1
|
Zhai L, Gao Y, Yang H, Wang H, Liao B, Cheng Y, Liu C, Che J, Xia K, Zhang L, Guan Y. A ROS-Responsive nanoparticle for nuclear gene delivery and autophagy restoration in Parkinson's disease therapy. Biomaterials 2025; 321:123345. [PMID: 40245457 DOI: 10.1016/j.biomaterials.2025.123345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/12/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Parkinson's disease (PD) is characterized by the pathological aggregation of α-synuclein (α-syn) and neuroinflammation. Current gene therapies face challenges in nuclear delivery and resolving pre-existing α-syn aggregates. Here, we developed glucose-and trehalose-functionalized carbonized polymer dots (GT-PCDs) loaded with plasmid DNA (pDNA) for targeted gene delivery and autophagy restoration. The GT-PCDs@pDNA nanoparticles exhibit reactive oxygen species (ROS)-responsive behavior, enabling efficient nuclear entry under oxidative stress conditions. Both in vitro and in vivo studies demonstrated that GT-PCDs@pDNA effectively silenced SNCA gene expression, reduced α-syn aggregates, and restored autophagic flux by promoting transcription factor EB (TFEB) nuclear translocation. Moreover, GT-PCDs@pDNA enhanced blood-brain barrier (BBB) permeability via glucose transporter 1 (Glut-1)-mediated transcytosis, significantly improving motor deficits and reducing neuroinflammation in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. This multifunctional nanocarrier system offers a promising strategy for combined gene therapy and autophagy modulation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Limin Zhai
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yifei Gao
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hao Yang
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Haoyuan Wang
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Beining Liao
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yuxue Cheng
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chao Liu
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jingfeng Che
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Kunwen Xia
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lingkun Zhang
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yanqing Guan
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China; MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Evans WR, Baskar SS, Vellore A, Costa ARCE, Jacob C, Ravoori S, Arigbe A, Huda R. Chemogenetic Control of Striatal Astrocytes Improves Parkinsonian Motor Deficits in Mice. Glia 2025; 73:1188-1202. [PMID: 39902809 PMCID: PMC12012328 DOI: 10.1002/glia.24679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/22/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic nigrostriatal inputs, which causes striatal network dysfunction and leads to pronounced motor deficits. Recent evidence highlights astrocytes as a potential local source for striatal neuromodulation. There is substantial evidence for norepinephrine-mediated recruitment of cortical astrocyte activity during movement and locomotion. However, it is unclear how astrocytes in the striatum, a region devoid of norepinephrine neuromodulatory inputs, respond during locomotion. Moreover, it remains unknown how dopamine loss affects striatal astrocyte activity and whether astrocyte activity regulates behavioral deficits in PD. We addressed these questions by performing astrocyte-specific calcium recordings and manipulations using in vivo fiber photometry and chemogenetics. We find that locomotion elicits astrocyte calcium activity over a slower timescale than neurons. Acute pharmacological blockade of dopamine receptors only moderately reduced locomotion-related astrocyte activity. Yet, unilateral dopamine depletion significantly attenuated astrocyte calcium responses. Chemogenetic stimulation of Gi-coupled receptors partially improved this functional astrocyte deficit in dopamine-lesioned mice. In parallel, chemogenetic manipulation restored asymmetrical motor deficits and moderately improved open-field exploratory behavior. Together, our results establish a novel role for functional striatal astrocyte signaling in modulating motor function in PD and highlight non-neuronal targets for potential PD therapeutics.
Collapse
Affiliation(s)
- Wesley R. Evans
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNew JerseyUSA
| | - Sindhuja S. Baskar
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNew JerseyUSA
| | - Angelica Vellore
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNew JerseyUSA
| | - Ana Raquel Castro E. Costa
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNew JerseyUSA
| | - Cynthia Jacob
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNew JerseyUSA
| | - Sanya Ravoori
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNew JerseyUSA
| | - Abimbola Arigbe
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNew JerseyUSA
| | - Rafiq Huda
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNew JerseyUSA
| |
Collapse
|
3
|
Filippini A, Carini G, Barbon A, Gennarelli M, Russo I. Astrocytes carrying LRRK2 G2019S exhibit increased levels of clusterin chaperone via miR-22-5p and reduced ability to take up α-synuclein fibrils. Acta Neuropathol Commun 2025; 13:98. [PMID: 40355981 PMCID: PMC12067912 DOI: 10.1186/s40478-025-02015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Accumulating evidence highlights that dysfunction of astrocyte biology might contribute to Parkinson's disease (PD) onset and progression. Leucine-rich repeat kinase 2 (LRRK2), a gene linked to genetic and familial PD, has been reported to affect astrocytic-related functions, including the ingestion of alpha-synuclein (α-syn) aggregates. In this context, we recently showed that the extracellular chaperone clusterin (Clu) binds to and limits the uptake of alpha-syn fibrils by astrocytes. Thus, starting from these premises, we explored whether LRRK2 G2019S affects aggregated α-syn ingestion through the Clu-related pathway and the underlying molecular mechanisms. We first validated in our LRRK2 G2019S knock-in (KI) mouse strain that primary astrocytes exhibited an impaired ability to ingest fibrillary α-syn. Then, we investigated whether LRRK2 G2019S affects this pathway through the modulation of Clu. In this regard, we collected several results showing that LRRK2 regulates Clu levels in astrocytes. Specifically, brain slices and primary astrocytes from KI mice with the LRRK2 G2019S pathological mutation exhibit increased levels of Clu protein compared to their respective wild-type (WT). Accordingly, we observed an opposite effect in brain slices and primary astrocytes from LRRK2 knock-out (KO) mice in comparison to their respective WT. To gain insights into the molecular mechanism underlying LRRK2-dependent Clu modulation, we found that LRRK2 controls Clu expression at the translation level through the action of miR-22-5p. In addition, we demonstrated that treatment with miR-22-5p mimic improves the ability of LRRK2 G2019S-KI astrocytes to take up α-syn pffs. Taken together, our findings indicate that the LRRK2-Clu pathway is involved in the ingestion of a-syn fibrils and that the impairment of α-syn uptake in LRRK2 G2019S-KI astrocytes is associated to Clu levels. Future studies will allow us to understand whether the modulation of astrocytic LRRK2 G2019S-Clu pathway might attenuate the neuronal spreading of α-syn pathology in PD.
Collapse
Affiliation(s)
- Alice Filippini
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giulia Carini
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Barbon
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Massimo Gennarelli
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Isabella Russo
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
4
|
Wang Y, Cao Y, Xie W, Guo Y, Cai J, Huang T, Li P. Advances in clinical translation of stem cell-based therapy in neurological diseases. J Cereb Blood Flow Metab 2025; 45:600-616. [PMID: 39883811 PMCID: PMC11783424 DOI: 10.1177/0271678x251317374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Stem cell-based therapies have raised considerable interest to develop regenerative treatment for neurological disorders with high disability. In this review, we focus on recent preclinical and clinical evidence of stem cell therapy in the treatment of degenerative neurological diseases and discuss different cell types, delivery routes and biodistribution of stem cell therapy. In addition, recent advances of mechanistic insights of stem cell therapy, including functional replacement by exogenous cells, immunomodulation and paracrine effects of stem cell therapies are also demonstrated. Finally, we also highlight the adjunction approaches that has been implemented to augment their reparative function, survival and migration to target specific tissue, including stem cell preconditioning, genetical engineering, co-transplantation and combined therapy.
Collapse
Affiliation(s)
- Yu Wang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yirong Cao
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Wanqing Xie
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Yunlu Guo
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Jiayi Cai
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Huang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Peiying Li
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| |
Collapse
|
5
|
Zeng J, Indajang J, Pitt D, Lo CH. Lysosomal acidification impairment in astrocyte-mediated neuroinflammation. J Neuroinflammation 2025; 22:72. [PMID: 40065324 PMCID: PMC11892208 DOI: 10.1186/s12974-025-03410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Astrocytes are a major cell type in the central nervous system (CNS) that play a key role in regulating homeostatic functions, responding to injuries, and maintaining the blood-brain barrier. Astrocytes also regulate neuronal functions and survival by modulating myelination and degradation of pathological toxic protein aggregates. Astrocytes have recently been proposed to possess both autophagic activity and active phagocytic capability which largely depend on sufficiently acidified lysosomes for complete degradation of cellular cargos. Defective lysosomal acidification in astrocytes impairs their autophagic and phagocytic functions, resulting in the accumulation of cellular debris, excessive myelin and lipids, and toxic protein aggregates, which ultimately contributes to the propagation of neuroinflammation and neurodegenerative pathology. Restoration of lysosomal acidification in impaired astrocytes represent new neuroprotective strategy and therapeutic direction. In this review, we summarize pathogenic factors, including neuroinflammatory signaling, metabolic stressors, myelin and lipid mediated toxicity, and toxic protein aggregates, that contribute to lysosomal acidification impairment and associated autophagic and phagocytic dysfunction in astrocytes. We discuss the role of lysosomal acidification dysfunction in astrocyte-mediated neuroinflammation primarily in the context of neurodegenerative diseases along with other brain injuries. We then highlight re-acidification of impaired lysosomes as a therapeutic strategy to restore autophagic and phagocytic functions as well as lysosomal degradative capacity in astrocytes. We conclude by providing future perspectives on the role of astrocytes as phagocytes and their crosstalk with other CNS cells to impart neurodegenerative or neuroprotective effects.
Collapse
Affiliation(s)
- Jialiu Zeng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA.
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA.
| | - Jonathan Indajang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Chih Hung Lo
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA.
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
6
|
Yuan X, Nie S, Yang Y, Liu C, Xia D, Meng L, Xia Y, Su H, Zhang C, Bu L, Deng M, Ye K, Xiong J, Chen L, Zhang Z. Propagation of pathologic α-synuclein from kidney to brain may contribute to Parkinson's disease. Nat Neurosci 2025; 28:577-588. [PMID: 39849144 DOI: 10.1038/s41593-024-01866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/05/2024] [Indexed: 01/25/2025]
Abstract
The pathogenesis of Lewy body diseases (LBDs), including Parkinson's disease (PD), involves α-synuclein (α-Syn) aggregation that originates in peripheral organs and spreads to the brain. PD incidence is increased in individuals with chronic renal failure, but the underlying mechanisms remain unknown. Here we observed α-Syn deposits in the kidneys of patients with LBDs and in the kidney and central nervous system of individuals with end-stage renal disease without documented LBDs. In male mice, we found that the kidney removes α-Syn from the blood, which is reduced in renal failure, causing α-Syn deposition in the kidney and subsequent spread into the brain. Intrarenal injection of α-Syn fibrils induces the propagation of α-Syn pathology from the kidney to the brain, which is blocked by renal denervation. Deletion of α-Syn in blood cells alleviates pathology in α-Syn A53T transgenic mice. Thus, the kidney may act as an initiation site for pathogenic α-Syn spread, and compromised renal function may contribute to the onset of LBDs.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuke Nie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingxu Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Congcong Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danhao Xia
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yue Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lihong Bu
- PET-CT/MRI Center, Faculty of Radiology and Nuclear Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Deng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liam Chen
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Matveyenka M, Ali A, Mitchell CL, Sholukh M, Kurouski D. Elucidation of cytotoxicity of α-Synuclein fibrils on immune cells. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141061. [PMID: 39694308 DOI: 10.1016/j.bbapap.2024.141061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/22/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Progressive aggregation of α-synuclein (α-Syn), a small cytosolic protein involved in cell vesicle trafficking, in the midbrain, hypothalamus, and thalamus is linked to Parkinson's disease (PD). Amyloid oligomers and fibrils formed as a result of such aggregation are highly toxic to neurons. However, it remains unclear whether amyloid-induced toxicity of neurons is the primary mechanism of the progressive neurodegeneration observed upon PD. In the current study, we investigated cytotoxicity exerted by α-Syn fibrils formed in the lipid-free environment, as well as in the presence of two phospholipids, on macrophages, dendritic cells, and microglia. We found that α-Syn fibrils are far more toxic to dendritic cells and microglia compared to neurons. We also observe low toxicity levels of such amyloids to macrophages. Real-time polymerase chain reaction (RT-PCR) results suggest that toxicity of amyloids aggregates is linked to the levels of autophagy in cells. These results suggest that a strong impairment of the immune system in the brain may be the first stop of neurodegenerative processes that are taking place upon the onset of PD.
Collapse
Affiliation(s)
- Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Charles L Mitchell
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Mikhail Sholukh
- Department of Biology, Belarussian State University, Minsk, 222000, Belarus
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, United States.
| |
Collapse
|
8
|
Weiss F, Hughes L, Fu Y, Bardy C, Halliday GM, Dzamko N. Astrocytes contribute to toll-like receptor 2-mediated neurodegeneration and alpha-synuclein pathology in a human midbrain Parkinson's model. Transl Neurodegener 2024; 13:62. [PMID: 39681872 PMCID: PMC11648304 DOI: 10.1186/s40035-024-00448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterised by degeneration of ventral midbrain dopaminergic (DA) neurons and abnormal deposition of α-synuclein (α-syn) in neurons. Activation of the innate immune pathogen recognition receptor toll-like receptor 2 (TLR2) is associated with exacerbation of α-syn pathology. TLR2 is increased on neurons in the PD brain, and its activation results in the accumulation and propagation of α-syn through autophagy inhibition in neurons. In addition to the aggregation and propagation of pathological α-syn, dysfunction of astrocytes may contribute to DA neuronal death and subsequent clinical progression of PD. However, the role of astrocytes in TLR2-mediated PD pathology is less explored but important to address, given that TLR2 is a potential therapeutic target for PD. METHODS Induced pluripotent stem cells from three controls and three PD patients were differentiated into a midbrain model comprised of neurons (including DA neurons) and astrocytes. Cells were treated with or without the TLR2 agonist Pam3CSK4, and α-syn pathology was seeded using pre-formed fibrils. Confocal imaging was used to assess lysosomal function and α-syn pathology in the different cell types, as well as DA neuron health and astrocyte activation. RESULTS TLR2 activation acutely impaired the autophagy lysosomal pathway, and potentiated α-syn pathology seeded by pre-formed fibrils in PD neurons and astrocytes, leading to degeneration and loss of DA neurons. The astrocytes displayed impaired chaperone-mediated autophagy reducing their ability to clear accumulated α-syn, and increases of A1 neurotoxic phenotypic proteins SerpinG1, complement C3, PSMB8 and GBP2. Moreover, the phenotypic changes in astrocytes correlated with a specific loss of DA neurons. CONCLUSIONS Taken together, these results support a role for astrocyte dysfunction in α-syn accumulation and DA neuronal loss following TLR2 activation in PD.
Collapse
Affiliation(s)
- Fiona Weiss
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Laura Hughes
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Yuhong Fu
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Cedric Bardy
- Laboratory for Human Neurophysiology and Genetics, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Glenda M Halliday
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
9
|
Li B, Liu T, Shen Y, Qin J, Chang X, Wu M, Guo J, Liu L, Wei C, Lyu Y, Tian F, Yin J, Wang T, Zhang W, Qiu Y. TFEB/LAMP2 contributes to PM 0.2-induced autophagy-lysosome dysfunction and alpha-synuclein dysregulation in astrocytes. J Environ Sci (China) 2024; 145:117-127. [PMID: 38844312 DOI: 10.1016/j.jes.2023.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 06/15/2024]
Abstract
Atmospheric particulate matter (PM) exacerbates the risk factor for Alzheimer's and Parkinson's diseases (PD) by promoting the alpha-synuclein (α-syn) pathology in the brain. However, the molecular mechanisms of astrocytes involvement in α-syn pathology underlying the process remain unclear. This study investigated PM with particle size <200 nm (PM0.2) exposure-induced α-syn pathology in ICR mice and primary astrocytes, then assessed the effects of mammalian target of rapamycin inhibitor (PP242) in vitro studies. We observed the α-syn pathology in the brains of exposed mice. Meanwhile, PM0.2-exposed mice also exhibited the activation of glial cell and the inhibition of autophagy. In vitro study, PM0.2 (3, 10 and 30 µg/mL) induced inflammatory response and the disorders of α-syn degradation in primary astrocytes, and lysosomal-associated membrane protein 2 (LAMP2)-mediated autophagy underlies α-syn pathology. The abnormal function of autophagy-lysosome was specifically manifested as the expression of microtubule-associated protein light chain 3 (LC3II), cathepsin B (CTSB) and lysosomal abundance increased first and then decreased, which might both be a compensatory mechanism to toxic α-syn accumulation induced by PM0.2. Moreover, with the transcription factor EB (TFEB) subcellular localization and the increase in LC3II, LAMP2, CTSB, and cathepsin D proteins were identified, leading to the restoration of the degradation of α-syn after the intervention of PP242. Our results identified that PM0.2 exposure could promote the α-syn pathological dysregulation in astrocytes, providing mechanistic insights into how PM0.2 increases the risk of developing PD and highlighting TFEB/LAMP2 as a promising therapeutic target for antagonizing PM0.2 toxicity.
Collapse
Affiliation(s)
- Ben Li
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China.
| | - Ting Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Yongmei Shen
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570100, China
| | - Jiangnan Qin
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Xiaohan Chang
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Meiqiong Wu
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Jianquan Guo
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Cailing Wei
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Yi Lyu
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Jinzhu Yin
- Department of Neurosurgery, Sinopharm Tongmei General Hospital, Datong 037003, China
| | - Tong Wang
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan 030000, China
| | - Wenping Zhang
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan 030000, China.
| |
Collapse
|
10
|
Zhang S, Geng Y, Jiang X, Sun Z, Yan M, Bi J, Tian X, Wang Q. Investigating the mechanisms of inflammation and immune alterations in Parkinson's disease using spatial transcriptomics techniques. Brain Res Bull 2024; 217:111076. [PMID: 39306046 DOI: 10.1016/j.brainresbull.2024.111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024]
Abstract
In recent years, overwhelming evidence has emphasized the crucial role of inflammation in the pathogenesis of PD. However, the exact mechanisms by which inflammation damages dopaminergic neurons in PD are still unclear. Therefore, we generated a MPTP-induced PD mouse model and performed spatial transcriptomic sequencing to provide more insight into the process of PD development at specific brain regions. Our results indicate that the pathological changes of PD are mainly manifested in the midbrain, especially in the substantia nigra region, with significant reductions in oligodendrocytes and Agt-labeled astrocytes and an increase in Gfap-labeled astrocytes. Macrophages displayed an increasing trend in the PD environment, indicating a pattern of immune modulation induced by PD. Moreover, pathway analysis revealed significant impairments in ion migration ability, abnormal Ca2+ channels, cAMP signaling, and synaptic damage in PD. Significant downregulation of Mt1 and Mt2 and upregulation of Atp1b2, Gpi1, and Cox6a1 in PD further underscored the occurrence of intense inflammation and immune alterations. On the basis of these findings, we have validated the significant accumulation of Ca2+ in the midbrain tissue in the PD environment by measuring its content. Additionally, we have demonstrated a close association between the reduction of dopaminergic neurons, represented by the midbrain region, and ferroptosis by evaluating the iron content, malondialdehyde (MDA) levels, and the protein expression of GPX4 and TH in the tissue. We propose the hypothesis that PD-related inflammation and immune changes can induce neuronal and oligodendrocyte damage through the induction of ferroptosis, thereby further accelerating the progression of PD.
Collapse
Affiliation(s)
- Sen Zhang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong 250102, China
| | - Yifan Geng
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xing Jiang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong 250102, China
| | - Zhiyuan Sun
- Graduate School of Education, Shandong Sport University, Jinan, Shandong 250102, China
| | - Min Yan
- Graduate School of Education, Shandong Sport University, Jinan, Shandong 250102, China
| | - Jun Bi
- Graduate School of Education, Shandong Sport University, Jinan, Shandong 250102, China
| | - Xuewen Tian
- Graduate School of Education, Shandong Sport University, Jinan, Shandong 250102, China.
| | - Qinglu Wang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong 250102, China.
| |
Collapse
|
11
|
Bastioli G, Piccirillo S, Graciotti L, Carone M, Sprega G, Taoussi O, Preziuso A, Castaldo P. Calcium Deregulation in Neurodegeneration and Neuroinflammation in Parkinson's Disease: Role of Calcium-Storing Organelles and Sodium-Calcium Exchanger. Cells 2024; 13:1301. [PMID: 39120330 PMCID: PMC11311461 DOI: 10.3390/cells13151301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that lacks effective treatment strategies to halt or delay its progression. The homeostasis of Ca2+ ions is crucial for ensuring optimal cellular functions and survival, especially for neuronal cells. In the context of PD, the systems regulating cellular Ca2+ are compromised, leading to Ca2+-dependent synaptic dysfunction, impaired neuronal plasticity, and ultimately, neuronal loss. Recent research efforts directed toward understanding the pathology of PD have yielded significant insights, particularly highlighting the close relationship between Ca2+ dysregulation, neuroinflammation, and neurodegeneration. However, the precise mechanisms driving the selective loss of dopaminergic neurons in PD remain elusive. The disruption of Ca2+ homeostasis is a key factor, engaging various neurodegenerative and neuroinflammatory pathways and affecting intracellular organelles that store Ca2+. Specifically, impaired functioning of mitochondria, lysosomes, and the endoplasmic reticulum (ER) in Ca2+ metabolism is believed to contribute to the disease's pathophysiology. The Na+-Ca2+ exchanger (NCX) is considered an important key regulator of Ca2+ homeostasis in various cell types, including neurons, astrocytes, and microglia. Alterations in NCX activity are associated with neurodegenerative processes in different models of PD. In this review, we will explore the role of Ca2+ dysregulation and neuroinflammation as primary drivers of PD-related neurodegeneration, with an emphasis on the pivotal role of NCX in the pathology of PD. Consequently, NCXs and their interplay with intracellular organelles may emerge as potentially pivotal players in the mechanisms underlying PD neurodegeneration, providing a promising avenue for therapeutic intervention aimed at halting neurodegeneration.
Collapse
Affiliation(s)
- Guendalina Bastioli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Laura Graciotti
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Marianna Carone
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zürich, Switzerland
| | - Giorgia Sprega
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Omayema Taoussi
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Pasqualina Castaldo
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| |
Collapse
|
12
|
Li B, Xiao X, Bi M, Jiao Q, Chen X, Yan C, Du X, Jiang H. Modulating α-synuclein propagation and decomposition: Implications in Parkinson's disease therapy. Ageing Res Rev 2024; 98:102319. [PMID: 38719160 DOI: 10.1016/j.arr.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
α-Synuclein (α-Syn) is closely related to the pathogenesis of Parkinson's disease (PD). Under pathological conditions, the conformation of α-syn changes and different forms of α-syn lead to neurotoxicity. According to Braak stages, α-syn can propagate in different brain regions, inducing neurodegeneration and corresponding clinical manifestations through abnormal aggregation of Lewy bodies (LBs) and lewy axons in different types of neurons in PD. So far, PD lacks early diagnosis biomarkers, and treatments are mainly targeted at some clinical symptoms. There is no effective therapy to delay the progression of PD. This review first summarized the role of α-syn in physiological and pathological states, and the relationship between α-syn and PD. Then, we focused on the origin, secretion, aggregation, propagation and degradation of α-syn as well as the important regulatory factors in these processes systematically. Finally, we reviewed some potential drug candidates for alleviating the abnormal aggregation of α-syn in order to provide valuable targets for the treatment of PD to cope with the occurrence and progression of this disease.
Collapse
Affiliation(s)
- Beining Li
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xue Xiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Mingxia Bi
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Qian Jiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xi Chen
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Chunling Yan
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xixun Du
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| | - Hong Jiang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China; School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| |
Collapse
|
13
|
Liao J, Gong L, Xu Q, Wang J, Yang Y, Zhang S, Dong J, Lin K, Liang Z, Sun Y, Mu Y, Chen Z, Lu Y, Zhang Q, Lin Z. Revolutionizing Neurocare: Biomimetic Nanodelivery Via Cell Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402445. [PMID: 38583077 DOI: 10.1002/adma.202402445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Brain disorders represent a significant challenge in medical science due to the formidable blood-brain barrier (BBB), which severely limits the penetration of conventional therapeutics, hindering effective treatment strategies. This review delves into the innovative realm of biomimetic nanodelivery systems, including stem cell-derived nanoghosts, tumor cell membrane-coated nanoparticles, and erythrocyte membrane-based carriers, highlighting their potential to circumvent the BBB's restrictions. By mimicking native cell properties, these nanocarriers emerge as a promising solution for enhancing drug delivery to the brain, offering a strategic advantage in overcoming the barrier's selective permeability. The unique benefits of leveraging cell membranes from various sources is evaluated and advanced technologies for fabricating cell membrane-encapsulated nanoparticles capable of masquerading as endogenous cells are examined. This enables the targeted delivery of a broad spectrum of therapeutic agents, ranging from small molecule drugs to proteins, thereby providing an innovative approach to neurocare. Further, the review contrasts the capabilities and limitations of these biomimetic nanocarriers with traditional delivery methods, underlining their potential to enable targeted, sustained, and minimally invasive treatment modalities. This review is concluded with a perspective on the clinical translation of these biomimetic systems, underscoring their transformative impact on the therapeutic landscape for intractable brain diseases.
Collapse
Affiliation(s)
- Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lidong Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Qingqiang Xu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Jingya Wang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuanyuan Yang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shiming Zhang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Junwei Dong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Kerui Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zichao Liang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuhan Sun
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yongxu Mu
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Zhengju Chen
- Pooling Medical Research Institutes of 100Biotech, Beijing, 100006, China
| | - Ying Lu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
14
|
Matsui H, Takahashi R. Current trends in basic research on Parkinson's disease: from mitochondria, lysosome to α-synuclein. J Neural Transm (Vienna) 2024; 131:663-674. [PMID: 38613675 PMCID: PMC11192670 DOI: 10.1007/s00702-024-02774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/28/2024] [Indexed: 04/15/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra and other brain regions. A key pathological feature of PD is the abnormal accumulation of α-synuclein protein within affected neurons, manifesting as Lewy bodies and Lewy neurites. Despite extensive research efforts spanning several decades, the underlying mechanisms of PD and disease-modifying therapies remain elusive. This review provides an overview of current trends in basic research on PD. Initially, it discusses the involvement of mitochondrial dysfunction in the pathogenesis of PD, followed by insights into the role of lysosomal dysfunction and disruptions in the vesicular transport system. Additionally, it delves into the pathological and physiological roles of α-synuclein, a crucial protein associated with PD pathophysiology. Overall, the purpose of this review is to comprehend the current state of elucidating the intricate mechanisms underlying PD and to outline future directions in understanding this disease.
Collapse
Affiliation(s)
- Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, 1-757, Asahimachidori, Chuoku, Niigata, 951-8585, Japan.
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto University, 54, Shogoin Kawahara-cho, Sakyoku, Kyoto, 606-8507, Japan.
| |
Collapse
|
15
|
Evans WR, Baskar SS, Costa ARCE, Ravoori S, Arigbe A, Huda R. Functional activation of dorsal striatum astrocytes improves movement deficits in hemi-parkinsonian mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587694. [PMID: 38617230 PMCID: PMC11014576 DOI: 10.1101/2024.04.02.587694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic nigrostriatal inputs, which causes striatal network dysfunction and leads to pronounced motor deficits. Recent evidence highlights astrocytes as a potential local source of striatal network modulation. However, it remains unknown how dopamine loss affects striatal astrocyte activity and whether astrocyte activity regulates behavioral deficits in PD. We addressed these questions by performing astrocyte-specific calcium recordings and manipulations using in vivo fiber photometry and chemogenetics. We find that locomotion elicits astrocyte calcium activity over a slower timescale than neurons. Unilateral dopamine depletion reduced locomotion-related astrocyte responses. Chemogenetic activation facilitated astrocyte activity, and improved asymmetrical motor deficits and open field exploratory behavior in dopamine lesioned mice. Together, our results establish a novel role for functional striatal astrocyte signaling in modulating motor function in PD and highlight non-neuronal targets for potential PD therapeutics.
Collapse
Affiliation(s)
- Wesley R. Evans
- WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway NJ, 08854, USA
| | - Sindhuja S. Baskar
- WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway NJ, 08854, USA
| | | | - Sanya Ravoori
- WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway NJ, 08854, USA
| | - Abimbola Arigbe
- WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway NJ, 08854, USA
| | - Rafiq Huda
- WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway NJ, 08854, USA
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway NJ, 08854, USA
| |
Collapse
|
16
|
Li Y, Li P, Tao Q, Abuqeis IJA, Xiyang Y. Role and limitation of cell therapy in treating neurological diseases. IBRAIN 2024; 10:93-105. [PMID: 38682022 PMCID: PMC11045202 DOI: 10.1002/ibra.12152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 05/01/2024]
Abstract
The central role of the brain in governing systemic functions within human physiology underscores its paramount significance as the focal point of physiological regulation. The brain, a highly sophisticated organ, orchestrates a diverse array of physiological processes encompassing motor control, sensory perception, cognition, emotion, and the regulation of vital functions, such as heartbeat, respiration, and hormonal equilibrium. A notable attribute of neurological diseases manifests as the depletion of neurons and the occurrence of tissue necrosis subsequent to injury. The transplantation of neural stem cells (NSCs) into the brain exhibits the potential for the replacement of lost neurons and the reconstruction of neural circuits. Furthermore, the transplantation of other types of cells in alternative locations can secrete nutritional factors that indirectly contribute to the restoration of nervous system equilibrium and the mitigation of neural inflammation. This review summarized a comprehensive investigation into the role of NSCs, hematopoietic stem cells, mesenchymal stem cells, and support cells like astrocytes and microglia in alleviating neurological deficits after cell infusion. Moreover, a thorough assessment was undertaken to discuss extant constraints in cellular transplantation therapies, concurrently delineating indispensable model-based methodologies, specifically on organoids, which were essential for guiding prospective research initiatives in this specialized field.
Collapse
Affiliation(s)
- Yu‐Qi Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Peng‐Fei Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Qian Tao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | | | - Yan‐Bin Xiyang
- School of Basic MedicineKunming Medical UniversityKunmingChina
- Department of Pharmacology and Toxicology, College of PharmacologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
17
|
Brash-Arias D, García LI, Pérez-Estudillo CA, Rojas-Durán F, Aranda-Abreu GE, Herrera-Covarrubias D, Chi-Castañeda D. The Role of Astrocytes and Alpha-Synuclein in Parkinson's Disease: A Review. NEUROSCI 2024; 5:71-86. [PMID: 39483813 PMCID: PMC11523690 DOI: 10.3390/neurosci5010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 11/03/2024] Open
Abstract
The search for new therapies to reduce symptoms and find a cure for Parkinson's disease has focused attention on two key points: the accumulation of alpha-synuclein aggregates and astrocytes. The former is a hallmark of the disease, while the latter corresponds to a type of glial cell with an important role in both the prevention and development of this neurodegenerative disorder. Traditionally, research has focused on therapies targeting dopaminergic neurons. Currently, as more is known about the genetic and molecular factors and the neuroglial interaction in the disease, great emphasis has been placed on the neuroprotective role of astrocytes in the early stages of the disease and on the astrocytic capture of alpha-synuclein under both physiological and pathological conditions. This review aims to analyze the contribution of alpha-synuclein and astrocytes to the development and progression of Parkinson's disease, as well as to evaluate recent therapeutic proposals specifically focused on synucleopathies and astroglial cells as potential therapies for the disease.
Collapse
Affiliation(s)
- David Brash-Arias
- Doctorado en Investigaciones Cerebrales, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico;
| | - Luis I. García
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| | | | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| | | | | | - Donaji Chi-Castañeda
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico
| |
Collapse
|
18
|
Lapshina KV, Ekimova IV. Aquaporin-4 and Parkinson's Disease. Int J Mol Sci 2024; 25:1672. [PMID: 38338949 PMCID: PMC10855351 DOI: 10.3390/ijms25031672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The water-selective channel aquaporin-4 (AQP4) is implicated in water homeostasis and the functioning of the glymphatic system, which eliminates various metabolites from the brain tissue, including amyloidogenic proteins. Misfolding of the α-synuclein protein and its post-translational modifications play a crucial role in the development of Parkinson's disease (PD) and other synucleopathies, leading to the formation of cytotoxic oligomers and aggregates that cause neurodegeneration. Human and animal studies have shown an interconnection between AQP4 dysfunction and α-synuclein accumulation; however, the specific role of AQP4 in these mechanisms remains unclear. This review summarizes the current knowledge on the role of AQP4 dysfunction in the progression of α-synuclein pathology, considering the possible effects of AQP4 dysregulation on brain molecular mechanisms that can impact α-synuclein modification, accumulation and aggregation. It also highlights future directions that can help study the role of AQP4 in the functioning of the protective mechanisms of the brain during the development of PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Ksenia V. Lapshina
- Laboratory of Comparative Thermophysiology, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 194223 Saint Petersburg, Russia;
| | | |
Collapse
|
19
|
Hong B, Ohtake Y, Itokazu T, Yamashita T. Glial senescence enhances α-synuclein pathology owing to its insufficient clearance caused by autophagy dysfunction. Cell Death Discov 2024; 10:50. [PMID: 38272865 PMCID: PMC10811334 DOI: 10.1038/s41420-024-01816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the pathological accumulation of α-synuclein (α-syn) and loss of dopaminergic neurons in the substantia nigra. Aging is a significant risk factor for PD. The accumulation of senescent glial cells in the aged brain contributes to PD progression by inducing chronic neuroinflammatory processes. However, although the insufficient degradation of α-syn aggregates results in PD deterioration, the possible alteration in the ability of α-syn clearance in senescent glia has received little attention. In this study, we investigated how aging and glial senescence affect the capacity of α-syn clearance. We found that following the intra-striatal injection of human α-syn (hu-α-syn) preformed fibril, hu-α-syn pathology persisted more in aged mice compared with younger mice and that aged microglia exhibited greater accumulation of hu-α-syn than younger microglia. Moreover, in vitro assay revealed that the clearance of hu-α-syn was primarily dependent on the autophagy-lysosome system rather than on the ubiquitin-proteasome system and that the capacity of hu-α-syn clearance was diminished in senescent glia because of autophagy-lysosome system dysfunction. Overall, this study provides new insights into the role of senescent glia in PD pathogenesis.
Collapse
Affiliation(s)
- Bin Hong
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yosuke Ohtake
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.
| |
Collapse
|
20
|
Giusti V, Kaur G, Giusto E, Civiero L. Brain clearance of protein aggregates: a close-up on astrocytes. Mol Neurodegener 2024; 19:5. [PMID: 38229094 PMCID: PMC10790381 DOI: 10.1186/s13024-024-00703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Protein misfolding and accumulation defines a prevailing feature of many neurodegenerative disorders, finally resulting in the formation of toxic intra- and extracellular aggregates. Intracellular aggregates can enter the extracellular space and be subsequently transferred among different cell types, thus spreading between connected brain districts.Although microglia perform a predominant role in the removal of extracellular aggregated proteins, mounting evidence suggests that astrocytes actively contribute to the clearing process. However, the molecular mechanisms used by astrocytes to remove misfolded proteins are still largely unknown.Here we first provide a brief overview of the progressive transition from soluble monomers to insoluble fibrils that characterizes amyloid proteins, referring to α-Synuclein and Tau as archetypical examples. We then highlight the mechanisms at the basis of astrocyte-mediated clearance with a focus on their potential ability to recognize, collect, internalize and digest extracellular protein aggregates. Finally, we explore the potential of targeting astrocyte-mediated clearance as a future therapeutic approach for the treatment of neurodegenerative disorders characterized by protein misfolding and accumulation.
Collapse
Affiliation(s)
| | - Gurkirat Kaur
- Department of Biology, University of Padova, Padua, Italy
| | | | - Laura Civiero
- IRCCS San Camillo Hospital, Venice, Italy.
- Department of Biology, University of Padova, Padua, Italy.
| |
Collapse
|
21
|
Garcia R, Zarate S, Srinivasan R. The Role of Astrocytes in Parkinson's Disease : Astrocytes in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2024; 39:319-343. [PMID: 39190081 DOI: 10.1007/978-3-031-64839-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with a complex and multifactorial pathogenesis. This chapter delves into the critical role of astrocytes in PD. Once viewed as supporting cells in the central nervous system, astrocytes have emerged as key players in both maintaining neuronal health and contributing to neurodegeneration in PD. Their functions play a dual role in the progression of PD, ranging from protective functions like secretion of neurotrophic factors and clearance of α-synuclein to detrimental functions like promotion of neuroinflammation. This chapter is structured into three primary sections: the morphological and functional organization of astrocytes, astrocytic calcium signaling, and the role of astrocyte heterogeneity in PD. We provide a detailed exploration of astrocytic organelles, bidirectional astrocyte-neuron interactions, and the impact of astrocytic secretions such as antioxidant molecules and neurotrophic factors. Furthermore, we discuss the influence of astrocytes on non-neuronal cells, including interactions with microglia and the blood-brain barrier (BBB). By examining the multifaceted roles of astrocytes, in this chapter, we aim to bridge basic astrocyte biology with the clinical complexities of PD, offering insights into novel therapeutic strategies. The inclusion of astrocyte biology in our broader research approach will aid in the development of more effective treatment strategies for PD.
Collapse
Affiliation(s)
- Roger Garcia
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Sara Zarate
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA.
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA.
| |
Collapse
|
22
|
Wang T, Sun Y, Dettmer U. Astrocytes in Parkinson's Disease: From Role to Possible Intervention. Cells 2023; 12:2336. [PMID: 37830550 PMCID: PMC10572093 DOI: 10.3390/cells12192336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons. While neuronal dysfunction is central to PD, astrocytes also play important roles, both positive and negative, and such roles have not yet been fully explored. This literature review serves to highlight these roles and how the properties of astrocytes can be used to increase neuron survivability. Astrocytes normally have protective functions, such as releasing neurotrophic factors, metabolizing glutamate, transferring healthy mitochondria to neurons, or maintaining the blood-brain barrier. However, in PD, astrocytes can become dysfunctional and contribute to neurotoxicity, e.g., via impaired glutamate metabolism or the release of inflammatory cytokines. Therefore, astrocytes represent a double-edged sword. Restoring healthy astrocyte function and increasing the beneficial effects of astrocytes represents a promising therapeutic approach. Strategies such as promoting neurotrophin release, preventing harmful astrocyte reactivity, or utilizing regional astrocyte diversity may help restore neuroprotection.
Collapse
Affiliation(s)
- Tianyou Wang
- Collège Jean-de-Brébeuf, 3200 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1C1, Canada
| | - Yingqi Sun
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK;
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
23
|
Purushotham SS, Buskila Y. Astrocytic modulation of neuronal signalling. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1205544. [PMID: 37332623 PMCID: PMC10269688 DOI: 10.3389/fnetp.2023.1205544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Neuronal signalling is a key element in neuronal communication and is essential for the proper functioning of the CNS. Astrocytes, the most prominent glia in the brain play a key role in modulating neuronal signalling at the molecular, synaptic, cellular, and network levels. Over the past few decades, our knowledge about astrocytes and their functioning has evolved from considering them as merely a brain glue that provides structural support to neurons, to key communication elements. Astrocytes can regulate the activity of neurons by controlling the concentrations of ions and neurotransmitters in the extracellular milieu, as well as releasing chemicals and gliotransmitters that modulate neuronal activity. The aim of this review is to summarise the main processes through which astrocytes are modulating brain function. We will systematically distinguish between direct and indirect pathways in which astrocytes affect neuronal signalling at all levels. Lastly, we will summarize pathological conditions that arise once these signalling pathways are impaired focusing on neurodegeneration.
Collapse
Affiliation(s)
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- The MARCS Institute, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
24
|
Grochowska MM, Ferraro F, Mascaro AC, Natale D, Winkelaar A, Boumeester V, Breedveld GJ, Bonifati V, Mandemakers W. deCLUTTER2+ - a pipeline to analyze calcium traces in a stem cell model for ventral midbrain patterned astrocytes. Dis Model Mech 2023; 16:dmm049980. [PMID: 37260295 PMCID: PMC10309582 DOI: 10.1242/dmm.049980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
Astrocytes are the most populous cell type of the human central nervous system and are essential for physiological brain function. Increasing evidence suggests multiple roles for astrocytes in Parkinson's disease, nudging a shift in the research focus, which historically pivoted around ventral midbrain dopaminergic neurons (vmDANs). Studying human astrocytes and other cell types in vivo remains challenging. However, in vitro-reprogrammed human stem cell-based models provide a promising alternative. Here, we describe a novel protocol for astrocyte differentiation from human stem cell-derived vmDAN-generating progenitors. This protocol simulates the regionalization, gliogenic switch, radial migration and final differentiation that occur in the developing human brain. We characterized the morphological, molecular and functional features of these ventral midbrain patterned astrocytes with a broad palette of techniques and identified novel candidate midbrain-astrocyte specific markers. In addition, we developed a new pipeline for calcium imaging data analysis called deCLUTTER2+ (deconvolution of Ca2+ fluorescent patterns) that can be used to discover spontaneous or cue-dependent patterns of Ca2+ transients. Altogether, our protocol enables the characterization of the functional properties of human ventral midbrain patterned astrocytes under physiological conditions and in disease.
Collapse
Affiliation(s)
- Martyna M. Grochowska
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Federico Ferraro
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Ana Carreras Mascaro
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Domenico Natale
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Amber Winkelaar
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Valerie Boumeester
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Guido J. Breedveld
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Vincenzo Bonifati
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Wim Mandemakers
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| |
Collapse
|
25
|
Heteromerization of Dopamine D2 and Oxytocin Receptor in Adult Striatal Astrocytes. Int J Mol Sci 2023; 24:ijms24054677. [PMID: 36902106 PMCID: PMC10002782 DOI: 10.3390/ijms24054677] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The ability of oxytocin (OT) to interact with the dopaminergic system through facilitatory D2-OT receptor (OTR) receptor-receptor interaction in the limbic system is increasingly considered to play roles in social or emotional behavior, and suggested to serve as a potential therapeutic target. Although roles of astrocytes in the modulatory effects of OT and dopamine in the central nervous system are well recognized, the possibility of D2-OTR receptor-receptor interaction in astrocytes has been neglected. In purified astrocyte processes from adult rat striatum, we assessed OTR and dopamine D2 receptor expression by confocal analysis. The effects of activation of these receptors were evaluated in the processes through a neurochemical study of glutamate release evoked by 4-aminopyridine; D2-OTR heteromerization was assessed by co-immunoprecipitation and proximity ligation assay (PLA). The structure of the possible D2-OTR heterodimer was estimated by a bioinformatic approach. We found that both D2 and OTR were expressed on the same astrocyte processes and controlled the release of glutamate, showing a facilitatory receptor-receptor interaction in the D2-OTR heteromers. Biochemical and biophysical evidence confirmed D2-OTR heterodimers on striatal astrocytes. The residues in the transmembrane domains four and five of both receptors are predicted to be mainly involved in the heteromerization. In conclusion, roles for astrocytic D2-OTR in the control of glutamatergic synapse functioning through modulation of astrocytic glutamate release should be taken into consideration when considering interactions between oxytocinergic and dopaminergic systems in striatum.
Collapse
|
26
|
Myers AJ, Brahimi A, Jenkins IJ, Koob AO. The Synucleins and the Astrocyte. BIOLOGY 2023; 12:biology12020155. [PMID: 36829434 PMCID: PMC9952504 DOI: 10.3390/biology12020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Synucleins consist of three proteins exclusively expressed in vertebrates. α-Synuclein (αS) has been identified as the main proteinaceous aggregate in Lewy bodies, a pathological hallmark of many neurodegenerative diseases. Less is understood about β-synuclein (βS) and γ-synuclein (γS), although it is known βS can interact with αS in vivo to inhibit aggregation. Likewise, both γS and βS can inhibit αS's propensity to aggregate in vitro. In the central nervous system, βS and αS, and to a lesser extent γS, are highly expressed in the neural presynaptic terminal, although they are not strictly located there, and emerging data have shown a more complex expression profile. Synapse loss and astrocyte atrophy are early aspects of degenerative diseases of the brain and correlate with disease progression. Synucleins appear to be involved in synaptic transmission, and astrocytes coordinate and organize synaptic function, with excess αS degraded by astrocytes and microglia adjacent to the synapse. βS and γS have also been observed in the astrocyte and may provide beneficial roles. The astrocytic responsibility for degradation of αS as well as emerging evidence on possible astrocytic functions of βS and γS, warrant closer inspection on astrocyte-synuclein interactions at the synapse.
Collapse
Affiliation(s)
- Abigail J. Myers
- Neuroscience Program, Health Science Research Facility, University of Vermont, 149 Beaumont Ave., Burlington, VT 05405, USA
| | - Ayat Brahimi
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Imani J. Jenkins
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Andrew O. Koob
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
- Correspondence: ; Tel.: +1-860-768-5780
| |
Collapse
|
27
|
Balzano T, Esteban-García N, Blesa J. Neuroinflammation, immune response and α-synuclein pathology: how animal models are helping us to connect dots. Expert Opin Drug Discov 2023; 18:13-23. [PMID: 36538833 DOI: 10.1080/17460441.2023.2160440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION A key pathological event occurring in Parkinson's disease (PD) is the transneuronal spreading of alpha-synuclein (α-syn). Other hallmarks of PD include neurodegeneration, glial activation, and immune cell infiltration in susceptible brain regions. Although preclinical models can mimic most of the key characteristics of PD, it is crucial to know the biological bases of individual differences between them when choosing one over another, to ensure proper interpretation of the results and to positively influence the outcome of the experiments. AREAS COVERED This review provides an overview of current preclinical models actively used to study the interplay between α-syn pathology, neuroinflammation and immune response in PD but also to explore new potential preclinical models or emerging therapeutic strategies intended to fulfill the unmet medical needs in this disease. Lastly, this review also considers the current state of the ongoing clinical trials of new drugs designed to target these processes and delay the initiation or progression of the disease. EXPERT OPINION Anti-inflammatory and immunomodulatory agents have been demonstrated to be very promising candidates for reducing disease progression; however, more efforts are needed to reduce the enormous gap between these and dopaminergic drugs, which have dominated the therapeutic market for the last sixty years.
Collapse
Affiliation(s)
- Tiziano Balzano
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, Madrid, Spain
| | - Noelia Esteban-García
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, Madrid, Spain
- PhD Program in Neuroscience Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III; Madrid, Madrid, Spain
| |
Collapse
|
28
|
Targets for astrocyte-based treatments of Parkinson's disease (PD). Proc Natl Acad Sci U S A 2022; 119:e2208876119. [PMID: 35858458 PMCID: PMC9335267 DOI: 10.1073/pnas.2208876119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|