different Thymes: Glandular Trichomes Formation Process and the Function of the Main Regulator TqHD1. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40341569 DOI: 10.1111/pce.15602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/10/2025]
Abstract
Thyme is widely distributed in the worldwild. In China, there are 15 species, 2 varieties and 1 variant. Thymus quinquecostatus which contains abundant bioactive terpenoids is an important wild medicinal and aromatic plant in Chinese native thymes. Thymus vulgaris 'Elsbeth' comes from Europe and is known for its medicinal properties. The terpenoids exist in the glandular trichomes (GTs), a special epidemal structure. In Lamiaceae, glandular trichomes usually include peltate glandular trichomes (PGTs) and capitate glandular trichomes (CGTs). In previous study, we had analysed the molecular mechanisms of GTs but the formation process was not revealed. In this study, we observed the formation of PGTs and CGTs in thyme. The PGT underwent the complex process, including the basal, stalk, and head cells, there were 8-12 head cells. The CGT also had three cells, but its head cell only had one cell. Meanwhile, molecular biology research was carried out and we identified 68 HD-ZIP proteins and selected several key genes related to the formation of GTs according to the expression levels. Then, we cloned an HD-ZIP IV transcription factor TqHD1 from T. quinquecostatus and characterised it. TqHD1 not only can promote the formation of GTs but also can lead to the changes of volatile components and some relative genes levels. These findings complete the study of cell micromorphology of thyme and lay the foundation for characterisation of factors in epidermis-related functions in thyme.
Collapse
Affiliation(s)
- Yanan Zhang
- State Key Laboratory of Plant Diversity and Specialty Crop, Institute of Botany, Chinese Academy of Sciences, Beijing, Haidian, China
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, Haidian, China
| | - Jinzheng Zhang
- China National Botanical Garden, Beijing, Haidian, China
| | - Jiahui Miao
- State Key Laboratory of Plant Diversity and Specialty Crop, Institute of Botany, Chinese Academy of Sciences, Beijing, Haidian, China
- China National Botanical Garden, Beijing, Haidian, China
- University of Chinese Academy of Sciences, Beijing, Haidian, China
| | - Guofeng Sun
- China National Botanical Garden, Beijing, Haidian, China
| | - Hongtong Bai
- China National Botanical Garden, Beijing, Haidian, China
| | - Jianhua Xiao
- China National Botanical Garden, Beijing, Haidian, China
| | - Meiyu Sun
- State Key Laboratory of Plant Diversity and Specialty Crop, Institute of Botany, Chinese Academy of Sciences, Beijing, Haidian, China
- China National Botanical Garden, Beijing, Haidian, China
| | - Lei Shi
- State Key Laboratory of Plant Diversity and Specialty Crop, Institute of Botany, Chinese Academy of Sciences, Beijing, Haidian, China
- China National Botanical Garden, Beijing, Haidian, China
| |
Collapse
|
4
|
Liu C, Xu H, Li Z, Wang Y, Qiao S, Zhang H. Application and Progress of Genomics in Deciphering the Genetic Regulation Mechanisms of Plant Secondary Metabolites. PLANTS (BASEL, SWITZERLAND) 2025; 14:1316. [PMID: 40364345 PMCID: PMC12073800 DOI: 10.3390/plants14091316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
This review aims to systematically dissect the genetic regulatory mechanisms of plant secondary metabolites in the era of genomics, while comprehensively summarizing the progress and potential impact of genomics in plant secondary metabolism research. By integrating methodologies such as high-throughput sequencing, structural genomics, comparative genomics, and functional genomics, we elucidate the principles underlying plant secondary metabolism and identify functional genes. The application of these technologies has deepened our understanding of secondary metabolic pathways and driven advancements in plant molecular genetics and genomics. The development of genomics has enabled scientists to gain profound insights into the biosynthetic pathways of secondary metabolites in plants such as ginseng (Panax ginseng) and grapevine (Vitis vinifera), while offering novel possibilities for precise regulation of these pathways. Despite remarkable progress in studying the genetic regulation of plant secondary metabolites, significant challenges persist. Future research must focus on integrating multi-omics data, developing advanced bioinformatics tools, and exploring effective genetic improvement strategies to fully harness the medicinal potential of plants and enhance their capacity to synthesize secondary metabolites.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Zhang
- Institute of Special Animal and Plant Sciences of CAAS, Changchun 130112, China; (C.L.); (H.X.); (Z.L.); (Y.W.); (S.Q.)
| |
Collapse
|
5
|
Chen L, Liao P. Current insights into plant volatile organic compound biosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102708. [PMID: 40147248 DOI: 10.1016/j.pbi.2025.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Plant-derived volatile organic compounds (VOCs) are essential for various ecological interactions, including plant communication, pollinator attraction, and defense against herbivores. Some VOCs are active ingredients with significant economic and medicinal value. For example, monoterpenoids such as linalool, geraniol, menthol, camphor, borneol, citral, and thymol are well-known for their flavor and aroma. Most monoterpenoids have a strong scent and physiological activity; some compounds, like thymoquinone, have excellent anti-cancer activities, making them important for pharmaceuticals and also beneficial in food and cosmetics. VOCs encompass a diverse range of chemical classes, such as terpenoids, benzenoids/phenylpropanoids, amino acid derivatives, and fatty acid-derived compounds. With the development of genomic, transcriptomic, and metabolomic techniques, significant progress has been made in the discovery of genes for the biosynthesis of VOCs. Herein, recent advances in the biosynthesis of plant-derived VOCs, focusing on two main classes: benzenoids/phenylpropanoids and monoterpenes, are discussed. It highlights the identification of a peroxisomal enzyme, benzaldehyde synthase, in petunia that elucidates the biosynthetic pathway of benzaldehyde, and a bifunctional enzyme, geranyl/farnesyl diphosphate synthase (RcG/FPPS1), in roses (Rosa chinensis "Old Blush") that contributes to the production of cytosolic geranyl diphosphate. Current understanding about canonical and non-canonical pathways for monoterpene formation and some approaches that are useful for gene discovery have been discussed. Open questions and future perspectives in this field have also been presented.
Collapse
Affiliation(s)
- Lin Chen
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China; Institute of Systems Medicine and Health Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Pan Liao
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China; Institute of Systems Medicine and Health Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
6
|
Alipour M, Haghighi M, Rahimmalek M, Reichelt M, Martinelli L, Groten K, Mithöfer A. Integrated metabolomics, transcriptomic, and phytohormonal analyses to study the effects of water stress and foliar abscisic acid application in Thymus species using LC-MS/MS. FRONTIERS IN PLANT SCIENCE 2025; 16:1557446. [PMID: 40134617 PMCID: PMC11933024 DOI: 10.3389/fpls.2025.1557446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025]
Abstract
Thyme species, including Thymus vulgaris, T. kotschyanus (drought-tolerant) and T. serpyllum (drought-sensitive), are valuable medicinal herbs. They are often grown in arid regions and are increasingly suffering from water stress due to climate change. Here, we analyzed the metabolome and expression of selected genes in leaves of these species under drought stress with and without treatment with the phytohormone abscisic acid (ABA). Among the terpenes, dominant metabolites in thyme, thymol was the most important terpenoid component, followed by thymoquinone, carvacrol and p-cymene in all three species. Drought stress reduced terpene concentrations, while moderate ABA levels increased them. T. kotschyanus showed the highest concentrations of thymol and carvacrol after combined treatment with drought and ABA. Metabolite accumulation was partially correlated with genes related to terpenoid biosynthesis. The combined treatment of drought stress and ABA resulted in a significant reduction of the stress hormone jasmonic acid and an increase of its biosynthetic precursor, OPDA (cis-12-oxophytodienoic acid), in all species. The present research results indicate that ABA treatment at moderate concentrations could be used as a measure to increase the production of some pharmaceutically active phenolic monoterpenes in T. vulgaris, T. serpyllum and T. kotschyanus and increase the stress resistance of the plants.
Collapse
Affiliation(s)
- Maryam Alipour
- Department of Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Maryam Haghighi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mehdi Rahimmalek
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Michael Reichelt
- Department of Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laure Martinelli
- Department of Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Karin Groten
- Department of Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Mithöfer
- Department of Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
7
|
Hashemifar Z, Sanjarian F, Naghdi Badi H, Mehrafarin A. Impact of varying light intensities on morphology, phytochemistry, volatile compounds, and gene expression in Thymus vulgaris L. PLoS One 2025; 20:e0317840. [PMID: 40009615 PMCID: PMC11864514 DOI: 10.1371/journal.pone.0317840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/06/2025] [Indexed: 02/28/2025] Open
Abstract
Light is a crucial factor in plant growth and development. Plants exposed to light stress experience various effects on their growth. This research was conducted to investigate the effects of different light intensities on morpho-physiological traits, phytochemical compounds, and gene expression related to the biosynthesis of voletile in Thymus vulgaris L. The results demonstrated that light intensity (20, 50, 70 and 100%) had a significant impact on morpho-physiological characteristics, pigments content, antioxidant enzymes activities, as well as the content of MDA, H2O2, anthocyanin, thymol, carvacrol, phenols, flavonoids, essential oils, and monoterpenes. Moreover, the expression of the biosynthesis genes of monoterpene compounds was significantly influenced by light intensity. While an increase in light intensity led to higher leaf count (164.6%) and biomass (33.5%), it was accompanied by a decrease in leaf area, stem length, and internode length. The highest levels of chlorophyll a (4.92 mgg-1 FW) and b (1.75 mgg-1 FW), carotenoids (907.31 µ Mg-1FW), MDA (9.93 µ Mg-1FW), anthocyanin, SOD (29.62 Umg - 1 Protein), thymol (41.2%), and carvacrol (4.46%) were observed at 70% treatment and decreased as light intensity increased. Also, H2O2, catalase and polyphenol oxidase activities, phenols, flavonoids, essential oils, and monoterpenes increased with higher light intensity, with the highest H2O2 concentration recorded at 100% (4.43 fold). Importantly, key genes involved in monoterpene biosynthesis, including DXR, TPS, CYP71D178, and CYP71D179, exhibited significantly enhanced expression under full light conditions compared to other light intensities. In conclusion, increased light intensity stimulated the elevation of oxidative indicators, antioxidant activity and enhancing the expression of genes involved in phytochemical compound biosynthesis and consequently leading to the accumulation of volatile compounds in Thymus vulgaris L. Future research will focus on investigating the combined effects of various abiotic stresses at the field level and extending the stress duration to evaluate potential additive effects.
Collapse
Affiliation(s)
- Zahra Hashemifar
- Department of Plant Bio-products, Institute of Agricultural Biotechnology (IAB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Forough Sanjarian
- Department of Plant Bio-products, Institute of Agricultural Biotechnology (IAB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hassanali Naghdi Badi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahed University, Tehran, Iran
- Medicinal Plants Research Center, Shahed University, Tehran, Iran
| | - Ali Mehrafarin
- Medicinal Plants Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
8
|
Zhou Y, Pei T, Zhou X, Xu ML, Gao H, Wang L, Gao Y. An Investigation into the Biological Activities of Four Lamiaceae Essential Oils Against Thrips flavus, Crops, and Weeds. PLANTS (BASEL, SWITZERLAND) 2025; 14:448. [PMID: 39943010 PMCID: PMC11820231 DOI: 10.3390/plants14030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025]
Abstract
In recent years, with the increasing awareness of environmental protection and food safety, essential oils (EOs) have gained significant attention as safer and more environmentally friendly alternatives. This study investigated the insecticidal activity of four Lamiaceae EOs (patchouli oil, catnip oil, lavender oil, and mint oil) against Thrips flavus and their effects on crops and weeds. The results show that patchouli oil, catnip oil, and lavender oil exhibited better insecticidal activity, with patchouli oil having the strongest toxicity, with an LC50 value of 0.31 mg/mL. Additionally, catnip oil and lavender oil had significant attractive effects on T. flavus, where lavender oil only had a significant attractive effect on male T. flavus, with an attraction rate of 71.88% (p = 0.03), suggesting that it could be a potential alternative to insect lures. In pot experiments, these EOs demonstrated sustained insecticidal effects and varied impacts on crops. Lavender oil only significantly affected the shoot length of soybeans (Glycine max), while mint oil did not significantly affect the growth of G. max. Finally, we preliminarily analyzed the chemical composition of the EOs to provide insights into their active components. These findings indicate that EOs have potential applications as natural agrochemicals, but further research on their mechanisms and application conditions is required.
Collapse
Affiliation(s)
- Yuxin Zhou
- Key Laboratory of Soybean Disease and Pest Control, College of Plant Protection, Jilin Agricultural University, Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Tianhao Pei
- Key Laboratory of Soybean Disease and Pest Control, College of Plant Protection, Jilin Agricultural University, Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Xuechao Zhou
- Chifeng Agricultural and Animal Husbandry Scientific Research Institute, Chifeng 024050, China
| | - Meng-Lei Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hexin Gao
- Key Laboratory of Soybean Disease and Pest Control, College of Plant Protection, Jilin Agricultural University, Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Lulu Wang
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Yu Gao
- Key Laboratory of Soybean Disease and Pest Control, College of Plant Protection, Jilin Agricultural University, Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| |
Collapse
|
9
|
Sun M, Miao J, Zhang Y, Hao Y, Zhang J, Li H, Bai H, Shi L. Antioxidant activity analysis of new interspecific hybrid germplasm thyme and oregano essential oils with different chemotypes. BMC PLANT BIOLOGY 2025; 25:33. [PMID: 39780082 PMCID: PMC11716255 DOI: 10.1186/s12870-024-06015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Thyme and oregano essential oils (EOs) and their components have numerous applications in the pharmaceutical, food, and cosmetic industries owing to their antioxidant, antibacterial, antifungal, anti-inflammatory, antiviral, and immunological properties. We attempted to create new chemotypes through the hybridization of thyme and oregano for functional EO research and product development. Here, we used interspecific hybridization to create new thyme and oregano germplasms with new EO chemotypes. The antioxidant activities of these new chemotype EOs were verified by DPPH, ABTS, and FRAP analyses. We determined that there are five types of thyme hybrid EOs: geraniol-type, carvacrol-type, thymol-type, parent polymerization-type, and α-terpineol/α-terpinyl acetate-type. Moreover, there are five types of oregano hybrid EOs: carvacrol-type, thymol-type, sabinene hydrate-type, parent polymerization-type, and carvacrol/sabinene hydrate-type. The geraniol, thymol, and carvacrol contents ranged from 30.45%, 1.21% and 0.00%, respectively, in the parents to 81.66%, 52.65%, and 46.16%, respectively, in the thyme hybrids. The carvacrol and thymol contents ranged from 2.33% to 24.18%, respectively, in the parents to 94.16% and 76.77%, respectively, in the oregano hybrids, indicating obvious heterosis. We further used three antioxidant assays, DPPH, ABTS, and FRAP, to analyse the antioxidant activity of thyme and oregano hybrid EO samples. The antioxidant capacities of carvacrol- and thymol-type EOs were significantly superior to those of other chemotypes. Our data suggest that carvacrol- and thymol-type EOs with greater antioxidant potential can be applied in many industries. In addition, the function of high geraniol-type thyme EO should be further researched. The results will also be very useful for the selection of new varieties, functional research on carvacrol-, thymol-, and geraniol-type essential oils, and product development of feed additives, cosmetics, etc.
Collapse
Affiliation(s)
- Meiyu Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Jiahui Miao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanpeng Hao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Hui Li
- China National Botanical Garden, Beijing, 100093, China
| | - Hongtong Bai
- China National Botanical Garden, Beijing, 100093, China
| | - Lei Shi
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
10
|
Sobatinasab Z, Rahimmalek M, Etemadi N, Szumny A. Nano Silicon Modulates Chemical Composition and Antioxidant Capacities of Ajowan ( Trachyspermum ammi) Under Water Deficit Condition. Foods 2025; 14:124. [PMID: 39796414 PMCID: PMC11719498 DOI: 10.3390/foods14010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Ajowan (Trachyspermum ammi) is an important spice in the food industry, as a well as a medicinal plant with remarkable antioxidant properties. In this study, its essential oil content, chemical composition, flavonoid content, phenolic content, and antioxidant capacity were evaluated under three irrigation regimes (50, 70, and 90% field capacity) and different amounts of nano silicon (0, 1.5, and 3 mM) in ten populations of ajowan. Based on the GC-MS analysis, thymol, carvacrol, p-cymene, and γ-terpinene were determined as the main components of the oil. The thymol content ranged from 34.16% in the Ardabil population (irrigation at 50% and nano silicon at 1.5 mM) to 65.71% in the Khorbir population (without nano silicon and irrigation at 50%). The highest phenolic content was in Khormo with irrigation at 90% and without nano silicon (172.3 mg TAE/g DW), while the lowest was found in Hamedan (irrigation at 50% and without nano silicon (7.2 mg TAE/g DW)). Irrigation at 50% and no nano silicon treatment led to an increase in total flavonoids in Ardabil (46.786 mg QUE/g DW). The antioxidant activity of ajowan was evaluated using the DPPH assay. Accordingly, the highest antioxidant capacity was observed in Khormo (irrigation at 90% without nano silicon; 4126 µg/mL). Moreover, the highest thymol content was observed in the Khorbir population with irrigation at 50% and without nano silicon treatment. Furthermore, correlation and principal component analysis (PCA) provide new insights into the production of ajowan from their substrates under nano silicon treatment and water deficit conditions. Finally, the results revealed information on how to improve the desired essential oil profile and antioxidant capacity of extracts for industrial producers.
Collapse
Affiliation(s)
- Zahra Sobatinasab
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (Z.S.); (N.E.)
| | - Mehdi Rahimmalek
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (Z.S.); (N.E.)
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Nematollah Etemadi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (Z.S.); (N.E.)
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| |
Collapse
|
11
|
Florean M, Schultz H, Wurlitzer J, O'Connor SE, Köllner TG. Independent evolution of plant natural products: Formation of benzoxazinoids in Consolida orientalis (Ranunculaceae). J Biol Chem 2025; 301:108019. [PMID: 39608711 PMCID: PMC11742589 DOI: 10.1016/j.jbc.2024.108019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Benzoxazinoids (BXDs) are important defense compounds produced by a number of species from different, evolutionarily unrelated plant families. While BXD biosynthesis has been extensively studied in the grasses (monocots) and core eudicots, the mechanism of BXD synthesis in the basal eudicots is still unclear. We used an integrated metabolomics and transcriptomics approach to elucidate the BXD pathway in Consolida orientalis, a Ranunculaceae species known to produce the BXD DIBOA-Glc. Overexpression of candidate genes in Nicotiana benthamiana identified a flavin-dependent monooxygenase (CoBX2-3) and two cytochrome P450 enzymes (CoBX4 and CoBX5) that catalyze the oxidation steps that transform indole into DIBOA. Co-expression of CoBx2-3, CoBx4, and CoBx5 with the previously described indole synthase gene CoBx1 and the UDP-glucosyltransferase gene CoBx8 in N. benthamiana resulted in the reconstitution of a fully active BXD pathway. The fact that CoBX2-3, CoBX4, and CoBX5 are not phylogenetically related to their counterparts in the grasses and core eudicots suggests independent evolution of benzoxazinoid biosynthesis in these three angiosperm lineages.
Collapse
Affiliation(s)
- Matilde Florean
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Jena, Germany
| | - Hedwig Schultz
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Jena, Germany
| | - Jens Wurlitzer
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Jena, Germany
| | - Sarah E O'Connor
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Jena, Germany.
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, Jena, Germany.
| |
Collapse
|
12
|
Zhang Y, Liu T, Nan T, Hua Z, Zhao Y, Yuan Y. Characteristics and functions of volatile organic compounds in the tripartite symbiotic system of Gastrodia elata-Armillaria gallica-Rahnella aceris HPDA25. PLANT SIGNALING & BEHAVIOR 2024; 19:2399426. [PMID: 39231270 PMCID: PMC11376408 DOI: 10.1080/15592324.2024.2399426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Tripartite interactions among plants, fungi, and bacteria are critical for maintaining plant growth and fitness, and volatile organic compounds (VOCs) play a significant role in these interactions. However, the functions of VOCs within the niche of mycoheterotrophic plants, which represent unique types of interactions, remain poorly understood. Gastrodia elata, a mycoheterotrophic orchid species, forms a symbiotic relationship with specific Armillaria species, serving as a model system to investigate this intriguing issue. Rahnella aceris HPDA25 is a plant growth-promoting bacteria isolated from G. elata, which has been found to facilitate the establishment of G. elata-Armillaria symbiosis. In this study, using the tripartite symbiotic system of G. elata-Armillaria gallica-R. aceris HPDA25, we investigate the role of VOCs in the interaction among mycoheterotrophic plants, fungi, and bacteria. Our results showed that 33 VOCs of HPDA25-inducible symbiotic G. elata elevated compared to non-symbiotic G. elata, indicating that VOCs indeed play a role in the symbiotic process. Among these, 21 VOCs were accessible, and six active VOCs showed complete growth inhibition activities against A. gallica, while R. aceris HPDA25 had no significant effect. In addition, three key genes of G. elata have been identified that may contribute to the increased concentration of six active VOCs. These results revealed for the first time the VOCs profile of G. elata and demonstrated its regulatory role in the tripartite symbiotic system involving G. elata, Armillaria, and bacteria.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianrui Liu
- Jiangxi Province Key Laboratory of Sustainable Utilization of Traditional Chinese Medicine Resources, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, China
| | - Tiegui Nan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyi Hua
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Yuan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Jiangxi Province Key Laboratory of Sustainable Utilization of Traditional Chinese Medicine Resources, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
- Experimental Research Center, China Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Sharma M, Rana S, Aggarwal S, Ahsan AU, Budhwar M, Mehra S, Sahoo SC, Chopra M. Efficacy of Nigella sativa seed oil against psychophysical stress induced irritable bowel syndrome and anxiety-like symptoms in Wistar rats. Psychopharmacology (Berl) 2024; 241:2609-2626. [PMID: 39516296 DOI: 10.1007/s00213-024-06713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
RATIONALE Stressors play a critical role in the progression of irritable bowel syndrome (IBS). Heterogenous stress causes alterations in our bowel movements which can further cause anxiety and depression-like symptoms, decreasing the ability of individuals worldwide to function in social, academic, and employment settings. OBJECTIVES This study was aimed to investigate the effect of orally administered Nigella sativa (0.2 mL/kg b.wt.) seed oil (NSSO) on stress-induced IBS, anxiety, and depression-like symptoms in Wistar rats. METHODS In the present study, modelling IBS induced anxiety and depression-like symptoms in rodents have been employed to correlate the pathophysiological mechanisms behind this disorder. Moreover, evaluation of ameliorative potential of traditionally used NSSO in IBS was also carried out. RESULTS Present investigation indicated that acute stress of 1.5 h daily for 20 days induced hyper cortisol, gastrointestinal (GI) hypermotility, diarrhoea, altered levels of short chain fatty acids (SCFAs), and inflammation which are common symptoms of IBS. Furthermore, depression and anxiety-like symptoms were validated in test groups by various behavioral tests and decreased levels of 5-HT-Transporter mRNA gene expression, which are clear indicators of cognitive impairment. CONCLUSIONS It is possible that these IBS-like symptoms may have contributed to the pathogenesis of cognitive deficits and depression. However, the anti-oxidative, anti-inflammatory, anti-spasmodic, and possibly the anti-anxiolytic properties of NSSO helped in the mitigation of altered gut-brain axis. Because the concurrent treatment of NSSO alleviated the symptoms of modified GI function and consequently, the anxious & depressive behavior of the animals. Overall, this research explored the protective efficacy of NSSO against stress-induced IBS and depression-like symptoms, shedding light on the potential of this natural compound as a therapeutic option in the field of gastroenterology and psychiatry.
Collapse
Affiliation(s)
- Madhu Sharma
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Swati Rana
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Shiwangi Aggarwal
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Aitizaz Ul Ahsan
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Muskan Budhwar
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Sweety Mehra
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | | | - Mani Chopra
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
14
|
Jiang X, Zhang Z, Wu X, Li C, Sun X, Li Y, Chang A, Yang A, Yang C. Multiplex Expression Cassette Assembly: A flexible and versatile method for building complex genetic circuits in conventional vectors. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3361-3379. [PMID: 39175411 PMCID: PMC11606424 DOI: 10.1111/pbi.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
The manipulation of multiple transcription units for simultaneous and coordinated expression is not only key to building complex genetic circuits to accomplish diverse functions in synthetic biology, but is also important in crop breeding for significantly improved productivity and overall performance. However, building constructs with multiple independent transcription units for fine-tuned and coordinated regulation is complicated and time-consuming. Here, we introduce the Multiplex Expression Cassette Assembly (MECA) method, which modifies canonical vectors compatible with Golden Gate Assembly, and then uses them to produce multi-cassette constructs. By embedding the junction syntax in primers that are used to amplify functional elements, MECA is able to make complex constructs using only one intermediate vector and one destination vector via two rounds of one-pot Golden Gate assembly reactions, without the need for dedicated vectors and a coherent library of standardized modules. As a proof-of-concept, we modified eukaryotic and prokaryotic expression vectors to generate constructs for transient expression of green fluorescent protein and β-glucuronidase in Nicotiana benthamiana, genome editing to block monoterpene metabolism in tomato glandular trichomes, production of betanin in tobacco and synthesis of β-carotene in Escherichia coli. Additionally, we engineered the stable production of thymol and carvacrol, bioactive compounds from Lamiaceae family plants, in glandular trichomes of tobacco. These results demonstrate that MECA is a flexible, efficient and versatile method for building complex genetic circuits, which will not only play a critical role in plant synthetic biology, but also facilitate improving agronomic traits and pyramiding traits for the development of next-generation elite crops.
Collapse
Affiliation(s)
- Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
| | - Zhuoxiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
| | - Changmei Li
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
| | - Xuan Sun
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
| | - Aixia Chang
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
| | - Changqing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
| |
Collapse
|
15
|
Hoca M, Becer E, Vatansever HS. Carvacrol is potential molecule for diabetes treatment. Arch Physiol Biochem 2024; 130:823-830. [PMID: 38019023 DOI: 10.1080/13813455.2023.2288537] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Diabetes is an important chronic disease that can lead to various negative consequences and complications. In recent years, several new alternative treatments have been developed to improve diabetes. Carvacrol found in essential oils of numerous plant species and has crucial potential effects on diabetes. The anti-diabetic effects of carvacrol have also been comprehensively studied in diabetic animal and cell models. In addition, carvacrol could improve diabetes through affecting diabetes-related enzymes, insulin resistance, insulin sensitivity, glucose uptake, anti-oxidant, and anti-inflammatory mechanisms. The use of carvacrol alone or in combination with anti-diabetic therapies could show a significant potential effect in the treatment of diabetes. This review contributes an overview of the effect of carvacrol in diabetes and anti-diabetic mechanisms.
Collapse
Affiliation(s)
- Mustafa Hoca
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Near East University, Nicosia, Mersin, Turkey
| | - Eda Becer
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Mersin, Turkey
| | - Hafize Seda Vatansever
- DESAM Institute, Near East University, Nicosia, Mersin, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
16
|
Wajid MA, Sharma P, Majeed A, Bhat S, Angmo T, Fayaz M, Pal K, Andotra S, Bhat WW, Misra P. Transcriptome-wide investigation and functional characterization reveal a terpene synthase involved in γ-terpinene biosynthesis in Monarda citriodora. Funct Integr Genomics 2024; 24:222. [PMID: 39589550 DOI: 10.1007/s10142-024-01491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024]
Abstract
Monarda citriodora Cerv. ex Lag. is a rich source of industrially important compounds like γ-terpinene, carvacrol, thymol and thymoquinone. Understanding the regulation of γ-terpinene biosynthesis, a precursor for other monoterpenes, could facilitate upscaling of these metabolites in M. citriodora. Therefore, the present study aimed to unravel and characterize the terpene synthase (TPS) involved in γ-terpinene biosynthesis. Homology searches revealed 33 TPS members in the transcriptome assembly of M. citriodora. Based on the correlation of expression patterns and phytochemical profile, McTPS22 emerged as the putative TPS for γ-terpinene biosynthesis. Molecular docking suggested geranyl diphosphate (GPP) as a potential substrate for McTPS22. Heterologous expression in Escherichia coli and Nicotiana benthamiana confirmed the role of McTPS22 in γ-terpinene biosynthesis. Both in-silico prediction and confocal microscopy indicated plastidial localization of the McTPS22. Gene co-expression network analysis revealed 507 genes interacting with McTPS22, including 80 transcription factors (TFs). Of these, 46 TFs had binding sites in the McTPS22 promoter, and 36 showed significant correlations with γ-terpinene accumulation, suggesting they may be potential regulators. Promoter analysis indicated regulation by phytohormones and abiotic factors, confirmed by phytohormone elicitation and QRT-PCR. The histochemical GUS staining suggested that McTPS22 is primarily active in the glandular trichomes of M. citriodora. The present work provides insights into the molecular regulation of biosynthesis of γ-terpinene in M. citriodora.
Collapse
Affiliation(s)
- Mir Abdul Wajid
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priyanka Sharma
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aasim Majeed
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
| | - Sheetal Bhat
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tsering Angmo
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Fayaz
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Koushik Pal
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonali Andotra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Wajid Waheed Bhat
- Division of Basic Sciences and Humanities, SKUAST-Kashmir, Shalimar, 190025, Srinagar, India
| | - Prashant Misra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
17
|
Hashemifar Z, Sanjarian F, Naghdi Badi H, Mehrafarin A. Varying levels of natural light intensity affect the phyto-biochemical compounds, antioxidant indices and genes involved in the monoterpene biosynthetic pathway of Origanum majorana L. BMC PLANT BIOLOGY 2024; 24:1018. [PMID: 39465361 PMCID: PMC11514805 DOI: 10.1186/s12870-024-05739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Light is a critical environmental factor in plants, encompassing two vital aspects: intensity and quality. To assess the influence of different light intensities on Origanum majorana L., pots containing the herb were subjected to four levels of light intensity: 20, 50, 70, and 100% natural light. After a 60-day treatment period, the plants were evaluated for metabolite production, including total sugar content, protein, dry weight, antioxidant indices, expression of monoterpenes biosynthesis genes, and essential oil compounds. The experimental design followed a randomized complete blocks format, and statistical analysis of variance was conducted. RESULTS The results indicated a correlation between increased light intensity and elevated total sugar and protein content, which contributed to improved plant dry weight. The highest levels of hydrogen peroxide and malondialdehyde (MDA) were observed under 100% light intensity. Catalase and superoxide dismutase enzymes exhibited increased activity, with a 4.23-fold and 2.14-fold increase, respectively, under full light. In contrast, peroxidase and polyphenol oxidase enzyme activities decreased by 3.29-fold and 3.24-fold, respectively. As light intensity increases, the expression level of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) gene increases. However, beyond a light intensity of 70%, the DXR gene expression level decreased. Furthermore, the expression levels of the cytochrome P450 genes CYP71D178 and CYP71D179 exhibited an increasing trend in response to elevated light intensity. Essential oil content increased from 0.02 to 0.5% until reaching 70% light intensity. However, with further increases in light intensity, the essential oil content decreased by 54 to 0.23%. CONCLUSIONS These findings emphasize the importance of balancing plant growth promotion and stress management under different light conditions. The research suggests that sweet marjoram plants thrive best in unshaded open spaces, resulting in maximum biomass. However, essential oil production decreases under the same conditions. For farmers in areas with an average light intensity of approximately 1700 µmol m-2s-1, it is recommended to cultivate sweet marjoram in shade-free fields to optimize biomass and essential oil production. Towards the end of the growth cycle, it is advisable to use shades that allow 70% of light to pass through. The specific duration of shade implementation can be further explored in future research.
Collapse
Affiliation(s)
- Zahra Hashemifar
- Department of Plant Bio-Products, Institute of Agricultural Biotechnology (IAB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 1497716316, Iran
| | - Forough Sanjarian
- Department of Plant Bio-Products, Institute of Agricultural Biotechnology (IAB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 1497716316, Iran.
| | - Hassanali Naghdi Badi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahed University, Tehran, 3319118651, Iran.
- Medicinal Plants Research Center, Shahed University, Tehran, 3319118651, Iran.
| | - Ali Mehrafarin
- Medicinal Plants Research Center, Shahed University, Tehran, 3319118651, Iran
| |
Collapse
|
18
|
Gañán-Betancur L, Crane JH, Schaffer B, Vargas AI, Sarkhosh A, Gazis R. Essential Oils for Managing Anthracnose in Mango ( Mangifera indica): Laboratory Results Do Not Translate into Field Efficacy. PLANT DISEASE 2024; 108:3033-3043. [PMID: 38803069 DOI: 10.1094/pdis-01-24-0267-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Essential oil-based products with broad plant disease control claims are commercially available and may be a practical alternative to copper fungicides for crop protection in organic mango orchards. We evaluated the disease control efficacy and crop safety of thyme oil, savory oil, and tree tea oil through replicated in vitro, in vivo (detached leaf and potted trees), and field assays. Three Colletotrichum species associated with mango anthracnose were tested in vitro, whereas only C. siamense was used for in vivo assays. Within the range of concentrations tested in vitro (62.5 to 2,000 μl active ingredient [a.i.]/liter), thyme and savory oil displayed fungicidal activity, whereas no fungistatic or fungicidal activity was observed with tea tree oil. In the in vivo assays, none of the treatments based on a preventive application rate of thyme (1,150 μl a.i./liter), savory (2,000 μl a.i./liter), or tea tree oil (342 μl a.i./liter) were effective in preventing the development of anthracnose on wounded and artificially inoculated leaves. Although field applications of thyme or tea tree oil did not result in phytotoxicity or negative impacts on fruit yield, they were ineffective in reducing the incidence and severity of naturally occurring anthracnose. Applications of copper hydroxide approved for organic agriculture were effective in controlling anthracnose in the field, and no added benefits were found by premixing this compound with thyme oil. Results indicate that essential oil products based on thyme or tea tree oil are inefficient at controlling anthracnose in mangoes.
Collapse
Affiliation(s)
- Lederson Gañán-Betancur
- Department of Plant Pathology, Tropical Research and Education Center, University of Florida, Homestead, FL 33031
| | - Jonathan H Crane
- Horticultural Sciences Department, Tropical Research and Education Center, University of Florida, Homestead, FL 33031
| | - Bruce Schaffer
- Horticultural Sciences Department, Tropical Research and Education Center, University of Florida, Homestead, FL 33031
| | - Ana I Vargas
- Horticultural Sciences Department, Tropical Research and Education Center, University of Florida, Homestead, FL 33031
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611
| | - Romina Gazis
- Department of Plant Pathology, Tropical Research and Education Center, University of Florida, Homestead, FL 33031
| |
Collapse
|
19
|
Zhang Y, Fu C, Wen S, Zhang T, Wang X. Genome-Wide Analysis and Characterization of the SDR Gene Superfamily in Cinnamomum camphora and Identification of Synthase for Eugenol Biosynthesis. Int J Mol Sci 2024; 25:10084. [PMID: 39337570 PMCID: PMC11432319 DOI: 10.3390/ijms251810084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Short-chain dehydrogenase/reductases (SDRs) are the largest NAD(H)-dependent oxidoreductase superfamilies and are involved in diverse metabolisms. This study presents a comprehensive genomic analysis of the SDR superfamily in Cinnamomum camphora, a species that is one of the most significant woody essential oil plants in southern China. We identify a total of 222 CcSDR proteins and classify them into five types based on their cofactor-binding and active sites: 'atypical', 'classic', 'divergent', 'extended', and 'unknown'. Phylogenetic analysis reveals three evolutionary branches within the CcSDR proteins, and further categorization using the SDR-initiative Hidden Markov model resulted in 46 families, with the CcSDR110C, CcSDR108E, and CcSDR460A families being the most populous. Collinearity analysis identified 34 pairs of CcSDR paralogs in C. camphora, 141 pairs of SDR orthologs between C. camphora and Populus trichocarpa, and 59 pairs between C. camphora and Oryza sativa. Expression profile analysis indicates a preference for the expression of 77 CcSDR genes in specific organs such as flowers, bark, twigs, roots, leaves, or fruits. Moreover, 77 genes exhibit differential expression patterns during the four developmental stages of leaves, while 130 genes show variance across the five developmental stages of fruits. Additionally, to explore the biosynthetic mechanism of methyl eugenol, a key component of the leaf essential oil in the methyl eugenol chemotype, this study also identifies eugenol synthase (EGS) within the CcSDR460A family through an integrated strategy. Real-time quantitative PCR analysis demonstrates that the expression of CcEGS in the leaves of the methyl eugenol chemotype is more than fourfold higher compared to other chemotypes. When heterologously expressed in Escherichia coli, it catalyzes the conversion of coniferyl acetate into a mixture predominantly composed of eugenol (71.44%) and isoeugenol (21.35%). These insights pave the way for future research into the functional diversity of CcSDR genes, with a focus on secondary metabolism.
Collapse
Affiliation(s)
- Yueting Zhang
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academe of Forestry, Nanchang 330032, China; (Y.Z.); (C.F.); (S.W.); (T.Z.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species (NO. 2024SSY04091), Jiangxi Academe of Forestry, Nanchang 330032, China
| | - Chao Fu
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academe of Forestry, Nanchang 330032, China; (Y.Z.); (C.F.); (S.W.); (T.Z.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species (NO. 2024SSY04091), Jiangxi Academe of Forestry, Nanchang 330032, China
| | - Shifang Wen
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academe of Forestry, Nanchang 330032, China; (Y.Z.); (C.F.); (S.W.); (T.Z.)
| | - Ting Zhang
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academe of Forestry, Nanchang 330032, China; (Y.Z.); (C.F.); (S.W.); (T.Z.)
| | - Xindong Wang
- Camphor Engineering and Technology Research Center of National Forestry and Grassland Administration, Jiangxi Academe of Forestry, Nanchang 330032, China; (Y.Z.); (C.F.); (S.W.); (T.Z.)
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species (NO. 2024SSY04091), Jiangxi Academe of Forestry, Nanchang 330032, China
| |
Collapse
|
20
|
Kim E, Kim M, Oh MK. Whole-cell bioconversion for producing thymoquinone by engineered Saccharomyces cerevisiae. Enzyme Microb Technol 2024; 178:110455. [PMID: 38723387 DOI: 10.1016/j.enzmictec.2024.110455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/27/2024]
Abstract
Thymoquinone, extracted from the black seeds of Nigella sativa, is a natural substance with highly beneficial effects against various human diseases. In this study, we aimed to construct a Saccharomyces cerevisiae strain that, produce thymoquinone from thymol, a relatively inexpensive substrate. To achieve this, cytochrome P450 from Origanum vulgare was expressed in S. cerevisiae for the bioconversion of thymol to thymoquinone, with the co-expression of cytochrome P450 reductase (CPR) from Arabidopsis thaliana, ATR1. Additionally, flexible linkers were used to connect these two enzymes. Furthermore, modifications were performed to expand the endoplasmic reticulum (ER) space, leading to increased thymoquinone production. After integrating the genes into the chromosome and optimizing the media components, a significant improvement in the thymol-to-thymoquinone conversion rate and yield were achieved. This study represents a possibility of the production of thymoquinone, a bioactive ingredient of a plant, using an engineered microbial cell.
Collapse
Affiliation(s)
- Eunjee Kim
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Minsun Kim
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
21
|
Bedoya-Agudelo JP, López-Carvajal JE, Quiguanás-Guarín ES, Cardona N, Padilla-Sanabria L, Castaño-Osorio JC. Assessment of Antimicrobial and Cytotoxic Activities of Liposomes Loaded with Curcumin and Lippia origanoides Essential Oil. Biomolecules 2024; 14:851. [PMID: 39062565 PMCID: PMC11275147 DOI: 10.3390/biom14070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Introduction: Curcumin and Lippia origanoides essential oils have a broad spectrum of biological activities; however, their physicochemical instability, low solubility, and high volatility limit their therapeutic use. Encapsulation in liposomes has been reported as a feasible approach to increase the physicochemical stability of active substances, protect them from interactions with the environment, modulate their release, reduce their volatility, improve their bioactivity, and reduce their toxicity. To date, there are no reports on the co-encapsulation of curcumin and Lippia origanoides essential oils in liposomes. Therefore, the objective of this work is to prepare and physiochemical characterize liposomes loaded with the mixture of these compounds and to evaluate different in vitro biological activities. (2) Methods: Liposomes were produced using the thin-layer method and physiochemical characteristics were calculated. The antimicrobial and cytotoxic activities of both encapsulated and non-encapsulated compounds were evaluated. (3) Results: Empty and loaded nanometric-sized liposomes were obtained that are monodisperse and have a negative zeta potential. They inhibited the growth of Staphylococcus aureus and did not exhibit cytotoxic activity against mammalian cells. (4) Conclusions: Encapsulation in liposomes was demonstrated to be a promising strategy for natural compounds possessing antimicrobial activity.
Collapse
Affiliation(s)
- Juan Pablo Bedoya-Agudelo
- Molecular Immunology Group (GYMOL), Center of Biomedical Research, Faculty of Health Sciences, Quindío University, Armenia 630003, Colombia; (J.P.B.-A.); (J.E.L.-C.); (E.S.Q.-G.); (J.C.C.-O.)
| | - Jhon Esteban López-Carvajal
- Molecular Immunology Group (GYMOL), Center of Biomedical Research, Faculty of Health Sciences, Quindío University, Armenia 630003, Colombia; (J.P.B.-A.); (J.E.L.-C.); (E.S.Q.-G.); (J.C.C.-O.)
| | - Edwin Stiven Quiguanás-Guarín
- Molecular Immunology Group (GYMOL), Center of Biomedical Research, Faculty of Health Sciences, Quindío University, Armenia 630003, Colombia; (J.P.B.-A.); (J.E.L.-C.); (E.S.Q.-G.); (J.C.C.-O.)
| | - Nestor Cardona
- Group of Investigation in Oral Health, Faculty of Dentistry, Antonio Nariño University, Armenia 630001, Colombia;
| | - Leonardo Padilla-Sanabria
- Molecular Immunology Group (GYMOL), Center of Biomedical Research, Faculty of Health Sciences, Quindío University, Armenia 630003, Colombia; (J.P.B.-A.); (J.E.L.-C.); (E.S.Q.-G.); (J.C.C.-O.)
| | - Jhon Carlos Castaño-Osorio
- Molecular Immunology Group (GYMOL), Center of Biomedical Research, Faculty of Health Sciences, Quindío University, Armenia 630003, Colombia; (J.P.B.-A.); (J.E.L.-C.); (E.S.Q.-G.); (J.C.C.-O.)
| |
Collapse
|
22
|
Gontar Ł, Geszprych A, Drutowska A, Osińska E. Phytochemical Composition, Antioxidant and Antimicrobial Activity of Three Monarda Species: M. bradburiana L. C. Beck, M. × media Willd., and M. punctata L. Chem Biodivers 2024; 21:e202301910. [PMID: 38634813 DOI: 10.1002/cbdv.202301910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Plants of the genus Monarda receive growing interest as the sources of herbal raw materials with wide range of potential applications in food, cosmetics, and phytopharmaceutical industry. This study aimed to evaluate the differences in chemical characteristics and biological activity among different organs of plants representing three underinvestigated species of this genus: Monarda bradburiana L. C. Beck, Monarda × media Willd., and Monarda punctata L. The content of phenolic compounds and the antioxidant activity of leaves, stems, and inflorescences were determined. Essential oil (EO) content, composition, and antimicrobial activity were also examined. M. punctata leaves and inflorescences had the highest EO content (4.43 % and 5.59 %, respectively), with carvacrol as a dominant constituent. Leaf EO was also rich in thymoquinone (17.48 %). In EOs of M. bradburiana and M. × media, thymol dominated. EOs inhibited the growth of all tested strains of microorganisms at a concentration of 0.625 μL×mL-1. The studied plant organs were rich in phenolic compounds, especially rosmarinic acid. M. bradburiana inflorescences were distinguished by high linarin content. Differences in flavonoid distribution seem to have special chemotaxonomic importance. Further research is needed to facilitate standardisation of the investigated plant organs as potential new herbal raw materials.
Collapse
Affiliation(s)
- Łukasz Gontar
- Department of Vegetable and Medicinal Plants, Institute of Horticulture Sciences, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02-776, Warsaw, Poland
| | - Anna Geszprych
- Department of Vegetable and Medicinal Plants, Institute of Horticulture Sciences, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02-776, Warsaw, Poland
| | - Andżelika Drutowska
- Department of Vegetable and Medicinal Plants, Institute of Horticulture Sciences, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02-776, Warsaw, Poland
- Research and Innovation Centre Pro-Akademia, 9/11 Innowacyjna Street, 95-050, Konstantynów Łódzki, Poland
| | - Ewa Osińska
- Department of Vegetable and Medicinal Plants, Institute of Horticulture Sciences, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02-776, Warsaw, Poland
| |
Collapse
|
23
|
Rivera-Pérez A, Garrido Frenich A. Comparison of data processing strategies using commercial vs. open-source software in GC-Orbitrap-HRMS untargeted metabolomics analysis for food authentication: thyme geographical differentiation and marker identification as a case study. Anal Bioanal Chem 2024; 416:4039-4055. [PMID: 38805060 PMCID: PMC11249438 DOI: 10.1007/s00216-024-05347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Untargeted analysis of gas chromatography-high-resolution mass spectrometry (GC-HRMS) data is a key and time-consuming challenge for identifying metabolite markers in food authentication applications. Few studies have been performed to evaluate the capability of untargeted data processing tools for feature extraction, metabolite annotation, and marker selection from untargeted GC-HRMS data since most of them are focused on liquid chromatography (LC) analysis. In this framework, this study provides a comprehensive evaluation of data analysis tools for GC-Orbitrap-HRMS plant metabolomics data, including the open-source MS-DIAL software and commercial Compound Discoverer™ software (designed for Orbitrap data processing), applied for the geographical discrimination and search for thyme markers (Spanish vs. Polish differentiation) as the case study. Both approaches showed that the feature detection process is highly affected by unknown metabolites (Levels 4-5 of identification confidence), background signals, and duplicate features that must be carefully assessed before further multivariate data analysis for reliable putative identification of markers. As a result, Compound Discoverer™ and MS-DIAL putatively annotated 52 and 115 compounds at Level 2, respectively. Further multivariate data analysis allowed the identification of differential compounds, showing that the putative identification of markers, especially in challenging untargeted analysis, heavily depends on the data processing parameters, including available databases used during compound annotation. Overall, this method comparison pointed out both approaches as good options for untargeted analysis of GC-Orbitrap-HRMS data, and it is presented as a useful guide for users to implement these data processing approaches in food authenticity applications depending on their availability.
Collapse
Affiliation(s)
- Araceli Rivera-Pérez
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, 04120, Almeria, Spain.
| | - Antonia Garrido Frenich
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, 04120, Almeria, Spain
| |
Collapse
|
24
|
Mai TD, Kim HM, Park SY, Ma SH, Do JH, Choi W, Jang HM, Hwang HB, Song EG, Shim JS, Joung YH. Metabolism of phenolic compounds catalyzed by Tomato CYP736A61. Enzyme Microb Technol 2024; 176:110425. [PMID: 38479200 DOI: 10.1016/j.enzmictec.2024.110425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/24/2024]
Abstract
Cytochrome P450s (CYPs) regulate plant growth and stress responses by producing diverse primary and secondary metabolites. However, the function of many plant CYPs remains unknown because, despite their structural similarity, predicting the enzymatic activity of CYPs is difficult. In this study, one member of the CYP736A subfamily (CYP736A61) from tomatoes was isolated and characterized its enzymatic functions. CYP736A61 was successfully expressed in Escherichia coli through co-expression with molecular chaperones. The purified CYP736A61 showed hydroxylation activity toward 7-ethoxycoumarin, producing 7-hydroxycoumarin or 3-hydroxy 7-ethoxycoumarin. Further substrate screening revealed that dihydrochalcone and stilbene derivates (resveratrol and polydatin) are the substrates of CYP736A61. CYP736A61 also mediated the hydroxylation of resveratrol and polydatin, albeit with low activity. Importantly, CYP736A61 mediated the cleavage of resveratrol and polydatin as well as pinostilbene and pterostilbene. Interestingly, CY736A61 also converted phloretin to naringenin chalcone. These results suggest that CYP736A61 is a novel CYP enzyme with stilbene cleavage activity.
Collapse
Affiliation(s)
- Thanh Dat Mai
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Hyun Min Kim
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Seo Young Park
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Sang Hoon Ma
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Ju Hui Do
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Won Choi
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Hye Min Jang
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Hyeon Bae Hwang
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Eun Gyeong Song
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea; Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea.
| | - Young Hee Joung
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea.
| |
Collapse
|
25
|
Yao L, Wu X, Jiang X, Shan M, Zhang Z, Li Y, Yang A, Li Y, Yang C. Subcellular compartmentalization in the biosynthesis and engineering of plant natural products. Biotechnol Adv 2023; 69:108258. [PMID: 37722606 DOI: 10.1016/j.biotechadv.2023.108258] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Plant natural products (PNPs) are specialized metabolites with diverse bioactivities. They are extensively used in the pharmaceutical, cosmeceutical and food industries. PNPs are synthesized in plant cells by enzymes that are distributed in different subcellular compartments with unique microenvironments, such as ions, co-factors and substrates. Plant metabolic engineering is an emerging and promising approach for the sustainable production of PNPs, for which the knowledge of the subcellular compartmentalization of their biosynthesis is instrumental. In this review we describe the state of the art on the role of subcellular compartments in the biosynthesis of major types of PNPs, including terpenoids, phenylpropanoids, alkaloids and glucosinolates, and highlight the efforts to target biosynthetic pathways to subcellular compartments in plants. In addition, we will discuss the challenges and strategies in the field of plant synthetic biology and subcellular engineering. We expect that newly developed methods and tools, together with the knowledge gained from the microbial chassis, will greatly advance plant metabolic engineering.
Collapse
Affiliation(s)
- Lu Yao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Muhammad Shan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Zhuoxiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Changqing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China.
| |
Collapse
|
26
|
Nouska C, Irakli M, Georgiou M, Lytou AE, Skendi A, Bouloumpasi E, Chatzopoulou P, Biliaderis CG, Lazaridou A. Physicochemical Characteristics, Antioxidant Properties, Aroma Profile, and Sensory Qualities of Value-Added Wheat Breads Fortified with Post-Distillation Solid Wastes of Aromatic Plants. Foods 2023; 12:4007. [PMID: 37959126 PMCID: PMC10648853 DOI: 10.3390/foods12214007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The influence of incorporation of post-distillation solid wastes of the aromatic plants (SWAP), oregano, rosemary, lemon balm, and spearmint into wheat breads at 1% and 2% levels on their physicochemical and sensorial properties, and antioxidant and volatile profiles were investigated. SWAP breads had darker crumbs and crust and greener crumbs compared to the control, but rather similar loaf specific volume and textural attributes (crust puncture test and crumb Texture Profile Analysis). Although the mold growth on bread crumb surface was not inhibited by SWAP presence, LC-DAD-MS revealed a large increase in terpenoids, like carnosic acid (all SWAP), carnosol (rosemary) and carvacrol (oregano), phenolic (rosmarinic and salvianolic) acids and flavonoids in bread with SWAP inclusion, leading to enhanced antioxidant capacity (ABST, DPPH and FRAP assays). The distinct aromatic plant flavors were detected in the fortified breads by trained assessors and confirmed by SPME-GC/MS volatile analysis, showing high levels of terpenoids in SWAP breads, like carvacrol (oregano), caryophyllene (rosemary and lemon balm), and carvone (spearmint), and rendering the 2% fortification unacceptable by consumers. Nevertheless, breads with 1% oregano or rosemary waste had similar control overall acceptability scores, indicating that SWAP can be a promising ingredient for developing antioxidant-enriched wheat breads.
Collapse
Affiliation(s)
- Chrysanthi Nouska
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece; (C.N.); (M.G.); (C.G.B.)
| | - Maria Irakli
- Hellenic Agricultural Organization—DIMITRA, Institute of Plant Breeding and Genetic Resources, Thermi, 57001 Thessaloniki, Greece; (A.E.L.); (A.S.); (E.B.); (P.C.)
| | - Miltiadis Georgiou
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece; (C.N.); (M.G.); (C.G.B.)
| | - Anastasia E. Lytou
- Hellenic Agricultural Organization—DIMITRA, Institute of Plant Breeding and Genetic Resources, Thermi, 57001 Thessaloniki, Greece; (A.E.L.); (A.S.); (E.B.); (P.C.)
| | - Adriana Skendi
- Hellenic Agricultural Organization—DIMITRA, Institute of Plant Breeding and Genetic Resources, Thermi, 57001 Thessaloniki, Greece; (A.E.L.); (A.S.); (E.B.); (P.C.)
| | - Elisavet Bouloumpasi
- Hellenic Agricultural Organization—DIMITRA, Institute of Plant Breeding and Genetic Resources, Thermi, 57001 Thessaloniki, Greece; (A.E.L.); (A.S.); (E.B.); (P.C.)
| | - Paschalina Chatzopoulou
- Hellenic Agricultural Organization—DIMITRA, Institute of Plant Breeding and Genetic Resources, Thermi, 57001 Thessaloniki, Greece; (A.E.L.); (A.S.); (E.B.); (P.C.)
| | - Costas G. Biliaderis
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece; (C.N.); (M.G.); (C.G.B.)
| | - Athina Lazaridou
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece; (C.N.); (M.G.); (C.G.B.)
| |
Collapse
|
27
|
Zhigzhitzhapova SV, Dylenova EP, Zhigzhitzhapov BV, Goncharova DB, Tykheev ZA, Taraskin VV, Anenkhonov OA. Essential Oils of Artemisia frigida Plants (Asteraceae): Conservatism and Lability of the Composition. PLANTS (BASEL, SWITZERLAND) 2023; 12:3422. [PMID: 37836162 PMCID: PMC10574723 DOI: 10.3390/plants12193422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Plants of arid regions have adapted to harsh environments during the long span of their evolution and have developed a set of features necessary for their survival in water-limited conditions. Artemisia frigida Willd. (Asteraceae) is a widely distributed species possessing significant cenotic value in steppe ecosystems due to its high frequency and abundance. This study examines different patterns of formation of essential oil composition in A. frigida plants under the influence of heterogeneous factors, including climate and its integral characteristics (HTC, Cextr, SPEI and others). The work is based on the results of our research conducted in Russia (Republic of Buryatia, Irkutsk region), Mongolia, and China, from 1998 to 2021. A total of 32 constant compounds have been identified in the essential oil of A. frigida throughout its habitat range in Eurasia, from Kazakhstan to Qinghai Province, China. Among them, camphor, 1,8-cineol and bornyl acetate are the dominant components, contained in 93-95% of the samples. Among the sesquiterpenoids, germacrene D is the dominant component in 67% of the samples. The largest variability within the composition of the essential oils of A. frigida is associated with significant differences in the climatic parameters when plants grow in high-altitude and extrazonal conditions.
Collapse
Affiliation(s)
- Svetlana V. Zhigzhitzhapova
- Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; (S.V.Z.); (B.V.Z.); (D.B.G.); (Z.A.T.); (V.V.T.)
| | - Elena P. Dylenova
- Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; (S.V.Z.); (B.V.Z.); (D.B.G.); (Z.A.T.); (V.V.T.)
| | - Bato V. Zhigzhitzhapov
- Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; (S.V.Z.); (B.V.Z.); (D.B.G.); (Z.A.T.); (V.V.T.)
| | - Danaya B. Goncharova
- Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; (S.V.Z.); (B.V.Z.); (D.B.G.); (Z.A.T.); (V.V.T.)
| | - Zhargal A. Tykheev
- Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; (S.V.Z.); (B.V.Z.); (D.B.G.); (Z.A.T.); (V.V.T.)
| | - Vasiliy V. Taraskin
- Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia; (S.V.Z.); (B.V.Z.); (D.B.G.); (Z.A.T.); (V.V.T.)
| | - Oleg A. Anenkhonov
- Institute of General and Experimental Biology, Siberian Branch, Russian Academy of Sciences, 670047 Ulan-Ude, Russia;
| |
Collapse
|
28
|
Mohammadi V, Talebi S, Ahmadnasab M, Mollahassanzadeh H. The effect of induced polyploidy on phytochemistry, cellular organelles and the expression of genes involved in thymol and carvacrol biosynthetic pathway in thyme ( Thymus vulgaris). FRONTIERS IN PLANT SCIENCE 2023; 14:1228844. [PMID: 37780500 PMCID: PMC10540446 DOI: 10.3389/fpls.2023.1228844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023]
Abstract
Induced polyploidy usually results in larger vegetative and reproductive plant organs. In order to study the effect of chromosome doubling on Thymus vulgaris, three levels of colchicine concentration including 0.1, 0.3 and 0.5% (w/v) were applied for 6, 12 and 24 hours on apical meristem of 2- and 4-leaf seedlings. Ploidy level was evaluated by flow cytometry and microscopic chromosome counting. Chemical composition of essential oils extracted by hydro-distillation was analyzed by gas Chromatography/mass spectrometry (GC/MS) and gas Chromatography (GC). The application of 0.3% colchicine at 4-leaf seedling for 6 hours resulted in the highest survival rate and the highest number of tetraploid plants. Cytogenetic and flow cytometry analyses confirmed the increase of chromosome number from 2n=2x=30 in diploids to 2n=4x=60 in induced tetraploids. Tetraploid plants had larger leaves, taller and thicker stems, dense branching, longer trichome, larger stomata, larger guard cells, and decreased number of stomata. The number of chloroplasts and mitochondria increased significantly in tetraploid plants by 1.66 and 1.63 times, respectively. The expression of CYP71D178, CYP71D180 and CYP71D181 increased in tetraploids by 3.27, 7.39 and 2.15 times, respectively, probably resulting in higher essential oil compounds, as tetraploids outyielded the diploid plants by 64.7% in essential oil, 40.9% in thymol and 18.6% in carvacrol content.
Collapse
Affiliation(s)
- Valiollah Mohammadi
- Agronomy and Plant Breeding Department, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | | | | | |
Collapse
|
29
|
Baloghová J, Michalková R, Baranová Z, Mojžišová G, Fedáková Z, Mojžiš J. Spice-Derived Phenolic Compounds: Potential for Skin Cancer Prevention and Therapy. Molecules 2023; 28:6251. [PMID: 37687080 PMCID: PMC10489044 DOI: 10.3390/molecules28176251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Skin cancer is a condition characterized by the abnormal growth of skin cells, primarily caused by exposure to ultraviolet (UV) radiation from the sun or artificial sources like tanning beds. Different types of skin cancer include melanoma, basal cell carcinoma, and squamous cell carcinoma. Despite the advancements in targeted therapies, there is still a need for a safer, highly efficient approach to preventing and treating cutaneous malignancies. Spices have a rich history dating back thousands of years and are renowned for their ability to enhance the flavor, taste, and color of food. Derived from various plant parts like seeds, fruits, bark, roots, or flowers, spices are important culinary ingredients. However, their value extends beyond the culinary realm. Some spices contain bioactive compounds, including phenolic compounds, which are known for their significant biological effects. These compounds have attracted attention in scientific research due to their potential health benefits, including their possible role in disease prevention and treatment, such as cancer. This review focuses on examining the potential of spice-derived phenolic compounds as preventive or therapeutic agents for managing skin cancers. By compiling and analyzing the available knowledge, this review aims to provide insights that can guide future research in identifying new anticancer phytochemicals and uncovering additional mechanisms for combating skin cancer.
Collapse
Affiliation(s)
- Janette Baloghová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Baranová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Fedáková
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| |
Collapse
|
30
|
Azimzadeh Z, Hassani A, Mandoulakani BA, Sepehr E, Morshedloo MR. Intraspecific divergence in essential oil content, composition and genes expression patterns of monoterpene synthesis in Origanum vulgare subsp. vulgare and subsp. gracile under salinity stress. BMC PLANT BIOLOGY 2023; 23:380. [PMID: 37550621 PMCID: PMC10405414 DOI: 10.1186/s12870-023-04387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Oregano (Origanum vulgare L.), one of the important medicinal plants in the world, has valuable pharmacological compounds with antimicrobial, antiviral, antioxidant, anti-inflammatory, antispasmodic, antiurolithic, antiproliferative and neuroprotective activities. Phenolic monoterpenes such as thymol and carvacrol with many medical importance are found in Oregano essential oil. The biosynthesis of these compounds is carried out through the methyl erythritol-4 phosphate (MEP) pathway. Environmental stresses such as salinity might improve the secondary metabolites in medicinal plants. The influence of salinity stress (0 (control), 25, 50 and 100 mM NaCl) on the essential oil content, composition and expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), γ-terpinene synthase (Ovtps2) and cytochrome P450 monooxygenases (CYP71D180) genes involved in thymol and carvacrol biosynthesis, was investigated in two oregano subspecies (vulgare and gracile). RESULTS Essential oil content was increased at low NaCl concentration (25 mM) compared with non-stress conditions, whereas it was decreased as salinity stress intensified (50 and 100 mM). Essential oil content was significantly higher in subsp. gracile than subsp. vulgare. The highest (0.20 mL pot-1) and lowest (0.06 mL pot-1) amount of essential oil yield was obtained in subsp. gracile at 25 and 100 mM NaCl, respectively. The content of carvacrol, as the main component of essential oil, decreased with increasing salinity level in subsp. gracile, but increased in subsp. vulgare. The highest expression of DXR, Ovtps2 and CYP71D180 genes was observed at 50 mM NaCl in subsp. vulgare. While, in subsp. gracile, the expression of the mentioned genes decreased with increasing salinity levels. A positive correlation was obtained between the expression of DXR, Ovtps2 and CYP71D180 genes with carvacrol content in both subspecies. On the other hand, a negative correlation was found between the expression of CYP71D180 and carvacrol content in subsp. gracile. CONCLUSIONS The findings of this study demonstrated that both oregano subspecies can tolerate NaCl salinity up to 50 mM without significant reduction in essential oil yield. Also, moderate salinity stress (50 mM NaCl) in subsp. vulgare might increase the carvacrol content partly via increment the expression levels of DXR, Ovtps2 and CYP71D180 genes.
Collapse
Affiliation(s)
- Zahra Azimzadeh
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Abbas Hassani
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | | | - Ebrahim Sepehr
- Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mohammad Reza Morshedloo
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| |
Collapse
|
31
|
Sharma P, Wajid MA, Fayaz M, Bhat S, Nautiyal AK, Jeet S, Yadav AK, Singh D, Shankar R, Gairola S, Misra P. Morphological, phytochemical, and transcriptome analyses provide insights into the biosynthesis of monoterpenes in Monarda citriodora. PLANTA 2023; 258:49. [PMID: 37480390 DOI: 10.1007/s00425-023-04207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
MAIN CONCLUSION Morphological, phytochemical, and transcriptome analyses revealed candidate genes involved in the biosynthesis of volatile monoterpenes and development of glandular trichomes in Monarda citriodora. Monarda citriodora Cerv. ex Lag. is a valuable aromatic plant due to the presence of monoterpenes as major constituents in its essential oil (EO). Thus, it is of sheer importance to gain knowledge about the site of the biosynthesis of these terpenoid compounds in M. citriodora, as well as the genes involved in their biosynthesis. In this study, we studied different types of trichomes and their relative densities in three different developmental stages of leaves, early stage of leaf development (L1), mid-stage of leaf development (L2), and later stage of leaf development (L3) and the histochemistry of trichomes for the presence of lipid and terpenoid compounds. Further, the phytochemical analysis of this plant through GC-MS indicated a higher content of monoterpenes (thymol, thymoquinone, γ-terpinene, p-cymene, and carvacrol) in the L1 stage with a substantial decrease in the L3 stage of leaf development. This considerable decrease in the content of monoterpenes was attributed to the decrease in the trichome density from L1 to L3. Further, we developed a de novo transcriptome assembly by carrying out RNA sequencing of different plant parts of M. citriodora. The transcriptome data revealed several putative unigenes involved in the biosynthesis of specialized terpenoid compounds, as well as regulatory genes involved in glandular trichome development. The data generated in the present study build a strong foundation for further improvement of M. citriodora, in terms of quantity and quality of its essential oil, through genetic engineering.
Collapse
Affiliation(s)
- Priyanka Sharma
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mir Abdul Wajid
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Fayaz
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sheetal Bhat
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhishek Kumar Nautiyal
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sabha Jeet
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Arvind Kumar Yadav
- Quality Management and Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Deepika Singh
- Quality Management and Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sumeet Gairola
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prashant Misra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
32
|
Shams S, Ismaili A, Firouzabadi FN, Mumivand H, Sorkheh K. Comparative transcriptome analysis to identify putative genes involved in carvacrol biosynthesis pathway in two species of Satureja, endemic medicinal herbs of Iran. PLoS One 2023; 18:e0281351. [PMID: 37418504 PMCID: PMC10328369 DOI: 10.1371/journal.pone.0281351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/22/2023] [Indexed: 07/09/2023] Open
Abstract
Satureja is rich in phenolic monoterpenoids, mainly carvacrol, that is of interest due to diverse biological activities including antifungal and antibacterial. However, limited information is available regarding the molecular mechanisms underlying carvacrol biosynthesis and its regulation for this wonderful medicinal herb. To identify the putative genes involved in carvacrol and other monoterpene biosynthesis pathway, we generated a reference transcriptome in two endemic Satureja species of Iran, containing different yields (Satureja khuzistanica and Satureja rechingeri). Cross-species differential expression analysis was conducted between two species of Satureja. 210 and 186 transcripts related to terpenoid backbone biosynthesis were identified for S. khuzistanica and S. rechingeri, respectively. 29 differentially expressed genes (DEGs) involved in terpenoid biosynthesis were identified, and these DEGs were significantly enriched in monoterpenoid biosynthesis, diterpenoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, carotenoid biosynthesis and ubiquinone and other terpenoid-quinone biosynthesis pathways. Expression patterns of S. khuzistanica and S. rechingeri transcripts involved in the terpenoid biosynthetic pathway were evaluated. In addition, we identified 19 differentially expressed transcription factors (such as MYC4, bHLH, and ARF18) that may control terpenoid biosynthesis. We confirmed the altered expression levels of DEGs that encode carvacrol biosynthetic enzymes using quantitative real-time PCR (qRT-PCR). This study is the first report on de novo assembly and transcriptome data analysis in Satureja which could be useful for an understanding of the main constituents of Satureja essential oil and future research in this genus.
Collapse
Affiliation(s)
- Somayeh Shams
- Faculty of Agriculture, Department of Plant Production and Genetic Engineering, Lorestan University, Khorramabad, Iran
| | - Ahmad Ismaili
- Faculty of Agriculture, Department of Plant Production and Genetic Engineering, Lorestan University, Khorramabad, Iran
| | - Farhad Nazarian Firouzabadi
- Faculty of Agriculture, Department of Plant Production and Genetic Engineering, Lorestan University, Khorramabad, Iran
| | - Hasan Mumivand
- Faculty of Agriculture, Department of Horticultural Science, Lorestan University, Khorramabad, Iran
| | - Karim Sorkheh
- Faculty of Agriculture, Department of Plant Production and Genetic Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
33
|
Ritz M, Ahmad N, Brueck T, Mehlmer N. Differential RNA-Seq Analysis Predicts Genes Related to Terpene Tailoring in Caryopteris × clandonensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2305. [PMID: 37375930 DOI: 10.3390/plants12122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Enzymatic terpene functionalization is an essential part of plant secondary metabolite diversity. Within this, multiple terpene-modifying enzymes are required to enable the chemical diversity of volatile compounds essential in plant communication and defense. This work sheds light on the differentially transcribed genes within Caryopteris × clandonensis that are capable of functionalizing cyclic terpene scaffolds, which are the product of terpene cyclase action. The available genomic reference was subjected to further improvements to provide a comprehensive basis, where the number of contigs was minimized. RNA-Seq data of six cultivars, Dark Knight, Grand Bleu, Good as Gold, Hint of Gold, Pink Perfection, and Sunny Blue, were mapped on the reference, and their distinct transcription profile investigated. Within this data resource, we detected interesting variations and additionally genes with high and low transcript abundancies in leaves of Caryopteris × clandonensis related to terpene functionalization. As previously described, different cultivars vary in their modification of monoterpenes, especially limonene, resulting in different limonene-derived molecules. This study focuses on predicting the cytochrome p450 enzymes underlying this varied transcription pattern between investigated samples. Thus, making them a reasonable explanation for terpenoid differences between these plants. Furthermore, these data provide the basis for functional assays and the verification of putative enzyme activities.
Collapse
Affiliation(s)
- Manfred Ritz
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Nadim Ahmad
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Thomas Brueck
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
34
|
Lanier ER, Andersen TB, Hamberger B. Plant terpene specialized metabolism: complex networks or simple linear pathways? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1178-1201. [PMID: 36891828 PMCID: PMC11166267 DOI: 10.1111/tpj.16177] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
From the perspectives of pathway evolution, discovery and engineering of plant specialized metabolism, the nature of the biosynthetic routes represents a critical aspect. Classical models depict biosynthesis typically from an end-point angle and as linear, for example, connecting central and specialized metabolism. As the number of functionally elucidated routes increased, the enzymatic foundation of complex plant chemistries became increasingly well understood. The perception of linear pathway models has been severely challenged. With a focus on plant terpenoid specialized metabolism, we review here illustrative examples supporting that plants have evolved complex networks driving chemical diversification. The completion of several diterpene, sesquiterpene and monoterpene routes shows complex formation of scaffolds and their subsequent functionalization. These networks show that branch points, including multiple sub-routes, mean that metabolic grids are the rule rather than the exception. This concept presents significant implications for biotechnological production.
Collapse
Affiliation(s)
| | | | - Björn Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, Molecular Plant Sciences Building, 1066 Bogue Street, East Lansing, Michigan, 48824, USA
| |
Collapse
|
35
|
Mączka W, Twardawska M, Grabarczyk M, Wińska K. Carvacrol-A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics (Basel) 2023; 12:antibiotics12050824. [PMID: 37237727 DOI: 10.3390/antibiotics12050824] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The main purpose of this article is to present the latest research related to selected biological properties of carvacrol, such as antimicrobial, anti-inflammatory, and antioxidant activity. As a monoterpenoid phenol, carvacrol is a component of many essential oils and is usually found in plants together with its isomer, thymol. Carvacrol, either alone or in combination with other compounds, has a strong antimicrobial effect on many different strains of bacteria and fungi that are dangerous to humans or can cause significant losses in the economy. Carvacrol also exerts strong anti-inflammatory properties by preventing the peroxidation of polyunsaturated fatty acids by inducing SOD, GPx, GR, and CAT, as well as reducing the level of pro-inflammatory cytokines in the body. It also affects the body's immune response generated by LPS. Carvacrol is considered a safe compound despite the limited amount of data on its metabolism in humans. This review also discusses the biotransformations of carvacrol, because the knowledge of the possible degradation pathways of this compound may help to minimize the risk of environmental contamination with phenolic compounds.
Collapse
Affiliation(s)
- Wanda Mączka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Martyna Twardawska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Małgorzata Grabarczyk
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
36
|
Petrakis EA, Mikropoulou EV, Mitakou S, Halabalaki M, Kalpoutzakis E. A GC-MS and LC-HRMS perspective on the chemotaxonomic investigation of the natural hybrid Origanum × lirium and its parents, O. vulgare subsp. hirtum and O. scabrum. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:289-300. [PMID: 36698289 DOI: 10.1002/pca.3206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The genus Origanum L. (Lamiaceae) is widespread in the Mediterranean region. However, approximately 75% of the species are only encountered in the eastern part. Out of these, a total of nine species (11 taxa) and three natural hybrids occur in Greece. Nevertheless, so far, there is no consensus regarding their precise botanical classification in the literature. In fact, the taxon Origanum × lirium has been proposed both as a separate species as well as natural hybrid between Origanum vulgare subsp. hirtum and Origanum scabrum. OBJECTIVES In this scope, the aim of the current study is to shed light on the matter through the investigation of the chemical composition of both the essential oils and the polar extracts of the mentioned taxa, collected from different geographical regions of Greece. RESULTS As it was demonstrated by both gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-high-resolution mass spectrometry (LC-HRMS) data, and highlighted by our comparative analysis, it can be stipulated that Origanum × lirium shares its chemotype to a large extent with its parent species concerning both volatile and polar constituents. Additionally, geographical origin conditions stood out as a key factor influencing their chemical composition. CONCLUSION Altogether, the present work provides useful information on the chemical composition of the taxa under investigation, while our findings support the opinion that Origanum × lirium should be considered not as a separate species, but rather as a hybrid on the way to becoming a species.
Collapse
Affiliation(s)
- Eleftherios A Petrakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni V Mikropoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofia Mitakou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Kalpoutzakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
37
|
Sakib R, Caruso F, Aktar S, Belli S, Kaur S, Hernandez M, Rossi M. Antioxidant Properties of Thymoquinone, Thymohydroquinone and Black Cumin (Nigella sativa L.) Seed Oil: Scavenging of Superoxide Radical Studied Using Cyclic Voltammetry, DFT and Single Crystal X-ray Diffraction. Antioxidants (Basel) 2023; 12:antiox12030607. [PMID: 36978853 PMCID: PMC10045468 DOI: 10.3390/antiox12030607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Black cumin seeds and seed oil have long been used in traditional foods and medicine in South Asian, Middle Eastern and Mediterranean countries and are valuable flavor ingredients. An important ingredient of black cumin is the small molecule thymoquinone (TQ), which manifests low toxicity and potential therapeutic activity against a wide number of diseases including diabetes, cancer and neurodegenerative disorders. In this study, the antioxidant activities of black seed oil, TQ and a related molecule found in black cumin, thymohydroquinone (THQ), were measured using a direct electrochemical method to experimentally evaluate their superoxide scavenging action. TQ and the black seed oil showed good superoxide scavenging ability, while THQ did not. Density Functional Theory (DFT) computational methods were applied to arrive at a chemical mechanism describing these results, and confirmed the experimental Rotating Ring Disk Electrode (RRDE) findings that superoxide oxidation to O2 by TQ is feasible, in contrast with THQ, which does not scavenge superoxide. Additionally, a thorough inquiry into the unusual cyclic voltammetry pattern exhibited by TQ was studied and was associated with formation of a 1:1 TQ-superoxide radical species, [TQ-O2]−•. DFT calculations reveal this radical species to be involved in the π-π mechanism describing TQ reactivity with superoxide. The crystal structures of TQ and THQ were analyzed, and the experimental data reveal the presence of stacking intermolecular interactions that can be associated with formation of the radical species, [TQ-O2]−•. All three of these methods were essential for us to arrive at a chemical mechanism that explains TQ antioxidant activity, that incorporates intermolecular features found in the crystal structure and which correlates with the measured superoxide scavenging activity.
Collapse
|
38
|
Ji W, Mandal S, Rezenom YH, McKnight TD. Specialized metabolism by trichome-enriched Rubisco and fatty acid synthase components. PLANT PHYSIOLOGY 2023; 191:1199-1213. [PMID: 36264116 PMCID: PMC9922422 DOI: 10.1093/plphys/kiac487] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Acylsugars, specialized metabolites with defense activities, are secreted by trichomes of many solanaceous plants. Several acylsugar metabolic genes (AMGs) remain unknown. We previously reported multiple candidate AMGs. Here, using multiple approaches, we characterized additional AMGs. First, we identified differentially expressed genes between high- and low-acylsugar-producing F2 plants derived from a cross between cultivated tomato (Solanum lycopersicum) and a wild relative (Solanum pennellii), which produce acylsugars that are ∼1% and ∼20% of leaf dry weight, respectively. Expression levels of many known and candidate AMGs positively correlated with acylsugar amounts in F2 individuals. Next, we identified lycopersicum-pennellii putative orthologs with higher nonsynonymous to synonymous substitutions. These analyses identified four candidate genes, three of which showed enriched expression in stem trichomes compared to underlying tissues (shaved stems). Virus-induced gene silencing confirmed two candidates, Sopen05g009610 [beta-ketoacyl-(acyl-carrier-protein) reductase; fatty acid synthase component] and Sopen07g006810 (Rubisco small subunit), as AMGs. Phylogenetic analysis indicated that Sopen05g009610 is distinct from specialized metabolic cytosolic reductases but closely related to two capsaicinoid biosynthetic reductases, suggesting evolutionary relationship between acylsugar and capsaicinoid biosynthesis. Analysis of publicly available datasets revealed enriched expression of Sopen05g009610 orthologs in trichomes of several acylsugar-producing species. Similarly, orthologs of Sopen07g006810 were identified as solanaceous trichome-enriched members, which form a phylogenetic clade distinct from those of mesophyll-expressed "regular" Rubisco small subunits. Furthermore, δ13C analyses indicated recycling of metabolic CO2 into acylsugars by Sopen07g006810 and showed how trichomes support high levels of specialized metabolite production. These findings have implications for genetic manipulation of trichome-specialized metabolism in solanaceous crops.
Collapse
Affiliation(s)
| | | | - Yohannes H Rezenom
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
39
|
Le HTT, Nguyen LH, Nguyen TH, Nguyen VK, Danova A, Truong TN, Chavasiri W. Gagones A-F: Six prenylated chalcones from the heartwood of Mansonia gagei. PHYTOCHEMISTRY 2023; 206:113516. [PMID: 36395879 DOI: 10.1016/j.phytochem.2022.113516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Six undescribed prenylated chalcones gagones A-F were isolated from the acetone fraction of Mansonia gagei heartwood. Their structures were unambiguously established based on spectroscopic analysis (HRESIMS, 1D and 2D NMR), as well as comparison to literature data. Their absolute configurations were elucidated using DP4 and electronic circular dichroism calculations. Isolated compounds were evaluated for their inhibitory activity against α-glucosidase and DPPH assay. All of the tested compounds exhibited better activity than that of acarbose (IC50 93.6 ± 0.5 μM). Among them, gagone D exhibited the highest α-glucosidase inhibitory with the IC50 value of 3.6 ± 0.4 μM. For antioxidant activity, gagones A-C, and E showed more active than that of ascorbic acid (IC50 30.2 ± 0.5 μM) with the IC50 values of 13.2 ± 0.7, 20.1 ± 0.4, 19.3 ± 0.5 and 12.8 ± 0.2 μM, respectively.
Collapse
Affiliation(s)
- Huong Thi Thu Le
- Department of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District 5, Ho Chi Minh City, 700000, Viet Nam.
| | - Lam H Nguyen
- Institute for Computational Science and Technology, Ho Chi Minh City, 700000, Viet Nam
| | - Tuan H Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, 700000, Viet Nam
| | - Van-Kieu Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Ade Danova
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, JI. Ganesha 10, Bandung, West Java, 40132, Indonesia
| | - Thanh N Truong
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
40
|
Optimizing the Distillation of Greek Oregano-Do Process Parameters Affect Bioactive Aroma Constituents and In Vitro Antioxidant Activity? Molecules 2023; 28:molecules28030971. [PMID: 36770638 PMCID: PMC9921775 DOI: 10.3390/molecules28030971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
The aim of the present work was to optimize the conditions of the distillation process at a pilot scale to maximize the yield of specific bioactive compounds of the essential oil of oregano cultivated in Greece, and subsequently to study the in vitro antioxidant activity of these oils. Steam distillation was conducted at an industrial distillery and a Face-Centered Composite (FCC) experimental design was applied by utilizing three distillation factors: time, steam pressure and temperature. Essential oil composition was determined by static headspace gas chromatography-mass spectrometry (HS-GC/MS). To obtain a comprehensive profile of the essential oils, instrumental parameters were optimized, including sample preparation, incubation conditions, sampling process, injection parameters, column thermal gradient and MS conditions. With the applied GC-MS method, more than 20 volatile compounds were identified in the headspace of the oregano essential oils and their relative percentages were recorded. Carvacrol was the most prominent constituent under all distillation conditions applied. Data processing revealed time as the main factor which most affected the yield. The Desired Space (DSc) was determined by conducting a three-dimensional response surface analysis of the independent and dependent variables, choosing yields of thymol and carvacrol as optimization criteria. The in vitro antioxidant activity of the essential oils of all samples was measured in terms of the interaction with the stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) after 20 and 60 min. The most prominent essential oils at different distillation conditions were also tested as inhibitors of lipid peroxidation. Higher % values of carvacrol and thymol were correlated to higher antioxidant activity. Evaluating the impact of the distillation conditions on the in vitro results, it seems that lower pressure, less time and higher temperature are crucial for enhanced antioxidant activities.
Collapse
|
41
|
Sun M, Zhu L, Zhang Y, Liu N, Zhang J, Li H, Bai H, Shi L. Creation of new germplasm resources, development of SSR markers, and screening of monoterpene synthases in thyme. BMC PLANT BIOLOGY 2023; 23:13. [PMID: 36604636 PMCID: PMC9817278 DOI: 10.1186/s12870-022-04029-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Thyme derived essential oil and its components have numerous applications in pharmaceutical, food, and cosmetic industries, owing to their antibacterial, antifungal, and antiviral properties. To obtain thyme essential oil with different terpene composition, we developed new germplasm resources using the conventional hybridization approach. RESULTS Phenotypic characteristics, including essential oil yield and composition, glandular trichome density, plant type, and fertility, of three wild Chinese and seven European thyme species were evaluated. Male-sterile and male-fertile thyme species were crossed in different combinations, and two F1 populations derived from Thymus longicaulis (Tl) × T. vulgaris 'Fragrantissimus' (Tvf) and T. vulgaris 'Elsbeth' (Tve) × T. quinquecostatus (Tq) crosses were selected, with essential oil yield and terpene content as the main breeding goals. Simultaneously, simple sequence repeat (SSR) primers were developed based on the whole-genome sequence of T. quinquecostatus to authenticate the F1 hybrids. A total of 300 primer pairs were selected, and polymerase chain reaction (PCR) was carried out on the parents of the two hybrid populations (Tl, Tvf, Tve, and Tq). Based on the chemotype of the parents and their F1 progenies, we examined the expression of genes encoding two γ-terpinene synthases, one α-terpineol synthase, and maybe one geraniol synthase in all genotypes by quantitative real-time PCR (qRT-PCR). CONCLUSION We used hybridization to create new germplasm resources of thyme, developed SSR markers based on the whole-genome sequence of T. quinquecostatus, and screened the expression of monoterpene synthase genes in thyme. The results of this study provide a strong foundation for the creation of new germplasm resources, construction of the genetic linkage maps, and identification of quantitative trait loci (QTLs), and help gain insight into the mechanism of monoterpenoids biosynthesis in thyme.
Collapse
Affiliation(s)
- Meiyu Sun
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Li Zhu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ningning Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinzheng Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
42
|
Suenaga-Hiromori M, Mogi D, Kikuchi Y, Tong J, Kurisu N, Aoki Y, Amano H, Furutani M, Shimoyama T, Waki T, Nakayama T, Takahashi S. Comprehensive identification of terpene synthase genes and organ-dependent accumulation of terpenoid volatiles in a traditional medicinal plant Angelica archangelica L. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:391-404. [PMID: 37283614 PMCID: PMC10240917 DOI: 10.5511/plantbiotechnology.22.1006a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/06/2022] [Indexed: 06/08/2023]
Abstract
Angelica archangelica L. is a traditional medicinal plant of Nordic origin that produces an unusual amount and variety of terpenoids. The unique terpenoid composition of A. archangelica likely arises from the involvement of terpene synthases (TPSs) with different specificities, none of which has been identified. As the first step in identifying TPSs responsible for terpenoid chemodiversity in A. archangelica, we produced a transcriptome catalogue using the mRNAs extracted from the leaves, tap roots, and dry seeds of the plant; 11 putative TPS genes were identified (AaTPS1-AaTPS11). Phylogenetic analysis predicted that AaTPS1-AaTPS5, AaTPS6-AaTPS10, and AaTPS11 belong to the monoterpene synthase (monoTPS), sesquiterpene synthase (sesquiTPS), and diterpene synthase clusters, respectively. We then performed in vivo enzyme assays of the AaTPSs using recombinant Escherichia coli systems to examine their enzymatic activities and specificities. Nine recombinant enzymes (AaTPS2-AaTPS10) displayed TPS activities with specificities consistent with their phylogenetics; however, AaTPS5 exhibited a strong sesquiTPS activity along with a weak monoTPS activity. We also analyzed terpenoid volatiles in the flowers, immature and mature seeds, leaves, and tap roots of A. archangelica using gas chromatography-mass spectrometry; 14 monoterpenoids and 13 sesquiterpenoids were identified. The mature seeds accumulated the highest levels of monoterpenoids, with β-phellandrene being the most prominent. α-Pinene and β-myrcene were abundant in all organs examined. The in vivo assay results suggest that the AaTPSs functionally identified in this study are at least partly involved in the chemodiversity of terpenoid volatiles in A. archangelica.
Collapse
Affiliation(s)
| | - Daisuke Mogi
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Yohei Kikuchi
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Jiali Tong
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Naotsugu Kurisu
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Yuichi Aoki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Sendai, Miyagi 980-8573, Japan
| | - Hiroyuki Amano
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Masahiro Furutani
- R&D Center, Sekisui Chemical Co. Ltd., Tsukuba, Ibaraki 300-4247, Japan
| | - Takefumi Shimoyama
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Toshiyuki Waki
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Toru Nakayama
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Seiji Takahashi
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
43
|
Metabolite Profiling and Bioassay-Guided Fractionation of Zataria multiflora Boiss. Hydroethanolic Leaf Extracts for Identification of Broad-Spectrum Pre and Postharvest Antifungal Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248903. [PMID: 36558036 PMCID: PMC9785509 DOI: 10.3390/molecules27248903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Hydroethanolic leaf extracts of 14 Iranian Zataria multiflora Boiss. populations were screened for their antifungal activity against five plant pathogenic fungi and metabolically profiled using a non-targeted workflow based on UHPLC/ESI-QTOFMS. Detailed tandem mass-spectrometric analyses of one of the most active hydroethanolic leaf extracts led to the annotation of 68 non-volatile semi-polar secondary metabolites, including 33 flavonoids, 9 hydroxycinnamic acid derivatives, 14 terpenoids, and 12 other metabolites. Rank correlation analyses using the abundances of the annotated metabolites in crude leaf extracts and their antifungal activity revealed four O-methylated flavones, two flavanones, two dihydroflavonols, five thymohydroquinone glycoconjugates, and five putative phenolic diterpenoids as putative antifungal metabolites. After bioassay-guided fractionation, a number of mono-, di- and tri-O-methylated flavones, as well as three of unidentified phenolic diterpenoids, were found in the most active subfractions. These metabolites are promising candidates for the development of new natural fungicides for the protection of agro-food crops.
Collapse
|
44
|
Sun M, Zhang Y, Zhu L, Liu N, Bai H, Sun G, Zhang J, Shi L. Chromosome-level assembly and analysis of the Thymus genome provide insights into glandular secretory trichome formation and monoterpenoid biosynthesis in thyme. PLANT COMMUNICATIONS 2022; 3:100413. [PMID: 35841150 PMCID: PMC9700128 DOI: 10.1016/j.xplc.2022.100413] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 06/01/2023]
Abstract
Thyme has medicinal and aromatic value because of its potent antimicrobial and antioxidant properties. However, the absence of a fully sequenced thyme genome limits functional genomic studies of Chinese native thymes. Thymus quinquecostatus Čelak., which contains large amounts of bioactive monoterpenes such as thymol and carvacrol, is an important wild medicinal and aromatic plant in China. Monoterpenoids are abundant in glandular secretory trichomes. Here, high-fidelity and chromatin conformation capture technologies were used to assemble and annotate the T. quinquecostatus genome at the chromosome level. The 13 chromosomes of T. quinquecostatus had a total length of 528.66 Mb, a contig N50 of 8.06 Mb, and a BUSCO score of 97.34%. We found that T. quinquecostatus had experienced two whole-genome duplications, with the most recent event occurring ∼4.34 million years ago. Deep analyses of the genome, in conjunction with comparative genomic, phylogenetic, transcriptomic, and metabonomic studies, uncovered many regulatory factors and genes related to monoterpenoids and glandular secretory trichome development. Genes encoding terpene synthase (TPS), cytochrome P450 monooxygenases (CYPs), short-chain dehydrogenase/reductase (SDR), R2R3-MYB, and homeodomain-leucine zipper (HD-ZIP) IV were among those present in the T. quinquecostatus genome. Notably, Tq02G002290.1 (TqTPS1) was shown to encode the terpene synthase responsible for catalyzing production of the main monoterpene product γ-terpinene from geranyl diphosphate (GPP). Our study provides significant insight into the mechanisms of glandular secretory trichome formation and monoterpenoid biosynthesis in thyme. This work will facilitate the development of molecular breeding tools to enhance the production of bioactive secondary metabolites in Lamiaceae.
Collapse
Affiliation(s)
- Meiyu Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanan Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningning Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guofeng Sun
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinzheng Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
45
|
Rivera-Pérez A, Romero-González R, Garrido Frenich A. Fingerprinting based on gas chromatography-Orbitrap high-resolution mass spectrometry and chemometrics to reveal geographical origin, processing, and volatile markers for thyme authentication. Food Chem 2022; 393:133377. [PMID: 35691070 DOI: 10.1016/j.foodchem.2022.133377] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Thyme is an aromatic herb traditionally used for food purposes due to its organoleptic characteristics and medicinal properties, which is highly susceptible to food fraud. In this study, GC-HRMS-based fingerprinting was applied for the first time to determine the geographical traceability of thyme based on different origins (Spain, Poland, and Morocco), as well as to assess its processing by comparing sterilized vs. non-sterilized thyme. Unsupervised chemometric methods (PCA and HCA) revealed a predominant influence of the geographical origin on thyme fingerprints rather than processing effects. Supervised PLS-DA and OPLS-DA were used for discrimination purposes, revealing high predictive ability for further samples (100%), and allowing the identification of differential compounds (markers). A total of 24 markers were putatively identified (13 metabolites were confirmed) belonging to different classes: monoterpenoids, diterpenoids, sesquiterpenoids, alkenylbenzenes, and other miscellaneous compounds. This study outlines the potential of combining untargeted analysis by GC-HRMS with chemometrics for thyme authenticity and traceability.
Collapse
Affiliation(s)
- Araceli Rivera-Pérez
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, E-04120 Almeria, Spain.
| | - Roberto Romero-González
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, E-04120 Almeria, Spain.
| | - Antonia Garrido Frenich
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, E-04120 Almeria, Spain.
| |
Collapse
|
46
|
Elyasi R, Majdi M, Krause ST, Kücükay N, Azizi A, Degenhardt J. Identification and functional characterization of a γ-terpinene synthase in Nigella sativa L (black cumin). PHYTOCHEMISTRY 2022; 202:113290. [PMID: 35803303 DOI: 10.1016/j.phytochem.2022.113290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/13/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Nigella sativa (Black cumin) has many applications in food and pharmaceutical industries. Thymoquinone has been considered as a main effective compound in N. sativa seeds and attracted researchers' attention mainly due to its medicinal potential. In this study, the essential oil components of leaves, flowers and seed developmental stages including half black seeds, soft black seeds and hard black seeds were analyzed in N. sativa. Whereas no terpenes were detected in flowers and leaves, seeds showed an essential oil composition that increased in its thymoquinone content during seed maturation. To study the proposed first step of thymoquinone biosynthesis, the formation of γ-terpinene from geranyl diphosphate (GDP), we identified and functionally characterized a γ-terpinene synthase (NsTPS1) in N. sativa. This monoterpene synthase was identified in RNA sequence data derived from seeds. After heterologous expression in Escherichia coli, partially purified NsTPS1 converted GDP to γ-terpinene. NsTPS1 is the first functionally characterized terpene synthase from N. sativa and displays a higher similarity to other terpene synthases from Ranunculaceae than known γ-terpinene synthases from more distant plant species. Characterization of NsTPS1 elucidates the first dedicated step in the biosynthesis of thymoquinone in N. sativa and paves the way towards metabolic engineering for high-level thymoquinone production.
Collapse
Affiliation(s)
- Rizan Elyasi
- Department of Production Engineering and Plant Genetics, University of Kurdistan, Sanandaj, Iran
| | - Mohammad Majdi
- Department of Production Engineering and Plant Genetics, University of Kurdistan, Sanandaj, Iran.
| | - Sandra T Krause
- Institute of Pharmacy, Department of Pharmaceutical Biotechnology, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Nagihan Kücükay
- Institute of Pharmacy, Department of Pharmaceutical Biotechnology, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Abdolbaset Azizi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Jörg Degenhardt
- Institute of Pharmacy, Department of Pharmaceutical Biotechnology, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany.
| |
Collapse
|
47
|
Kianersi F, Amin Azarm D, Fatemi F, Pour-Aboughadareh A, Poczai P. Methyl Jasmonate Induces Genes Involved in Linalool Accumulation and Increases the Content of Phenolics in Two Iranian Coriander (Coriandrum sativum L.) Ecotypes. Genes (Basel) 2022; 13:genes13101717. [PMID: 36292602 PMCID: PMC9602312 DOI: 10.3390/genes13101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The medicinal herb coriander (Coriandrum sativum L.), with a high linalool (LIN) content, is widely recognized for its therapeutic benefits. As a novel report, the goals of this study were to determine how methyl jasmonate (MeJA) affects total phenolic content (TPC), LIN content, flavonoid content (TFC), and changes in gene expression involved in the linalool biosynthesis pathway (CsγTRPS and CsLINS). Our findings showed that, in comparison to the control samples, MeJA treatment substantially enhanced the TPC, LIN, and TFC content in both ecotypes. Additionally, for both Iranian coriander ecotypes, treatment-induced increases in CsγTRPS and CsLINS expression were connected to LIN accumulation in all treatments. A 24 h treatment with 150 µM MeJA substantially increased the LIN content in the Mashhad and Zanjan ecotypes, which was between 1.48 and 1.69 times greater than that in untreated plants, according to gas chromatography–mass spectrometry (GC-MS) analysis. Our findings demonstrated that MeJA significantly affects the accumulation of LIN, TPC, and TFC in Iranian C. sativum treated with MeJA, which is likely the consequence of gene activation from the monoterpene biosynthesis pathway. Our discoveries have improved the understanding of the molecular mechanisms behind LIN synthesis in coriander plants.
Collapse
Affiliation(s)
- Farzad Kianersi
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Correspondence: (F.K.); (P.P.)
| | - Davood Amin Azarm
- Department of Horticulture Crop Research, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan P.O. Box 81785-199, Iran
| | - Farzaneh Fatemi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan P.O. Box 6517838695, Iran
| | - Alireza Pour-Aboughadareh
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 3158854119, Iran
| | - Peter Poczai
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014 Helsinki, Finland
- Correspondence: (F.K.); (P.P.)
| |
Collapse
|
48
|
Keefover‐Ring K. The chemical biogeography of a widespread aromatic plant species shows both spatial and temporal variation. Ecol Evol 2022; 12:ECE39265. [PMID: 36177119 PMCID: PMC9461344 DOI: 10.1002/ece3.9265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/11/2022] Open
Abstract
Plants produce a wide variety of secondary metabolites, but intraspecific variation in space and time can alter the ecological interactions these compounds mediate. The aim of this work was to document the spatial and temporal chemical biogeography of Monarda fistulosa. I collected leaves from 1587 M. fistulosa individuals from 86 populations from Colorado to Manitoba, extracted and analyzed their terpenes with gas chromatography, mapped monoterpene chemotypes, and analyzed chemical variation with principal component analysis. I also measured the amounts of terpenes in different plant tissues to examine intraplant variation and monitored leaf terpene chemistry over a single growing season to examine temporal patterns. Finally, I extracted terpenes from herbarium samples up to 125 years old and compared the chemotypes with recent samples from the same sites. M. fistulosa populations consisted mostly of thymol (T) and carvacrol (C) chemotypes, but geraniol (G) and (R)-(-)-linalool (L), a chemotype new to this species, were also present. A principal component analysis showed that most of the chemical variation across populations was due to the amounts of the dominant terpene in plants. Intraplant tissue chemistry revealed that leaves mostly had the greatest amounts of terpenes, followed by floral structures, stems, and roots. Short-term temporal variation in leaf chemistry of T and C plants over a growing season showed that plants produced the highest levels of biosynthetic precursors early in the season and their dominant monoterpenes peaked in mid-summer. Plant chemotype was discernable in the oldest herbarium samples, and 15 of 18 historic samples matched the majority chemotype currently at the site, indicating that population chemotype ratios may remain stable over longer time scales. Overall, the results show that plant species' secondary chemistry can vary both spatially and temporally, which may alter the biological interactions that these compounds mediate over space and time.
Collapse
Affiliation(s)
- Ken Keefover‐Ring
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of GeographyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
49
|
Tonello F, Massimino ML, Peggion C. Nucleolin: a cell portal for viruses, bacteria, and toxins. Cell Mol Life Sci 2022; 79:271. [PMID: 35503380 PMCID: PMC9064852 DOI: 10.1007/s00018-022-04300-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
The main localization of nucleolin is the nucleolus, but this protein is present in multiple subcellular sites, and it is unconventionally secreted. On the cell surface, nucleolin acts as a receptor for various viruses, some bacteria, and some toxins. Aim of this review is to discuss the characteristics that make nucleolin able to act as receptor or co-receptor of so many and different pathogens. The important features that emerge are its multivalence, and its role as a bridge between the cell surface and the nucleus. Multiple domains, short linear motifs and post-translational modifications confer and modulate nucleolin ability to interact with nucleic acids, with proteins, but also with carbohydrates and lipids. This modular multivalence allows nucleolin to participate in different types of biomolecular condensates and to move to various subcellular locations, where it can act as a kind of molecular glue. It moves from the nucleus to the cell surface and can accompany particles in the reverse direction, from the cell surface into the nucleus, which is the destination of several pathogens to manipulate the cell in their favour.
Collapse
Affiliation(s)
- Fiorella Tonello
- CNR of Italy, Neuroscience Institute, viale G. Colombo 3, 35131, Padua, Italy.
| | | | - Caterina Peggion
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi, 58/B, 35131, Padua, Italy
| |
Collapse
|