1
|
Praiss AM, Moukarzel LA, Zhu Y, Longhini ALF, Derakhshan F, Hoang T, Pesci G, Green H, Ozsoy MA, Hanlon E, Kahn R, Brodeur MN, Sia T, Abu-Rustum NR, Gardner G, Roche KL, Sonoda Y, Zivanovic O, Chi DS, Merghoub T, Gardner R, Weigelt B, Zamarin D. Evolution of tumor stress response during cytoreductive surgery for ovarian cancer. iScience 2025; 28:112317. [PMID: 40256326 PMCID: PMC12008711 DOI: 10.1016/j.isci.2025.112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/28/2025] [Accepted: 03/25/2025] [Indexed: 04/22/2025] Open
Abstract
Upfront treatment for patients with advanced high-grade serous ovarian cancer (HGSOC) includes a multi-hour cytoreductive surgery. Although the procedure is necessary for maximal tumor cytoreduction, understanding of the biology of systemic and intratumoral responses induced by surgical cytoreduction is limited. Through analysis of matched tumor and normal tissues and peripheral blood collected at multiple time points during cytoreductive surgery in patients with HGSOC, we demonstrate that surgery leads to rapid induction of systemic inflammatory response and activation of inflammatory signaling in the tumor and normal tissue, with interleukin-6 emerging as a dominant inflammatory pathway. A parallel study in a syngeneic murine HGSOC model recapitulated these findings and demonstrated accelerated tumor growth in response to surgery. This study highlights the previously unappreciated impact of specimen collection timing on the tumor signaling networks and provides insights into stress pathways activated by surgery, generating rationale for perioperative therapeutic interventions to reduce protumorigenic effects.
Collapse
Affiliation(s)
- Aaron M. Praiss
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lea A. Moukarzel
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yingjie Zhu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ana Leda F. Longhini
- Department of Flow Cytometry, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fatemeh Derakhshan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy Hoang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giulio Pesci
- Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
| | - Hunter Green
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melih A. Ozsoy
- Department of OB/GYN, Weill Cornell Medical College, New York, NY, USA
| | - Etta Hanlon
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan Kahn
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Tiffany Sia
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem R. Abu-Rustum
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of OB/GYN, Weill Cornell Medical College, New York, NY, USA
| | - Ginger Gardner
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of OB/GYN, Weill Cornell Medical College, New York, NY, USA
| | - Kara Long Roche
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of OB/GYN, Weill Cornell Medical College, New York, NY, USA
| | - Yukio Sonoda
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of OB/GYN, Weill Cornell Medical College, New York, NY, USA
| | - Oliver Zivanovic
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dennis S. Chi
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of OB/GYN, Weill Cornell Medical College, New York, NY, USA
| | - Taha Merghoub
- Ludwig Collaborative Laboratory, Weill Cornell Medicine, New York, NY, USA
| | - Rui Gardner
- Department of Flow Cytometry, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dmitriy Zamarin
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Zhou L, Ma B, Ruscetti M. Cellular senescence offers distinct immunological vulnerabilities in cancer. Trends Cancer 2025; 11:334-350. [PMID: 39732594 PMCID: PMC11981858 DOI: 10.1016/j.trecan.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/30/2024]
Abstract
Chronic damage following oncogene induction or cancer therapy can produce cellular senescence. Senescent cells not only exit the cell cycle but communicate damage signals to their environment that can trigger immune responses. Recent work has revealed that senescent tumor cells are highly immunogenic, leading to new ways to activate antitumor immunosurveillance and potentiate T cell-directed immunotherapies. However, other studies have determined that heterogeneous senescent stromal cell populations contribute to immunosuppression and tumor progression, sparking the development of senotherapeutics to target senescent cells that evade immune detection. We review current findings that provide deeper insights into the mechanisms contributing to the dichotomous role of senescence in immune modulation and how that can be leveraged for cancer immunotherapy.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Boyang Ma
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA, USA; Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
3
|
Li X, Wang Z, Man X, Dai X, Zhou Q, Zhang S. Research advances CRISPR gene editing technology generated models in the study of epithelial ovarian carcinoma. Gynecol Oncol 2025; 195:34-44. [PMID: 40054045 DOI: 10.1016/j.ygyno.2025.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 04/21/2025]
Abstract
Epithelial ovarian carcinoma (EOC), the most lethal gynecologic cancer, is often diagnosed at advanced stages, which urge us to explore the novel therapeutic strategies. Mouse models have played a crucial role in elucidating the molecular mechanisms for the development ovarian cancer and its therapeutic strategies. However, there are still various challenges in modeling the genetic drivers of ovarian cancer in animal models. Here, we provided an overview of the research advances for the molecular mechanisms underlying EOC development, therapeutic strategies, the CRISPR genome editing technology and its generated EOC models. The review also comprehensively discussed the advantages and obstacles of CRISPR in generating EOC mouse models and the promising therapeutic approach by correcting the oncogenes of EOC through in vivo delivery of gene-edited components. The development of more precise animal models, along with a deeper understanding of EOC molecular mechanisms, will dramatically benefit the investigation and treatment of EOC.
Collapse
Affiliation(s)
- Xiaosen Li
- Department of Gynecologic Oncology, Gynecology and Obstetrics Centre, The First Hospital of Jilin University, Changchun, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhenpeng Wang
- Department of Gynecologic Oncology, Gynecology and Obstetrics Centre, The First Hospital of Jilin University, Changchun, China
| | - Xiaxia Man
- Department of Gynecologic Oncology, Gynecology and Obstetrics Centre, The First Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China; National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China.
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China; Institute of Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Songling Zhang
- Department of Gynecologic Oncology, Gynecology and Obstetrics Centre, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Kim HK, Cheong H, Kim MY, Jin HE. Therapeutic Targeting in Ovarian Cancer: Nano-Enhanced CRISPR/Cas9 Gene Editing and Drug Combination Therapy. Int J Nanomedicine 2025; 20:3907-3931. [PMID: 40191042 PMCID: PMC11970428 DOI: 10.2147/ijn.s507688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Ovarian cancer is the third most common gynecological cancer worldwide. Due to the high recurrence rate of advanced-stage ovarian cancer, often resulting from drug-resistant and refractory disease, various treatment strategies are under investigation. Genome editing of therapeutic target genes holds promise in enhancing cancer treatment efficacy by elucidating gene functions and mechanisms involved in cancer progression. The CRISPR/Cas9 system, in particular, shows great potential in ovarian cancer gene therapy and drug development. Targeting therapeutic genes such as BRCA1/2, P53, Snai1 etc, could improve the therapeutic strategy in ovarian cancer. CRISPR/Cas9 is a powerful gene-editing tool that there are many on-going clinical trials to treat various diseases including cancer. Nano-based delivery systems for CRISPR/Cas9 offer further therapeutic benefits, leveraging the unique properties of nanoparticles to improve delivery efficiency. Nano-based delivery systems could enhance the stability of CRISPR/Cas9 delivery formats (such as plasmid, mRNA, etc) and improve the delivery precision of delivery to target tumors. Additionally, combining CRISPR/Cas9 with targeted drug treatments, especially those aimed at genes associated with drug resistance, may significantly improve therapeutic outcomes in ovarian cancer. In this review, we discuss therapeutic target genes and their mechanisms in ovarian cancer, advances in nano-based CRISPR/Cas9 delivery, and the therapeutic potential of combining CRISPR/Cas9 with drug treatments for ovarian cancer.
Collapse
Affiliation(s)
- Hong-Kook Kim
- AI-Super Convergence KIURI Translational Research Center, Ajou University, Suwon, 16499, Republic of Korea
- Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Heedon Cheong
- Department of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| | - Moo-Yeon Kim
- Department of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyo-Eon Jin
- Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
- Department of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|
5
|
Shao C, Zhang Y, Li H, Chen J, Huang T, Li J, Wen S, Wang S, Fan S, Zhao Y. Radiotherapy-resistant prostate cancer cells escape immune checkpoint blockade through the senescence-related ataxia telangiectasia and Rad3-related protein. Cancer Commun (Lond) 2025; 45:218-244. [PMID: 39698847 PMCID: PMC11947621 DOI: 10.1002/cac2.12636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 10/31/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The majority of patients with prostate cancer (PCa) exhibit intrinsic resistance to immune checkpoint blockade (ICB) following radiotherapy (RT). This resistance is generally attributed to the limited antigen presentation of heterogeneous cells within tumors. Here, we aimed to isolate and characterize these diverse subgroups of tumor post-RT to understand the molecular mechanisms of their resistance to ICB. METHODS Single-cell RNA-sequencing (scRNA-seq) was used to profile senescent cancer cell clusters induced by RT in LNCaP cells. The expression and phosphorylation levels of ataxia telangiectasia and Rad3-related protein (ATR) were assessed by immunohistochemistry in clinical samples from patients with or without RT. Co-immunoprecipitation, mutagenesis, and Western blotting were used to measure the interactions between proteins. Xenograft experiments were performed to assess the tumor immune response in the mice. RESULTS We identified a subset of PCa cells that exhibited resistance to RT, characterized by a reduced antigen presentation capability, which enhanced their ability to evade immune detection and resist cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) blockade. scRNA-seq revealed that the senescent state was a transient phase of PCa cells post-RT, particularly in CTLA-4 blockade treatment-resistant cells. This state was marked by increased cytosolic ATR level. Cytosolic ATR phosphorylated CD86 in its cytosolic domain and enhanced the interaction between CD86 and its E3 ligase MARCH1 through electrostatic attraction. Depletion or inhibition of Atr increased the sensitivity to immune attack and improved responses to anti-Ctla-4 antibody treatment in a mouse model. CONCLUSIONS Our findings indicate that the activation of cytosolic ATR, which is associated with cellular senescence, impedes the effectiveness of combined RT and ICB treatments. This discovery may provide valuable insights for improving the efficacy of combined RT and ICB therapies in PCa.
Collapse
Affiliation(s)
- Chenyi Shao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinP. R. China
| | - Yingyi Zhang
- School of Disaster and Emergency MedicineTianjin UniversityTianjinP. R. China
- Department of Biochemistry and Molecular BiologyMayo Clinic College of MedicineRochesterMinnesotaUSA
| | - Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinP. R. China
| | - Jiajia Chen
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Ting Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinP. R. China
| | - Jiaze Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinP. R. China
| | - Simeng Wen
- Department of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjinP. R. China
| | - Sen Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinP. R. China
| | - Saijun Fan
- Institute of Radiation MedicineChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinP. R. China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinP. R. China
| |
Collapse
|
6
|
Reen V, D’Ambrosio M, Søgaard PP, Tyson K, Leeke BJ, Clément I, Dye ICA, Pombo J, Kuba A, Lan Y, Burr J, Bomann IC, Kalyva M, Birch J, Khadayate S, Young G, Provencher D, Mes-Masson AM, Vernia S, McGranahan N, Brady HJM, Rodier F, Nativio R, Percharde M, McNeish IA, Gil J. SMARCA4 regulates the NK-mediated killing of senescent cells. SCIENCE ADVANCES 2025; 11:eadn2811. [PMID: 39813356 PMCID: PMC11734740 DOI: 10.1126/sciadv.adn2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/11/2024] [Indexed: 01/18/2025]
Abstract
Induction of senescence by chemotherapeutic agents arrests cancer cells and activates immune surveillance responses to contribute to therapy outcomes. In this investigation, we searched for ways to enhance the NK-mediated elimination of senescent cells. We used a staggered screen approach, first identifying siRNAs potentiating the secretion of immunomodulatory cytokines to later test for their ability to enhance NK-mediated killing of senescent cells. We identified that genetic or pharmacological inhibition of SMARCA4 enhanced senescent cell elimination by NK cells. SMARCA4 expression is elevated during senescence and its inhibition derepresses repetitive elements, inducing the SASP via activation of cGAS/STING and MAVS/MDA5 pathways. Moreover, a PROTAC targeting SMARCA4 synergized with cisplatin to increase the infiltration of CD8 T cells and mature, activated NK cells in an immunocompetent model of ovarian cancer. Our results indicate that SMARCA4 inhibitors enhance NK-mediated surveillance of senescent cells and may represent senotherapeutic interventions for ovarian cancer.
Collapse
Affiliation(s)
- Virinder Reen
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Mariantonietta D’Ambrosio
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Pia Pernille Søgaard
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Katie Tyson
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Bryony J. Leeke
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Isabelle Clément
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de Radiologie, Radio-oncologie et Médicine Nucléaire, Université de Montréal, Montreal, QC, Canada
| | - Isabel C. A. Dye
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Joaquim Pombo
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Adam Kuba
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de Radiologie, Radio-oncologie et Médicine Nucléaire, Université de Montréal, Montreal, QC, Canada
- Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry Palacky University, Olomouc, Czech Republic
| | - Yemin Lan
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Joanna Burr
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Ida C. Bomann
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Maria Kalyva
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Jodie Birch
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Sanjay Khadayate
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - George Young
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Diane Provencher
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département d’Obstétrique-Gynécologie, Université de Montréal, Montreal, QC, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Santiago Vernia
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Instituto de Biomedicina de Valencia IBV-CSIC, Valencia 46012, Spain
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Hugh J. M. Brady
- Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry Palacky University, Olomouc, Czech Republic
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de Radiologie, Radio-oncologie et Médicine Nucléaire, Université de Montréal, Montreal, QC, Canada
| | - Raffaella Nativio
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Michelle Percharde
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Iain A. McNeish
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Jesús Gil
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
7
|
Liu X, Wang S, Lv H, Chen E, Yan L, Yu J. Advances in the relationship of immune checkpoint inhibitors and DNA damage repair. Curr Res Transl Med 2025; 73:103494. [PMID: 39824061 DOI: 10.1016/j.retram.2025.103494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Cancer immunotherapy, alongside surgery, radiation therapy, and chemotherapy, has emerged as a key treatment modality. Immune checkpoint inhibitors (ICIs) represent a promising immunotherapy that plays a critical role in the management of various solid tumors. However, the limited efficacy of ICI monotherapy and the development of primary or secondary resistance to combination therapy remain a challenge. Consequently, identifying molecular markers for predicting ICI efficacy has become an area of active clinical research. Notably, the correlation between DNA damage repair (DDR) mechanisms and the effectiveness of ICI treatment has been established. This review outlines the two primary pathways of DDR, namely, the homologous recombination repair pathway and the mismatch repair pathway. The relationship between these key genes and ICIs has been discussed and the potential of these genes as molecular markers for predicting ICI efficacy summarized.
Collapse
Affiliation(s)
- Xiaolin Liu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Shan Wang
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Hongwei Lv
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Enli Chen
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Li Yan
- School of Humanities, Beijing University of Chinese Medicine, Beijing, PR China
| | - Jing Yu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
8
|
Westbom-Fremer S, Tran L, Ebbesson A, Martin de la Fuente L, Jönsson JM, Kannisto P, Veerla S, Hedenfalk I. Tertiary lymphoid structures in high-grade serous tubo-ovarian carcinoma: anatomical site matters. Cancer Immunol Immunother 2025; 74:56. [PMID: 39751944 PMCID: PMC11699021 DOI: 10.1007/s00262-024-03911-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025]
Abstract
Tertiary lymphoid structures (TLS) in the tumor microenvironment are prognostically beneficial in many solid cancer types. Reports on TLS in high-grade serous tubo-ovarian carcinoma (HGSC) are few, and the prognostic impact is unclear. We investigated mature TLS (mTLS), immature TLS (iTLS) and lymphoid aggregates (LA) in primary adnexal tumors (PTs) and synchronous omental/peritoneal metastases (pMets) of HGSC. Whole H&E slides were scrutinized for mTLS and LA in a population-based cohort of 130 cases with stage III-IV HGSC. The immune cell tumor infiltration was evaluated with single chromogenic immunohistochemistry (IHC) on a tissue microarray (TMA) from the same cases. Selected whole slides (PT n = 11, pMet n = 10) of the cases most abundant in mTLS and LA were further investigated with multiplex IHC and immunofluorescence using digital image analysis (QuPath), to confirm TLS status and map the T and B lymphocyte subtypes. The results showed that mTLS were more common in pMets than in PTs but did not have an independent prognostic impact on overall or progression-free survival. The presence of mTLS correlated with intratumoral infiltration of CD8+ cytotoxic T cells, FOXP3+ regulatory T cells and PD-1+ lymphocytes in pMets only. Although overall mTLS cell composition was similar between PTs and pMets, the outer zones of mTLS in PTs were more immune cell-rich. In conclusion, our results indicate differences in TLS presence and cellular elements between primary adnexal tumors and synchronous peritoneal metastases, which are important to consider when conducting studies of the immune environment in HGSC.
Collapse
Affiliation(s)
- Sofia Westbom-Fremer
- Division of Oncology, Department of Clinical Sciences Lund, and Lund University Cancer Center, Lund University, Lund, Sweden.
| | - Lena Tran
- Division of Oncology, Department of Clinical Sciences Lund, and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Anna Ebbesson
- Division of Oncology, Department of Clinical Sciences Lund, and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Laura Martin de la Fuente
- Division of Oncology, Department of Clinical Sciences Lund, and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Jenny-Maria Jönsson
- Division of Oncology, Department of Clinical Sciences Lund, and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Päivi Kannisto
- Division of Obstetrics and Gynaecology, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| | - Srinivas Veerla
- Division of Oncology, Department of Clinical Sciences Lund, and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences Lund, and Lund University Cancer Center, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Al Shboul S, Abu Al Karsaneh O, Alrjoub M, Al-Qudah M, El-Sadoni M, Alhesa A, Ramadan M, Barukba M, Al-Quran EF, Masaadeh A, Almasri FN, Shahin U, Alotaibi MR, Al-Azab M, Khasawneh AI, Saleh T. Dissociation between the expression of cGAS/STING and a senescence-associated signature in colon cancer. Int J Immunopathol Pharmacol 2025; 39:3946320251324821. [PMID: 40070172 PMCID: PMC11898089 DOI: 10.1177/03946320251324821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/13/2025] [Indexed: 03/15/2025] Open
Abstract
OBJECTIVE The effect of the cGAS/STING pathway on antitumor immunity and its connection to senescence in vivo necessitates further investigation. INTRODUCTION Cellular senescence and its secretory phenotype (the SASP) are implicated in modulating the immune microenvironment of cancer possibly through the cGAS/STING pathway. METHODS Gene expression data from paired colon cancer and adjacent non-malignant mucosa (98 patients, n = 196 samples; 65 patients, n = 130 samples) were analyzed for cGAS/STING and a senescence signature. Immunohistochemistry assessed cGAS/STING protein expression in 124 colorectal samples. RESULTS Approximately one-quarter of patients displayed senescence profiles in both gene sets, yet without significantly correlating with cGAS/STING expression. Notably, cGAS expression was higher than STING in tumor tissue compared to non-malignant colonic mucosa. Protein analysis showed 83% positive cGAS expression and 39% positive STING expression, with discrepancies in expression patterns. Additionally, 15% of samples lacked both markers, while 35% exhibited positive staining for both. No significant correlations were found between cGAS/STING status and tumor stage, patient age, lymphovascular invasion, or lymph node involvement. CONCLUSIONS Our findings demonstrate significant senescence marker expression in colorectal cancer samples but with no correlation with cGAS/STING.
Collapse
Affiliation(s)
- Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Ola Abu Al Karsaneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Moath Alrjoub
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Al-Qudah
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammed El-Sadoni
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Ahmad Alhesa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Mohannad Ramadan
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Trinity Centre for Global Health, Trinity College Dublin, Dublin, Ireland
| | - Marwa Barukba
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Esraa Fares Al-Quran
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Amr Masaadeh
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
- Department of Pathology, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Farah N Almasri
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Uruk Shahin
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Moureq R. Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Al-Azab
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Ashraf I. Khasawneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
10
|
Torres G, Salladay-Perez IA, Dhingra A, Covarrubias AJ. Genetic origins, regulators, and biomarkers of cellular senescence. Trends Genet 2024; 40:1018-1031. [PMID: 39341687 PMCID: PMC11717094 DOI: 10.1016/j.tig.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
This review comprehensively examines the molecular biology and genetic origins of cellular senescence. We focus on various cellular stressors and pathways leading to senescence, including recent advances in the understanding of the genetic influences driving senescence, such as telomere attrition, chemotherapy-induced DNA damage, pathogens, oncogene activation, and cellular and metabolic stress. This review also highlights the complex interplay of various signaling and metabolic pathways involved in cellular senescence and provides insights into potential therapeutic targets for aging-related diseases. Furthermore, this review outlines future research directions to deepen our understanding of senescence biology and develop effective interventions targeting senescent cells (SnCs).
Collapse
Affiliation(s)
- Grasiela Torres
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ivan A Salladay-Perez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anika Dhingra
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anthony J Covarrubias
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Hwang SM, Awasthi D, Jeong J, Sandoval TA, Chae CS, Ramos Y, Tan C, Marin Falco M, Salvagno C, Emmanuelli A, McBain IT, Mishra B, Ivashkiv LB, Zamarin D, Cantillo E, Chapman-Davis E, Holcomb K, Morales DK, Yu X, Rodriguez PC, Conejo-Garcia JR, Kaczocha M, Vähärautio A, Song M, Cubillos-Ruiz JR. Transgelin 2 guards T cell lipid metabolism and antitumour function. Nature 2024; 635:1010-1018. [PMID: 39443795 PMCID: PMC11949091 DOI: 10.1038/s41586-024-08071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Mounting effective immunity against pathogens and tumours relies on the successful metabolic programming of T cells by extracellular fatty acids1-3. Fatty-acid-binding protein 5 (FABP5) has a key role in this process by coordinating the efficient import and trafficking of lipids that fuel mitochondrial respiration to sustain the bioenergetic requirements of protective CD8+ T cells4,5. However, the mechanisms that govern this immunometabolic axis remain unexplored. Here we report that the cytoskeletal organizer transgelin 2 (TAGLN2) is necessary for optimal fatty acid uptake, mitochondrial respiration and anticancer function in CD8+ T cells. TAGLN2 interacts with FABP5 to facilitate its cell surface localization and function in activated CD8+ T cells. Analyses of ovarian cancer specimens revealed that endoplasmic reticulum (ER) stress responses induced by the tumour microenvironment repress TAGLN2 in infiltrating CD8+ T cells, thereby enforcing their dysfunctional state. Restoring TAGLN2 expression in ER-stressed CD8+ T cells increased their lipid uptake, mitochondrial respiration and cytotoxic capacity. Accordingly, chimeric antigen receptor T cells overexpressing TAGLN2 bypassed the detrimental effects of tumour-induced ER stress and demonstrated therapeutic efficacy in mice with metastatic ovarian cancer. Our study establishes the role of cytoskeletal TAGLN2 in T cell lipid metabolism and highlights the potential to enhance cellular immunotherapy in solid malignancies by preserving the TAGLN2-FABP5 axis.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jieun Jeong
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tito A Sandoval
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Chang-Suk Chae
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - Chen Tan
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Matías Marin Falco
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Alexander Emmanuelli
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Ian T McBain
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Bikash Mishra
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Lionel B Ivashkiv
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Dmitriy Zamarin
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evelyn Cantillo
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Eloise Chapman-Davis
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Holcomb
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Diana K Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - Xiaoqing Yu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jose R Conejo-Garcia
- Department of Integrated Immunobiology, Duke School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke School of Medicine, Durham, NC, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
- Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Anna Vähärautio
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Minkyung Song
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Departments of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
12
|
Wang X, Wang H, Li Y, Sun Z, Liu J, Sun C, Cao X. Engineering macrophage membrane-camouflaged nanoplatforms with enhanced macrophage function for mediating sonodynamic therapy of ovarian cancer. NANOSCALE 2024; 16:19048-19061. [PMID: 39310965 DOI: 10.1039/d4nr01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Cancer immunotherapy has demonstrated remarkable efficacy in the treatment of cancer, and it has been successfully applied in the treatment of various solid tumors. However, the response rates to immunotherapy in patients with ovarian cancer remain modest because of the immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages (TAMs) represent the predominant myeloid cell population within the TME, which adopt the protumorigenic M2 phenotype and are blinded by the "don't eat me" signals from tumor cells. These characteristics of TAMs result in insufficient phagocytic activation. In this study, we constructed a SIM@TR-NP-mediated combination therapy of sonodynamic and immunotherapy. SIM@TR-NPs were modified by engineered macrophage membranes with overexpressed sialic acid-binding Ig-like lectin 10 (Siglec-10), and were internally loaded with sonosensitizer 4,4',4'',4'''-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) and immune adjuvant resiquimod. SIM@TR-NPs can block "don't eat me" signals to enhance macrophage phagocytosis and trigger the polarization of TAMs toward the M1 phenotype, thereby improving the immunosuppressive TME. Simultaneously, upon ultrasound irradiation, SIM@TR-NP-mediated sonodynamic therapy (SDT) triggered immunogenic cell death in tumor cells, in combination with TAM-based immunotherapy, transforming the "immune cold tumor" into an "immune hot tumor". SIM@TR-NP-mediated sonodynamic immunotherapy exhibited potent antitumor efficacy in ovarian cancer and exhibited substantial potential for improving the immunosuppressive TME. This study presents an emerging therapeutic regimen for ovarian cancer that synergizes TAM-based antitumor immunotherapy and SDT.
Collapse
Affiliation(s)
- Xiaofei Wang
- Yantai Yuhuangding hospital, Shandong University, Yantai, 264000, P.R. China.
| | - Hongling Wang
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P.R. China.
| | - Yansheng Li
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P.R. China.
| | - Zhihong Sun
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P.R. China.
| | - Jie Liu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P.R. China.
| | - Chengming Sun
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P.R. China.
| | - Xiaoli Cao
- Yantai Yuhuangding hospital, Shandong University, Yantai, 264000, P.R. China.
| |
Collapse
|
13
|
Kefas J, Flynn M. Unlocking the potential of immunotherapy in platinum-resistant ovarian cancer: rationale, challenges, and novel strategies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:39. [PMID: 39534871 PMCID: PMC11555186 DOI: 10.20517/cdr.2024.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Ovarian cancer is a significant global health challenge, with cytoreductive surgery and platinum-based chemotherapy serving as established primary treatments. Unfortunately, most patients relapse and ultimately become platinum-resistant, at which point there are limited effective treatment options. Given the success of immunotherapy in inducing durable treatment responses in several other cancers, its potential in platinum-resistant ovarian cancer (PROC) is currently being investigated. However, in unselected advanced ovarian cancer populations, researchers have reported low response rates to immune checkpoint inhibition, and thus far, no validated biomarkers are predictive of response. Understanding the intricate interplay between platinum resistance, immune recognition, and the tumour microenvironment (TME) is crucial. In this review, we examine the research challenges encountered thus far, the biological rationale for immunotherapy, the underlying mechanisms of immune resistance, and new strategies to overcome resistance.
Collapse
Affiliation(s)
| | - Michael Flynn
- Medical Oncology, University College London Hospitals NHS Foundation Trust, London NW1 2PG, UK
| |
Collapse
|
14
|
Sandoval TA, Salvagno C, Chae CS, Awasthi D, Giovanelli P, Falco MM, Hwang SM, Teran-Cabanillas E, Suominen L, Yamazaki T, Kuo HH, Moyer JE, Martin ML, Manohar J, Kim K, Sierra MA, Ramos Y, Tan C, Emmanuelli A, Song M, Morales DK, Zamarin D, Frey MK, Cantillo E, Chapman-Davis E, Holcomb K, Mason CE, Galluzzi L, Zhou ZN, Vähärautio A, Cloonan SM, Cubillos-Ruiz JR. Iron Chelation Therapy Elicits Innate Immune Control of Metastatic Ovarian Cancer. Cancer Discov 2024; 14:1901-1921. [PMID: 39073085 PMCID: PMC11452292 DOI: 10.1158/2159-8290.cd-23-1451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Iron accumulation in tumors contributes to disease progression and chemoresistance. Although targeting this process can influence various hallmarks of cancer, the immunomodulatory effects of iron chelation in the tumor microenvironment are unknown. Here, we report that treatment with deferiprone, an FDA-approved iron chelator, unleashes innate immune responses that restrain ovarian cancer. Deferiprone reprogrammed ovarian cancer cells toward an immunostimulatory state characterized by the production of type-I IFN and overexpression of molecules that activate NK cells. Mechanistically, these effects were driven by innate sensing of mitochondrial DNA in the cytosol and concomitant activation of nuclear DNA damage responses triggered upon iron chelation. Deferiprone synergized with chemotherapy and prolonged the survival of mice with ovarian cancer by bolstering type-I IFN responses that drove NK cell-dependent control of metastatic disease. Hence, iron chelation may represent an alternative immunotherapeutic strategy for malignancies that are refractory to current T-cell-centric modalities. Significance: This study uncovers that targeting dysregulated iron accumulation in ovarian tumors represents a major therapeutic opportunity. Iron chelation therapy using an FDA-approved agent causes immunogenic stress responses in ovarian cancer cells that delay metastatic disease progression and enhance the effects of first-line chemotherapy. See related commentary by Bell and Zou, p. 1771.
Collapse
Affiliation(s)
- Tito A. Sandoval
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Chang-Suk Chae
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Paolo Giovanelli
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
| | - Matias Marin Falco
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Eli Teran-Cabanillas
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Lasse Suominen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Hui-Hsuan Kuo
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - Jenna E. Moyer
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - M Laura Martin
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - Jyothi Manohar
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine. New York, NY 10065, USA
| | - Maria A. Sierra
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Chen Tan
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Alexander Emmanuelli
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
| | - Minkyung Song
- Departments of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University. Suwon, Gyeonggi-do, Korea
| | - Diana K. Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Dmitriy Zamarin
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Melissa K. Frey
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Evelyn Cantillo
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Eloise Chapman-Davis
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Kevin Holcomb
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Christopher E. Mason
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine. New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine. New York, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine. New York, NY, USA
| | - Lorenzo Galluzzi
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
- Department of Radiation Oncology, Weill Cornell Medicine. New York, NY 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - Zhen Ni Zhou
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Anna Vähärautio
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Suzanne M. Cloonan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine. New York, NY 10065, USA
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College. Dublin, Ireland
| | - Juan R. Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
| |
Collapse
|
15
|
Emmanuelli A, Salvagno C, Hwang SM, Awasthi D, Sandoval TA, Chae CS, Cheong JG, Tan C, Iwawaki T, Cubillos-Ruiz JR. High-grade serous ovarian cancer development and anti-PD-1 resistance is driven by IRE1α activity in neutrophils. Oncoimmunology 2024; 13:2411070. [PMID: 39364290 PMCID: PMC11448341 DOI: 10.1080/2162402x.2024.2411070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
High-grade serious ovarian cancer (HGSOC) is an aggressive malignancy that remains refractory to current immunotherapies. While advanced stage disease has been extensively studied, the cellular and molecular mechanisms that promote early immune escape in HGSOC remain largely unexplored. Here, we report that primary HGSO tumors program neutrophils to inhibit T cell anti-tumor function by activating the endoplasmic reticulum (ER) stress sensor IRE1α. We found that intratumoral neutrophils exhibited overactivation of ER stress response markers compared with their counterparts at non-tumor sites. Selective deletion of IRE1α in neutrophils delayed primary ovarian tumor growth and extended the survival of mice with HGSOC by enabling early T cell-mediated tumor control. Notably, loss of IRE1α in neutrophils sensitized tumor-bearing mice to PD-1 blockade, inducing HGSOC regression and long-term survival in ~ 50% of the treated hosts. Hence, neutrophil-intrinsic IRE1α facilitates early adaptive immune escape in HGSOC and targeting this ER stress sensor might be used to unleash endogenous and immunotherapy-elicited immunity that controls metastatic disease.
Collapse
Affiliation(s)
- Alexander Emmanuelli
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Tito A. Sandoval
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Chang-Suk Chae
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jin-Gyu Cheong
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Chen Tan
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Juan R. Cubillos-Ruiz
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
16
|
Crabbé M, Opsomer T, Vermeulen K, Ooms M, Segers C. Targeted radiopharmaceuticals: an underexplored strategy for ovarian cancer. Theranostics 2024; 14:6281-6300. [PMID: 39431018 PMCID: PMC11488094 DOI: 10.7150/thno.99782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/19/2024] [Indexed: 10/22/2024] Open
Abstract
Ovarian cancer is the most common gynecological malignancy worldwide with the highest mortality. This low survival rate can be attributed to the fact that symptoms arise only at an advanced disease stage, characterized by a (micro)metastatic spread across the peritoneal cavity. Radiopharmaceuticals, composed of a targeting moiety coupled with either a diagnostic or therapeutic radionuclide, constitute a relatively underexplored theranostic approach that may improve the current standard of care. Efficient patient stratification, follow-up and treatment are several caveats that could be addressed with theranostics to improve patient outcomes. So far, the bulk of research is situated and often halted at the preclinical level, employing murine models of primary and metastatic peritoneal disease that do not necessarily provide an accurate representation of the disease heterogeneity, (intrinsic) drug resistance or the complex physiological interactions with the tumor microenvironment. Radioimmunoconjugates with therapeutic α- and electron-emitting radionuclides have been the prevailing standard, targeting a myriad of cell-membrane markers that are expressed in the various heterogeneous histological subtypes of ovarian cancer. Evidently, several hurdles exist within preclinical research that are potentially withholding these agents from advancing into clinical practice. On the other hand, the field of nuclear medicine has also seen significant innovation to address shortcomings related to target/ligand identification, preclinical research models, radiochemistry, radiopharmacy and dosimetry, as outlined in this review. Altogether, theranostics hold great promise to answer an unmet medical need for ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | - Charlotte Segers
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
17
|
Emmanuelli A, Salvagno C, Min-Hwang S, Awasthi D, Sandoval TA, Chae CS, Cheong JG, Tan C, Iwawaki T, Cubillos-Ruiz JR. High-grade serous ovarian cancer development and anti-PD-1 resistance is driven by IRE1α activity in neutrophils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606646. [PMID: 39211073 PMCID: PMC11361179 DOI: 10.1101/2024.08.05.606646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) is an aggressive malignancy that remains refractory to current immunotherapies. While advanced stage disease has been extensively studied, the cellular and molecular mechanisms that promote early immune escape in HGSOC remain largely unexplored. Here we report that primary HGSO tumors program neutrophils to inhibit T cell anti-tumor function by activating the endoplasmic reticulum (ER) stress sensor IRE1α. We found that intratumoral neutrophils exhibited overactivation of ER stress response markers compared with their counterparts at non-tumor sites. Selective deletion of IRE1α in neutrophils delayed primary ovarian tumor growth and extended the survival of mice with HGSOC by enabling early T cell-mediated tumor control. Notably, loss of IRE1α in neutrophils sensitized tumor-bearing mice to PD-1 blockade, inducing HGSOC regression and long-term survival in ∼50% of treated hosts. Hence, neutrophil-intrinsic IRE1α facilitates early adaptive immune escape in HGSOC and targeting this ER stress sensor might be used to unleash endogenous and immunotherapy-elicited immunity that controls metastatic disease.
Collapse
|
18
|
Fan SB, Xie XF, Wei W, Hua T. Senescence-Related LncRNAs: Pioneering Indicators for Ovarian Cancer Outcomes. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:379-393. [PMID: 39583315 PMCID: PMC11584837 DOI: 10.1007/s43657-024-00163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 11/26/2024]
Abstract
In gynecological oncology, ovarian cancer (OC) remains the most lethal, highlighting its significance in public health. Our research focused on the role of long non-coding RNA (lncRNA) in OC, particularly senescence-related lncRNAs (SnRlncRNAs), crucial for OC prognosis. Utilizing data from the genotype-tissue expression (GTEx) and cancer genome Atlas (TCGA), SnRlncRNAs were discerned and subsequently, a risk signature was sculpted using co-expression and differential expression analyses, Cox regression, and least absolute shrinkage and selection operator (LASSO). This signature's robustness was validated through time-dependent receiver operating characteristics (ROC), and multivariate Cox regression, with further validation in the international cancer genome consortium (ICGC). Gene set enrichment analyses (GSEA) unveiled pathways intertwined with risk groups. The ROC, alongside the nomogram and calibration outcomes, attested to the model's robust predictive accuracy. Of particular significance, our model has demonstrated superiority over several commonly utilized clinical indicators, such as stage and grade. Patients in the low-risk group demonstrated greater immune infiltration and varied drug sensitivities compared to other groups. Moreover, consensus clustering classified OC patients into four distinct groups based on the expression of 17 SnRlncRNAs, showing diverse survival rates. In conclusion, these findings underscored the robustness and reliability of our model and highlighted its potential for facilitating improved decision-making in the context of risk assessment, and demonstrated that these markers potentially served as robust, efficacious biomarkers and prognostic tools, offering insights into predicting OC response to anticancer therapeutics. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-024-00163-z.
Collapse
Affiliation(s)
- Shao-Bei Fan
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei 054001 People’s Republic of China
| | - Xiao-Feng Xie
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei 054001 People’s Republic of China
| | - Wang Wei
- Department of Obstetrics and Gynaecology, Hebei Medical University, Second Hospital, 215 Heping Road, Shijiazhuang, Hebei 050000 People’s Republic of China
| | - Tian Hua
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei 054001 People’s Republic of China
| |
Collapse
|
19
|
Sajeev A, BharathwajChetty B, Manickasamy MK, Alqahtani MS, Abbas M, Shakibaei M, Sethi G, Ma Z, Kunnumakkara AB. Nuclear receptors in ovarian cancer: changing paradigms in cancer therapeutics. Front Oncol 2024; 14:1383939. [PMID: 39077471 PMCID: PMC11284039 DOI: 10.3389/fonc.2024.1383939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 07/31/2024] Open
Abstract
Ovarian cancer (OVC) is one of the most common causes of cancer-related deaths in women worldwide. Despite advancements in detection and therapy, the prognosis of OVC remains poor due to late diagnosis and the lack of effective therapeutic options at advanced stages. Therefore, a better understanding of the biology underlying OVC is essential for the development of effective strategies for early detection and targeted therapies. Nuclear receptors (NRs) are a superfamily of 48 transcription factors that, upon binding to their specific ligand, play a vital role in regulating various cellular processes such as growth, development, metabolism, and homeostasis. Accumulating evidence from several studies has shown that their aberrant expression is associated with multiple human diseases. Numerous NRs have shown significant effects in the development of various cancers, including OVC. This review summarizes the recent findings on the role of NRs in OVC, as well as their potential as prognostic and therapeutic markers. Further, the basic structure and signaling mechanism of NRs have also been discussed briefly. Moreover, this review highlights their cellular and molecular mechanisms in chemoresistance and chemosensitization. Further, the clinical trials targeting NRs for the treatment of OVC have also been discussed.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University of Singapore (NUS) Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| |
Collapse
|
20
|
Pessoa J, Nóbrega-Pereira S, de Jesus BB. Senescent cell-derived vaccines: a new concept towards an immune response against cancer and aging? Aging (Albany NY) 2024; 16:10657-10665. [PMID: 38942604 PMCID: PMC11236300 DOI: 10.18632/aging.205975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/13/2024] [Indexed: 06/30/2024]
Abstract
Two recent seminal works have untangled the intricate role of tumor-associated senescent cells in cancer progression, or regression, by guiding our immune system against cancer cells. The characterization of these unique, yet diverse cell populations, should be considered, particularly when contemplating the use of senolytics, which are drugs that selectively eliminate senescent cells, in a cancer framework. Here, we will describe the current knowledge in this field. In particular, we will discuss how the presence of senescent cells in tumors could be used as a therapeutic target in immunogenic cancers and how we may hypothetically design an adaptive anti-aging vaccine.
Collapse
Affiliation(s)
- João Pessoa
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| | - Sandrina Nóbrega-Pereira
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
21
|
Liu F, Su R, Jiang X, Wang S, Mu W, Chang L. Advanced micro/nano-electroporation for gene therapy: recent advances and future outlook. NANOSCALE 2024; 16:10500-10521. [PMID: 38757536 DOI: 10.1039/d4nr01408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Gene therapy is a promising disease treatment approach by editing target genes, and thus plays a fundamental role in precision medicine. To ensure gene therapy efficacy, the effective delivery of therapeutic genes into specific cells is a key challenge. Electroporation utilizes short electric pulses to physically break the cell membrane barrier, allowing gene transfer into the cells. It dodges the off-target risks associated with viral vectors, and also stands out from other physical-based gene delivery methods with its high-throughput and cargo-accelerating features. In recent years, with the help of advanced micro/nanotechnology, micro/nanostructure-integrated electroporation (micro/nano-electroporation) techniques and devices have significantly improved cell viability, transfection efficiency and dose controllability of the electroporation strategy, enhancing its application practicality especially in vivo. This technical advancement makes micro/nano-electroporation an effective and versatile tool for gene therapy. In this review, we first introduce the evolution of electroporation technique with a brief explanation of the perforation mechanism, and then provide an overview of the recent advancements and prospects of micro/nano-electroporation technology in the field of gene therapy. To comprehensively showcase the latest developments of micro/nano-electroporation technology in gene therapy, we focus on discussing micro/nano-electroporation devices and current applications at both in vitro and in vivo levels. Additionally, we outline the ongoing clinical studies of gene electrotransfer (GET), revealing the tremendous potential of electroporation-based gene delivery in disease treatment and healthcare. Lastly, the challenges and future directions in this field are discussed.
Collapse
Affiliation(s)
- Feng Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Rongtai Su
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xinran Jiang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Siqi Wang
- Department of General Surgery and Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wei Mu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
22
|
Tangudu NK, Buj R, Wang H, Wang J, Cole AR, Uboveja A, Fang R, Amalric A, Yang B, Chatoff A, Crispim CV, Sajjakulnukit P, Lyons MA, Cooper K, Hempel N, Lyssiotis CA, Chandran UR, Snyder NW, Aird KM. De Novo Purine Metabolism is a Metabolic Vulnerability of Cancers with Low p16 Expression. CANCER RESEARCH COMMUNICATIONS 2024; 4:1174-1188. [PMID: 38626341 PMCID: PMC11064835 DOI: 10.1158/2767-9764.crc-23-0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/04/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in approximately 50% of all human cancers. In its canonical role, p16 inhibits the G1-S-phase cell cycle progression through suppression of cyclin-dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. However, the broader impact of p16/CDKN2A loss on other nucleotide metabolic pathways and potential therapeutic targets remains unexplored. Using CRISPR knockout libraries in isogenic human and mouse melanoma cell lines, we determined several nucleotide metabolism genes essential for the survival of cells with loss of p16/CDKN2A. Consistently, many of these genes are upregulated in melanoma cells with p16 knockdown or endogenously low CDKN2A expression. We determined that cells with low p16/CDKN2A expression are sensitive to multiple inhibitors of de novo purine synthesis, including antifolates. Finally, tumors with p16 knockdown were more sensitive to the antifolate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2Alow tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents. SIGNIFICANCE Antimetabolites were the first chemotherapies, yet many have failed in the clinic due to toxicity and poor patient selection. Our data suggest that p16 loss provides a therapeutic window to kill cancer cells with widely-used antifolates with relatively little toxicity.
Collapse
Affiliation(s)
- Naveen Kumar Tangudu
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Raquel Buj
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hui Wang
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jiefei Wang
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Aidan R. Cole
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Apoorva Uboveja
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richard Fang
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amandine Amalric
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Baixue Yang
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Tsinghua University School of Medicine, Beijing, P.R. China
| | - Adam Chatoff
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Claudia V. Crispim
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Maureen A. Lyons
- Genomics Facility, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kristine Cooper
- Biostatistics Facility, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Uma R. Chandran
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nathaniel W. Snyder
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Katherine M. Aird
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Sánchez Rivera FJ, Dow LE. How CRISPR Is Revolutionizing the Generation of New Models for Cancer Research. Cold Spring Harb Perspect Med 2024; 14:a041384. [PMID: 37487630 PMCID: PMC11065179 DOI: 10.1101/cshperspect.a041384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Cancers arise through acquisition of mutations in genes that regulate core biological processes like cell proliferation and cell death. Decades of cancer research have led to the identification of genes and mutations causally involved in disease development and evolution, yet defining their precise function across different cancer types and how they influence therapy responses has been challenging. Mouse models have helped define the in vivo function of cancer-associated alterations, and genome-editing approaches using CRISPR have dramatically accelerated the pace at which these models are developed and studied. Here, we highlight how CRISPR technologies have impacted the development and use of mouse models for cancer research and discuss the many ways in which these rapidly evolving platforms will continue to transform our understanding of this disease.
Collapse
Affiliation(s)
- Francisco J Sánchez Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA
| |
Collapse
|
24
|
Dolan M, Shi Y, Mastri M, Long MD, McKenery A, Hill JW, Vaghi C, Benzekry S, Barbi J, Ebos JM. A senescence-mimicking (senomimetic) VEGFR TKI side-effect primes tumor immune responses via IFN/STING signaling. Mol Cancer Ther 2024; 23:745113. [PMID: 38690835 PMCID: PMC11527799 DOI: 10.1158/1535-7163.mct-24-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) that block the vascular endothelial growth factor receptors (VEGFRs) disrupt tumor angiogenesis but also have many unexpected side-effects that impact tumor cells directly. This includes the induction of molecular markers associated with senescence, a form of cellular aging that typically involves growth arrest. We have shown that VEGFR TKIs can hijack these aging programs by transiently inducting senescence-markers (SMs) in tumor cells to activate senescence-associated secretory programs that fuel drug resistance. Here we show that these same senescence-mimicking ('senomimetic') VEGFR TKI effects drive an enhanced immunogenic signaling that, in turn, can alter tumor response to immunotherapy. Using a live-cell sorting method to detect beta-galactosidase, a commonly used SM, we found that subpopulations of SM-expressing (SM+) tumor cells have heightened interferon (IFN) signaling and increased expression of IFN-stimulated genes (ISGs). These ISG increases were under the control of the STimulator of INterferon Gene (STING) signaling pathway, which we found could be directly activated by several VEGFR TKIs. TKI-induced SM+ cells could stimulate or suppress CD8 T-cell activation depending on host:tumor cell contact while tumors grown from SM+ cells were more sensitive to PD-L1 inhibition in vivo, suggesting that offsetting immune-suppressive functions of SM+ cells can improve TKI efficacy overall. Our findings may explain why some (but not all) VEGFR TKIs improve outcomes when combined with immunotherapy and suggest that exploiting senomimetic drug side-effects may help identify TKIs that uniquely 'prime' tumors for enhanced sensitivity to PD-L1 targeted agents.
Collapse
Affiliation(s)
- Melissa Dolan
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
| | - Yuhao Shi
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
| | - Michalis Mastri
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
| | - Mark D. Long
- Department of Bioinformatics and Statistics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
| | - Amber McKenery
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
| | - James W. Hill
- Jacobs School of Medicine and Biomedical Sciences, SUNY at Buffalo, Buffalo, New York, 14263. USA
| | - Cristina Vaghi
- Inria Team MONC, Inria Bordeaux Sud-Ouest, Talence, France
- Computational Pharmacology and Clinical Oncology (COMPO), Inria Sophia Antipolis–Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, 13385 Marseille, France
| | - Sebastien Benzekry
- Inria Team MONC, Inria Bordeaux Sud-Ouest, Talence, France
- Computational Pharmacology and Clinical Oncology (COMPO), Inria Sophia Antipolis–Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, 13385 Marseille, France
| | - Joseph Barbi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
| | - John M.L. Ebos
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
- Lead Contact
| |
Collapse
|
25
|
Xie W, Zhang L, Shen J, Lai F, Han W, Liu X. Knockdown of CENPM activates cGAS-STING pathway to inhibit ovarian cancer by promoting pyroptosis. BMC Cancer 2024; 24:551. [PMID: 38693472 PMCID: PMC11064423 DOI: 10.1186/s12885-024-12296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
OBJECTIVE We aimed to screen novel gene signatures for ovarian cancer (OC) and explore the role of biomarkers in OC via regulating pyroptosis using bioinformatics analysis. METHODS Differentially expressed genes (DEGs) of OC were screened from GSE12470 and GSE16709 datasets. Hub genes were determined from protein-protein interaction networks after bioinformatics analysis. The role of Centromeric protein M (CENPM) in OC was assessed by subcutaneous tumor experiment using hematoxylin-eosin and immunohistochemical staining. Tumor metastasis was evaluated by detecting epithelial-mesenchymal transition-related proteins. The proliferation, migration, and invasion were determined using cell counting kit and transwell assay. Enzyme-linked immunosorbent assay was applied to measure inflammatory factors. The mRNA and protein expression were detected using real-time quantitative PCR and western blot. RESULTS We determined 9 hub genes (KIFC1, PCLAF, CDCA5, KNTC1, MCM3, OIP5, CENPM, KIF15, and ASF1B) with high prediction value for OC. In SKOV3 and A2780 cells, the expression levels of hub genes were significantly up-regulated, compared with normal ovarian cells. CENPM was selected as a key gene. Knockdown of CENPM suppressed proliferation, migration, and invasion of OC cells. Subcutaneous tumor experiment revealed that CENPM knockdown significantly suppressed tumor growth and metastasis. Additionally, pyroptosis was promoted in OC cells and xenograft tumors after CENPM knockdown. Furthermore, CENPM knockdown activated cGAS-STING pathway and the pathway inhibitor reversed the inhibitory effect of CENPM knockdown on viability, migration, and invasion of OC cells. CONCLUSION CENPM was a novel biomarker of OC, and knockdown of CENPM inhibited OC progression by promoting pyroptosis and activating cGAS-STING pathway.
Collapse
Affiliation(s)
- Wei Xie
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China
| | - Leiying Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China
| | - Junjing Shen
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China
| | - Fengdi Lai
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China
| | - Wenling Han
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China.
| | - Xiaoyan Liu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China.
| |
Collapse
|
26
|
Elshazly AM, Shahin U, Al Shboul S, Gewirtz DA, Saleh T. A Conversation with ChatGPT on Contentious Issues in Senescence and Cancer Research. Mol Pharmacol 2024; 105:313-327. [PMID: 38458774 PMCID: PMC11026153 DOI: 10.1124/molpharm.124.000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Artificial intelligence (AI) platforms, such as Generative Pretrained Transformer (ChatGPT), have achieved a high degree of popularity within the scientific community due to their utility in providing evidence-based reviews of the literature. However, the accuracy and reliability of the information output and the ability to provide critical analysis of the literature, especially with respect to highly controversial issues, has generally not been evaluated. In this work, we arranged a question/answer session with ChatGPT regarding several unresolved questions in the field of cancer research relating to therapy-induced senescence (TIS), including the topics of senescence reversibility, its connection to tumor dormancy, and the pharmacology of the newly emerging drug class of senolytics. ChatGPT generally provided responses consistent with the available literature, although occasionally overlooking essential components of the current understanding of the role of TIS in cancer biology and treatment. Although ChatGPT, and similar AI platforms, have utility in providing an accurate evidence-based review of the literature, their outputs should still be considered carefully, especially with respect to unresolved issues in tumor biology. SIGNIFICANCE STATEMENT: Artificial Intelligence platforms have provided great utility for researchers to investigate biomedical literature in a prompt manner. However, several issues arise when it comes to certain unresolved biological questions, especially in the cancer field. This work provided a discussion with ChatGPT regarding some of the yet-to-be-fully-elucidated conundrums of the role of therapy-induced senescence in cancer treatment and highlights the strengths and weaknesses in utilizing such platforms for analyzing the scientific literature on this topic.
Collapse
Affiliation(s)
- Ahmed M Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - Uruk Shahin
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - Sofian Al Shboul
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - Tareq Saleh
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| |
Collapse
|
27
|
Murphy KC, Ruscetti M. Advances in Making Cancer Mouse Models More Accessible and Informative through Non-Germline Genetic Engineering. Cold Spring Harb Perspect Med 2024; 14:a041348. [PMID: 37277206 PMCID: PMC10982712 DOI: 10.1101/cshperspect.a041348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Genetically engineered mouse models (GEMMs) allow for modeling of spontaneous tumorigenesis within its native microenvironment in mice and have provided invaluable insights into mechanisms of tumorigenesis and therapeutic strategies to treat human disease. However, as their generation requires germline manipulation and extensive animal breeding that is time-, labor-, and cost-intensive, traditional GEMMs are not accessible to most researchers, and fail to model the full breadth of cancer-associated genetic alterations and therapeutic targets. Recent advances in genome-editing technologies and their implementation in somatic tissues of mice have ushered in a new class of mouse models: non-germline GEMMs (nGEMMs). nGEMM approaches can be leveraged to generate somatic tumors de novo harboring virtually any individual or group of genetic alterations found in human cancer in a mouse through simple procedures that do not require breeding, greatly increasing the accessibility and speed and scale on which GEMMs can be produced. Here we describe the technologies and delivery systems used to create nGEMMs and highlight new biological insights derived from these models that have rapidly informed functional cancer genomics, precision medicine, and immune oncology.
Collapse
Affiliation(s)
- Katherine C Murphy
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA;
- Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
- Cancer Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
28
|
Zingoni A, Antonangeli F, Sozzani S, Santoni A, Cippitelli M, Soriani A. The senescence journey in cancer immunoediting. Mol Cancer 2024; 23:68. [PMID: 38561826 PMCID: PMC10983694 DOI: 10.1186/s12943-024-01973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer progression is continuously controlled by the immune system which can identify and destroy nascent tumor cells or inhibit metastatic spreading. However, the immune system and its deregulated activity in the tumor microenvironment can also promote tumor progression favoring the outgrowth of cancers capable of escaping immune control, in a process termed cancer immunoediting. This process, which has been classified into three phases, i.e. "elimination", "equilibrium" and "escape", is influenced by several cancer- and microenvironment-dependent factors. Senescence is a cellular program primed by cells in response to different pathophysiological stimuli, which is based on long-lasting cell cycle arrest and the secretion of numerous bioactive and inflammatory molecules. Because of this, cellular senescence is a potent immunomodulatory factor promptly recruiting immune cells and actively promoting tissue remodeling. In the context of cancer, these functions can lead to both cancer immunosurveillance and immunosuppression. In this review, the authors will discuss the role of senescence in cancer immunoediting, highlighting its context- and timing-dependent effects on the different three phases, describing how senescent cells promote immune cell recruitment for cancer cell elimination or sustain tumor microenvironment inflammation for immune escape. A potential contribution of senescent cells in cancer dormancy, as a mechanism of therapy resistance and cancer relapse, will be discussed with the final objective to unravel the immunotherapeutic implications of senescence modulation in cancer.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, 00185, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy
- IRCCS Neuromed, Pozzilli, 86077, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy.
| | - Alessandra Soriani
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy.
| |
Collapse
|
29
|
Katti A, Vega-Pérez A, Foronda M, Zimmerman J, Zafra MP, Granowsky E, Goswami S, Gardner EE, Diaz BJ, Simon JM, Wuest A, Luan W, Fernandez MTC, Kadina AP, Walker JA, Holden K, Lowe SW, Sánchez Rivera FJ, Dow LE. Generation of precision preclinical cancer models using regulated in vivo base editing. Nat Biotechnol 2024; 42:437-447. [PMID: 37563300 PMCID: PMC11295146 DOI: 10.1038/s41587-023-01900-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Although single-nucleotide variants (SNVs) make up the majority of cancer-associated genetic changes and have been comprehensively catalogued, little is known about their impact on tumor initiation and progression. To enable the functional interrogation of cancer-associated SNVs, we developed a mouse system for temporal and regulatable in vivo base editing. The inducible base editing (iBE) mouse carries a single expression-optimized cytosine base editor transgene under the control of a tetracycline response element and enables robust, doxycycline-dependent expression across a broad range of tissues in vivo. Combined with plasmid-based or synthetic guide RNAs, iBE drives efficient engineering of individual or multiple SNVs in intestinal, lung and pancreatic organoids. Temporal regulation of base editor activity allows controlled sequential genome editing ex vivo and in vivo, and delivery of sgRNAs directly to target tissues facilitates generation of in situ preclinical cancer models.
Collapse
Affiliation(s)
- Alyna Katti
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Adrián Vega-Pérez
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Miguel Foronda
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jill Zimmerman
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Maria Paz Zafra
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Biosanitary Research Institute (IBS)-Granada, Granada, Spain
| | - Elizabeth Granowsky
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Sukanya Goswami
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Eric E Gardner
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Bianca J Diaz
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Janelle M Simon
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandra Wuest
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wei Luan
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | - Scott W Lowe
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francisco J Sánchez Rivera
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
30
|
Leibold J, Tsanov KM, Amor C, Ho YJ, Sánchez-Rivera FJ, Feucht J, Baslan T, Chen HA, Tian S, Simon J, Wuest A, Wilkinson JE, Lowe SW. Somatic mouse models of gastric cancer reveal genotype-specific features of metastatic disease. NATURE CANCER 2024; 5:315-329. [PMID: 38177458 PMCID: PMC10899107 DOI: 10.1038/s43018-023-00686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/10/2023] [Indexed: 01/06/2024]
Abstract
Metastatic gastric carcinoma is a highly lethal cancer that responds poorly to conventional and molecularly targeted therapies. Despite its clinical relevance, the mechanisms underlying the behavior and therapeutic response of this disease are poorly understood owing, in part, to a paucity of tractable models. Here we developed methods to somatically introduce different oncogenic lesions directly into the murine gastric epithelium. Genotypic configurations observed in patients produced metastatic gastric cancers that recapitulated the histological, molecular and clinical features of all nonviral molecular subtypes of the human disease. Applying this platform to both wild-type and immunodeficient mice revealed previously unappreciated links between the genotype, organotropism and immune surveillance of metastatic cells, which produced distinct patterns of metastasis that were mirrored in patients. Our results establish a highly portable platform for generating autochthonous cancer models with flexible genotypes and host backgrounds, which can unravel mechanisms of gastric tumorigenesis or test new therapeutic concepts.
Collapse
Affiliation(s)
- Josef Leibold
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medical Oncology and Pneumology, University Hospital Tuebingen, Tuebingen, Germany.
- iFIT Cluster of Excellence EXC 2180 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany.
| | - Kaloyan M Tsanov
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Corina Amor
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Yu-Jui Ho
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francisco J Sánchez-Rivera
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Judith Feucht
- iFIT Cluster of Excellence EXC 2180 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
- Department I-General Paediatrics, Haematology/Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Timour Baslan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Hsuan-An Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sha Tian
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Janelle Simon
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandra Wuest
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John E Wilkinson
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
31
|
Wang M, Cai Y, He T, Zhang Y, Yi L, Li W, Zhou P. Antitumor Effect of Platinum-Modified STING Agonist MSA-2. ACS OMEGA 2024; 9:2650-2656. [PMID: 38250379 PMCID: PMC10795137 DOI: 10.1021/acsomega.3c07498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
The stimulator of interferon genes (STING)-activated innate immune pathway is strong and durable for tumor immunotherapy. MSA-2 is an available non-nucleotide human STING agonist that promotes the tumor immunotherapy of STING activation. However, strategies for remolding and improving the immunotherapy effects of MSA-2 are of value for clinical applications. Here, we synthesized the platinum salt-modified MSA-2 (MSA-2-Pt) due to platinum salt being a classic chemotherapeutic drug. We found that MSA-2-Pt could achieve double-effect antitumor immunotherapy, including inducing cell death by platinum and activating the STING pathway by MSA-2. In the colon carcinoma MC38 model (sensitive to immune checkpoint immunotherapy tumor) and melanoma B16F10 model (poorly immunogenic and highly aggressive tumor), the MSA-2-Pt had a good antitumor effect, which was a little better than MSA-2 with intratumor injections. The results present a promising strategy for STING activation in tumor immunotherapy and broadening platinum-based drugs.
Collapse
Affiliation(s)
- Mo Wang
- Institute of Reproductive
Medicine, School of Medicine, Nantong University, Nantong 226000, China
| | - Ya Cai
- Institute of Reproductive
Medicine, School of Medicine, Nantong University, Nantong 226000, China
| | - Tian He
- Institute of Reproductive
Medicine, School of Medicine, Nantong University, Nantong 226000, China
| | - Yuhang Zhang
- Institute of Reproductive
Medicine, School of Medicine, Nantong University, Nantong 226000, China
| | - Lirong Yi
- Institute of Reproductive
Medicine, School of Medicine, Nantong University, Nantong 226000, China
| | - Wenqing Li
- Institute of Reproductive
Medicine, School of Medicine, Nantong University, Nantong 226000, China
| | - Peng Zhou
- Institute of Reproductive
Medicine, School of Medicine, Nantong University, Nantong 226000, China
| |
Collapse
|
32
|
Li Y, Zhou S, Wu Q, Gong C. CRISPR/Cas gene editing and delivery systems for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1938. [PMID: 38456346 DOI: 10.1002/wnan.1938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 03/09/2024]
Abstract
CRISPR/Cas systems stand out because of simplicity, efficiency, and other superiorities, thus becoming attractive and brilliant gene-editing tools in biomedical field including cancer therapy. CRISPR/Cas systems bring promises for cancer therapy through manipulating and engineering on tumor cells or immune cells. However, there have been concerns about how to overcome the numerous physiological barriers and deliver CRISPR components to target cells efficiently and accurately. In this review, we introduced the mechanisms of CRISPR/Cas systems, summarized the current delivery strategies of CRISPR/Cas systems by physical methods, viral vectors, and nonviral vectors, and presented the current application of CRISPR/Cas systems in cancer clinical treatment. Furthermore, we discussed prospects related to delivery approaches of CRISPR/Cas systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyao Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Huan Q, Cheng S, Ma H, Zhao M, Chen Y, Yuan X. Machine learning-derived identification of prognostic signature for improving prognosis and drug response in patients with ovarian cancer. J Cell Mol Med 2024; 28:e18021. [PMID: 37994489 PMCID: PMC10805490 DOI: 10.1111/jcmm.18021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023] Open
Abstract
Clinical assessments relying on pathology classification demonstrate limited effectiveness in predicting clinical outcomes and providing optimal treatment for patients with ovarian cancer (OV). Consequently, there is an urgent requirement for an ideal biomarker to facilitate precision medicine. To address this issue, we selected 15 multicentre cohorts, comprising 12 OV cohorts and 3 immunotherapy cohorts. Initially, we identified a set of robust prognostic risk genes using data from the 12 OV cohorts. Subsequently, we employed a consensus cluster analysis to identify distinct clusters based on the expression profiles of the risk genes. Finally, a machine learning-derived prognostic signature (MLDPS) was developed based on differentially expressed genes and univariate Cox regression genes between the clusters by using 10 machine-learning algorithms (101 combinations). Patients with high MLDPS had unfavourable survival rates and have good prediction performance in all cohorts and in-house cohorts. The MLDPS exhibited robust and dramatically superior capability than 21 published signatures. Of note, low MLDIS have a positive prognostic impact on patients treated with anti-PD-1 immunotherapy by driving changes in the level of infiltration of immune cells. Additionally, patients suffering from OV with low MLDIS were more sensitive to immunotherapy. Meanwhile, patients with low MLDIS might benefit from chemotherapy, and 19 compounds that may be potential agents for patients with low MLDIS were identified. MLDIS presents an appealing instrument for the identification of patients at high/low risk. This could enhance the precision treatment, ultimately guiding the clinical management of OV.
Collapse
Affiliation(s)
- Qing Huan
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and GynecologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Shuchao Cheng
- Bidding Management OfficeThe Second Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinanShandongChina
| | - Hui‐Fen Ma
- School of Medical ManagementShandong First Medical UniversityJinanShandongChina
| | - Min Zhao
- Mianyang Central Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaMianyangSichuanChina
| | - Yu Chen
- School of ScienceWuhan University of TechnologyWuhanHubeiChina
| | - Xiaolu Yuan
- Department of PathologyMaoming People's HospitalMaomingGuangdongChina
| |
Collapse
|
34
|
Tao YP, Zhu HY, Shi QY, Wang CX, Hua YX, Hu HY, Zhou QY, Zhou ZL, Sun Y, Wang XM, Wang Y, Zhang YL, Guo YJ, Wang ZY, Che X, Xu CW, Zhang XC, Heger M, Tao SP, Zheng X, Xu Y, Ao L, Liu AJ, Liu SB, Cheng SQ, Pan WW. S1PR1 regulates ovarian cancer cell senescence through the PDK1-LATS1/2-YAP pathway. Oncogene 2023; 42:3491-3502. [PMID: 37828220 PMCID: PMC10656284 DOI: 10.1038/s41388-023-02853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Cell senescence deters the activation of various oncogenes. Induction of senescence is, therefore, a potentially effective strategy to interfere with vital processes in tumor cells. Sphingosine-1-phosphate receptor 1 (S1PR1) has been implicated in various cancer types, including ovarian cancer. The mechanism by which S1PR1 regulates ovarian cancer cell senescence is currently elusive. In this study, we demonstrate that S1PR1 was highly expressed in human ovarian cancer tissues and cell lines. S1PR1 deletion inhibited the proliferation and migration of ovarian cancer cells. S1PR1 deletion promoted ovarian cancer cell senescence and sensitized ovarian cancer cells to cisplatin chemotherapy. Exposure of ovarian cancer cells to sphingosine-1-phosphate (S1P) increased the expression of 3-phosphatidylinositol-dependent protein kinase 1 (PDK1), decreased the expression of large tumor suppressor 1/2 (LATS1/2), and induced phosphorylation of Yes-associated protein (p-YAP). Opposite results were obtained in S1PR1 knockout cells following pharmacological inhibition. After silencing LATS1/2 in S1PR1-deficient ovarian cancer cells, senescence was suppressed and S1PR1 expression was increased concomitantly with YAP expression. Transcriptional regulation of S1PR1 by YAP was confirmed by chromatin immunoprecipitation. Accordingly, the S1PR1-PDK1-LATS1/2-YAP pathway regulates ovarian cancer cell senescence and does so through a YAP-mediated feedback loop. S1PR1 constitutes a druggable target for the induction of senescence in ovarian cancer cells. Pharmacological intervention in the S1PR1-PDK1-LATS1/2-YAP signaling axis may augment the efficacy of standard chemotherapy.
Collapse
Affiliation(s)
- Yi-Ping Tao
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Heng-Yan Zhu
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Qian-Yuan Shi
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Cai-Xia Wang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Yu-Xin Hua
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
- Zhejiang Chinese Medicine University and Jiaxing University Master Degree Cultivation Base, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Han-Yin Hu
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
- Zhejiang Chinese Medicine University and Jiaxing University Master Degree Cultivation Base, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Qi-Yin Zhou
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
- Zhejiang Chinese Medicine University and Jiaxing University Master Degree Cultivation Base, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Zi-Lu Zhou
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Ying Sun
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Xiao-Min Wang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Yu Wang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Ya-Ling Zhang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Yan-Jun Guo
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Zi-Ying Wang
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Xuan Che
- Department of Anesthesiology, Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children Hospital, Jiaxing University, Jiaxing, Zhejiang Province, 314001, China
| | - Chun-Wei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 Banshan East Street, Gongshu District, Hangzhou, 310022, China
| | - Xian-Chao Zhang
- Institute of Information Network and Artificial Intelligence, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Su-Ping Tao
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Xin Zheng
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Ying Xu
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Lei Ao
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China
| | - Ai-Jun Liu
- Department of Pathology, the 7th Medical Center, General Hospital of PLA, Beijing, 100700, China
| | - Sheng-Bing Liu
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China.
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China.
| | - Wei-Wei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China.
- G60 STI Valley Industry & Innovation Institute, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, China.
| |
Collapse
|
35
|
Ben-Chetrit N, Niu X, Sotelo J, Swett AD, Rajasekhar VK, Jiao MS, Stewart CM, Bhardwaj P, Kottapalli S, Ganesan S, Loyher PL, Potenski C, Hannuna A, Brown KA, Iyengar NM, Giri DD, Lowe SW, Healey JH, Geissmann F, Sagi I, Joyce JA, Landau DA. Breast Cancer Macrophage Heterogeneity and Self-renewal are Determined by Spatial Localization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563749. [PMID: 37961223 PMCID: PMC10634790 DOI: 10.1101/2023.10.24.563749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Tumor-infiltrating macrophages support critical steps in tumor progression, and their accumulation in the tumor microenvironment (TME) is associated with adverse outcomes and therapeutic resistance across human cancers. In the TME, macrophages adopt diverse phenotypic alterations, giving rise to heterogeneous immune activation states and induction of cell cycle. While the transcriptional profiles of these activation states are well-annotated across human cancers, the underlying signals that regulate macrophage heterogeneity and accumulation remain incompletely understood. Here, we leveraged a novel ex vivo organotypic TME (oTME) model of breast cancer, in vivo murine models, and human samples to map the determinants of functional heterogeneity of TME macrophages. We identified a subset of F4/80highSca-1+ self-renewing macrophages maintained by type-I interferon (IFN) signaling and requiring physical contact with cancer-associated fibroblasts. We discovered that the contact-dependent self-renewal of TME macrophages is mediated via Notch4, and its inhibition abrogated tumor growth of breast and ovarian carcinomas in vivo, as well as lung dissemination in a PDX model of triple-negative breast cancer (TNBC). Through spatial multi-omic profiling of protein markers and transcriptomes, we found that the localization of macrophages further dictates functionally distinct but reversible phenotypes, regardless of their ontogeny. Whereas immune-stimulatory macrophages (CD11C+CD86+) populated the tumor epithelial nests, the stroma-associated macrophages (SAMs) were proliferative, immunosuppressive (Sca-1+CD206+PD-L1+), resistant to CSF-1R depletion, and associated with worse patient outcomes. Notably, following cessation of CSF-1R depletion, macrophages rebounded primarily to the SAM phenotype, which was associated with accelerated growth of mammary tumors. Our work reveals the spatial determinants of macrophage heterogeneity in breast cancer and highlights the disruption of macrophage self-renewal as a potential new therapeutic strategy.
Collapse
Affiliation(s)
- Nir Ben-Chetrit
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
- These authors contributed equally
| | - Xiang Niu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
- These authors contributed equally
- Present address: Genentech, Inc., South San Francisco, CA, USA
| | - Jesus Sotelo
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Ariel D. Swett
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Vinagolu K. Rajasekhar
- Orthopedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria S. Jiao
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caitlin M. Stewart
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Priya Bhardwaj
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sanjay Kottapalli
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Saravanan Ganesan
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Pierre-Louis Loyher
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Catherine Potenski
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Assaf Hannuna
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Neil M. Iyengar
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dilip D. Giri
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - John H. Healey
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Frederic Geissmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Johanna A. Joyce
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Switzerland
| | - Dan A. Landau
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| |
Collapse
|
36
|
Grieco JP, Compton SLE, Davis GN, Guinan J, Schmelz EM. Genetic and Functional Modifications Associated with Ovarian Cancer Cell Aggregation and Limited Culture Conditions. Int J Mol Sci 2023; 24:14867. [PMID: 37834315 PMCID: PMC10573375 DOI: 10.3390/ijms241914867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The aggregation of cancer cells provides a survival signal for disseminating cancer cells; however, the underlying molecular mechanisms have yet to be elucidated. Using qPCR gene arrays, this study investigated the changes in cancer-specific genes as well as genes regulating mitochondrial quality control, metabolism, and oxidative stress in response to aggregation and hypoxia in our progressive ovarian cancer models representing slow- and fast-developing ovarian cancer. Aggregation increased the expression of anti-apoptotic, stemness, epithelial-mesenchymal transition (EMT), angiogenic, mitophagic, and reactive oxygen species (ROS) scavenging genes and functions, and decreased proliferation, apoptosis, metabolism, and mitochondrial content genes and functions. The incorporation of stromal vascular cells (SVF) from obese mice into the spheroids increased DNA repair and telomere regulatory genes that may represent a link between obesity and ovarian cancer risk. While glucose had no effect, glutamine was essential for aggregation and supported proliferation of the spheroid. In contrast, low glucose and hypoxic culture conditions delayed adhesion and outgrowth capacity of the spheroids independent of their phenotype, decreased mitochondrial mass and polarity, and induced a shift of mitochondrial dynamics towards mitophagy. However, these conditions did not reduce the appearance of polarized mitochondria at adhesion sites, suggesting that adhesion signals that either reversed mitochondrial fragmentation or induced mitobiogenesis can override the impact of low glucose and oxygen levels. Thus, the plasticity of the spheroids' phenotype supports viability during dissemination, allows for the adaptation to changing conditions such as oxygen and nutrient availability. This may be critical for the development of an aggressive cancer phenotype and, therefore, could represent druggable targets for clinical interventions.
Collapse
Affiliation(s)
- Joseph P. Grieco
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Stephanie L. E. Compton
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24061, USA; (S.L.E.C.); (G.D.N.)
| | - Grace N. Davis
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24061, USA; (S.L.E.C.); (G.D.N.)
| | - Jack Guinan
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24061, USA; (S.L.E.C.); (G.D.N.)
| | - Eva M. Schmelz
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24061, USA; (S.L.E.C.); (G.D.N.)
| |
Collapse
|
37
|
Tangudu NK, Buj R, Wang H, Wang J, Cole AR, Uboveja A, Fang R, Amalric A, Sajjakulnukit P, Lyons MA, Cooper K, Hempel N, Snyder NW, Lyssiotis CA, Chandran UR, Aird KM. De novo purine metabolism is a metabolic vulnerability of cancers with low p16 expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.15.549149. [PMID: 37503050 PMCID: PMC10369956 DOI: 10.1101/2023.07.15.549149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in ~50% of all human cancers. In its canonical role, p16 inhibits the G1-S phase cell cycle progression through suppression of cyclin dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. Whether other nucleotide metabolic genes and pathways are affected by p16/CDKN2A loss and if these can be specifically targeted in p16/CDKN2A-low tumors has not been previously explored. Using CRISPR KO libraries in multiple isogenic human and mouse melanoma cell lines, we determined that many nucleotide metabolism genes are negatively enriched in p16/CDKN2A knockdown cells compared to controls. Indeed, many of the genes that are required for survival in the context of low p16/CDKN2A expression based on our CRISPR screens are upregulated in p16 knockdown melanoma cells and those with endogenously low CDKN2A expression. We determined that cells with low p16/Cdkn2a expression are sensitive to multiple inhibitors of de novo purine synthesis, including anti-folates. Tumors with p16 knockdown were more sensitive to the anti-folate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2A-low tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents.
Collapse
Affiliation(s)
- Naveen Kumar Tangudu
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Raquel Buj
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Hui Wang
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jiefei Wang
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Aidan R. Cole
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Apoorva Uboveja
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Richard Fang
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Amandine Amalric
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Maureen A. Lyons
- Genomics Facility UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Kristine Cooper
- Biostatistics Facility UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Nathaniel W. Snyder
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Uma R. Chandran
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Katherine M. Aird
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
38
|
Walker RR, Chiappinelli KB. Protein Exaptation by Endogenous Retroviral Elements Shapes Tumor Cell Senescence and Downstream Immune Signaling. Cancer Res 2023; 83:2640-2642. [PMID: 37549230 DOI: 10.1158/0008-5472.can-23-1862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 08/09/2023]
Abstract
Cancer cell senescence in lung squamous cell carcinoma (LUSC) is associated with a poor response to chemotherapies and immunotherapies due to promotion of an immunosuppressive tumor microenvironment. This environment is shaped by the senescence-associated secretory pathway, which recruits suppressive immune cell populations. In a recent study, Attig and colleagues identified a transcription factor-activated molecular switch that circumvents cellular senescence through increased expression of the calbindin protein. A human endogenous retrovirus (HERV) sequence upstream of the calbindin gene, CALB1, promotes the transcription of an HERVH-CALB1 transcript through a splice event at the third CALB1 exon in a process known as protein exaptation. The KLF5 transcription factor mediates this transcriptional activity by binding at the HERVH sequence, subsequently initiating the chimeric HERVH-CALB1 transcription. This increased expression of calbindin reduces CXCL8 chemokine production and downstream neutrophil recruitment in LUSC tumor cells. CALB1 exaptation by HERVH is one example by which endogenous retroelements (ERE) regulate immunity in human cancers, highlighting the emerging role of EREs in tumor immunity.
Collapse
Affiliation(s)
- Reddick R Walker
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, District of Columbia
- Integrated Biomedical Sciences, The George Washington University, Washington, District of Columbia
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, District of Columbia
- Integrated Biomedical Sciences, The George Washington University, Washington, District of Columbia
| |
Collapse
|
39
|
Martínez-Zamudio RI, Stefa A, Nabuco Leva Ferreira Freitas JA, Vasilopoulos T, Simpson M, Doré G, Roux PF, Galan MA, Chokshi RJ, Bischof O, Herbig U. Escape from oncogene-induced senescence is controlled by POU2F2 and memorized by chromatin scars. CELL GENOMICS 2023; 3:100293. [PMID: 37082139 PMCID: PMC10112333 DOI: 10.1016/j.xgen.2023.100293] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 04/22/2023]
Abstract
Although oncogene-induced senescence (OIS) is a potent tumor-suppressor mechanism, recent studies revealed that cells could escape from OIS with features of transformed cells. However, the mechanisms that promote OIS escape remain unclear, and evidence of post-senescent cells in human cancers is missing. Here, we unravel the regulatory mechanisms underlying OIS escape using dynamic multidimensional profiling. We demonstrate a critical role for AP1 and POU2F2 transcription factors in escape from OIS and identify senescence-associated chromatin scars (SACSs) as an epigenetic memory of OIS detectable during colorectal cancer progression. POU2F2 levels are already elevated in precancerous lesions and as cells escape from OIS, and its expression and binding activity to cis-regulatory elements are associated with decreased patient survival. Our results support a model in which POU2F2 exploits a precoded enhancer landscape necessary for senescence escape and reveal POU2F2 and SACS gene signatures as valuable biomarkers with diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Ricardo Iván Martínez-Zamudio
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Alketa Stefa
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Graduate School of Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103 USA
| | - José Américo Nabuco Leva Ferreira Freitas
- Sorbonne Université, UMR 8256, Biological Adaptation and Ageing – IBPS, 75005 Paris, France
- INSERM U1164, 75005 Paris, France
- IMRB, Mondor Institute for Biomedical Research, INSERM U955 – Université Paris Est Créteil, UPEC, Faculté de Médecine de Créteil 8, rue du Général Sarrail, 94010 Créteil, France
| | - Themistoklis Vasilopoulos
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Graduate School of Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103 USA
| | - Mark Simpson
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Gregory Doré
- Institut Pasteur, Plasmodium RNA Biology Unit, 25 Rue du Docteur Roux, 75724 Cedex 15 Paris, France
| | - Pierre-François Roux
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Mark A. Galan
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Ravi J. Chokshi
- Department of Surgery, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Oliver Bischof
- IMRB, Mondor Institute for Biomedical Research, INSERM U955 – Université Paris Est Créteil, UPEC, Faculté de Médecine de Créteil 8, rue du Général Sarrail, 94010 Créteil, France
| | - Utz Herbig
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
40
|
Zhang J, Ding H, Zhang F, Xu Y, Liang W, Huang L. New trends in diagnosing and treating ovarian cancer using nanotechnology. Front Bioeng Biotechnol 2023; 11:1160985. [PMID: 37082219 PMCID: PMC10110946 DOI: 10.3389/fbioe.2023.1160985] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Ovarian cancer stands as the fifth most prevalent cancer among women, causing more mortalities than any other disease of the female reproductive system. There are numerous histological subtypes of ovarian cancer, each of which has distinct clinical characteristics, risk factors, cell origins, molecular compositions, and therapeutic options. Typically, it is identified at a late stage, and there is no efficient screening method. Standard therapies for newly diagnosed cancer are cytoreductive surgery and platinum-based chemotherapy. The difficulties of traditional therapeutic procedures encourage researchers to search for other approaches, such as nanotechnology. Due to the unique characteristics of matter at the nanoscale, nanomedicine has emerged as a potent tool for creating novel drug carriers that are more effective and have fewer adverse effects than traditional treatments. Nanocarriers including liposomes, dendrimers, polymer nanoparticles, and polymer micelles have unique properties in surface chemistry, morphology, and mechanism of action that can distinguish between malignant and normal cells, paving the way for targeted drug delivery. In contrast to their non-functionalized counterparts, the development of functionalized nano-formulations with specific ligands permits selective targeting of ovarian cancers and ultimately increases the therapeutic potential. This review focuses on the application of various nanomaterials to the treatment and diagnosis of ovarian cancer, their advantages over conventional treatment methods, and the effective role of controlled drug delivery systems in the therapy of ovarian cancer.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Gynecology, Shaoxing Maternity and Child Healthcare Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Haigang Ding
- Department of Gynecology, Shaoxing Maternity and Child Healthcare Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Feng Zhang
- Department of Gynecology, Shaoxing Maternity and Child Healthcare Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Yan Xu
- Intensive Care Unit, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Liping Huang, ; Wenqing Liang,
| | - Liping Huang
- Department of Medical Oncology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Liping Huang, ; Wenqing Liang,
| |
Collapse
|
41
|
Oesterreich S, Aird KM. Senescence and Immunotherapy: Redundant Immunomodulatory Pathways Promote Resistance. Cancer Immunol Res 2023; 11:401-404. [PMID: 36826438 PMCID: PMC11221415 DOI: 10.1158/2326-6066.cir-23-0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/25/2023]
Abstract
Senescent cancer cells alter their microenvironment through secretion of pro-inflammatory cytokines and chemokines called the senescence-associated secretory phenotype (SASP) and upregulation of immunoinhibitory proteins such as CD80 and programmed death-ligand 1. The senescence field is just beginning to explore the role of these changes on antitumor immunity and response to immunotherapy. In this Perspective, we highlight a new study that aimed to determine how senescent breast cancer cells are shielded from immunosurveillance via upregulation of redundant immunoinhibitory proteins in two distinct senescent populations. We also discuss recent articles regarding how the SASP alters the tumor immune microenvironment and response to immunotherapy. As many therapies used to treat cancers induce senescence, future work will need to better refine the composition of the SASP and heterogeneity of senescence in the tumor microenvironment to more completely understand how the immune compartment is regulated by senescent tumors.
Collapse
Affiliation(s)
- Steffi Oesterreich
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Katherine M. Aird
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Matsuda S, Revandkar A, Dubash TD, Ravi A, Wittner BS, Lin M, Morris R, Burr R, Guo H, Seeger K, Szabolcs A, Che D, Nieman L, Getz GA, Ting DT, Lawrence MS, Gainor J, Haber DA, Maheswaran S. TGF-β in the microenvironment induces a physiologically occurring immune-suppressive senescent state. Cell Rep 2023; 42:112129. [PMID: 36821441 PMCID: PMC10187541 DOI: 10.1016/j.celrep.2023.112129] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/06/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
TGF-β induces senescence in embryonic tissues. Whether TGF-β in the hypoxic tumor microenvironment (TME) induces senescence in cancer and how the ensuing senescence-associated secretory phenotype (SASP) remodels the cellular TME to influence immune checkpoint inhibitor (ICI) responses are unknown. We show that TGF-β induces a deeper senescent state under hypoxia than under normoxia; deep senescence correlates with the degree of E2F suppression and is marked by multinucleation, reduced reentry into proliferation, and a distinct 14-gene SASP. Suppressing TGF-β signaling in tumors in an immunocompetent mouse lung cancer model abrogates endogenous senescent cells and suppresses the 14-gene SASP and immune infiltration. Untreated human lung cancers with a high 14-gene SASP display immunosuppressive immune infiltration. In a lung cancer clinical trial of ICIs, elevated 14-gene SASP is associated with increased senescence, TGF-β and hypoxia signaling, and poor progression-free survival. Thus, TME-induced senescence may represent a naturally occurring state in cancer, contributing to an immune-suppressive phenotype associated with immune therapy resistance.
Collapse
Affiliation(s)
- Satoru Matsuda
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ajinkya Revandkar
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Taronish D Dubash
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Arvind Ravi
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA 02139, USA; Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ben S Wittner
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Maoxuan Lin
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Robert Morris
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Risa Burr
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hongshan Guo
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Karsen Seeger
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Annamaria Szabolcs
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Dante Che
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Linda Nieman
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Gad A Getz
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David T Ting
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael S Lawrence
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Justin Gainor
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel A Haber
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Howard Hughes Medical Institute, Bethesda, MD 20815, USA.
| | - Shyamala Maheswaran
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
43
|
Li C, Deng T, Cao J, Zhou Y, Luo X, Feng Y, Huang H, Liu J. Identifying ITGB2 as a Potential Prognostic Biomarker in Ovarian Cancer. Diagnostics (Basel) 2023; 13:diagnostics13061169. [PMID: 36980477 PMCID: PMC10047357 DOI: 10.3390/diagnostics13061169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Epithelial ovarian cancer is by far the most lethal gynecological malignancy. The exploration of promising immunomarkers to predict prognosis in ovarian cancer patients remains challenging. In our research, we carried out an integrated bioinformatic analysis of genome expressions and their immune characteristics in the ovarian cancer microenvironment with validation in different experiments. We filtrated 332 differentially expressed genes with 10 upregulated hub genes from the Gene Expression Omnibus database. These genes were closely related to ovarian tumorigenesis. Subsequently, the survival and immune infiltration analysis demonstrated that the upregulation of five candidate genes, ITGB2, VEGFA, CLDN4, OCLN, and SPP1, were correlated with an unfavorable clinical outcome and increased immune cell infiltration in ovarian cancer. Of these genes, ITGB2 tended to be the gene most correlated with various immune cell infiltrations and had a strong correlation with significant M2 macrophages infiltration (r = 0.707, p = 4.71 × 10-39), while it had a moderate correlation with CD4+/CD8+ T cells and B cells. This characteristic explains why the high expression of ITGB2 was accompanied by immune activation but did not reverse carcinogenesis. Additionally, we confirmed that ITGB2 was over-expressed in ovarian cancer tissues and was mainly located in cytoplasm, detected by Western blotting and the immunohistochemical method. In summary, ITGB2 may serve as a prognostic immunomarker for ovarian cancer patients.
Collapse
Affiliation(s)
- Chanyuan Li
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Ting Deng
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Junya Cao
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Yun Zhou
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaolin Luo
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Yanling Feng
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - He Huang
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Jihong Liu
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
44
|
Li Q, Zhao Y, Xu C, Liang Y, Zhao Y, He Q, Li J, Chen K, Qiao H, Liu N, Ma J, Chen L, Li Y. Chemotherapy-Induced Senescence Reprogramming Promotes Nasopharyngeal Carcinoma Metastasis by circRNA-Mediated PKR Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205668. [PMID: 36683218 PMCID: PMC10015868 DOI: 10.1002/advs.202205668] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Indexed: 05/13/2023]
Abstract
Senescence is associated with tumor metastasis and chemotherapy resistance, yet the mechanisms remain elusive. Here, it is identified that nasopharyngeal carcinoma (NPC) patients who developed distant metastasis are characterized by senescence phenotypes, in which circWDR37 is a key regulator. CircWDR37 deficiency limits cisplatin or gemcitabine-induced senescent NPC cells from proliferation, migration, and invasion. Mechanistically, circWDR37 binds to and dimerizes double-stranded RNA-activated protein kinase R (PKR) to initiate PKR autophosphorylation and activation. Independent of its kinase activity, phosphorylated PKR induces I-kappaB kinase beta (IKKβ) phosphorylation, binds to and releases RELA from NF-κB inhibitor alpha (IκBα) to trigger nuclear factor kappa B (NF-κB) activation, thereby stimulating cyclin D1 (CCND1) and senescence-associated secretory phenotype component gene transcription in a circWDR37-dependent manner. Low circWDR37 levels correlate with chemotherapy response and favorable survival in NPC patients treated with gemcitabine or cisplatin induction chemotherapy. This study uncovers a new mechanism of circWDR37 activated PKR in senescence-driven metastasis and provides appealing therapeutic targets in NPC.
Collapse
Affiliation(s)
- Qian Li
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Radiation OncologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yu‐Heng Zhao
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Cheng Xu
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Radiation OncologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Ye‐Lin Liang
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Radiation OncologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yin Zhao
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Qing‐Mei He
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Jun‐Yan Li
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Radiation OncologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Kai‐Lin Chen
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Radiation OncologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Han Qiao
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Na Liu
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Jun Ma
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Radiation OncologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Lei Chen
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Radiation OncologySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Ying‐Qin Li
- Sun Yat‐sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyCenter for Precision Medicine of Sun Yat‐sen UniversityGuangzhou510060P. R. China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
45
|
Chen HA, Ho YJ, Mezzadra R, Adrover JM, Smolkin R, Zhu C, Woess K, Bernstein N, Schmitt G, Fong L, Luan W, Wuest A, Tian S, Li X, Broderick C, Hendrickson RC, Egeblad M, Chen Z, Alonso-Curbelo D, Lowe SW. Senescence Rewires Microenvironment Sensing to Facilitate Antitumor Immunity. Cancer Discov 2023; 13:432-453. [PMID: 36302222 PMCID: PMC9901536 DOI: 10.1158/2159-8290.cd-22-0528] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/16/2022] [Accepted: 10/24/2022] [Indexed: 02/07/2023]
Abstract
Cellular senescence involves a stable cell-cycle arrest coupled to a secretory program that, in some instances, stimulates the immune clearance of senescent cells. Using an immune-competent liver cancer model in which senescence triggers CD8 T cell-mediated tumor rejection, we show that senescence also remodels the cell-surface proteome to alter how tumor cells sense environmental factors, as exemplified by type II interferon (IFNγ). Compared with proliferating cells, senescent cells upregulate the IFNγ receptor, become hypersensitized to microenvironmental IFNγ, and more robustly induce the antigen-presenting machinery-effects also recapitulated in human tumor cells undergoing therapy-induced senescence. Disruption of IFNγ sensing in senescent cells blunts their immune-mediated clearance without disabling the senescence state or its characteristic secretory program. Our results demonstrate that senescent cells have an enhanced ability to both send and receive environmental signals and imply that each process is required for their effective immune surveillance. SIGNIFICANCE Our work uncovers an interplay between tissue remodeling and tissue-sensing programs that can be engaged by senescence in advanced cancers to render tumor cells more visible to the adaptive immune system. This new facet of senescence establishes reciprocal heterotypic signaling interactions that can be induced therapeutically to enhance antitumor immunity. See related article by Marin et al., p. 410. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Hsuan-An Chen
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu-Jui Ho
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Riccardo Mezzadra
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Ryan Smolkin
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Changyu Zhu
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katharina Woess
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | | | - Linda Fong
- Calico Life Sciences, South San Francisco, California
| | - Wei Luan
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexandra Wuest
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sha Tian
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xiang Li
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Caroline Broderick
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald C. Hendrickson
- Microchemistry and Proteomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Zhenghao Chen
- Calico Life Sciences, South San Francisco, California
| | - Direna Alonso-Curbelo
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Scott W. Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
46
|
Redrado M, Fernández‐Moreira V. The Role of Metallodrugs in Cellular Senescence. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202200593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Marta Redrado
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Vanesa Fernández‐Moreira
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
47
|
Li H, Luo Q, Zhang H, Ma X, Gu Z, Gong Q, Luo K. Nanomedicine embraces cancer radio-immunotherapy: mechanism, design, recent advances, and clinical translation. Chem Soc Rev 2023; 52:47-96. [PMID: 36427082 DOI: 10.1039/d2cs00437b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cancer radio-immunotherapy, integrating external/internal radiation therapy with immuno-oncology treatments, emerges in the current management of cancer. A growing number of pre-clinical studies and clinical trials have recently validated the synergistic antitumor effect of radio-immunotherapy, far beyond the "abscopal effect", but it suffers from a low response rate and toxicity issues. To this end, nanomedicines with an optimized design have been introduced to improve cancer radio-immunotherapy. Specifically, these nanomedicines are elegantly prepared by incorporating tumor antigens, immuno- or radio-regulators, or biomarker-specific imaging agents into the corresponding optimized nanoformulations. Moreover, they contribute to inducing various biological effects, such as generating in situ vaccination, promoting immunogenic cell death, overcoming radiation resistance, reversing immunosuppression, as well as pre-stratifying patients and assessing therapeutic response or therapy-induced toxicity. Overall, this review aims to provide a comprehensive landscape of nanomedicine-assisted radio-immunotherapy. The underlying working principles and the corresponding design strategies for these nanomedicines are elaborated by following the concept of "from bench to clinic". Their state-of-the-art applications, concerns over their clinical translation, along with perspectives are covered.
Collapse
Affiliation(s)
- Haonan Li
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Qiang Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Xuelei Ma
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Zhongwei Gu
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Qiyong Gong
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Kui Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
48
|
Esimbekova AR, Palkina NV, Zinchenko IS, Belenyuk VD, Savchenko AA, Sergeeva EY, Ruksha T. Focal adhesion alterations in
G0
‐positive melanoma cells. Cancer Med 2022; 12:7294-7308. [PMID: 36533319 PMCID: PMC10067123 DOI: 10.1002/cam4.5510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Melanoma is a highly heterogeneous malignant tumor that exhibits various forms of drug resistance. Recently, reversal transition of cancer cells to the G0 phase of the cell cycle under the influence of therapeutic drugs has been identified as an event associated with tumor dissemination. In the present study, we investigated the ability of chemotherapeutic agent dacarbazine to induce a transition of melanoma cells to the G0 phase as a mechanism of chemoresistance. METHODS We used the flow cytometry to analyze cell distribution within cell cycle phases after dacarbazine treatment as well as to identifyG0 -positive cells population. Transcriptome profiling was provided to determine genes associated with dacarbazine resistance. We evaluated the activity of β-galactosidase in cells treated with dacarbazine by substrate hydrolysis. Cell adhesion strength was measured by centrifugal assay application with subsequent staining of adhesive cells with Ki-67 monoclonal antibodies. Ability of melanoma cells to metabolize dacarbazine was determined by expressional analysis of CYP1A1, CYP1A2, CYP2E1 followed by CYP1A1 protein level evaluation by the ELISA method. RESULTS The present study determined that dacarbazine treatment of melanoma cells could induce an increase in the percentage of cells in G0 phase without alterations of β-galactosidase positive cells which corresponded to the fraction of the senescent cells. Transcriptomic profiling of cells under dacarbazine induction of G0 -positive cells percentage revealed that 'VEGFA-VEGFR2 signaling pathway' and 'Cell cycle' signaling were mostly enriched by dysregulated genes. 'Focal adhesion' signaling was also found to be triggered by dacarbazine. In melanoma cells treated with dacarbazine, an increase in G0 -positive cells among adherent cells was found. CONCLUSIONS Dacarbazine induces the alteration in a percentage of melanoma cells residing in G0 phase of a cell cycle. The altered adhesive phenotype of cancer cells under transition in the G0 phase may refer to a specific intercellular communication pattern of quiescent/senescent cancer cells.
Collapse
Affiliation(s)
| | - Nadezhda V. Palkina
- Department of Pathophysiology Krasnoyarsk State Medical University Krasnoyarsk Russia
| | - Ivan S. Zinchenko
- Department of Pathophysiology Krasnoyarsk State Medical University Krasnoyarsk Russia
| | - Vasiliy D. Belenyuk
- Laboratory of Cell Molecular Physiology and Pathology Federal Research Center, Krasnoyarsk Science Center of The Siberian Branch of The Russian Academy of Sciences Krasnoyarsk Russia
| | - Andrey A. Savchenko
- Laboratory of Cell Molecular Physiology and Pathology Federal Research Center, Krasnoyarsk Science Center of The Siberian Branch of The Russian Academy of Sciences Krasnoyarsk Russia
| | - Ekaterina Yu Sergeeva
- Department of Pathophysiology Krasnoyarsk State Medical University Krasnoyarsk Russia
| | - Tatiana G. Ruksha
- Department of Pathophysiology Krasnoyarsk State Medical University Krasnoyarsk Russia
| |
Collapse
|
49
|
Clemente-González C, Carnero A. Role of the Hypoxic-Secretome in Seed and Soil Metastatic Preparation. Cancers (Basel) 2022; 14:5930. [PMID: 36497411 PMCID: PMC9738438 DOI: 10.3390/cancers14235930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
During tumor growth, the delivery of oxygen to cells is impaired due to aberrant or absent vasculature. This causes an adaptative response that activates the expression of genes that control several essential processes, such as glycolysis, neovascularization, immune suppression, and the cancer stemness phenotype, leading to increased metastasis and resistance to therapy. Hypoxic tumor cells also respond to an altered hypoxic microenvironment by secreting vesicles, factors, cytokines and nucleic acids that modify not only the immediate microenvironment but also organs at distant sites, allowing or facilitating the attachment and growth of tumor cells and contributing to metastasis. Hypoxia induces the release of molecules of different biochemical natures, either secreted or inside extracellular vesicles, and both tumor cells and stromal cells are involved in this process. The mechanisms by which these signals that can modify the premetastatic niche are sent from the primary tumor site include changes in the extracellular matrix, recruitment and activation of different stromal cells and immune or nonimmune cells, metabolic reprogramming, and molecular signaling network rewiring. In this review, we will discuss how hypoxia might alter the premetastatic niche through different signaling molecules.
Collapse
Affiliation(s)
- Cynthia Clemente-González
- Instituto de Biomedicina de Sevilla (IBIS), Consejo Superior de Investigaciones Científicas, Hospital Universitario Virgen del Rocío (HUVR), Universidad de Sevilla, 41013 Seville, Spain
- CIBERONC (Centro de Investigación Biomédica en Red Cáncer), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Consejo Superior de Investigaciones Científicas, Hospital Universitario Virgen del Rocío (HUVR), Universidad de Sevilla, 41013 Seville, Spain
- CIBERONC (Centro de Investigación Biomédica en Red Cáncer), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
50
|
Rappold PM, Vuong L, Leibold J, Chakiryan NH, Curry M, Kuo F, Sabio E, Jiang H, Nixon BG, Liu M, Berglund AE, Silagy AW, Mascareno A, Golkaram M, Marker M, Reising A, Savchenko A, Millholland J, Chen YB, Russo P, Coleman J, Reznik E, Manley BJ, Ostrovnaya I, Makarov V, DiNatale RG, Blum KA, Ma X, Chowell D, Li MO, Solit DB, Lowe SW, Chan TA, Motzer RJ, Voss MH, Hakimi AA. A Targetable Myeloid Inflammatory State Governs Disease Recurrence in Clear-Cell Renal Cell Carcinoma. Cancer Discov 2022; 12:2308-2329. [PMID: 35758895 PMCID: PMC9720541 DOI: 10.1158/2159-8290.cd-21-0925] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 04/22/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
It is poorly understood how the tumor immune microenvironment influences disease recurrence in localized clear-cell renal cell carcinoma (ccRCC). Here we performed whole-transcriptomic profiling of 236 tumors from patients assigned to the placebo-only arm of a randomized, adjuvant clinical trial for high-risk localized ccRCC. Unbiased pathway analysis identified myeloid-derived IL6 as a key mediator. Furthermore, a novel myeloid gene signature strongly correlated with disease recurrence and overall survival on uni- and multivariate analyses and is linked to TP53 inactivation across multiple data sets. Strikingly, effector T-cell gene signatures, infiltration patterns, and exhaustion markers were not associated with disease recurrence. Targeting immunosuppressive myeloid inflammation with an adenosine A2A receptor antagonist in a novel, immunocompetent, Tp53-inactivated mouse model significantly reduced metastatic development. Our findings suggest that myeloid inflammation promotes disease recurrence in ccRCC and is targetable as well as provide a potential biomarker-based framework for the design of future immuno-oncology trials in ccRCC. SIGNIFICANCE Improved understanding of factors that influence metastatic development in localized ccRCC is greatly needed to aid accurate prediction of disease recurrence, clinical decision-making, and future adjuvant clinical trial design. Our analysis implicates intratumoral myeloid inflammation as a key driver of metastasis in patients and a novel immunocompetent mouse model. This article is highlighted in the In This Issue feature, p. 2221.
Collapse
Affiliation(s)
- Phillip M. Rappold
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lynda Vuong
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, MSKCC, New York, NY, USA
| | - Josef Leibold
- Cancer Biology and Genetics Program, MSKCC, New York, NY, USA
- Department of Medical Oncology & Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen 72076, Germany
- DFG Cluster of Excellence 2180 Image-Guided and Functional Instructed Tumor Therapy (iFIT), University of Tuebingen, Tuebingen 72076, Germany
| | - Nicholas H. Chakiryan
- Department of Genitourinary Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Michael Curry
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fengshen Kuo
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, MSKCC, New York, NY, USA
| | - Erich Sabio
- Human Oncology and Pathogenesis Program, MSKCC, New York, NY, USA
| | - Hui Jiang
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, MSKCC, New York, NY, USA
| | - Briana G. Nixon
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ming Liu
- Legend Biotech USA Inc, NJ, USA
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrew W. Silagy
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ankur Mascareno
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, MSKCC, New York, NY, USA
| | - Mahdi Golkaram
- Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | | | | | | | | | | | - Paul Russo
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan Coleman
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ed Reznik
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brandon J. Manley
- Department of Genitourinary Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA Integrated Mathematical Oncology Department, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Irina Ostrovnaya
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vladimir Makarov
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Renzo G. DiNatale
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kyle A. Blum
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaoxiao Ma
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Diego Chowell
- Department of Oncological Sciences, The Precision Immunology Institute, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming O. Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B. Solit
- Human Oncology and Pathogenesis Program, MSKCC, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, MSKCC, New York, NY, USA
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, MSKCC, New York, NY, USA
| | - Timothy A. Chan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Robert J. Motzer
- Department of Medicine, Genitourinary Oncology, MSKCC, New York, NY, USA
| | - Martin H. Voss
- Department of Medicine, Genitourinary Oncology, MSKCC, New York, NY, USA
| | - A. Ari Hakimi
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|