1
|
Nguyen NYT, Liu X, Dutta A, Su Z. The Secret Life of N 1-methyladenosine: A Review on its Regulatory Functions. J Mol Biol 2025:169099. [PMID: 40139310 DOI: 10.1016/j.jmb.2025.169099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
N1-methyladenosine (m1A) is a conserved modification on house-keeping RNAs, including tRNAs and rRNAs. With recent advancement on m1A detection and mapping, m1A is revealed to have a secret life with regulatory functions. This includes the regulation of its canonical substrate tRNAs, and expands into new territories such as tRNA fragments, mRNAs and repeat RNAs. The dynamic regulation of m1A has been shown in different biological contexts, including stress response, diet, T cell activation and aging. Interestingly, m1A can also be installed by non-enzymatic mechanisms. However, technical challenges remain in m1A site mapping; as a result, controversies have been observed across different labs or different methods. In this review we will summarize the recent development of m1A detection, its dynamic regulation, and its biological functions on diverse RNA substrates.
Collapse
Affiliation(s)
- Nhi Yen Tran Nguyen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Xisheng Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Anindya Dutta
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, United States; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Zhangli Su
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, United States; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, United States.
| |
Collapse
|
2
|
Kim HS, Eun JW, Jang SH, Kim JY, Jeong JY. The diverse landscape of RNA modifications in cancer development and progression. Genes Genomics 2025; 47:135-155. [PMID: 39643826 DOI: 10.1007/s13258-024-01601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND RNA modifications, a central aspect of epitranscriptomics, add a regulatory layer to gene expression by modifying RNA function without altering nucleotide sequences. These modifications play vital roles across RNA species, influencing RNA stability, translation, and interaction dynamics, and are regulated by specific enzymes that add, remove, and interpret these chemical marks. OBJECTIVE This review examines the role of aberrant RNA modifications in cancer progression, exploring their potential as diagnostic and prognostic biomarkers and as therapeutic targets. We focus on how altered RNA modification patterns impact oncogenes, tumor suppressor genes, and overall tumor behavior. METHODS We performed an in-depth analysis of recent studies and advances in RNA modification research, highlighting key types and functions of RNA modifications and their roles in cancer biology. Studies involving preclinical models targeting RNA-modifying enzymes were reviewed to assess therapeutic efficacy and potential clinical applications. RESULTS Aberrant RNA modifications were found to significantly influence cancer initiation, growth, and metastasis. Dysregulation of RNA-modifying enzymes led to altered gene expression profiles in oncogenes and tumor suppressors, correlating with tumor aggressiveness, patient outcomes, and response to immunotherapy. Notably, inhibitors of these enzymes demonstrated potential in preclinical models by reducing tumor growth and enhancing the efficacy of existing cancer treatments. CONCLUSIONS RNA modifications present promising avenues for cancer diagnosis, prognosis, and therapy. Understanding the mechanisms of RNA modification dysregulation is essential for developing targeted treatments that improve patient outcomes. Further research will deepen insights into these pathways and support the clinical translation of RNA modification-targeted therapies.
Collapse
Affiliation(s)
- Hyung Seok Kim
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea
| | - Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, 164 Worldcup-Ro, Yeongtong-Gu, Suwon, 16499, South Korea
| | - Se Ha Jang
- Department of Gastroenterology, Ajou University School of Medicine, 164 Worldcup-Ro, Yeongtong-Gu, Suwon, 16499, South Korea
| | - Ji Yun Kim
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea
| | - Jee-Yeong Jeong
- Department of Biochemistry, Kosin University College of Medicine, Seo-Gu, Busan, 49267, South Korea.
| |
Collapse
|
3
|
Tang H, Zhu D, Li W, Zhang G, Zhang H, Peng Q. Exosomal AFAP1-AS1 Promotes the Growth, Metastasis, and Glycolysis of Pituitary Adenoma by Inhibiting HuR Degradation. Mol Neurobiol 2025; 62:2212-2229. [PMID: 39090353 PMCID: PMC11772456 DOI: 10.1007/s12035-024-04387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Exosomal long noncoding RNAs (lncRNAs), which are highly expressed in tumor-derived exosomes, regulate various cellular behaviors such as cell proliferation, metastasis, and glycolysis by facilitating intercellular communication. Here, we explored the role and regulatory mechanism of tumor-derived exosomal lncRNAs in pituitary adenomas (PA). We isolated exosomes from PA cells, and performed in vitro and in vivo assays to examine their effect on the proliferation, metastasis, and glycolysis of PA cells. In addition, we conducted RNA pull-down, RNA immunoprecipitation, co-immunoprecipitation, and ubiquitination assays to investigate the downstream mechanism of exosomal AFAP1-AS1. Exosomes from PA cells augmented the proliferation, mobility, and glycolysis of PA cells. Moreover, AFAP1-AS1 was significantly enriched in these exosomes and stimulated the growth, migration, invasion, and glycolysis of PA cells in vitro, as well as tumor metastasis in vivo. It also enhanced the binding affinity between Hu antigen R (HuR) and SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1), resulting in HuR ubiquitination and degradation accompanied by enhanced expression of hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2). Moreover, HuR overexpression alleviated the exosomal AFAP1-AS1-mediated promotion of growth, metastasis, and glycolysis effects. These findings indicate that tumor-derived exosomal AFAP1-AS1 modulated SMURF1-mediated HuR ubiquitination and degradation to upregulate HK2 and PKM2 expression, thereby enhancing PA cell growth, metastasis, and glucose metabolism. This suggests targeting exosomal AFAP1-AS1 may be a potential strategy for the treatment of PA.
Collapse
Affiliation(s)
- Hengxin Tang
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China.
| | - Delong Zhu
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| | - Wenxiang Li
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| | - Guozhi Zhang
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| | - Heng Zhang
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| | - Qiujiao Peng
- Department of Neurosurgery, Guangzhou First People's Hospital, South China University of Technology, 105 Fengze East Road, Nansha District, Guangzhou, 511457, Guangdong, China
| |
Collapse
|
4
|
Mi S, Hu J, Chen W, Chen J, Xu Z, Xue M. m1A-regulated DIAPH3 promotes the invasiveness of colorectal cancer via stabilization of KRT19. Clin Exp Metastasis 2025; 42:10. [PMID: 39843730 PMCID: PMC11754336 DOI: 10.1007/s10585-024-10323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/04/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND In recent years, the emphasis has shifted to understanding the role of N1-methyladenosine (m1A) in tumor progression as little is known about its regulatory effect on mRNA and its role in the metastasis of colorectal cancer (CRC). METHODS We performed methylated RNA immunoprecipitation sequencing of tumor tissues and tumor-adjacent normal tissues from three patients with CRC to determine the m1A profile of mRNA in CRC. The expression of diaphanous-related formin 3 (DIAPH3) and its correlation with clinicopathological characteristics of CRC were evaluated using immunohistochemistry and online datasets. The role of DIAPH3 in the migration and invasion of CRC cells was evaluated using wound healing assay, Transwell assay and xenograft metastatic model. The downstream targets of DIAPH3 were screened using mass spectrometry. By co-transfecting DIAPH3 siRNA and a keratin 19 (KRT19) ectopic plasmid into CRC cells, the role of DIAPH3-KRT19 signaling axis was confirmed. RESULTS The mRNA level of DIAPH3 and its m1A modifications increased simultaneously in the CRC tissues. In addition, high DIAPH3 expression in CRC tissues is significantly associated with metastasis and progression to an advanced stage. After the knockdown of DIAPH3, the migration and invasion capabilities of CRC cells suffered a notable decline, which could be rescued by overexpressing KRT19. In addition, the proteasome inhibitor MG132 could block the degradation of KRT19 induced by DIAPH3 silencing. CONCLUSIONS Our study reveals that DIAPH3 mRNA was modified in CRC cells by m1A methylation. Silencing DIAPH3 suppresses the migration and invasion of CRC cells, potentially through the proteasome-dependent degradation of downstream KRT19.
Collapse
Affiliation(s)
- Shuyi Mi
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88, Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Jie Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88, Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Department of Gastroenterology, Jiande First People's Hospital, Jiande, Hangzhou, China
| | - Wenwen Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88, Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Jingyu Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88, Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Zhipeng Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88, Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Meng Xue
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88, Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Zhao S, Han X, Huang J, Zheng J, Zhao B, Liang Z. DCUN1D5 is a prognostic biomarker and correlated immune infiltrates and glycolysis in lung adenocarcinoma. Sci Rep 2025; 15:403. [PMID: 39747313 PMCID: PMC11695623 DOI: 10.1038/s41598-024-84539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
DCUN1D5 is up-regulated and promotes tumor progression in many cancers such as laryngeal squamous cell carcinoma and breast cancer, but the expression of DCUN1D5 in lung adenocarcinoma and its molecular mechanism are not clear. The differences of DCUN1D5 expression between lung adenocarcinoma and normal tissues were compared by TCGA, GEO and UALCAN databases, and the relationship between DCUN1D5 expression and clinicopathological features of patients was analyzed. The diagnostic and prognostic value of DCUN1D5 in patients with LUAD was analyzed by TCGA, GEPIA and Kaplan-Meier Plotter database. nomogram was constructed to predict the survival probability of patients. The GO, KEGG and GSEA enrichment analysis of DCUN1D5 co-expression genes were completed by R software. R software and GEPIA2 database were used to analyze the relationship between DCUN1D5 expression level and glycolysis-related genes and immune cell infiltration in patients with LUAD. The effects of interfering DCUN1D5 on the biological function and glycolysis level of lung adenocarcinoma cells were evaluated in vitro. The effect of down-regulation of DCUN1D5 on tumor formation in nude mice was studied in animal experiments. The expression of DCUN1D5 was increased in many kinds of tumors, and the expression in lung adenocarcinoma was significantly higher than that in normal tissues. The expression of DCUN1D5 was significantly correlated with TNM and pathological stage. DCUNN1D5 can play a diagnostic role in patients with LUAD and the prognosis of patients with high expression of DCUN1D5 is poor. Functional enrichment of DCUN1D5 co-expression genes involves a variety of biological processes. There is a strong correlation between DCUN1D5 and most glycolysis related genes. In addition, DCUN1D5 also affects tumor immune cell infiltration. In vitro experiments showed that the ability of cell proliferation, migration, invasion and glycolysis were significantly decreased and the ability of apoptosis was enhanced after down-regulation of DCUN1D5. Animal experiments showed that the tumor weight of nude mice decreased significantly after down-regulation of DCUN1D5. DCUN1D5 can be used as a biomarker for diagnosis and prognosis in lung adenocarcinoma. Down-regulation of DCUN1D5 can significantly affect the biological behavior of lung adenocarcinoma cells, which may be related to glycolysis and immune cell infiltration.
Collapse
Affiliation(s)
- Song Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Chengde Medical College, Chengde, 067000, Hebei, China
| | - Xiaoli Han
- Department of Thoracic Surgery, Affiliated Hospital of Chengde Medical College, Chengde, 067000, Hebei, China
| | - Jingtao Huang
- Department of Thoracic Surgery, Affiliated Hospital of Chengde Medical College, Chengde, 067000, Hebei, China
| | - Jingxiong Zheng
- Department of Thoracic Surgery, Affiliated Hospital of Chengde Medical College, Chengde, 067000, Hebei, China
| | - Baoshan Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Chengde Medical College, Chengde, 067000, Hebei, China
| | - Zongying Liang
- Department of Thoracic Surgery, Affiliated Hospital of Chengde Medical College, Chengde, 067000, Hebei, China.
- Hebei Key Laboratory of Panvascular Disease, Chengde, 067000, Hebei, China.
| |
Collapse
|
6
|
Wu H, Chen S, Li X, Li Y, Shi H, Qing Y, Shi B, Tang Y, Yan Z, Hao Y, Wang D, Liu W. RNA modifications in cancer. MedComm (Beijing) 2025; 6:e70042. [PMID: 39802639 PMCID: PMC11718328 DOI: 10.1002/mco2.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025] Open
Abstract
RNA modifications are emerging as critical cancer regulators that influence tumorigenesis and progression. Key modifications, such as N6-methyladenosine (m6A) and 5-methylcytosine (m5C), are implicated in various cellular processes. These modifications are regulated by proteins that write, erase, and read RNA and modulate RNA stability, splicing, translation, and degradation. Recent studies have highlighted their roles in metabolic reprogramming, signaling pathways, and cell cycle control, which are essential for tumor proliferation and survival. Despite these scientific advances, the precise mechanisms by which RNA modifications affect cancer remain inadequately understood. This review comprehensively examines the role RNA modifications play in cancer proliferation, metastasis, and programmed cell death, including apoptosis, autophagy, and ferroptosis. It explores their effects on epithelial-mesenchymal transition (EMT) and the immune microenvironment, particularly in cancer metastasis. Furthermore, RNA modifications' potential in cancer therapies, including conventional treatments, immunotherapy, and targeted therapies, is discussed. By addressing these aspects, this review aims to bridge current research gaps and underscore the therapeutic potential of targeting RNA modifications to improve cancer treatment strategies and patient outcomes.
Collapse
Affiliation(s)
- Han Wu
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Shi Chen
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Xiang Li
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Yuyang Li
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - He Shi
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Yiwen Qing
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Bohe Shi
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Yifei Tang
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Zhuoyi Yan
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Yang Hao
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Weiwei Liu
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| |
Collapse
|
7
|
Deng Y, Tan Z, Cai S, Feng Y, Tang Z, Li J, He H, Wu Z, Liu R, Huang H, Ye J, Han Z, Zhong W. N1-methyladenosine RNA methylation patterns are associated with an increased risk to biochemical recurrence in prostate cancer and serve as a potential novel biomarker for patient stratification. Int Immunopharmacol 2024; 143:113404. [PMID: 39433012 DOI: 10.1016/j.intimp.2024.113404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION N1-methyladenosine (m1A) RNA methylation is an emerging epigenetic modification. Its potential role in lipid metabolism and prognosis of prostate cancer (PCa) remains unexplored. OBJECTIVES This study investigated the impact of m1A on lipid metabolism and PCa prognosis. METHODS In this work, the landscape of genetic and expression variations of 10 widely recognized m1A regulators in PCa was revealed. Combining machine-learning strategies, the m1A modification patterns and corresponding characteristics of lipid metabolism of PCa samples from the cancer genome atlas program (TCGA) dataset were comprehensively analyzed. In vitro assays were performed to identify the role of TRMT61A, the key m1A regulator, on PCa cells. RESULTS Two distinct m1A modification patterns and corresponding lipid metabolism profiles were identified in PCa. The m1A modification subgroup with a high risk of biochemical recurrence (BCR) has stronger mitochondrial metabolism and FA oxidation activity. A consensus m1A modification-related lipid metabolism score (mMLMS) was constructed to predict the BCR prognosis of patients with PCa. The mMLMS was shown to accurately predict the BCR prognosis of PCa within six external cohorts. Finally, TRMT61A was identified as the key m1A regulator related to mMLMS, and it was found to promote the progression of PCa in vitro. TRMT61A potentially enhances mitochondrial function and FA beta oxidation in PCa cells via the PI3K/AKT pathway. CONCLUSION m1A RNA methylation patterns are associated with characteristics of lipid metabolism in PCa, providing a novel treatment strategy.
Collapse
Affiliation(s)
- Yulin Deng
- Guangdong Provincial Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510120, Guangzhou, Guangdong, China; Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong, China
| | - Zeheng Tan
- Department of Urology, Zhujiang Hospital, Southern Medical University, 510260, Guangzhou, Guangdong, China
| | - Shanghua Cai
- Guangdong Provincial Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510120, Guangzhou, Guangdong, China; Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong, China
| | - Yuanfa Feng
- Guangdong Provincial Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510120, Guangzhou, Guangdong, China
| | - Zhenfeng Tang
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong, China
| | - Jinchuang Li
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Huichan He
- Guangdong Provincial Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510120, Guangzhou, Guangdong, China
| | - Zhenjie Wu
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Ren Liu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Huiting Huang
- Department of Urology, Zhujiang Hospital, Southern Medical University, 510260, Guangzhou, Guangdong, China
| | - Jianheng Ye
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China.
| | - Zhaodong Han
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China.
| | - Weide Zhong
- Guangdong Provincial Key Laboratory of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510120, Guangzhou, Guangdong, China; Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong, China; Department of Urology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Wang X, Ma X, Chen S, Fan M, Jin C, Chen Y, Wang S, Wang Z, Meng F, Zhang C, Yang L. Harnessing m1A modification: a new frontier in cancer immunotherapy. Front Immunol 2024; 15:1517604. [PMID: 39687616 PMCID: PMC11647001 DOI: 10.3389/fimmu.2024.1517604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
N1-methyladenosine (m1A) modification is an epigenetic change that occurs on RNA molecules, regulated by a suite of enzymes including methyltransferases (writers), demethylases (erasers), and m1A-recognizing proteins (readers). This modification significantly impacts the function of RNA and various biological processes by affecting the structure, stability, translation, metabolism, and gene expression of RNA. Thereby, m1A modification is closely associated with the occurrence and progression of cancer. This review aims to explore the role of m1A modification in tumor immunity. m1A affects tumor immune responses by directly regulating immune cells and indirectly modulating tumor microenvironment. Besides, we also discuss the implications of m1A-mediated metabolic reprogramming and its nexus with immune checkpoint inhibitors, unveiling promising avenues for immunotherapeutic intervention. Additionally, the m1AScore, established based on the expression patterns of m1A modification, can be used to predict tumor prognosis and guide personalized therapy. Our review underscores the significance of m1A modification as a burgeoning frontier in cancer biology and immuno-oncology, with the potential to revolutionize cancer treatment strategies.
Collapse
Affiliation(s)
- Xinru Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoqing Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Minyan Fan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chenying Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yushi Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shaodong Wang
- Affiliated Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Zhiying Wang
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Fei Meng
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chengwan Zhang
- Department of Central Laboratory, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Lin Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Chen X, Wang Y, Dou X, Wan J, Zhou J, Li T, Yu J, Ye F. Integrative metabolomics and proteomics reveal the effect and mechanism of Zi Qi decoction on alleviating liver fibrosis. Sci Rep 2024; 14:28943. [PMID: 39578538 PMCID: PMC11584741 DOI: 10.1038/s41598-024-80616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024] Open
Abstract
Liver fibrosis is a common progressive liver disease that can cause liver dysfunction and lead to serious complications. Zi Qi decoction (ZQ) is a traditional formulation that exerts pharmacological effects on the treatment of liver fibrosis. However, precise intervention mechanisms remain unclear. The aim of this study was to synergistically harness proteomics and metabolomics techniques to elucidate the specific target of ZQ and its potential mechanism of action. A carbon tetrachloride (CCl4)-induced liver fibrosis mouse model was established. Subsequently, the protective effect of ZQ on liver fibrosis mice was evaluated according to histopathological examination and biochemical indicators. Quantitative proteomics based on data independent acquisition (DIA) and non-targeted metabolomic analyses revealed the pharmacodynamic mechanism of ZQ. In addition, various cellular and molecular assays were used to detect changes in glycolysis levels in LSECs and mouse liver fibrosis models. The study results showed that ZQ significantly alleviated CCl4-induced liver injury and fibrosis in mice. DIA-based quantitative proteomics and non-targeted metabolomics analyses indicated that ZQ treatment downregulated glycolysis-related proteins such as PKM2, PFKP, and HK2, while regulating glycolysis-related metabolites and pathways. In addition, ZQ down-regulated glycolytic activity in mice with liver fibrosis and in LSECs, and inhibited CXCL1 secretion and neutrophil recruitment. ZQ inhibited LSEC glycolysis and mitigated neutrophil infiltration, thereby playing a therapeutic role in liver fibrosis.
Collapse
Affiliation(s)
- Xiaoying Chen
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China
| | - Yifan Wang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Xiaoyun Dou
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China
| | - Jie Wan
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China
| | - Jingwen Zhou
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China
| | - Tianci Li
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China
| | - Jun Yu
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China
| | - Fang Ye
- First Clinical Medical College, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
10
|
Cartland SP, Patil MS, Kelland E, Le N, Boccanfuso L, Stanley CP, Cholan PM, Dona MI, Patrick R, McGrath J, Su QP, Alwis I, Ganss R, Powell JE, Harvey RP, Pinto AR, Griffith TS, Loa J, Aitken SJ, Robinson DA, Patel S, Kavurma MM. The generation of stable microvessels in ischemia is mediated by endothelial cell derived TRAIL. SCIENCE ADVANCES 2024; 10:eadn8760. [PMID: 39365855 PMCID: PMC11451529 DOI: 10.1126/sciadv.adn8760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/28/2024] [Indexed: 10/06/2024]
Abstract
Reversal of ischemia is mediated by neo-angiogenesis requiring endothelial cell (EC) and pericyte interactions to form stable microvascular networks. We describe an unrecognized role for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in potentiating neo-angiogenesis and vessel stabilization. We show that the endothelium is a major source of TRAIL in the healthy circulation compromised in peripheral artery disease (PAD). EC deletion of TRAIL in vivo or in vitro inhibited neo-angiogenesis, pericyte recruitment, and vessel stabilization, resulting in reduced lower-limb blood perfusion with ischemia. Activation of the TRAIL receptor (TRAIL-R) restored blood perfusion and stable blood vessel networks in mice. Proof-of-concept studies showed that Conatumumab, an agonistic TRAIL-R2 antibody, promoted vascular sprouts from explanted patient arteries. Single-cell RNA sequencing revealed heparin-binding EGF-like growth factor in mediating EC-pericyte communications dependent on TRAIL. These studies highlight unique TRAIL-dependent mechanisms mediating neo-angiogenesis and vessel stabilization and the potential of repurposing TRAIL-R2 agonists to stimulate stable and functional microvessel networks to treat ischemia in PAD.
Collapse
Affiliation(s)
- Siân P. Cartland
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
| | - Manisha S. Patil
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
| | - Elaina Kelland
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
| | - Natalie Le
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
| | - Lauren Boccanfuso
- Heart Research Institute, The University of Sydney, Sydney, Australia
| | - Christopher P. Stanley
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
| | | | | | - Ralph Patrick
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | | | - Qian Peter Su
- School of Biomedical Engineering, University of Technology, Sydney, Australia
- Heart Research Institute, Sydney, Australia
| | - Imala Alwis
- Heart Research Institute, The University of Sydney, Sydney, Australia
| | - Ruth Ganss
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Australia
| | - Joseph E. Powell
- Garvan-Weizmann Centre for Cellular Genomics, Sydney, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia
| | - Richard P. Harvey
- Victor Chang Cardiac Research Institute, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | | | | | - Jacky Loa
- Royal Prince Alfred Hospital, Sydney, Australia
| | - Sarah J. Aitken
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Concord Institute of Academic Surgery, Concord Hospital, Sydney, Australia
| | - David A. Robinson
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
- Royal Prince Alfred Hospital, Sydney, Australia
| | - Sanjay Patel
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Royal Prince Alfred Hospital, Sydney, Australia
| | - Mary M. Kavurma
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Centre for Peripheral Artery Disease, Heart Research Institute, Sydney, Australia
| |
Collapse
|
11
|
Cheng Y, Liang X, Bi X, Liu C, Yang Y. Identification ATP5F1D as a Biomarker Linked to Diagnosis, Prognosis, and Immune Infiltration in Endometrial Cancer Based on Data-Independent Acquisition (DIA) Analysis. Biochem Genet 2024; 62:4215-4236. [PMID: 38265620 DOI: 10.1007/s10528-023-10646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024]
Abstract
In developed countries, endometrial cancer (EC) is the most prevalent gynecological cancer. ATP5F1D is a subunit of ATP synthase, as well as an important component of the mitochondrial electron transport chain (ETC). ETC plays a compelling role in carcinogenesis. To date, little is known about the role of ATP5F1D in EC. We undertook data-independent acquisition mass spectrometry (DIA-MS) of 20 EC patients, comprising 10 high-grade and 10 low-grade cancer tissues. Biological functions of differentially expressed genes (DEGs) were analyzed by GO and KEGG. The expression level, clinicopathological features, diagnostic potency, prognostic value, RNA modifications, immune characteristics, and therapy response of ATP5F1D were investigated. In total, 77 DEGs were acquired by DIA analysis, which were closely related to regulating immune response and metabolic pathways. Among the five genes (NDUFB8, SLC26A2, RAF1, ATP5F1D, and GSTM5) involving in reactive oxygen species pathway, ATP5F1D showed the most significant differential expression (2.903-fold change). We found ATP5F1D had a high diagnostic value and was associated with a favorable prognosis in EC patients. After analyzing the RNA modifications of ATP5F1D, revealing a negative regulation between them. Additionally, ATP5F1D was closely related to tumor immune infiltration. Our results suggested T-cell dysfunction and TAM-M2 polarization might be the important mechanisms of ATP5F1D to facilitate tumor immune escape. Noticeably, EC patients with ATP5F1D-high expression had better immune treatment responses and were more sensitive to chemotherapy drugs. ATP5F1D can be used as a biomarker for diagnosis, prognosis, and immune infiltration of EC, and offers a crucial reference for personalized treatment of EC patients.
Collapse
Affiliation(s)
- Yuemei Cheng
- The First Clinical Medical College of Lanzhou University, Department of Obstetrics and Gynecology, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Xuehan Bi
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
12
|
Fu M, Gao Q, Xiao M, Sun XY, Li SL, Ge XY. NAT10/CEBPB/vimentin signalling axis promotes adenoid cystic carcinoma malignant phenotypes in vitro. Oral Dis 2024; 30:4341-4355. [PMID: 38287502 DOI: 10.1111/odi.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/08/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024]
Abstract
OBJECTIVE To explore the biological function and mechanisms of CEBPB and NAT10-mediated N4-acetylcytidine (ac4c) modification in salivary adenoid cystic carcinoma (SACC). MATERIALS AND METHODS CEBPB and NAT10 were knocked down in SACC-LM cells by siRNA transfection and overexpressed in SACC-83 cells by plasmid transfection. Malignant phenotypes were evaluated using CCK-8, Transwell migration and colony formation assays. Real-time PCR, western blotting, ChIP and acRIP were used to investigate the molecular mechanisms involved. RESULTS We found that CEBPB was highly expressed in SACC tissues and correlated with lung metastasis and unfavourable prognosis. Gain- and loss-of-function experiments revealed that CEBPB promoted SACC malignant phenotypes. Mechanistically, CEBPB exerted its oncogenic effect by binding to the vimentin gene promoter region to enhance its expression. Moreover, NAT10-mediated ac4c modification led to stabilization and overexpression of CEBPB in SACC cells. We also found that NAT10, the only known human enzyme responsible for ac4C modification, promoted SACC cell migration, proliferation and colony formation. Moreover, CEBPB overexpression restored the inhibitory effect of NAT10 knockdown on malignant phenotypes. CONCLUSIONS Our study reveals the critical role of the newly identified NAT10/CEBPB/vimentin axis in SACC malignant progression, and the findings may be applied to improve treatment for SACC.
Collapse
Affiliation(s)
- Min Fu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Clinical Research Center for Oral Diseases, Beijing, PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, PR China
- Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Qian Gao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Mian Xiao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xin-Yi Sun
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Sheng-Lin Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Clinical Research Center for Oral Diseases, Beijing, PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, PR China
- Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xi-Yuan Ge
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Clinical Research Center for Oral Diseases, Beijing, PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, PR China
- Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| |
Collapse
|
13
|
Kvolik Pavić A, Čonkaš J, Mumlek I, Zubčić V, Ozretić P. Clinician's Guide to Epitranscriptomics: An Example of N 1-Methyladenosine (m 1A) RNA Modification and Cancer. Life (Basel) 2024; 14:1230. [PMID: 39459530 PMCID: PMC11508930 DOI: 10.3390/life14101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024] Open
Abstract
Epitranscriptomics is the study of modifications of RNA molecules by small molecular residues, such as the methyl (-CH3) group. These modifications are inheritable and reversible. A specific group of enzymes called "writers" introduces the change to the RNA; "erasers" delete it, while "readers" stimulate a downstream effect. Epitranscriptomic changes are present in every type of organism from single-celled ones to plants and animals and are a key to normal development as well as pathologic processes. Oncology is a fast-paced field, where a better understanding of tumor biology and (epi)genetics is necessary to provide new therapeutic targets and better clinical outcomes. Recently, changes to the epitranscriptome have been shown to be drivers of tumorigenesis, biomarkers, and means of predicting outcomes, as well as potential therapeutic targets. In this review, we aimed to give a concise overview of epitranscriptomics in the context of neoplastic disease with a focus on N1-methyladenosine (m1A) modification, in layman's terms, to bring closer this omics to clinicians and their future clinical practice.
Collapse
Affiliation(s)
- Ana Kvolik Pavić
- Department of Maxillofacial and Oral Surgery, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (A.K.P.); (V.Z.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Josipa Čonkaš
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Ivan Mumlek
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Vedran Zubčić
- Department of Maxillofacial and Oral Surgery, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (A.K.P.); (V.Z.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| |
Collapse
|
14
|
Davletgildeeva AT, Kuznetsov NA. Dealkylation of Macromolecules by Eukaryotic α-Ketoglutarate-Dependent Dioxygenases from the AlkB-like Family. Curr Issues Mol Biol 2024; 46:10462-10491. [PMID: 39329974 PMCID: PMC11431407 DOI: 10.3390/cimb46090622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Alkylating modifications induced by either exogenous chemical agents or endogenous metabolites are some of the main types of damage to DNA, RNA, and proteins in the cell. Although research in recent decades has been almost entirely devoted to the repair of alkyl and in particular methyl DNA damage, more and more data lately suggest that the methylation of RNA bases plays an equally important role in normal functioning and in the development of diseases. Among the most prominent participants in the repair of methylation-induced DNA and RNA damage are human homologs of Escherichia coli AlkB, nonheme Fe(II)/α-ketoglutarate-dependent dioxygenases ABH1-8, and FTO. Moreover, some of these enzymes have been found to act on several protein targets. In this review, we present up-to-date data on specific features of protein structure, substrate specificity, known roles in the organism, and consequences of disfunction of each of the nine human homologs of AlkB. Special attention is given to reports about the effects of natural single-nucleotide polymorphisms on the activity of these enzymes and to potential consequences for carriers of such natural variants.
Collapse
Affiliation(s)
- Anastasiia T. Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
15
|
Huang Z, Yoo KH, Li D, Yu Q, Ye L, Wei W. Pan-cancer analysis of m1A writer gene RRP8: implications for immune infiltration and prognosis in human cancers. Discov Oncol 2024; 15:437. [PMID: 39266915 PMCID: PMC11393379 DOI: 10.1007/s12672-024-01299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Ribosomal RNA Processing 8 (RRP8) is a gene associated with RNA modification and has been implicated in the development of several types of tumors in recent research. Nevertheless, the biological importance of RRP8 in pan-cancer has not yet been thoroughly and comprehensively investigated. METHODS In this study, we conducted an analysis of various public databases to investigate the biological functions of RRP8. Our analysis included examining its correlation with pan-cancer prognosis, heterogeneity, stemness, immune checkpoint genes, and immune cell infiltration. Furthermore, we utilized the GDSC and CTRP databases to assess the sensitivity of RRP8 to small molecule drugs. RESULTS Our findings indicate that RRP8 exhibits differential expression between tumor and normal samples, particularly impacting the prognosis of various cancers such as Adrenocortical carcinoma (ACC) and Kidney Chromophobe (KICH). The expression of RRP8 is intricately linked to tumor heterogeneity and stemness markers. Additionally, RRP8 shows a positive correlation with the presence of tumor-infiltrating cells, with TP53 being the predominant mutated gene in these malignancies. CONCLUSION Our findings suggest that RRP8 may serve as a potential prognostic marker and therapeutic target in a variety of cancer types.
Collapse
Affiliation(s)
- Zhihui Huang
- Operating Room, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
- West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul, South Korea
| | - Duohui Li
- Department of Pharmacy Management, Anqing Municipal Hospital, Anqing, 246000, Anhui, China.
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315211, Zhejiang, China.
- Department of pathology, Ningbo Medical Centre Lihuili Hospital, Ningbo, China.
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Chen D, Gu X, Nurzat Y, Xu L, Li X, Wu L, Jiao H, Gao P, Zhu X, Yan D, Li S, Xue C. Writers, readers, and erasers RNA modifications and drug resistance in cancer. Mol Cancer 2024; 23:178. [PMID: 39215288 PMCID: PMC11363509 DOI: 10.1186/s12943-024-02089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Drug resistance in cancer cells significantly diminishes treatment efficacy, leading to recurrence and metastasis. A critical factor contributing to this resistance is the epigenetic alteration of gene expression via RNA modifications, such as N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), 7-methylguanosine (m7G), pseudouridine (Ψ), and adenosine-to-inosine (A-to-I) editing. These modifications are pivotal in regulating RNA splicing, translation, transport, degradation, and stability. Governed by "writers," "readers," and "erasers," RNA modifications impact numerous biological processes and cancer progression, including cell proliferation, stemness, autophagy, invasion, and apoptosis. Aberrant RNA modifications can lead to drug resistance and adverse outcomes in various cancers. Thus, targeting RNA modification regulators offers a promising strategy for overcoming drug resistance and enhancing treatment efficacy. This review consolidates recent research on the role of prevalent RNA modifications in cancer drug resistance, with a focus on m6A, m1A, m5C, m7G, Ψ, and A-to-I editing. Additionally, it examines the regulatory mechanisms of RNA modifications linked to drug resistance in cancer and underscores the existing limitations in this field.
Collapse
Affiliation(s)
- Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yeltai Nurzat
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Lixin Wu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Peng Gao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Shaohua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
17
|
Xie G, Lu Y, He J, Yang X, Zhou J, Yi C, Li J, Li Z, Asadikaram G, Niu H, Xiong X, Li J, Wang H. Small Molecule-Inducible and Photoactivatable Cellular RNA N1-Methyladenosine Editing. Angew Chem Int Ed Engl 2024; 63:e202320029. [PMID: 38591694 DOI: 10.1002/anie.202320029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
N1-methyladenosine (m1A) modification is one of the most prevalent epigenetic modifications on RNA. Given the vital role of m1A modification in RNA processing such as splicing, stability and translation, developing a precise and controllable m1A editing tool is pivotal for in-depth investigating the biological functions of m1A. In this study, we developed an abscisic acid (ABA)-inducible and reversible m1A demethylation tool (termed AI-dm1A), which targets specific transcripts by combining the chemical proximity-induction techniques with the CRISPR/dCas13b system and ALKBH3. We successfully employed AI-dm1A to selectively demethylate the m1A modifications at A8422 of MALAT1 RNA, and this demethylation process could be reversed by removing ABA. Furthermore, we validated its demethylation function on various types of cellular RNAs including mRNA, rRNA and lncRNA. Additionally, we used AI-dm1A to specifically demethylate m1A on ATP5D mRNA, which promoted ATP5D expression and enhanced the glycolysis activity of tumor cells. Conversely, by replacing the demethylase ALKBH3 with methyltransferase TRMT61A, we also developed a controllable m1A methylation tool, namely AI-m1A. Finally, we caged ABA by 4,5-dimethoxy-2-nitrobenzyl (DMNB) to achieve light-inducible m1A methylation or demethylation on specific transcripts. Collectively, our m1A editing tool enables us to flexibly study how m1A modifications on specific transcript influence biological functions and phenotypes.
Collapse
Affiliation(s)
- Guoyou Xie
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yunqing Lu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiaxin He
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xianyuan Yang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiawang Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Cheng Yi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jian Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P. R. China
| | - Zigang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Gholamreza Asadikaram
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Medical University Campus, Kerman, Iran
| | - Hongxin Niu
- Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaofeng Xiong
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiexin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
18
|
Li Y, Jin H, Li Q, Shi L, Mao Y, Zhao L. The role of RNA methylation in tumor immunity and its potential in immunotherapy. Mol Cancer 2024; 23:130. [PMID: 38902779 PMCID: PMC11188252 DOI: 10.1186/s12943-024-02041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
RNA methylation, a prevalent post-transcriptional modification, has garnered considerable attention in research circles. It exerts regulatory control over diverse biological functions by modulating RNA splicing, translation, transport, and stability. Notably, studies have illuminated the substantial impact of RNA methylation on tumor immunity. The primary types of RNA methylation encompass N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G), and 3-methylcytidine (m3C). Compelling evidence underscores the involvement of RNA methylation in regulating the tumor microenvironment (TME). By affecting RNA translation and stability through the "writers", "erasers" and "readers", RNA methylation exerts influence over the dysregulation of immune cells and immune factors. Consequently, RNA methylation plays a pivotal role in modulating tumor immunity and mediating various biological behaviors, encompassing proliferation, invasion, metastasis, etc. In this review, we discussed the mechanisms and functions of several RNA methylations, providing a comprehensive overview of their biological roles and underlying mechanisms within the tumor microenvironment and among immunocytes. By exploring how these RNA modifications mediate tumor immune evasion, we also examine their potential applications in immunotherapy. This review aims to provide novel insights and strategies for identifying novel targets in RNA methylation and advancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liangrong Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
19
|
Chen M, Chen Y, Wang K, Deng X, Chen J. Non‐m 6A RNA modifications in haematological malignancies. Clin Transl Med 2024; 14:e1666. [PMID: 38880983 PMCID: PMC11180698 DOI: 10.1002/ctm2.1666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 06/18/2024] Open
Abstract
Dysregulated RNA modifications, stemming from the aberrant expression and/or malfunction of RNA modification regulators operating through various pathways, play pivotal roles in driving the progression of haematological malignancies. Among RNA modifications, N6-methyladenosine (m6A) RNA modification, the most abundant internal mRNA modification, stands out as the most extensively studied modification. This prominence underscores the crucial role of the layer of epitranscriptomic regulation in controlling haematopoietic cell fate and therefore the development of haematological malignancies. Additionally, other RNA modifications (non-m6A RNA modifications) have gained increasing attention for their essential roles in haematological malignancies. Although the roles of the m6A modification machinery in haematopoietic malignancies have been well reviewed thus far, such reviews are lacking for non-m6A RNA modifications. In this review, we mainly focus on the roles and implications of non-m6A RNA modifications, including N4-acetylcytidine, pseudouridylation, 5-methylcytosine, adenosine to inosine editing, 2'-O-methylation, N1-methyladenosine and N7-methylguanosine in haematopoietic malignancies. We summarise the regulatory enzymes and cellular functions of non-m6A RNA modifications, followed by the discussions of the recent studies on the biological roles and underlying mechanisms of non-m6A RNA modifications in haematological malignancies. We also highlight the potential of therapeutically targeting dysregulated non-m6A modifiers in blood cancer.
Collapse
Affiliation(s)
- Meiling Chen
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
- Department of Systems BiologyBeckman Research Institute of City of HopeMonroviaCaliforniaUSA
| | - Yuanzhong Chen
- Department of HematologyFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFujian Medical University Union HospitalFuzhouChina
| | - Kitty Wang
- Department of Systems BiologyBeckman Research Institute of City of HopeMonroviaCaliforniaUSA
| | - Xiaolan Deng
- Department of Systems BiologyBeckman Research Institute of City of HopeMonroviaCaliforniaUSA
| | - Jianjun Chen
- Department of Systems BiologyBeckman Research Institute of City of HopeMonroviaCaliforniaUSA
- Gehr Family Center for Leukemia ResearchCity of Hope Medical Center and Comprehensive Cancer CenterDuarteCaliforniaUSA
| |
Collapse
|
20
|
Zhang Y, Zhang H, Wang C, Cao S, Cheng X, Jin L, Ren R, Zhou F. circRNA6448-14/miR-455-3p/OTUB2 axis stimulates glycolysis and stemness of esophageal squamous cell carcinoma. Aging (Albany NY) 2024; 16:9485-9497. [PMID: 38819228 PMCID: PMC11210236 DOI: 10.18632/aging.205879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/28/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a gastrointestinal malignancy with high incidence. This study aimed to reveal the complete circRNA-miRNA-mRNA regulatory network in ESCC and validate its function mechanism. METHOD Expression of OTU Domain-Containing Ubiquitin Aldehyde-Binding Protein 2 (OTUB2) in ESCC was analyzed by bioinformatics to find the binding sites between circRNA6448-14 and miR-455-3p, as well as miR-455-3p and OTUB2. The binding relationships were verified by RNA Immunoprecipitation (RIP) and dual-luciferase assay. The expressions of circRNA6448-14, miR-455-3p, and OTUB2 were detected by quantitative real-time polymerase chain reaction (qRT-PCR). MTT assay measured cell viability, and the spheroid formation assay assessed the ability of stem cell sphere formation. Western blot (WB) determined the expression of marker proteins of stem cell surface and rate-limiting enzyme of glycolysis. The Seahorse XFe96 extracellular flux analyzer measured the rate of extracellular acidification rate and cellular oxygen consumption. Corresponding assay kits assessed cellular glucose consumption, lactate production, and adenosine triphosphate (ATP) generation. RESULTS In ESCC, circRNA6448-14 and OTUB2 were highly expressed in contrast to miR-455-3p. Knocking down circRNA6448-14 could prevent the glycolysis and stemness of ESCC cells. Additionally, circRNA6448-14 enhanced the expression of OTUB2 by sponging miR-455-3p. Overexpression of OTUB2 or silencing miR-455-3p reversed the inhibitory effect of knockdown of circRNA6448-14 on ESCC glycolysis and stemness. CONCLUSION This research demonstrated that the circRNA6448-14/miR-455-3p/OTUB2 axis induced the glycolysis and stemness of ESCC cells. Our study revealed a novel function of circRNA6448-14, which may serve as a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Yaowen Zhang
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Heming Zhang
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Chenyu Wang
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Shasha Cao
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Xinyu Cheng
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Linzhi Jin
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Runchuan Ren
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| | - Fuyou Zhou
- Department of Radiation Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang 455000, China
| |
Collapse
|
21
|
Li G, Yao Q, Liu P, Zhang H, Liu Y, Li S, Shi Y, Li Z, Zhu W. Critical roles and clinical perspectives of RNA methylation in cancer. MedComm (Beijing) 2024; 5:e559. [PMID: 38721006 PMCID: PMC11077291 DOI: 10.1002/mco2.559] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 01/06/2025] Open
Abstract
RNA modification, especially RNA methylation, is a critical posttranscriptional process influencing cellular functions and disease progression, accounting for over 60% of all RNA modifications. It plays a significant role in RNA metabolism, affecting RNA processing, stability, and translation, thereby modulating gene expression and cell functions essential for proliferation, survival, and metastasis. Increasing studies have revealed the disruption in RNA metabolism mediated by RNA methylation has been implicated in various aspects of cancer progression, particularly in metabolic reprogramming and immunity. This disruption of RNA methylation has profound implications for tumor growth, metastasis, and therapy response. Herein, we elucidate the fundamental characteristics of RNA methylation and their impact on RNA metabolism and gene expression. We highlight the intricate relationship between RNA methylation, cancer metabolic reprogramming, and immunity, using the well-characterized phenomenon of cancer metabolic reprogramming as a framework to discuss RNA methylation's specific roles and mechanisms in cancer progression. Furthermore, we explore the potential of targeting RNA methylation regulators as a novel approach for cancer therapy. By underscoring the complex mechanisms by which RNA methylation contributes to cancer progression, this review provides a foundation for developing new prognostic markers and therapeutic strategies aimed at modulating RNA methylation in cancer treatment.
Collapse
Affiliation(s)
- Ganglei Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Qinfan Yao
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Peixi Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Hongfei Zhang
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yingjun Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Sichen Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yuan Shi
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Zongze Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Wei Zhu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| |
Collapse
|
22
|
Li L, Xia X, Yang T, Sun Y, Liu X, Xu W, Lu M, Cui D, Wu Y. RNA methylation: A potential therapeutic target in autoimmune disease. Int Rev Immunol 2024; 43:160-177. [PMID: 37975549 DOI: 10.1080/08830185.2023.2280544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/12/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD) are caused by the body's immune response to autoantigens. The pathogenesis of autoimmune diseases is unclear. Numerous studies have demonstrated that RNA methylation plays a key role in disease progression, which is essential for post-transcriptional regulation and has gradually become a broad regulatory mechanism that controls gene expression in various physiological processes, including RNA nuclear output, translation, splicing, and noncoding RNA processing. Here, we outline the writers, erasers, and readers of RNA methylation, including N6-methyladenosine (m6A), 2'-O-methylation (Nm), 2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytidine (m5C) and N7-methylguanosine (m7G). As the role of RNA methylation modifications in the immune system and diseases is explained, the potential treatment value of these modifications has also been demonstrated. This review reports the relationship between RNA methylation and autoimmune diseases, highlighting the need for future research into the therapeutic potential of RNA modifications.
Collapse
Affiliation(s)
- Lele Li
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiaoping Xia
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Tian Yang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yuchao Sun
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xueke Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wei Xu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Mei Lu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dawei Cui
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingping Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
23
|
Wu Y, Li L, Wang L, Zhang S, Zeng Z, Lu J, Wang Z, Zhang Y, Zhang S, Li H, Chen T. m 1A regulator-mediated methylation modification patterns correlated with autophagy to predict the prognosis of hepatocellular carcinoma. BMC Cancer 2024; 24:506. [PMID: 38649860 PMCID: PMC11034060 DOI: 10.1186/s12885-024-12235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND N1-methyladenosine (m1A), among the most common internal modifications on RNAs, has a crucial role to play in cancer development. The purpose of this study were systematically investigate the modification characteristics of m1A in hepatocellular carcinoma (HCC) to unveil its potential as an anticancer target and to develop a model related to m1A modification characteristics with biological functions. This model could predict the prognosis for patients with HCC. METHODS An integrated analysis of the TCGA-LIHC database was performed to explore the gene signatures and clinical relevance of 10 m1A regulators. Furthermore, the biological pathways regulated by m1A modification patterns were investigated. The risk model was established using the genes that showed differential expression (DEGs) between various m1A modification patterns and autophagy clusters. These in vitro experiments were subsequently designed to validate the role of m1A in HCC cell growth and autophagy. Immunohistochemistry was employed to assess m1A levels and the expression of DEGs from the risk model in HCC tissues and paracancer tissues using tissue microarray. RESULTS The risk model, constructed from five DEGs (CDK5R2, TRIM36, DCAF8L, CYP26B, and PAGE1), exhibited significant prognostic value in predicting survival rates among individuals with HCC. Moreover, HCC tissues showed decreased levels of m1A compared to paracancer tissues. Furthermore, the low m1A level group indicated a poorer clinical outcome for patients with HCC. Additionally, m1A modification may positively influence autophagy regulation, thereby inhibiting HCC cells proliferation under nutrient deficiency conditions. CONCLUSIONS The risk model, comprising m1A regulators correlated with autophagy and constructed from five DEGs, could be instrumental in predicting HCC prognosis. The reduced level of m1A may represent a potential target for anti-HCC strategies.
Collapse
Affiliation(s)
- Yingmin Wu
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, 561113, Guiyang, China.
- Department of Surgery, Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, China.
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China.
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 561113, Guiyang, China.
| | - Lian Li
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, 561113, Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 561113, Guiyang, China
| | - Long Wang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, 561113, Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 561113, Guiyang, China
| | - Shenjie Zhang
- Department of Surgery, Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, 561113, Guiyang, China
- Department of Surgery, Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 561113, Guiyang, China
| | - Jieyu Lu
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, 561113, Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 561113, Guiyang, China
| | - Zhi Wang
- Department of Surgery, Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, China
| | - Yewei Zhang
- Department of Surgery, Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, China
| | - Shilong Zhang
- Department of Surgery, Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, China
| | - Haiyang Li
- Department of Surgery, Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, China.
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, China.
| | - Tengxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, 561113, Guiyang, China.
- Department of Surgery, Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, China.
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, China.
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 561113, Guiyang, China.
| |
Collapse
|
24
|
Sun M, Yue Y, Wang X, Feng H, Qin Y, Chen M, Wang Y, Yan S. ALKBH5-mediated upregulation of CPT1A promotes macrophage fatty acid metabolism and M2 macrophage polarization, facilitating malignant progression of colorectal cancer. Exp Cell Res 2024; 437:113994. [PMID: 38479704 DOI: 10.1016/j.yexcr.2024.113994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
m6A modification has been studied in tumors, but its role in host anti-tumor immune response and TAMs polarization remains unclear. The fatty acid oxidation (FAO) process of TAMs is also attracting attention. A co-culture model of colorectal cancer (CRC) cells and macrophages was used to simulate the tumor microenvironment. Expression changes of m6A demethylase genes FTO and ALKBH5 were screened. ALKBH5 was further investigated. Gain-of-function experiments were conducted to study ALKBH5's effects on macrophage M2 polarization, CRC cell viability, proliferation, migration, and more. Me-RIP and Actinomycin D assays were performed to study ALKBH5's influence on CPT1A, the FAO rate-limiting enzyme. AMP, ADP, and ATP content detection, OCR measurement, and ECAR measurement were used to explore ALKBH5's impact on macrophage FAO level. Rescue experiments validated ALKBH5's mechanistic role in macrophage M2 polarization and CRC malignant development. In co-culture, CRC cells enhance macrophage FAO and suppress m6A modification in M2 macrophages. ALKBH5 was selected as the gene for further investigation. ALKBH5 mediates CPT1A upregulation by removing m6A modification, promoting M2 macrophage polarization and facilitating CRC development. These findings indicate that ALKBH5 enhances fatty acid metabolism and M2 polarization of macrophages by upregulating CPT1A, thereby promoting CRC development.
Collapse
Affiliation(s)
- Mingming Sun
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Yinzi Yue
- Department of General Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Xiaopeng Wang
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Huayi Feng
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Yuanyuan Qin
- Department of Pharmacy, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Mengyao Chen
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Yahui Wang
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Shuai Yan
- Department of General Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China.
| |
Collapse
|
25
|
Ma C, Gu Z, Yang Y. Development of m6A/m5C/m1A regulated lncRNA signature for prognostic prediction, personalized immune intervention and drug selection in LUAD. J Cell Mol Med 2024; 28:e18282. [PMID: 38647237 PMCID: PMC11034373 DOI: 10.1111/jcmm.18282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Research indicates that there are links between m6A, m5C and m1A modifications and the development of different types of tumours. However, it is not yet clear if these modifications are involved in the prognosis of LUAD. The TCGA-LUAD dataset was used as for signature training, while the validation cohort was created by amalgamating publicly accessible GEO datasets including GSE29013, GSE30219, GSE31210, GSE37745 and GSE50081. The study focused on 33 genes that are regulated by m6A, m5C or m1A (mRG), which were used to form mRGs clusters and clusters of mRG differentially expressed genes clusters (mRG-DEG clusters). Our subsequent LASSO regression analysis trained the signature of m6A/m5C/m1A-related lncRNA (mRLncSig) using lncRNAs that exhibited differential expression among mRG-DEG clusters and had prognostic value. The model's accuracy underwent validation via Kaplan-Meier analysis, Cox regression, ROC analysis, tAUC evaluation, PCA examination and nomogram predictor validation. In evaluating the immunotherapeutic potential of the signature, we employed multiple bioinformatics algorithms and concepts through various analyses. These included seven newly developed immunoinformatic algorithms, as well as evaluations of TMB, TIDE and immune checkpoints. Additionally, we identified and validated promising agents that target the high-risk mRLncSig in LUAD. To validate the real-world expression pattern of mRLncSig, real-time PCR was carried out on human LUAD tissues. The signature's ability to perform in pan-cancer settings was also evaluated. The study created a 10-lncRNA signature, mRLncSig, which was validated to have prognostic power in the validation cohort. Real-time PCR was applied to verify the actual manifestation of each gene in the signature in the real world. Our immunotherapy analysis revealed an association between mRLncSig and immune status. mRLncSig was found to be closely linked to several checkpoints, such as IL10, IL2, CD40LG, SELP, BTLA and CD28, which could be appropriate immunotherapy targets for LUAD. Among the high-risk patients, our study identified 12 candidate drugs and verified gemcitabine as the most significant one that could target our signature and be effective in treating LUAD. Additionally, we discovered that some of the lncRNAs in mRLncSig could play a crucial role in certain cancer types, and thus, may require further attention in future studies. According to the findings of this study, the use of mRLncSig has the potential to aid in forecasting the prognosis of LUAD and could serve as a potential target for immunotherapy. Moreover, our signature may assist in identifying targets and therapeutic agents more effectively.
Collapse
Affiliation(s)
- Chao Ma
- Department of Thoracic SurgeryFirst Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhuoyu Gu
- Department of Thoracic SurgeryFirst Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yang Yang
- Department of Thoracic SurgeryFirst Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
26
|
Liu WW, Zheng SQ, Li T, Fei YF, Wang C, Zhang S, Wang F, Jiang GM, Wang H. RNA modifications in cellular metabolism: implications for metabolism-targeted therapy and immunotherapy. Signal Transduct Target Ther 2024; 9:70. [PMID: 38531882 DOI: 10.1038/s41392-024-01777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular metabolism is an intricate network satisfying bioenergetic and biosynthesis requirements of cells. Relevant studies have been constantly making inroads in our understanding of pathophysiology, and inspiring development of therapeutics. As a crucial component of epigenetics at post-transcription level, RNA modification significantly determines RNA fates, further affecting various biological processes and cellular phenotypes. To be noted, immunometabolism defines the metabolic alterations occur on immune cells in different stages and immunological contexts. In this review, we characterize the distribution features, modifying mechanisms and biological functions of 8 RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N4-acetylcytosine (ac4C), N7-methylguanosine (m7G), Pseudouridine (Ψ), adenosine-to-inosine (A-to-I) editing, which are relatively the most studied types. Then regulatory roles of these RNA modification on metabolism in diverse health and disease contexts are comprehensively described, categorized as glucose, lipid, amino acid, and mitochondrial metabolism. And we highlight the regulation of RNA modifications on immunometabolism, further influencing immune responses. Above all, we provide a thorough discussion about clinical implications of RNA modification in metabolism-targeted therapy and immunotherapy, progression of RNA modification-targeted agents, and its potential in RNA-targeted therapeutics. Eventually, we give legitimate perspectives for future researches in this field from methodological requirements, mechanistic insights, to therapeutic applications.
Collapse
Affiliation(s)
- Wei-Wei Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Clinical Medicine, Shandong University, Jinan, China
| | - Si-Qing Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Tian Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Yun-Fei Fei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Chen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Shuang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Fei Wang
- Neurosurgical Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Hao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
27
|
Gu X, Zhuang A, Yu J, Yang L, Ge S, Ruan J, Jia R, Fan X, Chai P. Histone lactylation-boosted ALKBH3 potentiates tumor progression and diminished promyelocytic leukemia protein nuclear condensates by m1A demethylation of SP100A. Nucleic Acids Res 2024; 52:2273-2289. [PMID: 38118002 PMCID: PMC10954454 DOI: 10.1093/nar/gkad1193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023] Open
Abstract
Albeit N1-Methyladenosine (m1A) RNA modification represents an important regulator of RNA metabolism, the role of m1A modification in carcinogenesis remains enigmatic. Herein, we found that histone lactylation enhances ALKBH3 expression and simultaneously attenuates the formation of tumor-suppressive promyelocytic leukemia protein (PML) condensates by removing the m1A methylation of SP100A, promoting the malignant transformation of cancers. First, ALKBH3 is specifically upregulated in high-risk ocular melanoma due to excessive histone lactylation levels, referring to m1A hypomethylation status. Moreover, the multiomics analysis subsequently identified that SP100A, a core component for PML bodies, serves as a downstream candidate target for ALKBH3. Therapeutically, the silencing of ALKBH3 exhibits efficient therapeutic efficacy in melanoma both in vitro and in vivo, which could be reversed by the depletion of SP100A. Mechanistically, we found that YTHDF1 is responsible for recognition of the m1A methylated SP100A transcript, which increases its RNA stability and translational efficacy. Conclusively, we initially demonstrated that m1A modification is necessary for tumor suppressor gene expression, expanding the current understandings of dynamic m1A function during tumor progression. In addition, our results indicate that lactylation-driven ALKBH3 is essential for the formation of PML nuclear condensates, which bridges our knowledge of m1A modification, metabolic reprogramming, and phase-separation events.
Collapse
Affiliation(s)
- Xiang Gu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Ai Zhuang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Ludi Yang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Jing Ruan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| |
Collapse
|
28
|
Yang Q, Hong K, Li Y, Shi P, Yan F, Zhang P. Receptor-interacting protein kinase 2 is associated with tumor immune infiltration, immunotherapy-related biomarkers, and affects gastric cancer cells growth in vivo. J Cancer 2024; 15:176-191. [PMID: 38164277 PMCID: PMC10751663 DOI: 10.7150/jca.90008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024] Open
Abstract
Background: The objective of this study was to analyze the research trend of four RIPK genes (RIPK1, RIPK2, RIPK3, and RIPK4), their expression variations in tumors, and the correlation between RIPK2 expression and immune-related biomarkers in gastric cancer (GC). Methods: The PubMed database was utilized to investigate the research trend surrounding four RIPKs genes in tumors. The ULCAN database was employed to analyze the differential expression of these four RIPKs genes. TCGA data were utilized to examine the association between RIPK2 expression and various factors including tumor immune infiltration and immune-related biomarkers. Lastly, the impact of targeting RIPK2 on the growth of GC cells was confirmed through tumor formation assay, immunohistochemistry, and Tunnel assays. Results: In the field of tumor biology, there has been a sustained increase in research focused on the four RIPKs genes over the past decade. Four RIPKs genes are differentially expressed in a majority of tumors. Furthermore, this investigation has unveiled a connection between the expression of RIPK2 and the infiltration of four immune cells, as well as the presence of RNA methylation modifying enzymes, specifically m1A, m6A, and m5C, in GC. Additionally, RIPK2 expression was associated with the genes related to immune checkpoint regulation, as well as genes associated with immunoinhibitors and immunostimulators. It was also revealed that RIPK2 expression was correlated to immunotherapy response biomarkers, namely MSI and TMB, and tumor stemness. Ultimately, it was demonstrated that targeting the RIPK2 effectively regulated GC cells growth through the suppression of PCNA expression and the induction of apoptosis. Conclusion: The expression of RIPK2 is correlated with immune cell infiltration, RNA methyltransferase activity, tumor stemness, checkpoint-related genes, and immunotherapy-related biomarkers. Suppression of RIPK2 impedes the growth of GC cells in vivo. Consequently, RIPK2 holds promise as a viable immunotherapy target for various types of cancer.
Collapse
Affiliation(s)
- Qian Yang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang City, Guizhou Province, PR China
| | - Kunqiao Hong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan City, Hubei Province, PR China
| | - Yu Li
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang City, Guizhou Province, PR China
| | - Pengshuang Shi
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang City, Guizhou Province, PR China
| | - Fang Yan
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang City, Guizhou Province, PR China
| | - Peng Zhang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, PR China
| |
Collapse
|
29
|
Zheng J, Lu Y, Lin Y, Si S, Guo B, Zhao X, Cui L. Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond. Cell Death Differ 2024; 31:9-27. [PMID: 37985811 PMCID: PMC10782030 DOI: 10.1038/s41418-023-01238-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
RNA modifications, known as the "epitranscriptome", represent a key layer of regulation that influences a wide array of biological processes in mesenchymal stem cells (MSCs). These modifications, catalyzed by specific enzymes, often termed "writers", "readers", and "erasers", can dynamically alter the MSCs' transcriptomic landscape, thereby modulating cell differentiation, proliferation, and responses to environmental cues. These enzymes include members of the classes METTL, IGF2BP, WTAP, YTHD, FTO, NAT, and others. Many of these RNA-modifying agents are active during MSC lineage differentiation. This review provides a comprehensive overview of the current understanding of different RNA modifications in MSCs, their roles in regulating stem cell behavior, and their implications in MSC-based therapies. It delves into how RNA modifications impact MSC biology, the functional significance of individual modifications, and the complex interplay among these modifications. We further discuss how these intricate regulatory mechanisms contribute to the functional diversity of MSCs, and how they might be harnessed for therapeutic applications. The review also highlights current challenges and potential future directions in the study of RNA modifications in MSCs, emphasizing the need for innovative tools to precisely map these modifications and decipher their context-specific effects. Collectively, this work paves the way for a deeper understanding of the role of the epitranscriptome in MSC biology, potentially advancing therapeutic strategies in regenerative medicine and MSC-based therapies.
Collapse
Affiliation(s)
- Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Shanshan Si
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| |
Collapse
|
30
|
Shi Q, Chu Q, Zeng Y, Yuan X, Wang J, Zhang Y, Xue C, Li L. Non-coding RNA methylation modifications in hepatocellular carcinoma: interactions and potential implications. Cell Commun Signal 2023; 21:359. [PMID: 38111040 PMCID: PMC10726651 DOI: 10.1186/s12964-023-01357-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/14/2023] [Indexed: 12/20/2023] Open
Abstract
RNA methylation modification plays a crucial role as an epigenetic regulator in the oncogenesis of hepatocellular carcinoma (HCC). Numerous studies have investigated the molecular mechanisms underlying the methylation of protein-coding RNAs in the progression of HCC. Beyond their impact on mRNA, methylation modifications also influence the biological functions of non-coding RNAs (ncRNAs). Here, we present an advanced and comprehensive overview of the interplay between methylation modifications and ncRNAs in HCC, with a specific focus on their potential implications for the tumor immune microenvironment. Moreover, we summarize promising therapeutic targets for HCC based on methylation-related proteins. In the future, a more profound investigation is warranted to elucidate the effects of ncRNA methylation modifications on HCC pathogenesis and devise valuable intervention strategies. Video Abstract.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China.
| |
Collapse
|
31
|
Wang C, Hou X, Guan Q, Zhou H, Zhou L, Liu L, Liu J, Li F, Li W, Liu H. RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:412. [PMID: 37884527 PMCID: PMC10603151 DOI: 10.1038/s41392-023-01638-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world, with a high incidence and a youth-oriented tendency. RNA modification is ubiquitous and indispensable in cell, maintaining cell homeostasis and function by dynamically regulating gene expression. Accumulating evidence has revealed the role of aberrant gene expression in CVD caused by dysregulated RNA modification. In this review, we focus on nine common RNA modifications: N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, adenosine-to-inosine (A-to-I) RNA editing, and modifications of U34 on tRNA wobble. We summarize the key regulators of RNA modification and their effects on gene expression, such as RNA splicing, maturation, transport, stability, and translation. Then, based on the classification of CVD, the mechanisms by which the disease occurs and progresses through RNA modifications are discussed. Potential therapeutic strategies, such as gene therapy, are reviewed based on these mechanisms. Herein, some of the CVD (such as stroke and peripheral vascular disease) are not included due to the limited availability of literature. Finally, the prospective applications and challenges of RNA modification in CVD are discussed for the purpose of facilitating clinical translation. Moreover, we look forward to more studies exploring the mechanisms and roles of RNA modification in CVD in the future, as there are substantial uncultivated areas to be explored.
Collapse
Affiliation(s)
- Cong Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuyang Hou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Guan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jijia Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
32
|
Bai Y, Zhao H, Liu H, Wang W, Dong H, Zhao C. RNA methylation, homologous recombination repair and therapeutic resistance. Biomed Pharmacother 2023; 166:115409. [PMID: 37659205 DOI: 10.1016/j.biopha.2023.115409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Homologous recombination (HR) repair of DNA double-strand breaks (DSBs) is critical for maintaining genomic integrity and stability. Defects in HR increase the risk of tumorigenesis. However, many human tumors exhibit enhanced HR repair capabilities, consequently endowing tumor cells with resistance to DNA-damaging chemotherapy and radiotherapy. This review summarizes the role of RNA methylation in HR repair and therapeutic resistance in human tumors. We also analyzed the interactions between RNA methylation and other HR-modulating modifications including histone acetylation, histone deacetylation, ubiquitination, deubiquitination, protein arginine methylation, and gene transcription. This review proposes that targeting RNA methylation is a promising approach to overcoming HR-mediated therapeutic resistance.
Collapse
Affiliation(s)
- Yu Bai
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China; Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hanlin Zhao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Haijun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Hongming Dong
- Department of Anatomy, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
33
|
Patrasso EA, Raikundalia S, Arango D. Regulation of the epigenome through RNA modifications. Chromosoma 2023; 132:231-246. [PMID: 37138119 PMCID: PMC10524150 DOI: 10.1007/s00412-023-00794-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
Chemical modifications of nucleotides expand the complexity and functional properties of genomes and transcriptomes. A handful of modifications in DNA bases are part of the epigenome, wherein DNA methylation regulates chromatin structure, transcription, and co-transcriptional RNA processing. In contrast, more than 150 chemical modifications of RNA constitute the epitranscriptome. Ribonucleoside modifications comprise a diverse repertoire of chemical groups, including methylation, acetylation, deamination, isomerization, and oxidation. Such RNA modifications regulate all steps of RNA metabolism, including folding, processing, stability, transport, translation, and RNA's intermolecular interactions. Initially thought to influence all aspects of the post-transcriptional regulation of gene expression exclusively, recent findings uncovered a crosstalk between the epitranscriptome and the epigenome. In other words, RNA modifications feedback to the epigenome to transcriptionally regulate gene expression. The epitranscriptome achieves this feat by directly or indirectly affecting chromatin structure and nuclear organization. This review highlights how chemical modifications in chromatin-associated RNAs (caRNAs) and messenger RNAs (mRNAs) encoding factors involved in transcription, chromatin structure, histone modifications, and nuclear organization affect gene expression transcriptionally.
Collapse
Affiliation(s)
- Emmely A Patrasso
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Medical and Pharmaceutical Biotechnology Program, IMC University of Applied Sciences, Krems, Austria
| | - Sweta Raikundalia
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel Arango
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
34
|
Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:25. [PMID: 37612540 PMCID: PMC10447785 DOI: 10.1186/s43556-023-00139-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
RNA modifications are dynamic and reversible chemical modifications on substrate RNA that are regulated by specific modifying enzymes. They play important roles in the regulation of many biological processes in various diseases, such as the development of cancer and other diseases. With the help of advanced sequencing technologies, the role of RNA modifications has caught increasing attention in human diseases in scientific research. In this review, we briefly summarized the basic mechanisms of several common RNA modifications, including m6A, m5C, m1A, m7G, Ψ, A-to-I editing and ac4C. Importantly, we discussed their potential functions in human diseases, including cancer, neurological disorders, cardiovascular diseases, metabolic diseases, genetic and developmental diseases, as well as immune disorders. Through the "writing-erasing-reading" mechanisms, RNA modifications regulate the stability, translation, and localization of pivotal disease-related mRNAs to manipulate disease development. Moreover, we also highlighted in this review all currently available RNA-modifier-targeting small molecular inhibitors or activators, most of which are designed against m6A-related enzymes, such as METTL3, FTO and ALKBH5. This review provides clues for potential clinical therapy as well as future study directions in the RNA modification field. More in-depth studies on RNA modifications, their roles in human diseases and further development of their inhibitors or activators are needed for a thorough understanding of epitranscriptomics as well as diagnosis, treatment, and prognosis of human diseases.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Qian Jing
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yanbo Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
35
|
Yi M, Wang M, Xu Y, Cao Z, Ling Y, Zhang Z, Cao H. CRISPR-based m 6A modification and its potential applications in telomerase regulation. Front Cell Dev Biol 2023; 11:1200734. [PMID: 37519297 PMCID: PMC10382234 DOI: 10.3389/fcell.2023.1200734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Telomerase determines cell lifespan by controlling chromosome stability and cell viability, m6A epigenetic modification plays an important role in the regulation of telomerase activity. Using CRISPR epigenome editing to analyze specific m6A modification sites in telomerase will provide an important tool for analyzing the molecular mechanism of m6A modification regulating telomerase activity. In this review, we clarified the relevant applications of CRISPR system, paid special attention to the regulation of m6A modification in stem cells and cancer cells based on CRISPR system, emphasized the regulation of m6A modification on telomerase activity, pointed out that m6A modification sites regulate telomerase activity, and discussed strategies based on telomerase activity and disease treatment, which are helpful to promote the research of anti-aging and tumor related diseases.
Collapse
Affiliation(s)
- Mingliang Yi
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, China
| | - Mingyue Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, China
| | - Yongjie Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, China
| | - Zhikun Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, China
| | - Yinghui Ling
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zijun Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Hongguo Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
36
|
Kong Y, Yu J, Ge S, Fan X. Novel insight into RNA modifications in tumor immunity: Promising targets to prevent tumor immune escape. Innovation (N Y) 2023; 4:100452. [PMID: 37485079 PMCID: PMC10362524 DOI: 10.1016/j.xinn.2023.100452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/23/2023] [Indexed: 07/25/2023] Open
Abstract
An immunosuppressive state is a typical feature of the tumor microenvironment. Despite the dramatic success of immune checkpoint inhibitor (ICI) therapy in preventing tumor cell escape from immune surveillance, primary and acquired resistance have limited its clinical use. Notably, recent clinical trials have shown that epigenetic drugs can significantly improve the outcome of ICI therapy in various cancers, indicating the importance of epigenetic modifications in immune regulation of tumors. Recently, RNA modifications (N6-methyladenosine [m6A], N1-methyladenosine [m1A], 5-methylcytosine [m5C], etc.), novel hotspot areas of epigenetic research, have been shown to play crucial roles in protumor and antitumor immunity. In this review, we provide a comprehensive understanding of how m6A, m1A, and m5C function in tumor immunity by directly regulating different immune cells as well as indirectly regulating tumor cells through different mechanisms, including modulating the expression of immune checkpoints, inducing metabolic reprogramming, and affecting the secretion of immune-related factors. Finally, we discuss the current status of strategies targeting RNA modifications to prevent tumor immune escape, highlighting their potential.
Collapse
Affiliation(s)
- Yuxin Kong
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200001, China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200001, China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200001, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
37
|
He J, Xiao C, Li C, Yang F, Du C. Integrative analysis of bulk and single-cell RNA sequencing data reveals distinct subtypes of MAFLD based on N1-methyladenosine regulator expression. LIVER RESEARCH 2023; 7:145-155. [PMID: 39958950 PMCID: PMC11791902 DOI: 10.1016/j.livres.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/15/2023] [Accepted: 06/05/2023] [Indexed: 02/18/2025]
Abstract
Background Metabolic dysfunction-associated fatty liver disease (MAFLD) is now the most prevalent chronic liver disease worldwide, with an increasing incidence rate. MAFLD is a heterogeneous disease that can have a low or high-risk profile for developing severe liver disease in its natural course. Recent evidence has highlighted the critical role of RNA methylation modification in the pathogenesis of various liver diseases. However, it remains unclear whether the RNA N1-methyladenosine (m1A) modification of immune cells could potentially contribute to the pathogenesis and heterogeneity of MAFLD. Materials and methods To address this issue, we conducted an integrated bioinformatics analysis of MAFLD bulk and single-cell RNA sequencing (scRNA-seq) data to pinpoint m1A regulators in the network. This was followed by a description of the immune landscape, pathway enrichment analysis, and molecular subtyping. Results The expression patterns of m1A regulatory genes stratify MAFLD into two molecular subtypes, Cluster 1 and Cluster 2. These subtypes demonstrate different immune cell infiltration with distinct inflammation characteristics, which suggest different immune-inflammatory responses in the liver. Notably, Cluster 2 is associated with pro-inflammation and may be more likely to lead to progressive stages of MAFLD. Through intersection analysis of weighted gene co-expression network analysis (WGCNA) and m1A regulatory genes, three true hub genes (ALKBH1, YTHDC1, and YTHDF3) were identified, all of which were strongly correlated with infiltrating immune cells. The specific signaling pathways involved in the three core genes were derived from genomic variation analysis. Furthermore, scRNA-seq data from 33,168 cells from six liver samples identified 26 cell clusters and eight cell types, with endothelial cells, macrophages, and monocytes showing the most significant differences between MAFLD and normal controls. The cell-cell communication network between immune cells and non-parenchymal cells was extremely sophisticated and changed significantly in MAFLD. Conclusions In summary, these findings demonstrate the involvement of m1A in MAFLD heterogeneity and emphasize the crucial role of m1A modulation of immune cells in regulating inflammation in MAFLD. These results may suggest potential therapeutic strategies for MAFLD.
Collapse
Affiliation(s)
- Jinyong He
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cuicui Xiao
- Guangdong Province Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cuiping Li
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fan Yang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Infectious Diseases, The First People's Hospital of Kashi, The Affiliated Kashi Hospital of Sun Yat-sen University, Kashi, Xinjiang, China
| | - Cong Du
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Zhang C, Yi X, Hou M, Li Q, Li X, Lu L, Qi E, Wu M, Qi L, Jian H, Qi Z, Lv Y, Kong X, Bi M, Feng S, Zhou H. The landscape of m 1A modification and its posttranscriptional regulatory functions in primary neurons. eLife 2023; 12:85324. [PMID: 36880874 PMCID: PMC9991057 DOI: 10.7554/elife.85324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Cerebral ischaemia‒reperfusion injury (IRI), during which neurons undergo oxygen-glucose deprivation/reoxygenation (OGD/R), is a notable pathological process in many neurological diseases. N1-methyladenosine (m1A) is an RNA modification that can affect gene expression and RNA stability. The m1A landscape and potential functions of m1A modification in neurons remain poorly understood. We explored RNA (mRNA, lncRNA, and circRNA) m1A modification in normal and OGD/R-treated mouse neurons and the effect of m1A on diverse RNAs. We investigated the m1A landscape in primary neurons, identified m1A-modified RNAs, and found that OGD/R increased the number of m1A RNAs. m1A modification might also affect the regulatory mechanisms of noncoding RNAs, e.g., lncRNA-RNA binding proteins (RBPs) interactions and circRNA translation. We showed that m1A modification mediates the circRNA/lncRNA‒miRNA-mRNA competing endogenous RNA (ceRNA) mechanism and that 3' untranslated region (3'UTR) modification of mRNAs can hinder miRNA-mRNA binding. Three modification patterns were identified, and genes with different patterns had intrinsic mechanisms with potential m1A-regulatory specificity. Systematic analysis of the m1A landscape in normal and OGD/R neurons lays a critical foundation for understanding RNA modification and provides new perspectives and a theoretical basis for treating and developing drugs for OGD/R pathology-related diseases.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Xianfu Yi
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical UniversityTianjinChina
| | - Mengfan Hou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal CordTianjinChina
| | - Qingyang Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Xueying Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal CordTianjinChina
| | - Enlin Qi
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Mingxin Wu
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal CordTianjinChina
| | - Lin Qi
- Department of Orthopedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal CordTianjinChina
| | - Zhangyang Qi
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Yigang Lv
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal CordTianjinChina
| | - Xiaohong Kong
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Mingjun Bi
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal CordTianjinChina
| | - Hengxing Zhou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal CordTianjinChina
| |
Collapse
|
39
|
Sarraf G, Chhabra R. Emerging role of mRNA methylation in regulating the hallmarks of cancer. Biochimie 2023; 206:61-72. [PMID: 36244577 DOI: 10.1016/j.biochi.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/29/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
Abstract
The dynamic chemical modifications of DNA, RNA, and proteins can transform normal cells into malignant ones. While the DNA and protein modifications in cancer have been described extensively in the literature, there are fewer reports about the role of RNA modifications in cancer. There are over 100 forms of RNA modifications and one of these, mRNA methylation, plays a critical role in the malignant properties of the cells. mRNA methylation is a reversible modification responsible for regulating protein expression at the post-transcriptional level. Despite being discovered in the 1970s, a complete understanding of the different proteins involved and the mechanism behind mRNA methylation remains largely unknown. However, these mRNA methylations have been shown to foster cancer hallmarks via specific cellular targets inside the cell. In this review, we provide a brief overview of mRNA methylation and its emerging role in regulating the various hallmarks of cancer.
Collapse
Affiliation(s)
- Gargi Sarraf
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
40
|
The Repertoire of RNA Modifications Orchestrates a Plethora of Cellular Responses. Int J Mol Sci 2023; 24:ijms24032387. [PMID: 36768716 PMCID: PMC9916637 DOI: 10.3390/ijms24032387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Although a plethora of DNA modifications have been extensively investigated in the last decade, recent breakthroughs in molecular biology, including high throughput sequencing techniques, have enabled the identification of post-transcriptional marks that decorate RNAs; hence, epitranscriptomics has arisen. This recent scientific field aims to decode the regulatory layer of the transcriptome and set the ground for the detection of modifications in ribose nucleotides. Until now, more than 170 RNA modifications have been reported in diverse types of RNA that contribute to various biological processes, such as RNA biogenesis, stability, and transcriptional and translational accuracy. However, dysfunctions in the RNA-modifying enzymes that regulate their dynamic level can lead to human diseases and cancer. The present review aims to highlight the epitranscriptomic landscape in human RNAs and match the catalytic proteins with the deposition or deletion of a specific mark. In the current review, the most abundant RNA modifications, such as N6-methyladenosine (m6A), N5-methylcytosine (m5C), pseudouridine (Ψ) and inosine (I), are thoroughly described, their functional and regulatory roles are discussed and their contributions to cellular homeostasis are stated. Ultimately, the involvement of the RNA modifications and their writers, erasers, and readers in human diseases and cancer is also discussed.
Collapse
|
41
|
Orsolic I, Carrier A, Esteller M. Genetic and epigenetic defects of the RNA modification machinery in cancer. Trends Genet 2023; 39:74-88. [PMID: 36379743 DOI: 10.1016/j.tig.2022.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/25/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
Cancer was initially considered to be an exclusively genetic disease, but an interplay of dysregulated genetic and epigenetic mechanisms is now known to contribute to the cancer phenotype. More recently, chemical modifications of RNA molecules - the so-called epitranscriptome - have been found to regulate various aspects of RNA function and homeostasis. Specific enzymes, known as RNA-modifying proteins (RMPs), are responsible for depositing, removing, and reading chemical modifications in RNA. Intensive investigations in the epitranscriptomic field in recent years, in conjunction with great technological advances, have revealed the critical role of RNA modifications in regulating numerous cellular pathways. Furthermore, growing evidence has revealed that RNA modification machinery is often altered in human cancers, highlighting the enormous potential of RMPs as pharmacological targets or diagnostic markers.
Collapse
Affiliation(s)
- Ines Orsolic
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Arnaud Carrier
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), 28029 Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
42
|
Zhang Y, Hu W, Li HB. RNA modification-mediated translational control in immune cells. RNA Biol 2023; 20:603-613. [PMID: 37584554 PMCID: PMC10435004 DOI: 10.1080/15476286.2023.2246256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
RNA modifications play a vital role in multiple pathways of mRNA metabolism, and translational regulation is essential for immune cells to promptly respond to stimuli and adapt to the microenvironment. N6-methyladenosine (m6A) methylation, which is the most abundant mRNA modification in eukaryotes, primarily functions in the regulation of RNA splicing and degradation. However, the role of m6Amethylation in translational control and its underlying mechanism remain controversial. The role of m6A methylation in translation regulation in immune cells has received relatively limited attention. In this review, we aim to provide a comprehensive summary of current studies on the translational regulation of m6A modifications and recent advances in understanding the translational control regulated by RNA modifications during the immune response. Furthermore, we envision the possible pathways through which m6A modifications may be involved in the regulation of immune cell function via translational control.
Collapse
Affiliation(s)
- Yujuan Zhang
- Department of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale University Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiguo Hu
- Department of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Bing Li
- Department of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale University Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Qing Y, Wu D, Deng X, Chen J, Su R. RNA Modifications in Cancer Metabolism and Tumor Microenvironment. Cancer Treat Res 2023; 190:3-24. [PMID: 38112997 DOI: 10.1007/978-3-031-45654-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
RNA modifications have recently been recognized as essential posttranscriptional regulators of gene expression in eukaryotes. Investigations over the past decade have revealed that RNA chemical modifications have profound effects on tumor initiation, progression, refractory, and recurrence. Tumor cells are notorious for their robust plasticity in response to the stressful microenvironment and undergo metabolic adaptations to sustain rapid cell proliferation, which is termed as metabolic reprogramming. Meanwhile, cancer-associated metabolic reprogramming leads to substantial alterations of intracellular and extracellular metabolites, which further reshapes the tumor microenvironment (TME). Moreover, cancer cells compete with tumor-infiltrating immune cells for the limited nutrients to maintain their proliferation and function in the TME. In this chapter, we review recent interesting findings on the engagement of epitranscriptomic pathways, especially the ones associated with N6-methyladenosine (m6A), in the regulation of cancer metabolism and the surrounding microenvironment. We also discuss the promising therapeutic approaches targeting RNA modifications for anti-tumor therapy.
Collapse
Affiliation(s)
- Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Dong Wu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, 91010, USA
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA, 91010, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA.
| |
Collapse
|
44
|
N1-methyladenosine modification in cancer biology: current status and future perspectives. Comput Struct Biotechnol J 2022; 20:6578-6585. [PMID: 36467585 PMCID: PMC9712505 DOI: 10.1016/j.csbj.2022.11.045] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Post-transcriptional modifications in RNAs regulate their biological behaviors and functions. N1-methyladenosine (m1A), which is dynamically regulated by writers, erasers and readers, has been found as a reversible modification in tRNA, mRNA, rRNA and long non-coding RNA (lncRNA). m1A modification has impacts on the RNA processing, structure and functions of targets. Increasing studies reveal the critical roles of m1A modification and its regulators in tumorigenesis. Due to the positive relevance between m1A and cancer development, targeting m1A modification and m1A-related regulators has been of attention. In this review, we summarized the current understanding of m1A in RNAs, covering the modulation of m1A modification in cancer biology, as well as the possibility of targeting m1A modification as a potential target for cancer diagnosis and therapy.
Collapse
|