1
|
Liu CW, Wang YM, Chen SY, Lu LY, Liang TY, Fang KC, Chen P, Lee IC, Liu WC, Kumar A, Kuo SH, Lee JC, Lo CC, Wu SC, Pan MK. The cerebellum shapes motions by encoding motor frequencies with precision and cross-individual uniformity. Nat Biomed Eng 2025:10.1038/s41551-025-01409-5. [PMID: 40425805 DOI: 10.1038/s41551-025-01409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 04/16/2025] [Indexed: 05/29/2025]
Abstract
Understanding brain behaviour encoding or designing neuroprosthetics requires identifying precise, consistent neural algorithms across individuals. However, cerebral microstructures and activities are individually variable, posing challenges for identifying precise codes. Here, despite cerebral variability, we report that the cerebellum shapes motor kinematics by encoding dynamic motor frequencies with remarkable numerical precision and cross-individual uniformity. Using in vivo electrophysiology and optogenetics in mice, we confirm that deep cerebellar neurons encode frequencies using populational tuning of neuronal firing probabilities, creating cerebellar oscillations and motions with matched frequencies. The mechanism is consistently presented in self-generated rhythmic and non-rhythmic motions triggered by a vibrational platform or skilled tongue movements of licking in all tested mice with cross-individual uniformity. The precision and uniformity allowed us to engineer complex motor kinematics with designed frequencies. We further validate the frequency-coding function of the human cerebellum using cerebellar electroencephalography recordings and alternating current stimulation during voluntary tapping tasks. Our findings reveal a cerebellar algorithm for motor kinematics with precision and uniformity, the mathematical foundation for a brain-computer interface for motor control.
Collapse
Grants
- NTUMC 110C101-011 NTU | College of Medicine, National Taiwan University (College of Medicine, National Taiwan University)
- NSC-145-11 National Taiwan University Hospital (NTUH)
- 113-UN0013 National Taiwan University Hospital (NTUH)
- 108-039 National Taiwan University Hospital (NTUH)
- 112-UN0024 National Taiwan University Hospital (NTUH)
- 113-E0001 National Taiwan University Hospital (NTUH)
- AS-TM-112-01-02 Academia Sinica
- NHRI-EX113-11303NI National Health Research Institutes (NHRI)
- 109-2326-B-002-013-MY4 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 107-2321-B-002-020 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 108-2321-B-002-011 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 108-2321-002-059-MY2 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 110-2321-B-002-012 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 111-2628-B-002-036 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 112-2628-B-002-011 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 113-2628-B-002-002 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- R01NS118179 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01NS104423 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01NS124854 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
Collapse
Affiliation(s)
- Chia-Wei Liu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Yi-Mei Wang
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan
| | - Shun-Ying Chen
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Liang-Yin Lu
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Yu Liang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Ke-Chu Fang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Peng Chen
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - I-Chen Lee
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Wen-Chuan Liu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ami Kumar
- The Initiative for Columbia Ataxia and Tremor, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Sheng-Han Kuo
- The Initiative for Columbia Ataxia and Tremor, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Jye-Chang Lee
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Chuan Lo
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Shun-Chi Wu
- Department of Engineering and Bioinformatics, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Kai Pan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan.
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Fakharian MA, Shoup AM, Hage P, Elseweifi HY, Shadmehr R. A vector calculus for neural computation in the cerebellum. Science 2025; 388:869-875. [PMID: 40403076 DOI: 10.1126/science.adu6331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/24/2025] [Indexed: 05/24/2025]
Abstract
Null space theory predicts that neurons generate spikes not only to produce behavior but also to prevent the undesirable effect of other neurons on behavior. In this work, we show that this competitive cancellation is essential for understanding computation in the cerebellum. In marmosets, we identified a vector for each Purkinje cell (P cell) along which its spikes displaced the eyes. Two spikes in two different P cells produced superposition of their vectors. In the resulting population activity, the spikes were canceled if their contributions were perpendicular to the intended movement. Mossy fibers provided a copy of the motor commands and the goal of the movement. Molecular layer interneurons transformed these inputs so that the P cell population predicted when the movement had reached the goal and should be stopped.
Collapse
Affiliation(s)
- Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alden M Shoup
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Paul Hage
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hisham Y Elseweifi
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Auer F, Nardone K, Matsuda K, Hibi M, Schoppik D. Cerebellar Purkinje cells control posture in larval zebrafish ( Danio rerio). eLife 2025; 13:RP97614. [PMID: 40272244 PMCID: PMC12021414 DOI: 10.7554/elife.97614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells - the output neurons of the cerebellar cortex - as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.
Collapse
Affiliation(s)
- Franziska Auer
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of MedicineNew YorkUnited States
| | - Katherine Nardone
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of MedicineNew YorkUnited States
| | - Koji Matsuda
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - David Schoppik
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
4
|
Hage P, Fakharian MA, Shoup AM, Pi JS, Sedaghat-Nejad E, Orozco SP, Jang IK, Looi V, Elseweifi HY, Mohammadrezaei N, Vasserman AN, Arginteanu T, Shadmehr R. Purkinje cells of the cerebellum control deceleration of tongue movements. PLoS Biol 2025; 23:e3003110. [PMID: 40208864 PMCID: PMC11984719 DOI: 10.1371/journal.pbio.3003110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 03/10/2025] [Indexed: 04/12/2025] Open
Abstract
We use our tongue much like our hands: to interact with objects and transport them. For example, we use our hands to sense properties of objects and transport them in the nearby space, and we use our tongue to sense properties of food morsels and transport them through the oral cavity. But what does the cerebellum contribute to control of tongue movements? Here, we trained head-fixed marmosets to make skillful tongue movements to harvest food from small tubes that were placed at sharp angles to their mouth. We identified the lingual regions of the cerebellar vermis and then measured the contribution of each Purkinje cell (P-cell) to control of the tongue by relying on the brief but complete suppression that they experienced following an input from the inferior olive. When a P-cell was suppressed during protraction, the tongue's trajectory became hypermetric, and when the suppression took place during retraction, the tongue's return to the mouth was slowed. Both effects were amplified when two P-cells were simultaneously suppressed. Moreover, these effects were present even when the pauses were not due to the climbing fiber input. Therefore, suppression of P-cells in the lingual vermis disrupted the forces that would normally decelerate the tongue as it approached the target. Notably, the population simple spike activity peaked near deceleration onset when the movement required precision (aiming for a tube), but not when the movement was for the purpose of grooming. Thus, the P-cells appeared to signal when to stop protrusion as the tongue approached its target.
Collapse
Affiliation(s)
- Paul Hage
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Alden M. Shoup
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jay S. Pi
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Ehsan Sedaghat-Nejad
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Simon P. Orozco
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - In Kyu Jang
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Vivian Looi
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Hisham Y. Elseweifi
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Nazanin Mohammadrezaei
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Alexander N. Vasserman
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Toren Arginteanu
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
5
|
Herzfeld DJ, Lisberger SG. Neural circuit mechanisms to transform cerebellar population dynamics for motor control in monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639459. [PMID: 40027752 PMCID: PMC11870495 DOI: 10.1101/2025.02.21.639459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
We exploit identification of neuron types during extracellular recording to demonstrate how the cerebellar cortex's well-established architecture transforms inputs into outputs. During smooth pursuit eye movements, the floccular complex performs distinct input-output transformations of temporal dynamics and directional response properties. The responses of different interneuron types localize the circuit mechanisms of each transformation. Mossy fibers and unipolar brush cells emphasize eye position dynamics uniformly across the cardinal axes; Purkinje cells and molecular layer interneurons code eye velocity along directionally biased axes; Golgi cells show unmodulated firing. Differential directional response properties of different neuron types localize the directional input-output transformation to the last-order inputs to Purkinje cells. Differential temporal dynamics pinpoint the site of the temporal input-output transformation to granule cells. Specific granule cell population dynamics allow the temporal transformations required in the area we study and generalize to many temporal transformations, providing a complete framework to understand cerebellar circuit computation. Impact statement We dissect the circuit computations performed by the floccular complex of the cerebellum during an exemplar sensory-motor behavior, taking advantage of knowledge of the circuit architecture, existence of discrete neuron types, and a newfound ability to identify neuron types from extracellular recordings. Our results describe the contributions of the major neuron types to the cerebellar input-output computations, identify the population dynamics needed in granule cells to support those computations, and to create a basis set to enable temporally-specific motor behavior and motor learning.
Collapse
|
6
|
Hage P, Amin Fakharian M, Shoup AM, Pi JS, Sedaghat-Nejad E, Orozco SP, Jang IK, Looi V, Elseweifi HY, Mohammadrezaei N, Vasserman AN, Arginteanu T, Shadmehr R. Control of tongue movements by the Purkinje cells of the cerebellum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.25.604757. [PMID: 39829829 PMCID: PMC11741394 DOI: 10.1101/2024.07.25.604757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
We use our tongue much like our hands: to interact with objects and transport them. For example, we use our hands to sense properties of objects and transport them in the nearby space, and we use our tongue to sense properties of food morsels and transport them through the oral cavity. But what does the cerebellum contribute to control of tongue movements? Here, we trained head-fixed marmosets to make skillful tongue movements to harvest food from small tubes that were placed at sharp angles to their mouth. We identified the lingual regions of the cerebellar vermis and then measured the contribution of each Purkinje cell (P-cell) to control of the tongue by relying on the brief but complete suppression that they experienced following an input from the inferior olive. When a P-cell was suppressed during protraction, the tongue's trajectory became hypermetric, and when the suppression took place during retraction, the tongue's return to the mouth was slowed. Both effects were amplified when two P-cells were simultaneously suppressed. Therefore, suppression of P-cells in the lingual vermis disrupted the forces that would normally decelerate the tongue as it approached the target. Notably, the population simple spike activity peaked near deceleration onset when the movement required precision (aiming for a tube), but not when the movement was for the purpose of grooming. Thus, the P-cells appeared to signal when to stop protrusion as the tongue approached its target.
Collapse
Affiliation(s)
- Paul Hage
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Alden M Shoup
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Jay S Pi
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Ehsan Sedaghat-Nejad
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Simon P Orozco
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - In Kyu Jang
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Vivian Looi
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Hisham Y Elseweifi
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Nazanin Mohammadrezaei
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Alexander N Vasserman
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Toren Arginteanu
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
7
|
Fakharian MA, Shoup AM, Hage P, Elseweifi HY, Shadmehr R. A vector calculus for neural computation in the cerebellum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.14.623565. [PMID: 39605699 PMCID: PMC11601439 DOI: 10.1101/2024.11.14.623565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Null space theory predicts that a neuron will often generate spikes not to produce behavior, but to prevent another neuron's impact on behavior. Here, we present a direct test of this theory in the brain. In the marmoset cerebellum, spike-triggered averaging identified a vector for each Purkinje cell (P-cell) along which its spikes displaced the eyes. Two spikes in two different P-cells produced superposition of their vectors. In the resulting population activity, the spikes were canceled if their contributions were perpendicular to the intended movement. Mossy fibers provided a copy of the motor commands and the sensory goal of the movement. Molecular layer interneurons transformed these inputs so that the P-cell population predicted when the movement had reached the goal and should be stopped.
Collapse
Affiliation(s)
- Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Alden M. Shoup
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Paul Hage
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Hisham Y. Elseweifi
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
8
|
Auer F, Nardone K, Matsuda K, Hibi M, Schoppik D. Cerebellar Purkinje Cells Control Posture in Larval Zebrafish ( Danio rerio). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557469. [PMID: 37745506 PMCID: PMC10515840 DOI: 10.1101/2023.09.12.557469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells - the output neurons of the cerebellar cortex - as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically-tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.
Collapse
Affiliation(s)
- Franziska Auer
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
| | - Katherine Nardone
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
| | - Koji Matsuda
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - David Schoppik
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
- Lead Contact
| |
Collapse
|
9
|
Thomas RE, Mudlaff F, Schweers K, Farmer WT, Suvrathan A. Heterogeneity in Slow Synaptic Transmission Diversifies Purkinje Cell Timing. J Neurosci 2024; 44:e0455242024. [PMID: 39147589 PMCID: PMC11391503 DOI: 10.1523/jneurosci.0455-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
The cerebellum plays an important role in diverse brain functions, ranging from motor learning to cognition. Recent studies have suggested that molecular and cellular heterogeneity within cerebellar lobules contributes to functional differences across the cerebellum. However, the specific relationship between molecular and cellular heterogeneity and diverse functional outputs of different regions of the cerebellum remains unclear. Here, we describe a previously unappreciated form of synaptic heterogeneity at parallel fiber synapses to Purkinje cells in the mouse cerebellum (both sexes). In contrast to uniform fast synaptic transmission, we found that the properties of slow synaptic transmission varied by up to threefold across different lobules of the mouse cerebellum, resulting in surprising heterogeneity. Depending on the location of a Purkinje cell, the time of peak of slow synaptic currents varied by hundreds of milliseconds. The duration and decay time of these currents also spanned hundreds of milliseconds, based on lobule. We found that, as a consequence of the heterogeneous synaptic dynamics, the same brief input stimulus was transformed into prolonged firing patterns over a range of timescales that depended on Purkinje cell location.
Collapse
Affiliation(s)
- Riya Elizabeth Thomas
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Franziska Mudlaff
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Kyra Schweers
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
| | - William Todd Farmer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Aparna Suvrathan
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
| |
Collapse
|
10
|
Liu CW, Chen SY, Wang YM, Lu LY, Chen P, Liang TY, Liu WC, Kumar A, Kuo SH, Lee JC, Lo CC, Wu SC, Pan MK. The cerebellum computes frequency dynamics for motions with numerical precision and cross-individual uniformity. RESEARCH SQUARE 2024:rs.3.rs-4615547. [PMID: 39149481 PMCID: PMC11326405 DOI: 10.21203/rs.3.rs-4615547/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Cross-individual variability is considered the essence of biology, preventing precise mathematical descriptions of biological motion1-7 like the physics law of motion. Here we report that the cerebellum shapes motor kinematics by encoding dynamic motor frequencies with remarkable numerical precision and cross-individual uniformity. Using in-vivo electrophysiology and optogenetics in mice, we confirmed that deep cerebellar neurons encoded frequencies via populational tuning of neuronal firing probabilities, creating cerebellar oscillations and motions with matched frequencies. The mechanism was consistently presented in self-generated rhythmic and non-rhythmic motions triggered by a vibrational platform, or skilled tongue movements of licking in all tested mice with cross-individual uniformity. The precision and uniformity allowed us to engineer complex motor kinematics with designed frequencies. We further validated the frequency-coding function of the human cerebellum using cerebellar electroencephalography recordings and alternating-current stimulation during voluntary tapping tasks. Our findings reveal a cerebellar algorithm for motor kinematics with precision and uniformity, the mathematical foundation for brain-computer interface for motor control.
Collapse
Affiliation(s)
- Chia-Wei Liu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Shun-Ying Chen
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Mei Wang
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan
| | - Liang-Yin Lu
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan
| | - Peng Chen
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Liang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Wen-Chuan Liu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ami Kumar
- The Initiative for Columbia Ataxia and Tremor, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Sheng-Han Kuo
- The Initiative for Columbia Ataxia and Tremor, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Jye-Chang Lee
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Chuan Lo
- Institute of Systems Neuroscience, National Chin-Hua University, Shin-Chu, Taiwan
| | - Shun-Chi Wu
- Department of Engineering and Bioinformatics, Chin-Hua University, Shin-Chu, Taiwan
| | - Ming-Kai Pan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Shoup AM, Porwal N, Fakharian MA, Hage P, Orozco SP, Shadmehr R. Rejuvenating silicon probes for acute neurophysiology. J Neurophysiol 2024; 132:308-315. [PMID: 38865216 PMCID: PMC11383388 DOI: 10.1152/jn.00121.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Neurophysiological recording with a new probe often yields better signal quality than with a used probe. Why does the signal quality degrade after only a few experiments? Here, we considered silicon probes in which the contacts are densely packed, and each contact is coated with a conductive polymer that increases its surface area. We tested 12 Cambridge Neurotech silicon probes during 61 recording sessions from the brain of three marmosets. Out of the box, each probe arrived with an electrodeposited polymer coating on 64 gold contacts and an impedance of around 50 kΩ. With repeated use, the impedance increased and there was a corresponding decrease in the number of well-isolated neurons. Imaging of the probes suggested that the reduction in signal quality was due to a gradual loss of the polymer coating. To rejuvenate the probes, we first stripped the contacts, completely removing their polymer coating, and then recoated them in a solution of 10 mM 3,4-Ethylenedioxythiophene (EDOT) monomer with 11 mM Poly(sodium 4-styrenesulfonate) (PSS) using a current density of about 3 mA/cm2 for 30 s. This recoating process not only returned probe impedance to around 50 kΩ but also yielded significantly improved signal quality during neurophysiological recordings. Thus, insertion into the brain promoted the loss of the polymer that coated the contacts of the silicon probes. This led to degradation of signal quality, but recoating rejuvenated the probes.NEW & NOTEWORTHY With repeated use, a silicon probe's ability to isolate neurons degrades. As a result, the probe is often discarded after only a handful of uses. Here, we demonstrate a major source of this problem and then produce a solution to rejuvenate the probes.
Collapse
Affiliation(s)
- Alden M Shoup
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Natasha Porwal
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Paul Hage
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Simon P Orozco
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
12
|
Gouhier A, Villette V, Mathieu B, Ayon A, Bradley J, Dieudonné S. Identification and Organization of a Postural Anti-Gravity Module in the Cerebellar Vermis. Neuroscience 2024:S0306-4522(24)00263-X. [PMID: 38897374 DOI: 10.1016/j.neuroscience.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
The cerebellum is known to control the proper balance of isometric muscular contractions that maintain body posture. Current optogenetic manipulations of the cerebellar cortex output, however, have focused on ballistic body movements, examining movement initiation or perturbations. Here, by optogenetic stimulations of cerebellar Purkinje cells, which are the output of the cerebellar cortex, we evaluate body posture maintenance. By sequential analysis of body movement, we dissect the effect of optogenetic stimulation into a directly induced movement that is then followed by a compensatory reflex to regain body posture. We identify a module in the medial part of the anterior vermis which, through multiple muscle tone regulation, is involved in postural anti-gravity maintenance of the body. Moreover, we report an antero-posterior and medio-lateral functional segregation over the vermal lobules IV/V/VI. Taken together our results open new avenues for better understanding of the modular functional organization of the cerebellar cortex and its role in postural anti-gravity maintenance.
Collapse
Affiliation(s)
- Aurélien Gouhier
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Vincent Villette
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Benjamin Mathieu
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Annick Ayon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Jonathan Bradley
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Stéphane Dieudonné
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France.
| |
Collapse
|
13
|
Pi JS, Fakharian MA, Hage P, Sedaghat-Nejad E, Muller SZ, Shadmehr R. The olivary input to the cerebellum dissociates sensory events from movement plans. Proc Natl Acad Sci U S A 2024; 121:e2318849121. [PMID: 38630714 PMCID: PMC11047103 DOI: 10.1073/pnas.2318849121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Neurons in the inferior olive are thought to anatomically organize the Purkinje cells (P-cells) of the cerebellum into computational modules, but what is computed by each module? Here, we designed a saccade task in marmosets that dissociated sensory events from motor events and then recorded the complex and simple spikes of hundreds of P-cells. We found that when a visual target was presented at a random location, the olive reported the direction of that sensory event to one group of P-cells, but not to a second group. However, just before movement onset, it reported the direction of the planned movement to both groups, even if that movement was not toward the target. At the end of the movement if the subject experienced an error but chose to withhold the corrective movement, only the first group received information about the sensory prediction error. We organized the P-cells based on the information content of their olivary input and found that in the group that received sensory information, the simple spikes were suppressed during fixation, then produced a burst before saccade onset in a direction consistent with assisting the movement. In the second group, the simple spikes were not suppressed during fixation but burst near saccade deceleration in a direction consistent with stopping the movement. Thus, the olive differentiated the P-cells based on whether they would receive sensory or motor information, and this defined their contributions to control of movements as well as holding still.
Collapse
Affiliation(s)
- Jay S. Pi
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MA21205
| | - Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MA21205
| | - Paul Hage
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MA21205
| | - Ehsan Sedaghat-Nejad
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MA21205
| | - Salomon Z. Muller
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY10027
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MA21205
| |
Collapse
|
14
|
Wang T, Ivry RB. A cerebellar population coding model for sensorimotor learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.04.547720. [PMID: 37461557 PMCID: PMC10349940 DOI: 10.1101/2023.07.04.547720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The cerebellum is crucial for sensorimotor adaptation, using error information to keep the sensorimotor system well-calibrated. Here we introduce a population-coding model to explain how cerebellar-dependent learning is modulated by contextual variation. The model consists of a two-layer network, designed to capture activity in both the cerebellar cortex and deep cerebellar nuclei. A core feature of the model is that within each layer, the processing units are tuned to both movement direction and the direction of movement error. The model captures a large range of contextual effects including interference from prior learning and the influence of error uncertainty and volatility. While these effects have traditionally been taken to indicate meta learning or context-dependent memory within the adaptation system, our results show that they are emergent properties that arise from the population dynamics within the cerebellum. Our results provide a novel framework to understand how the nervous system responds to variable environments.
Collapse
Affiliation(s)
- Tianhe Wang
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Richard B. Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, California
| |
Collapse
|
15
|
Wu S, Wardak A, Khan MM, Chen CH, Regehr WG. Implications of variable synaptic weights for rate and temporal coding of cerebellar outputs. eLife 2024; 13:e89095. [PMID: 38241596 PMCID: PMC10798666 DOI: 10.7554/elife.89095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/27/2023] [Indexed: 01/21/2024] Open
Abstract
Purkinje cell (PC) synapses onto cerebellar nuclei (CbN) neurons allow signals from the cerebellar cortex to influence the rest of the brain. PCs are inhibitory neurons that spontaneously fire at high rates, and many PC inputs are thought to converge onto each CbN neuron to suppress its firing. It has been proposed that PCs convey information using a rate code, a synchrony and timing code, or both. The influence of PCs on CbN neuron firing was primarily examined for the combined effects of many PC inputs with comparable strengths, and the influence of individual PC inputs has not been extensively studied. Here, we find that single PC to CbN synapses are highly variable in size, and using dynamic clamp and modeling we reveal that this has important implications for PC-CbN transmission. Individual PC inputs regulate both the rate and timing of CbN firing. Large PC inputs strongly influence CbN firing rates and transiently eliminate CbN firing for several milliseconds. Remarkably, the refractory period of PCs leads to a brief elevation of CbN firing prior to suppression. Thus, individual PC-CbN synapses are suited to concurrently convey rate codes and generate precisely timed responses in CbN neurons. Either synchronous firing or synchronous pauses of PCs promote CbN neuron firing on rapid time scales for nonuniform inputs, but less effectively than for uniform inputs. This is a secondary consequence of variable input sizes elevating the baseline firing rates of CbN neurons by increasing the variability of the inhibitory conductance. These findings may generalize to other brain regions with highly variable inhibitory synapse sizes.
Collapse
Affiliation(s)
- Shuting Wu
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Asem Wardak
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mehak M Khan
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Christopher H Chen
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of MedicineHersheyUnited States
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
16
|
Zhai P, Romano V, Soggia G, Bauer S, van Wingerden N, Jacobs T, van der Horst A, White JJ, Mazza R, De Zeeuw CI. Whisker kinematics in the cerebellum. J Physiol 2024; 602:153-181. [PMID: 37987552 DOI: 10.1113/jp284064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
The whisker system is widely used as a model system for understanding sensorimotor integration. Purkinje cells in the crus regions of the cerebellum have been reported to linearly encode whisker midpoint, but it is unknown whether the paramedian and simplex lobules as well as their target neurons in the cerebellar nuclei also encode whisker kinematics and if so which ones. Elucidating how these kinematics are represented throughout the cerebellar hemisphere is essential for understanding how the cerebellum coordinates multiple sensorimotor modalities. Exploring the cerebellar hemisphere of mice using optogenetic stimulation, we found that whisker movements can be elicited by stimulation of Purkinje cells in not only crus1 and crus2, but also in the paramedian lobule and lobule simplex; activation of cells in the medial paramedian lobule had on average the shortest latency, whereas that of cells in lobule simplex elicited similar kinematics as those in crus1 and crus2. During spontaneous whisking behaviour, simple spike activity correlated in general better with velocity than position of the whiskers, but it varied between protraction and retraction as well as per lobule. The cerebellar nuclei neurons targeted by the Purkinje cells showed similar activity patterns characterized by a wide variety of kinematic signals, yet with a dominance for velocity. Taken together, our data indicate that whisker movements are much more prominently and diversely represented in the cerebellar cortex and nuclei than assumed, highlighting the rich repertoire of cerebellar control in the kinematics of movements that can be engaged during coordination. KEY POINTS: Excitation of Purkinje cells throughout the cerebellar hemispheres induces whisker movement, with the shortest latency and longest duration within the paramedian lobe. Purkinje cells have differential encoding for the fast and slow components of whisking. Purkinje cells encode not only the position but also the velocity of whiskers. Purkinje cells with high sensitivity for whisker velocity are preferentially located in the medial part of lobule simplex, crus1 and lateral paramedian. In the downstream cerebellar nuclei, neurons with high sensitivity for whisker velocity are located at the intersection between the medial and interposed nucleus.
Collapse
Affiliation(s)
- Peipei Zhai
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Vincenzo Romano
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Giulia Soggia
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Staf Bauer
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Thomas Jacobs
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Joshua J White
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Roberta Mazza
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Sciences, Amsterdam, Netherlands
| |
Collapse
|
17
|
Hage P, Jang IK, Looi V, Fakharian MA, Orozco SP, Pi JS, Sedaghat-Nejad E, Shadmehr R. Effort cost of harvest affects decisions and movement vigor of marmosets during foraging. eLife 2023; 12:RP87238. [PMID: 38079467 PMCID: PMC10715725 DOI: 10.7554/elife.87238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Our decisions are guided by how we perceive the value of an option, but this evaluation also affects how we move to acquire that option. Why should economic variables such as reward and effort alter the vigor of our movements? In theory, both the option that we choose and the vigor with which we move contribute to a measure of fitness in which the objective is to maximize rewards minus efforts, divided by time. To explore this idea, we engaged marmosets in a foraging task in which on each trial they decided whether to work by making saccades to visual targets, thus accumulating food, or to harvest by licking what they had earned. We varied the effort cost of harvest by moving the food tube with respect to the mouth. Theory predicted that the subjects should respond to the increased effort costs by choosing to work longer, stockpiling food before commencing harvest, but reduce their movement vigor to conserve energy. Indeed, in response to an increased effort cost of harvest, marmosets extended their work duration, but slowed their movements. These changes in decisions and movements coincided with changes in pupil size. As the effort cost of harvest declined, work duration decreased, the pupils dilated, and the vigor of licks and saccades increased. Thus, when acquisition of reward became effortful, the pupils constricted, the decisions exhibited delayed gratification, and the movements displayed reduced vigor.
Collapse
Affiliation(s)
- Paul Hage
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
| | - In Kyu Jang
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Vivian Looi
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Simon P Orozco
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Jay S Pi
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Ehsan Sedaghat-Nejad
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
| |
Collapse
|
18
|
Santoso P, Simatupang AS, Fajria A, Rahayu R, Jannatan R. Andaliman ( Zanthoxylum acanthopodium DC.) fruit ethanolic extract exerts attenuative effect on hyperglycemia, sensory and motoric function's disorders in alloxan-induced diabetic mice. J Adv Vet Anim Res 2023; 10:608-619. [PMID: 38370902 PMCID: PMC10868678 DOI: 10.5455/javar.2023.j716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/06/2023] [Accepted: 08/20/2023] [Indexed: 02/20/2024] Open
Abstract
Objective Andaliman (Zanthoxylum acanthopodium) is a potent medicinal plant in Asia. This present study aimed to reveal the effectivity of Andaliman fruit extract in alleviating hyperglycemia, sensory and motoric balance disorders, histopathology of the cerebellum, and tissue oxidative stress in diabetic mice induced by alloxan. Materials and Methods Diabetes induction was performed by intraperitoneally injecting alloxan monohydrate [200 mg/kg body weight (BW)]. Subsequently, the mice were treated daily with an ethanolic extract of Andaliman fruit (0, 150, 300, 450 mg/kg BW per oral) for 28 days, followed by measurements of blood glucose, paw sensitivity, motoric balance, histopathology of the cerebellum, and malondialdehyde (MDA) levels. Moreover, the phytochemical constituents of the extract were elucidated by liquid chromatography. Results Higher doses of Andaliman fruit extract could significantly attenuate the elevation of random and fasting blood glucose (p < 0.05) and improve paw sensitivity responses (p < 0.05) and motoric balances (p < 0.05) in diabetic mice. Moreover, Andaliman fruit extract could significantly attenuate the degeneration of cerebellar Purkinje cells (p < 0.05) and suppress MDA levels in the blood (p < 0.05) while blunting the MDA in the brain tissue (p < 0.05). Phytochemical screening revealed 39 compounds in the Andaliman extract belonging to the groups of alkaloids (26 compounds), flavonoids (12 compounds), and terpenoids (1 compound). Conclusion The ethanolic extract of Andaliman fruit is capable of ameliorating diabetic neuropathy, motor balance disorders, and Purkinje cell degeneration while also reducing oxidative stress in the peripheral system. Hence, Andaliman extract is a promising candidate for formulation as an herbal remedy against the detrimental outcomes of diabetes mellitus.
Collapse
Affiliation(s)
- Putra Santoso
- Biology Department, Faculty of Mathematics and Natural Sciences, Andalas University, Padang, Indonesia
| | - Arin Saparima Simatupang
- Biology Department, Faculty of Mathematics and Natural Sciences, Andalas University, Padang, Indonesia
| | - Annisha Fajria
- Biology Department, Faculty of Mathematics and Natural Sciences, Andalas University, Padang, Indonesia
| | - Resti Rahayu
- Biology Department, Faculty of Mathematics and Natural Sciences, Andalas University, Padang, Indonesia
| | - Robby Jannatan
- Biology Department, Faculty of Mathematics and Natural Sciences, Andalas University, Padang, Indonesia
| |
Collapse
|
19
|
Tsay JS, Schuck L, Ivry RB. Cerebellar Degeneration Impairs Strategy Discovery but Not Strategy Recall. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1223-1233. [PMID: 36464710 PMCID: PMC10239782 DOI: 10.1007/s12311-022-01500-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
The cerebellum is recognized to play a critical role in the automatic and implicit process by which movement errors are used to keep the sensorimotor system precisely calibrated. However, its role in other learning processes frequently engaged during sensorimotor adaptation tasks remains unclear. In the present study, we tested the performance of individuals with cerebellar degeneration on a variant of a visuomotor adaptation task in which learning requires the use of strategic re-aiming, a process that can nullify movement errors in a rapid and volitional manner. Our design allowed us to assess two components of this learning process, the discovery of an appropriate strategy and the recall of a learned strategy. Participants were exposed to a 60° visuomotor rotation twice, with the initial exposure block assessing strategy discovery and the re-exposure block assessing strategy recall. Compared to age-matched controls, individuals with cerebellar degeneration were slower to derive an appropriate aiming strategy in the initial Discovery block but exhibited similar recall of the aiming strategy during the Recall block. This dissociation underscores the multi-faceted contributions of the cerebellum to sensorimotor learning, highlighting one way in which this subcortical structure facilitates volitional action selection.
Collapse
Affiliation(s)
- Jonathan S Tsay
- Department of Psychology, University of California, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Lauren Schuck
- Department of Psychology, University of California, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
20
|
Muller SZ, Pi JS, Hage P, Fakharian MA, Sedaghat-Nejad E, Shadmehr R. Complex spikes perturb movements and reveal the sensorimotor map of Purkinje cells. Curr Biol 2023; 33:4869-4879.e3. [PMID: 37858343 PMCID: PMC10751015 DOI: 10.1016/j.cub.2023.09.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Computations that are performed by the cerebellar cortex are transmitted via simple spikes of Purkinje cells (P-cells) to downstream structures, but because P-cells are many synapses away from muscles, we do not know the relationship between modulation of simple spikes and control of behavior. Here, we recorded the spiking activities of hundreds of P-cells in the oculomotor vermis of marmosets during saccadic eye movements and found that following the presentation of a visual stimulus, the olivary input to a P-cell coarsely described the direction and amplitude of the visual stimulus as well as the upcoming movement. Occasionally, the complex spike occurred just before saccade onset, suppressing the P-cell's simple spikes and disrupting its output during that saccade. Remarkably, this brief suppression of simple spikes altered the saccade's trajectory by pulling the eyes toward the part of the visual space that was preferentially encoded by the olivary input to that P-cell. Thus, there is an alignment between the sensory space encoded by the complex spikes and the behavior conveyed by the simple spikes: a reduction in simple spikes is a signal to bias the ongoing movement toward the part of the sensory space preferentially encoded by the olivary input to that P-cell.
Collapse
Affiliation(s)
- Salomon Z Muller
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA.
| | - Jay S Pi
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Paul Hage
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ehsan Sedaghat-Nejad
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Wilson E. Adaptive Filter Model of Cerebellum for Biological Muscle Control With Spike Train Inputs. Neural Comput 2023; 35:1938-1969. [PMID: 37844325 DOI: 10.1162/neco_a_01617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/05/2023] [Indexed: 10/18/2023]
Abstract
Prior applications of the cerebellar adaptive filter model have included a range of tasks within simulated and robotic systems. However, this has been limited to systems driven by continuous signals. Here, the adaptive filter model of the cerebellum is applied to the control of a system driven by spiking inputs by considering the problem of controlling muscle force. The performance of the standard adaptive filter algorithm is compared with the algorithm with a modified learning rule that minimizes inputs and a simple proportional-integral-derivative (PID) controller. Control performance is evaluated in terms of the number of spikes, the accuracy of spike input locations, and the accuracy of muscle force output. Results show that the cerebellar adaptive filter model can be applied without change to the control of systems driven by spiking inputs. The cerebellar algorithm results in good agreement between input spikes and force outputs and significantly improves on a PID controller. Input minimization can be used to reduce the number of spike inputs, but at the expense of a decrease in accuracy of spike input location and force output. This work extends the applications of the cerebellar algorithm and demonstrates the potential of the adaptive filter model to be used to improve functional electrical stimulation muscle control.
Collapse
Affiliation(s)
- Emma Wilson
- School of Computing and Communications, Lancaster University, Lancaster LA1 4WA, U.K.
| |
Collapse
|
22
|
Gao Y, Tian X, Zhang X, Milebe Nkoua GD, Chen F, Liu Y, Chai Y. The roles of tissue-resident macrophages in sepsis-associated organ dysfunction. Heliyon 2023; 9:e21391. [PMID: 38027963 PMCID: PMC10643296 DOI: 10.1016/j.heliyon.2023.e21391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis, a syndrome caused by a dysregulated host response to infection and characterized by life-threatening organ dysfunction, particularly septic shock and sepsis-associated organ dysfunction (SAOD), is a medical emergency associated with high morbidity, high mortality, and long-term sequelae. Tissue-resident macrophages (TRMs) are a subpopulation of macrophages derived primarily from yolk sac progenitors and fetal liver during embryogenesis, located primarily in non-lymphoid tissues in adulthood, capable of local self-renewal independent of hematopoiesis, and developmentally and functionally restricted to the non-lymphoid organs in which they reside. TRMs are the first line of defense against life-threatening conditions such as sepsis, tumor growth, traumatic-associated organ injury, and surgical-associated injury. In the context of sepsis, TRMs can be considered as angels or demons involved in organ injury. Our proposal is that sepsis, septic shock, and SAOD can be attenuated by modulating TRMs in different organs. This review summarizes the pathophysiological mechanisms of TRMs in different organs or tissues involved in the development and progression of sepsis.
Collapse
Affiliation(s)
- Yulei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
- Department of Emergency Medicine, China-Congo Friendship Hospital, Brazzaville, 999059, P. R. Congo
| | - Xin Tian
- Department of Medical Research, Beijing Qiansong Technology Development Company, Beijing, 100193, P. R. China
- Department of Medical Research, Sen Sho Ka Gi Company, Inba-gun, Chiba, 285-0905, Japan
| | - Xiang Zhang
- Department of Emergency Medicine, Rizhao People's Hospital of Shandong Province, Rizhao, 276825, P. R. China
| | | | - Fang Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Yancun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| |
Collapse
|
23
|
Hoang H, Tsutsumi S, Matsuzaki M, Kano M, Kawato M, Kitamura K, Toyama K. Dynamic organization of cerebellar climbing fiber response and synchrony in multiple functional components reduces dimensions for reinforcement learning. eLife 2023; 12:e86340. [PMID: 37712651 PMCID: PMC10531405 DOI: 10.7554/elife.86340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023] Open
Abstract
Cerebellar climbing fibers convey diverse signals, but how they are organized in the compartmental structure of the cerebellar cortex during learning remains largely unclear. We analyzed a large amount of coordinate-localized two-photon imaging data from cerebellar Crus II in mice undergoing 'Go/No-go' reinforcement learning. Tensor component analysis revealed that a majority of climbing fiber inputs to Purkinje cells were reduced to only four functional components, corresponding to accurate timing control of motor initiation related to a Go cue, cognitive error-based learning, reward processing, and inhibition of erroneous behaviors after a No-go cue. Changes in neural activities during learning of the first two components were correlated with corresponding changes in timing control and error learning across animals, indirectly suggesting causal relationships. Spatial distribution of these components coincided well with boundaries of Aldolase-C/zebrin II expression in Purkinje cells, whereas several components are mixed in single neurons. Synchronization within individual components was bidirectionally regulated according to specific task contexts and learning stages. These findings suggest that, in close collaborations with other brain regions including the inferior olive nucleus, the cerebellum, based on anatomical compartments, reduces dimensions of the learning space by dynamically organizing multiple functional components, a feature that may inspire new-generation AI designs.
Collapse
Affiliation(s)
- Huu Hoang
- ATR Neural Information Analysis LaboratoriesKyotoJapan
| | | | | | - Masanobu Kano
- Department of Neurophysiology, The University of TokyoTokyoJapan
- International Research Center for Neurointelligence (WPI-IRCN), The University of TokyoTokyoJapan
| | - Mitsuo Kawato
- ATR Brain Information Communication Research Laboratory GroupKyotoJapan
| | - Kazuo Kitamura
- Department of Neurophysiology, University of YamanashiKofuJapan
| | | |
Collapse
|
24
|
Lorenzi RM, Geminiani A, Zerlaut Y, De Grazia M, Destexhe A, Gandini Wheeler-Kingshott CAM, Palesi F, Casellato C, D'Angelo E. A multi-layer mean-field model of the cerebellum embedding microstructure and population-specific dynamics. PLoS Comput Biol 2023; 19:e1011434. [PMID: 37656758 PMCID: PMC10501640 DOI: 10.1371/journal.pcbi.1011434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/14/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023] Open
Abstract
Mean-field (MF) models are computational formalism used to summarize in a few statistical parameters the salient biophysical properties of an inter-wired neuronal network. Their formalism normally incorporates different types of neurons and synapses along with their topological organization. MFs are crucial to efficiently implement the computational modules of large-scale models of brain function, maintaining the specificity of local cortical microcircuits. While MFs have been generated for the isocortex, they are still missing for other parts of the brain. Here we have designed and simulated a multi-layer MF of the cerebellar microcircuit (including Granule Cells, Golgi Cells, Molecular Layer Interneurons, and Purkinje Cells) and validated it against experimental data and the corresponding spiking neural network (SNN) microcircuit model. The cerebellar MF was built using a system of equations, where properties of neuronal populations and topological parameters are embedded in inter-dependent transfer functions. The model time constant was optimised using local field potentials recorded experimentally from acute mouse cerebellar slices as a template. The MF reproduced the average dynamics of different neuronal populations in response to various input patterns and predicted the modulation of the Purkinje Cells firing depending on cortical plasticity, which drives learning in associative tasks, and the level of feedforward inhibition. The cerebellar MF provides a computationally efficient tool for future investigations of the causal relationship between microscopic neuronal properties and ensemble brain activity in virtual brain models addressing both physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Alice Geminiani
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Yann Zerlaut
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | | | - Claudia A M Gandini Wheeler-Kingshott
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, UCL, London, United Kingdom
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Claudia Casellato
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
25
|
Herzfeld DJ, Joshua M, Lisberger SG. Rate versus synchrony codes for cerebellar control of motor behavior. Neuron 2023; 111:2448-2460.e6. [PMID: 37536289 PMCID: PMC10424531 DOI: 10.1016/j.neuron.2023.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/24/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
Information transmission between neural populations could occur through either coordinated changes in firing rates or the precise transmission of spike timing. We investigate the code for information transmission from a part of the cerebellar cortex that is crucial for the accurate execution of a quantifiable motor behavior. Simultaneous recordings from Purkinje cell pairs in the cerebellum of rhesus macaques reveal how these cells coordinate their activity to drive smooth pursuit eye movements. Purkinje cells show millisecond-scale coordination of spikes (synchrony), but the level of synchrony is small and insufficient to impact the firing of downstream vestibular nucleus neurons. Analysis of previous metrics that purported to reveal Purkinje cell synchrony demonstrates that these metrics conflate changes in firing rate and neuron-neuron covariance. We conclude that the output of the cerebellar cortex uses primarily a rate rather than a synchrony code to drive the activity of downstream neurons and thus control motor behavior.
Collapse
Affiliation(s)
- David J Herzfeld
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Mati Joshua
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stephen G Lisberger
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
26
|
Hage P, Jang IK, Looi V, Fakharian MA, Orozco SP, Pi JS, Sedaghat-Nejad E, Shadmehr R. Effort cost of harvest affects decisions and movement vigor of marmosets during foraging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.04.527146. [PMID: 36798274 PMCID: PMC9934576 DOI: 10.1101/2023.02.04.527146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our decisions are guided by how we perceive the value of an option, but this evaluation also affects how we move to acquire that option. Why should economic variables such as reward and effort alter the vigor of our movements? In theory, both the option that we choose and the vigor with which we move contribute to a measure of fitness in which the objective is to maximize rewards minus efforts, divided by time. To explore this idea, we engaged marmosets in a foraging task in which on each trial they decided whether to work by making saccades to visual targets, thus accumulating food, or to harvest by licking what they had earned. We varied the effort cost of harvest by moving the food tube with respect to the mouth. Theory predicted that the subjects should respond to the increased effort costs by choosing to work longer, stockpiling food before commencing harvest, but reduce their movement vigor to conserve energy. Indeed, in response to an increased effort cost of harvest, marmosets extended their work duration, but slowed their movements. These changes in decisions and movements coincided with changes in pupil size. As the effort cost of harvest declined, work duration decreased, the pupils dilated, and the vigor of licks and saccades increased. Thus, when acquisition of reward became effortful, the pupils constricted, the decisions exhibited delayed gratification, and the movements displayed reduced vigor. Significance statement Our results suggest that as the brainstem neuromodulatory circuits that control pupil size respond to effort costs, they alter computations in the brain regions that control decisions, encouraging work and delaying gratification, and the brain regions that control movements, reducing vigor and suppressing energy expenditure. This coordinated response suggests that decisions and actions are part of a single control policy that aims to maximize a variable relevant to fitness: the capture rate.
Collapse
|
27
|
Nashef A, Spindle MS, Calame DJ, Person AL. A dual Purkinje cell rate and synchrony code sculpts reach kinematics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548720. [PMID: 37503038 PMCID: PMC10370034 DOI: 10.1101/2023.07.12.548720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cerebellar Purkinje cells (PCs) encode movement kinematics in their population firing rates. Firing rate suppression is hypothesized to disinhibit neurons in the cerebellar nuclei, promoting adaptive movement adjustments. Debates persist, however, about whether a second disinhibitory mechanism, PC simple spike synchrony, is a relevant population code. We addressed this question by relating PC rate and synchrony patterns recorded with high density probes, to mouse reach kinematics. We discovered behavioral correlates of PC synchrony that align with a known causal relationship between activity in cerebellar output. Reach deceleration was positively correlated with both Purkinje firing rate decreases and synchrony, consistent with both mechanisms disinhibiting target neurons, which are known to adjust reach velocity. Direct tests of the contribution of each coding scheme to nuclear firing using dynamic clamp, combining physiological rate and synchrony patterns ex vivo, confirmed that physiological levels of PC simple spike synchrony are highly facilitatory for nuclear firing. These findings suggest that PC firing rate and synchrony collaborate to exert fine control of movement.
Collapse
Affiliation(s)
- Abdulraheem Nashef
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, 80045, CO, USA
| | - Michael S Spindle
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, 80045, CO, USA
| | - Dylan J Calame
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, 80045, CO, USA
| | - Abigail L Person
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, 80045, CO, USA
| |
Collapse
|
28
|
Wu S, Wardak A, Khan MM, Chen CH, Regehr WG. Implications of variable synaptic weights for rate and temporal coding of cerebellar outputs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542308. [PMID: 37292884 PMCID: PMC10245953 DOI: 10.1101/2023.05.25.542308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purkinje cell (PC) synapses onto cerebellar nuclei (CbN) neurons convey signals from the cerebellar cortex to the rest of the brain. PCs are inhibitory neurons that spontaneously fire at high rates, and many uniform sized PC inputs are thought to converge onto each CbN neuron to suppress or eliminate firing. Leading theories maintain that PCs encode information using either a rate code, or by synchrony and precise timing. Individual PCs are thought to have limited influence on CbN neuron firing. Here, we find that single PC to CbN synapses are highly variable in size, and using dynamic clamp and modelling we reveal that this has important implications for PC-CbN transmission. Individual PC inputs regulate both the rate and timing of CbN firing. Large PC inputs strongly influence CbN firing rates and transiently eliminate CbN firing for several milliseconds. Remarkably, the refractory period of PCs leads to a brief elevation of CbN firing prior to suppression. Thus, PC-CbN synapses are suited to concurrently convey rate codes, and generate precisely-timed responses in CbN neurons. Variable input sizes also elevate the baseline firing rates of CbN neurons by increasing the variability of the inhibitory conductance. Although this reduces the relative influence of PC synchrony on the firing rate of CbN neurons, synchrony can still have important consequences, because synchronizing even two large inputs can significantly increase CbN neuron firing. These findings may be generalized to other brain regions with highly variable sized synapses.
Collapse
Affiliation(s)
- Shuting Wu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Asem Wardak
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mehak M. Khan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Wade G. Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Muller SZ, Pi JS, Hage P, Fakharian MA, Sedaghat-Nejad E, Shadmehr R. Complex spikes perturb movements, revealing the sensorimotor map of Purkinje cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.16.537034. [PMID: 37090615 PMCID: PMC10120735 DOI: 10.1101/2023.04.16.537034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The cerebellar cortex performs computations that are critical for control of our actions, and then transmits that information via simple spikes of Purkinje cells (P-cells) to downstream structures. However, because P-cells are many synapses away from muscles, we do not know how their output affects behavior. Furthermore, we do not know the level of abstraction, i.e., the coordinate system of the P-cell's output. Here, we recorded spiking activities of hundreds of P-cells in the oculomotor vermis of marmosets during saccadic eye movements and found that following the presentation of a visual stimulus, the olivary input to a P-cell encoded a probabilistic signal that coarsely described both the direction and the amplitude of that stimulus. When this input was present, the resulting complex spike briefly suppressed the P-cell's simple spikes, disrupting the P-cell's output during that saccade. Remarkably, this brief suppression altered the saccade's trajectory by pulling the eyes toward the part of the visual space that was preferentially encoded by the olivary input to that P-cell. Thus, analysis of behavior in the milliseconds following a complex spike unmasked how the P-cell's output influenced behavior: the preferred location in the coordinates of the visual system as conveyed probabilistically from the inferior olive to a P-cell defined the action in the coordinates of the motor system for which that P-cell's simple spikes directed behavior.
Collapse
Affiliation(s)
- Salomon Z. Muller
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY USA
| | - Jay S. Pi
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| | - Paul Hage
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| | - Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| | - Ehsan Sedaghat-Nejad
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| |
Collapse
|
30
|
Herzfeld DJ, Joshua M, Lisberger SG. Rate versus synchrony codes for cerebellar control of motor behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.529019. [PMID: 36824885 PMCID: PMC9949136 DOI: 10.1101/2023.02.17.529019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
UNLABELLED Control of movement requires the coordination of multiple brain areas, each containing populations of neurons that receive inputs, process these inputs via recurrent dynamics, and then relay the processed information to downstream populations. Information transmission between neural populations could occur through either coordinated changes in firing rates or the precise transmission of spike timing. We investigate the nature of the code for transmission of signals to downstream areas from a part of the cerebellar cortex that is crucial for the accurate execution of a quantifiable motor behavior. Simultaneous recordings from Purkinje cell pairs in the cerebellar flocculus of rhesus macaques revealed how these cells coordinate their activity to drive smooth pursuit eye movements. Purkinje cells show millisecond-scale coordination of spikes (synchrony), but the level of synchrony is small and likely insufficient to impact the firing of downstream neurons in the vestibular nucleus. Further, analysis of previous metrics for assaying Purkinje cell synchrony demonstrates that these metrics conflate changes in firing rate and neuron-neuron covariance. We conclude that the output of the cerebellar cortex uses primarily a rate code rather than synchrony code to drive activity of downstream neurons and thus control motor behavior. IMPACT STATEMENT Information transmission in the brain can occur via changes in firing rate or via the precise timing of spikes. Simultaneous recordings from pairs of Purkinje cells in the floccular complex reveals that information transmission out of the cerebellar cortex relies almost exclusively on changes in firing rates rather than millisecond-scale coordination of spike timing across the Purkinje cell population.
Collapse
Affiliation(s)
- David J. Herzfeld
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Mati Joshua
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
31
|
Fruzzetti L, Kalidindi HT, Antonietti A, Alessandro C, Geminiani A, Casellato C, Falotico E, D’Angelo E. Dual STDP processes at Purkinje cells contribute to distinct improvements in accuracy and speed of saccadic eye movements. PLoS Comput Biol 2022; 18:e1010564. [PMID: 36194625 PMCID: PMC9565489 DOI: 10.1371/journal.pcbi.1010564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/14/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Saccadic eye-movements play a crucial role in visuo-motor control by allowing rapid foveation onto new targets. However, the neural processes governing saccades adaptation are not fully understood. Saccades, due to the short-time of execution (20-100 ms) and the absence of sensory information for online feedback control, must be controlled in a ballistic manner. Incomplete measurements of the movement trajectory, such as the visual endpoint error, are supposedly used to form internal predictions about the movement kinematics resulting in predictive control. In order to characterize the synaptic and neural circuit mechanisms underlying predictive saccadic control, we have reconstructed the saccadic system in a digital controller embedding a spiking neural network of the cerebellum with spike timing-dependent plasticity (STDP) rules driving parallel fiber-Purkinje cell long-term potentiation and depression (LTP and LTD). This model implements a control policy based on a dual plasticity mechanism, resulting in the identification of the roles of LTP and LTD in regulating the overall quality of saccade kinematics: it turns out that LTD increases the accuracy by decreasing visual error and LTP increases the peak speed. The control policy also required cerebellar PCs to be divided into two subpopulations, characterized by burst or pause responses. To our knowledge, this is the first model that explains in mechanistic terms the visual error and peak speed regulation of ballistic eye movements in forward mode exploiting spike-timing to regulate firing in different populations of the neuronal network. This elementary model of saccades could be extended and applied to other more complex cases in which single jerks are concatenated to compose articulated and coordinated movements.
Collapse
Affiliation(s)
- Lorenzo Fruzzetti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera (Pisa), Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Hari Teja Kalidindi
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Universite Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Universite Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
- * E-mail: (HK); (EF)
| | - Alberto Antonietti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Cristiano Alessandro
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
- School of Medicine and Surgery/Sport and Exercise Medicine, University of Milano-Bicocca, Milan, Italy
| | - Alice Geminiani
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Egidio Falotico
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera (Pisa), Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- * E-mail: (HK); (EF)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
32
|
Grillo M, Geminiani A, Alessandro C, D'Angelo E, Pedrocchi A, Casellato C. Bayesian Integration in a Spiking Neural System for Sensorimotor Control. Neural Comput 2022; 34:1893-1914. [PMID: 35896162 DOI: 10.1162/neco_a_01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/30/2022] [Indexed: 11/04/2022]
Abstract
The brain continuously estimates the state of body and environment, with specific regions that are thought to act as Bayesian estimator, optimally integrating noisy and delayed sensory feedback with sensory predictions generated by the cerebellum. In control theory, Bayesian estimators are usually implemented using high-level representations. In this work, we designed a new spike-based computational model of a Bayesian estimator. The state estimator receives spiking activity from two neural populations encoding the sensory feedback and the cerebellar prediction, and it continuously computes the spike variability within each population as a reliability index of the signal these populations encode. The state estimator output encodes the current state estimate. We simulated a reaching task at different stages of cerebellar learning. The activity of the sensory feedback neurons encoded a noisy version of the trajectory after actual movement, with an almost constant intrapopulation spiking variability. Conversely, the activity of the cerebellar output neurons depended on the phase of the learning process. Before learning, they fired at their baseline not encoding any relevant information, and the variability was set to be higher than that of the sensory feedback (more reliable, albeit delayed). When learning was complete, their activity encoded the trajectory before the actual execution, providing an accurate sensory prediction; in this case, the variability was set to be lower than that of the sensory feedback. The state estimator model optimally integrated the neural activities of the afferent populations, so that the output state estimate was primarily driven by sensory feedback in prelearning and by the cerebellar prediction in postlearning. It was able to deal even with more complex scenarios, for example, by shifting the dominant source during the movement execution if information availability suddenly changed. The proposed tool will be a critical block within integrated spiking, brain-inspired control systems for simulations of sensorimotor tasks.
Collapse
Affiliation(s)
- Massimo Grillo
- Nearlab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milan, Italy
| | - Alice Geminiani
- Department of Brain and Behavioral Sciences, University of Pavia 27100, Italy
| | - Cristiano Alessandro
- Department of Brain and Behavioral Sciences, University of Pavia 27100, Italy.,School of Medicine and Surgery/Sport and Exercise Science, University of Milano-Bicocca, 20126 Milan, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia 27100, Italy.,Brain Connectivity Center, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Alessandra Pedrocchi
- Nearlab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milan, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia 27100, Italy
| |
Collapse
|
33
|
Time and tide of cerebellar synchrony. Proc Natl Acad Sci U S A 2022; 119:e2204155119. [PMID: 35452313 PMCID: PMC9170046 DOI: 10.1073/pnas.2204155119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Halverson HE, Kim J, Khilkevich A, Mauk MD, Augustine GJ. Feedback inhibition underlies new computational functions of cerebellar interneurons. eLife 2022; 11:77603. [PMID: 36480240 PMCID: PMC9771357 DOI: 10.7554/elife.77603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The function of a feedback inhibitory circuit between cerebellar Purkinje cells and molecular layer interneurons (MLIs) was defined by combining optogenetics, neuronal activity recordings both in cerebellar slices and in vivo, and computational modeling. Purkinje cells inhibit a subset of MLIs in the inner third of the molecular layer. This inhibition is non-reciprocal, short-range (less than 200 μm) and is based on convergence of one to two Purkinje cells onto MLIs. During learning-related eyelid movements in vivo, the activity of a subset of MLIs progressively increases as Purkinje cell activity decreases, with Purkinje cells usually leading the MLIs. Computer simulations indicate that these relationships are best explained by the feedback circuit from Purkinje cells to MLIs and that this feedback circuit plays a central role in making cerebellar learning efficient.
Collapse
Affiliation(s)
- Hunter E Halverson
- Center for Learning and Memory, The University of TexasAustinUnited States
| | - Jinsook Kim
- Program in Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore,Institute of Molecular and Cell BiologySingaporeSingapore
| | - Andrei Khilkevich
- Center for Learning and Memory, The University of TexasAustinUnited States
| | - Michael D Mauk
- Center for Learning and Memory, The University of TexasAustinUnited States,Department of Neuroscience, The University of TexasAustinUnited States
| | - George J Augustine
- Program in Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore,Institute of Molecular and Cell BiologySingaporeSingapore
| |
Collapse
|