1
|
Kim H, Park G, Shin HG, Kwon D, Kim H, Baek IY, Nam MH, Cho IJ, Kim J, Seong J. Optogenetic Control of Dopamine Receptor 2 Reveals a Novel Aspect of Dopaminergic Neurotransmission in Motor Function. J Neurosci 2025; 45:e1473242024. [PMID: 39562043 DOI: 10.1523/jneurosci.1473-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
Dopaminergic neurotransmission plays a crucial role in motor function through the coordination of dopamine receptor (DRD) subtypes, such as DRD1 and DRD2, thus the functional imbalance of these receptors can lead to Parkinson's disease. However, due to the complexity of dopaminergic circuits in the brain, it is limited to investigating the individual functions of each DRD subtype in specific brain regions. Here, we developed a light-responsive chimeric DRD2, OptoDRD2, which can selectively activate DRD2-like signaling pathways with spatiotemporal resolution. OptoDRD2 was designed to include the light-sensitive component of rhodopsin and the intracellular signaling domain of DRD2. Upon illumination with blue light, OptoDRD2 triggered DRD2-like signaling pathways, such as Gαi/o subtype recruitment, a decrease in cAMP levels, and ERK phosphorylation. To explore unknown roles of DRD2 in glutamatergic cell populations of basal ganglia circuitry, OptoDRD2 was genetically expressed in excitatory neurons in lateral globus pallidus (LGP) of the male mouse brain. The optogenetic stimulation of OptoDRD2 in the LGP region affected a wide range of locomotion-related parameters, such as increased frequency of movement and decreased immobility time, resulting in the facilitation of motor function of living male mice. Therefore, our findings indicate a potentially novel role for DRD2 in the excitatory neurons of the LGP region, suggesting that OptoDRD2 can be a valuable tool enabling the investigation of unknown roles of DRD2 at specific cell types or brain regions.
Collapse
Affiliation(s)
- Hyunbin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Geunhong Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyo Geun Shin
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Duwan Kwon
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Heejung Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - In-Yeop Baek
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Il-Joo Cho
- Departments of Convergence Medicine, Korea University, Seoul 02841, Republic of Korea
- Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Jeongjin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jihye Seong
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Neuroscience Research Institute, Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Azevedo EM, Fracaro L, Hochuli AHD, Ilkiw J, Bail EL, Lisboa MDO, Rodrigues LS, Barchiki F, Correa A, Capriglione LGA, Brofman PRS, Lima MMS. Comparative analysis of uninduced and neuronally-induced human dental pulp stromal cells in a 6-OHDA model of Parkinson's disease. Cytotherapy 2024; 26:1052-1061. [PMID: 38739074 DOI: 10.1016/j.jcyt.2024.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND In recent years, dental pulp stromal cells (DPSCs) have emerged as a promising therapeutic approach for Parkinson's disease (PD), owing to their inherent neurogenic potential and the lack of neuroprotective treatments for this condition. However, uncertainties persist regarding the efficacy of these cells in an undifferentiated state versus a neuronally-induced state. This study aims to delineate the distinct therapeutic potential of uninduced and neuronally-induced DPSCs in a rodent model of PD induced by 6-Hydroxydopamine (6-OHDA). METHODS DPSCs were isolated from human teeth, characterized as mesenchymal stromal cells, and induced to neuronal differentiation. Neuronal markers were assessed before and after induction. DPSCs were transplanted into the substantia nigra pars compacta (SNpc) of rats 7 days following the 6-OHDA lesion. In vivo tracking of the cells, evaluation of locomotor behavior, dopaminergic neuron survival, and the expression of essential proteins within the dopaminergic system were conducted 7 days postgrafting. RESULTS Isolated DPSCs exhibited typical characteristics of mesenchymal stromal cells and maintained a normal karyotype. DPSCs consistently expressed neuronal markers, exhibiting elevated expression of βIII-tubulin following neuronal induction. Results from the animal model showed that both DPSC types promoted substantial recovery in dopaminergic neurons, correlating with enhanced locomotion. Additionally, neuronally-induced DPSCs prevented GFAP elevation, while altering DARPP-32 phosphorylation states. Conversely, uninduced DPSCs reduced JUN levels. Both DPSC types mitigated the elevation of glycosylated DAT. CONCLUSIONS Our results suggested that uninduced DPSCs and neuronally-induced DPSCs exhibit potential in reducing dopaminergic neuron loss and improving locomotor behavior, but their underlying mechanisms differ.
Collapse
Affiliation(s)
- Evellyn M Azevedo
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Agner H D Hochuli
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Jéssica Ilkiw
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Ellen L Bail
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Mateus de O Lisboa
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Lais S Rodrigues
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Fabiane Barchiki
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Alejandro Correa
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba, Brazil
| | - Luiz G A Capriglione
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Paulo R S Brofman
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Marcelo M S Lima
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
| |
Collapse
|
3
|
Tsuboi D, Nagai T, Yoshimoto J, Kaibuchi K. Neuromodulator regulation and emotions: insights from the crosstalk of cell signaling. Front Mol Neurosci 2024; 17:1376762. [PMID: 38516040 PMCID: PMC10954900 DOI: 10.3389/fnmol.2024.1376762] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
The unraveling of the regulatory mechanisms that govern neuronal excitability is a major challenge for neuroscientists worldwide. Neurotransmitters play a critical role in maintaining the balance between excitatory and inhibitory activity in the brain. The balance controls cognitive functions and emotional responses. Glutamate and γ-aminobutyric acid (GABA) are the primary excitatory and inhibitory neurotransmitters of the brain, respectively. Disruptions in the balance between excitatory and inhibitory transmission are implicated in several psychiatric disorders, including anxiety disorders, depression, and schizophrenia. Neuromodulators such as dopamine and acetylcholine control cognition and emotion by regulating the excitatory/inhibitory balance initiated by glutamate and GABA. Dopamine is closely associated with reward-related behaviors, while acetylcholine plays a role in aversive and attentional behaviors. Although the physiological roles of neuromodulators have been extensively studied neuroanatomically and electrophysiologically, few researchers have explored the interplay between neuronal excitability and cell signaling and the resulting impact on emotion regulation. This review provides an in-depth understanding of "cell signaling crosstalk" in the context of neuronal excitability and emotion regulation. It also anticipates that the next generation of neurochemical analyses, facilitated by integrated phosphorylation studies, will shed more light on this topic.
Collapse
Affiliation(s)
- Daisuke Tsuboi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Junichiro Yoshimoto
- Department of Biomedical Data Science, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
4
|
Sardi NF, Pescador AC, Azevedo EM, Pochapski JA, Kukolj C, Spercoski KM, Andrade AJM, da Cunha C, Fischer L. Sleep and Pain: A Role for the Anterior Cingulate Cortex, Nucleus Accumbens, and Dopamine in the Increased Pain Sensitivity Following Sleep Restriction. THE JOURNAL OF PAIN 2024; 25:331-349. [PMID: 37673193 DOI: 10.1016/j.jpain.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Persistent pain conditions and sleep disorders are public health problems worldwide. It is widely accepted that sleep disruption increases pain sensitivity; however, the underlying mechanisms are poorly understood. In this study, we used a protocol of 6 hours a day of total sleep deprivation for 3 days in rats to advance the understanding of these mechanisms. We focused on gender differences and the dopaminergic mesocorticolimbic system. The findings demonstrated that sleep restriction (SR) increased pain sensitivity in a similar way in males and females, without inducing a significant stress response. This pronociceptive effect depends on a nucleus accumbens (NAc) neuronal ensemble recruited during SR and on the integrity of the anterior cingulate cortex (ACC). Data on indirect dopaminergic parameters, dopamine transporter glycosylation, and dopamine and cyclic adenosine monophosphate (AMP)-regulated phosphoprotein-32 phosphorylation, as well as dopamine, serotonin, and norepinephrine levels, suggest that dopaminergic function decreases in the NAc and ACC after SR. Complementarily, pharmacological activation of dopamine D2, but not D1 receptors either in the ACC or in the NAc prevents SR from increasing pain sensitivity. The ACC and NAc are the main targets of dopaminergic mesocorticolimbic projections with a key role in pain modulation. This study showed their integrative role in the pronociceptive effect of SR, pointing to dopamine D2 receptors as a potential target for pain management in patients with sleep disorders. These findings narrow the focus of future studies on the mechanisms by which sleep impairment increases pain sensitivity. PERSPECTIVE: This study demonstrates that the pronociceptive effect of SR affects similarly males and females and depends on a NAc neuronal ensemble recruited during SR and on the integrity of the ACC. Findings on dopaminergic function support dopamine D2 receptors as targets for pain management in sleep disorders patients.
Collapse
Affiliation(s)
- Natalia F Sardi
- Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Ana C Pescador
- Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Evellyn M Azevedo
- Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - José A Pochapski
- Department of Pharmacology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil; Department of Biochemistry, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Caroline Kukolj
- Department of Biochemistry, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Katherinne M Spercoski
- Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil; Division of Biosciences, Federal University of Parana, Palotina, Parana, Brazil
| | - Anderson J M Andrade
- Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Claudio da Cunha
- Department of Pharmacology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Luana Fischer
- Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| |
Collapse
|
5
|
Roy D, Balasubramanian S, Krishnamurthy PT, Sola P, Rymbai E. Phosphodiesterase-4 Inhibition in Parkinson's Disease: Molecular Insights and Therapeutic Potential. Cell Mol Neurobiol 2023; 43:2713-2741. [PMID: 37074485 PMCID: PMC11410141 DOI: 10.1007/s10571-023-01349-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/09/2023] [Indexed: 04/20/2023]
Abstract
Clinicians and researchers are exploring safer and novel treatment strategies for treating the ever-prevalent Parkinson's disease (PD) across the globe. Several therapeutic strategies are used clinically for PD, including dopamine replacement therapy, DA agonists, MAO-B blockers, COMT blockers, and anticholinergics. Surgical interventions such as pallidotomy, particularly deep brain stimulation (DBS), are also employed. However, they only provide temporal and symptomatic relief. Cyclic adenosine monophosphate (cAMP) is one of the secondary messengers involved in dopaminergic neurotransmission. Phosphodiesterase (PDE) regulates cAMP and cGMP intracellular levels. PDE enzymes are subdivided into families and subtypes which are expressed throughout the human body. PDE4 isoenzyme- PDE4B subtype is overexpressed in the substantia nigra of the brain. Various studies have implicated multiple cAMP-mediated signaling cascades in PD, and PDE4 is a common link that can emerge as a neuroprotective and/or disease-modifying target. Furthermore, a mechanistic understanding of the PDE4 subtypes has provided perceptivity into the molecular mechanisms underlying the adverse effects of phosphodiesterase-4 inhibitors (PDE4Is). The repositioning and development of efficacious PDE4Is for PD have gained much attention. This review critically assesses the existing literature on PDE4 and its expression. Specifically, this review provides insights into the interrelated neurological cAMP-mediated signaling cascades involving PDE4s and the potential role of PDE4Is in PD. In addition, we discuss existing challenges and possible strategies for overcoming them.
Collapse
Affiliation(s)
- Dhritiman Roy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Shivaramakrishnan Balasubramanian
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India.
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| |
Collapse
|
6
|
Kim JE, Lee DS, Kim TH, Park H, Kim MJ, Kang TC. PLPP/CIN inhibits dopamine D1 receptor-mediated seizure activity via DARPP-32 serine 97 dephosphorylation in the mouse hippocampus. Neuropharmacology 2023; 228:109462. [PMID: 36792029 DOI: 10.1016/j.neuropharm.2023.109462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Dopamine plays a central role in the regulation of psychomotor functions in the brain. Furthermore, the dopaminergic system is involved in the ictogenesis in human patients and animal models of epilepsy. Dopamine and cAMP-regulated phosphoprotein, 32 kDa (DARPP-32) plays an important role in the regulation of interactions between dopamine and glutamate receptors in neurons. Indeed, SKF 83822 (a specific D1 receptor agonist) facilitates DARPP-32-mediated protein phosphatase 1 (PP1) inhibition leading to the increase in phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR), which potentiates channel activities and currents and thereby generates seizure activity. In the present study, we found that pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN), a selective phosphatase for serine (S) residues, attenuated seizure susceptibility in response to SKF 83822 by dephosphorylating DARPP-32 S97 site. Similarly, inhibition of DARPP-32 S97 phosphorylation by 2-[4,5,6,7-Tetrabromo-2-(dimethylamino)-1H-benzo[d]imidazole-1-yl]acetic acid (TMCB; a selective casein kinase 2 inhibitor) attenuated SKF 83822-induced seizure activity. These inhibitory effects of PLPP/CIN and TMCB were relevant to the regulations of DARPP-32-PP1-AMPAR signaling pathway. Therefore, our findings suggest that PLPP/CIN may be a modulator in dopaminergic neurotransmission as well as glutamatergic systems, and that the PLPP/CIN-mediated DARPP-32 regulation may be one of the potential therapeutic targets for medication of seizure or epilepsy induced by D1 receptor hyperactivation.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Min-Ju Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
7
|
Kuroiwa M, Shuto T, Nagai T, Amano M, Kaibuchi K, Nairn AC, Nishi A. DARPP-32/protein phosphatase 1 regulates Rasgrp2 as a novel component of dopamine D1 receptor signaling in striatum. Neurochem Int 2023; 162:105438. [PMID: 36351540 DOI: 10.1016/j.neuint.2022.105438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Dopamine regulates psychomotor function by D1 receptor/PKA-dependent phosphorylation of DARPP-32. DARPP-32, phosphorylated at Thr34 by PKA, inhibits protein phosphatase 1 (PP1), and amplifies the phosphorylation of other PKA/PP1 substrates following D1 receptor activation. In addition to the D1 receptor/PKA/DARPP-32 signaling pathway, D1 receptor stimulation is known to activate Rap1/ERK signaling. Rap1 activation is mediated through the phosphorylation of Rasgrp2 (guanine nucleotide exchange factor; activation) and Rap1gap (GTPase-activating protein; inhibition) by PKA. In this study, we investigated the role of PP1 inhibition by phospho-Thr34 DARPP-32 in the D1 receptor-induced phosphorylation of Rasgrp2 and Rap1gap at PKA sites. The analyses in striatal and NAc slices from wild-type and DARPP-32 knockout mice revealed that the phosphorylation of Rasgrp2 at Ser116/Ser117 and Ser586, but not of Rasgrp2 at Ser554 or Rap1gap at Ser441 or Ser499 induced by a D1 receptor agonist, is under the control of the DARPP-32/PP1. The results were supported by pharmacological analyses using a selective PP1 inhibitor, tautomycetin. In addition, analyses using a PP1 and PP2A inhibitor, okadaic acid, revealed that all sites of Rasgrp2 and Rap1gap were regulated by PP2A. Thus, the interactive machinery of DARPP-32/PP1 may contribute to efficient D1 receptor signaling via Rasgrp2/Rap1 in the striatum.
Collapse
Affiliation(s)
- Mahomi Kuroiwa
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Takahide Shuto
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan; Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT, 06519, United States
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan.
| |
Collapse
|
8
|
Thomas R, Hernandez A, Benavides DR, Li W, Tan C, Umfress A, Plattner F, Chakraborti A, Pozzo-Miller L, Taylor SS, Bibb JA. Integrated regulation of PKA by fast and slow neurotransmission in the nucleus accumbens controls plasticity and stress responses. J Biol Chem 2022; 298:102245. [PMID: 35835216 PMCID: PMC9386499 DOI: 10.1016/j.jbc.2022.102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Cortical glutamate and midbrain dopamine neurotransmission converge to mediate striatum-dependent behaviors, while maladaptations in striatal circuitry contribute to mental disorders. However, the crosstalk between glutamate and dopamine signaling has not been entirely elucidated. Here we uncover a molecular mechanism by which glutamatergic and dopaminergic signaling integrate to regulate cAMP-dependent protein kinase (PKA) via phosphorylation of the PKA regulatory subunit, RIIβ. Using a combination of biochemical, pharmacological, neurophysiological, and behavioral approaches, we find that glutamate-dependent reduction in cyclin-dependent kinase 5 (Cdk5)-dependent RIIβ phosphorylation alters the PKA holoenzyme autoinhibitory state to increase PKA signaling in response to dopamine. Furthermore, we show that disruption of RIIβ phosphorylation by Cdk5 enhances cortico-ventral striatal synaptic plasticity. In addition, we demonstrate that acute and chronic stress in rats inversely modulate RIIβ phosphorylation and ventral striatal infusion of a small interfering peptide that selectively targets RIIβ regulation by Cdk5 improves behavioral response to stress. We propose this new signaling mechanism integrating ventral striatal glutamate and dopamine neurotransmission is important to brain function, may contribute to neuropsychiatric conditions, and serves as a possible target for the development of novel therapeutics for stress-related disorders.
Collapse
Affiliation(s)
- Rachel Thomas
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104 USA; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adan Hernandez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Santiago de Querétaro, Querétaro, México; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David R Benavides
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Li
- Department of Neurobiology, Civitan International Research Center, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA
| | - Chunfeng Tan
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alan Umfress
- Department of Surgery, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA
| | - Florian Plattner
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ayanabha Chakraborti
- Department of Surgery, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - James A Bibb
- Department of Neurobiology, Civitan International Research Center, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA; Department of Surgery, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
9
|
Codol O, Gribble PL, Gurney KN. Differential Dopamine Receptor-Dependent Sensitivity Improves the Switch Between Hard and Soft Selection in a Model of the Basal Ganglia. Neural Comput 2022; 34:1588-1615. [PMID: 35671472 DOI: 10.1162/neco_a_01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/01/2022] [Indexed: 11/04/2022]
Abstract
The problem of selecting one action from a set of different possible actions, simply referred to as the problem of action selection, is a ubiquitous challenge in the animal world. For vertebrates, the basal ganglia (BG) are widely thought to implement the core computation to solve this problem, as its anatomy and physiology are well suited to this end. However, the BG still display physiological features whose role in achieving efficient action selection remains unclear. In particular, it is known that the two types of dopaminergic receptors (D1 and D2) present in the BG give rise to mechanistically different responses. The overall effect will be a difference in sensitivity to dopamine, which may have ramifications for action selection. However, which receptor type leads to a stronger response is unclear due to the complexity of the intracellular mechanisms involved. In this study, we use an existing, high-level computational model of the BG, which assumes that dopamine contributes to action selection by enabling a switch between different selection regimes, to predict which of D1 or D2 has the greater sensitivity. Thus, we ask, Assuming dopamine enables a switch between action selection regimes in the BG, what functional sensitivity values would result in improved action selection computation? To do this, we quantitatively assessed the model's capacity to perform action selection as we parametrically manipulated the sensitivity weights of D1 and D2. We show that differential (rather than equal) D1 and D2 sensitivity to dopaminergic input improves the switch between selection regimes during the action selection computation in our model. Specifically, greater D2 sensitivity compared to D1 led to these improvements.
Collapse
Affiliation(s)
- Olivier Codol
- Department of Psychology and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Paul L Gribble
- Department of Psychology and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada.,Haskins Laboratories, New Haven, CT 06511, U.S.A.
| | - Kevin N Gurney
- Department of Psychology, University of Sheffield, Sheffield S10 2TN, U.K.
| |
Collapse
|
10
|
Umfress A, Singh S, Ryan KJ, Chakraborti A, Plattner F, Sonawane Y, Mallareddy JR, Acosta EP, Natarajan A, Bibb JA. Systemic Administration of a Brain Permeable Cdk5 Inhibitor Alters Neurobehavior. Front Pharmacol 2022; 13:863762. [PMID: 35645825 PMCID: PMC9134315 DOI: 10.3389/fphar.2022.863762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/01/2022] [Indexed: 01/09/2023] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a crucial regulator of neuronal signal transduction. Cdk5 activity is implicated in various neuropsychiatric and neurodegenerative conditions such as stress, anxiety, depression, addiction, Alzheimer's disease, and Parkinson's disease. While constitutive Cdk5 knockout is perinatally lethal, conditional knockout mice display resilience to stress-induction, enhanced cognition, neuroprotection from stroke and head trauma, and ameliorated neurodegeneration. Thus, Cdk5 represents a prime target for treatment in a spectrum of neurological and neuropsychiatric conditions. While intracranial infusions or treatment of acutely dissected brain tissue with compounds that inhibit Cdk5 have allowed the study of kinase function and corroborated conditional knockout findings, potent brain-penetrant systemically deliverable Cdk5 inhibitors are extremely limited, and no Cdk5 inhibitor has been approved to treat any neuropsychiatric or degenerative diseases to date. Here, we screened aminopyrazole-based analogs as potential Cdk5 inhibitors and identified a novel analog, 25-106, as a uniquely brain-penetrant anti-Cdk5 drug. We characterize the pharmacokinetic and dynamic responses of 25-106 in mice and functionally validate the effects of Cdk5 inhibition on open field and tail-suspension behaviors. Altogether, 25-106 represents a promising preclinical Cdk5 inhibitor that can be systemically administered with significant potential as a neurological/neuropsychiatric therapeutic.
Collapse
Affiliation(s)
- Alan Umfress
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kevin J. Ryan
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ayanabha Chakraborti
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Yogesh Sonawane
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jayapal Reddy Mallareddy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Edward P. Acosta
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - James A. Bibb
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Departments of Neurobiology and Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Jones-Tabah J, Mohammad H, Paulus EG, Clarke PBS, Hébert TE. The Signaling and Pharmacology of the Dopamine D1 Receptor. Front Cell Neurosci 2022; 15:806618. [PMID: 35110997 PMCID: PMC8801442 DOI: 10.3389/fncel.2021.806618] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
The dopamine D1 receptor (D1R) is a Gαs/olf-coupled GPCR that is expressed in the midbrain and forebrain, regulating motor behavior, reward, motivational states, and cognitive processes. Although the D1R was initially identified as a promising drug target almost 40 years ago, the development of clinically useful ligands has until recently been hampered by a lack of suitable candidate molecules. The emergence of new non-catechol D1R agonists, biased agonists, and allosteric modulators has renewed clinical interest in drugs targeting this receptor, specifically for the treatment of motor impairment in Parkinson's Disease, and cognitive impairment in neuropsychiatric disorders. To develop better therapeutics, advances in ligand chemistry must be matched by an expanded understanding of D1R signaling across cell populations in the brain, and in disease states. Depending on the brain region, the D1R couples primarily to either Gαs or Gαolf through which it activates a cAMP/PKA-dependent signaling cascade that can regulate neuronal excitability, stimulate gene expression, and facilitate synaptic plasticity. However, like many GPCRs, the D1R can signal through multiple downstream pathways, and specific signaling signatures may differ between cell types or be altered in disease. To guide development of improved D1R ligands, it is important to understand how signaling unfolds in specific target cells, and how this signaling affects circuit function and behavior. In this review, we provide a summary of D1R-directed signaling in various neuronal populations and describe how specific pathways have been linked to physiological and behavioral outcomes. In addition, we address the current state of D1R drug development, including the pharmacology of newly developed non-catecholamine ligands, and discuss the potential utility of D1R-agonists in Parkinson's Disease and cognitive impairment.
Collapse
|
12
|
Jhang CL, Lee HY, Chen JC, Liao W. Dopaminergic loss of cyclin-dependent kinase-like 5 recapitulates methylphenidate-remediable hyperlocomotion in mouse model of CDKL5 deficiency disorder. Hum Mol Genet 2021; 29:2408-2419. [PMID: 32588892 DOI: 10.1093/hmg/ddaa122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 05/24/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5), a serine-threonine kinase encoded by an X-linked gene, is highly expressed in the mammalian forebrain. Mutations in this gene cause CDKL5 deficiency disorder, a neurodevelopmental encephalopathy characterized by early-onset seizures, motor dysfunction, and intellectual disability. We previously found that mice lacking CDKL5 exhibit hyperlocomotion and increased impulsivity, resembling the core symptoms in attention-deficit hyperactivity disorder (ADHD). Here, we report the potential neural mechanisms and treatment for hyperlocomotion induced by CDKL5 deficiency. Our results showed that loss of CDKL5 decreases the proportion of phosphorylated dopamine transporter (DAT) in the rostral striatum, leading to increased levels of extracellular dopamine and hyperlocomotion. Administration of methylphenidate (MPH), a DAT inhibitor clinically effective to improve symptoms in ADHD, significantly alleviated the hyperlocomotion phenotype in Cdkl5 null mice. In addition, the improved behavioral effects of MPH were accompanied by a region-specific restoration of phosphorylated dopamine- and cAMP-regulated phosphoprotein Mr 32 kDa, a key signaling protein for striatal motor output. Finally, mice carrying a Cdkl5 deletion selectively in DAT-expressing dopaminergic neurons, but not dopamine receptive neurons, recapitulated the hyperlocomotion phenotype found in Cdkl5 null mice. Our findings suggest that CDKL5 is essential to control locomotor behavior by regulating region-specific dopamine content and phosphorylation of dopamine signaling proteins in the striatum. The direct, as well as indirect, target proteins regulated by CDKL5 may play a key role in movement control and the therapeutic development for hyperactivity disorders.
Collapse
Affiliation(s)
- Cian-Ling Jhang
- Institute of Neuroscience, National Cheng-Chi University, Taipei 116, Taiwan
| | - Hom-Yi Lee
- Department of Psychology, Chung Shan Medical University, Taichung 402, Taiwan.,Department of Speech Language Pathology and Audiology, Chung Shan Medical University, Taichung 402, Taiwan
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan
| | - Wenlin Liao
- Institute of Neuroscience, National Cheng-Chi University, Taipei 116, Taiwan.,Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei 116, Taiwan
| |
Collapse
|
13
|
Functional metabolomics reveal the role of AHR/GPR35 mediated kynurenic acid gradient sensing in chemotherapy-induced intestinal damage. Acta Pharm Sin B 2021; 11:763-780. [PMID: 33777681 PMCID: PMC7982426 DOI: 10.1016/j.apsb.2020.07.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
Intestinal toxicity induced by chemotherapeutics has become an important reason for the interruption of therapy and withdrawal of approved agents. In this study, we demonstrated that chemotherapeutics-induced intestinal damage were commonly characterized by the sharp upregulation of tryptophan (Trp)−kynurenine (KYN)−kynurenic acid (KA) axis metabolism. Mechanistically, chemotherapy-induced intestinal damage triggered the formation of an interleukin-6 (IL-6)−indoleamine 2,3-dioxygenase 1 (IDO1)−aryl hydrocarbon receptor (AHR) positive feedback loop, which accelerated kynurenine pathway metabolism in gut. Besides, AHR and G protein-coupled receptor 35 (GPR35) negative feedback regulates intestinal damage and inflammation to maintain intestinal integrity and homeostasis through gradually sensing kynurenic acid level in gut and macrophage, respectively. Moreover, based on virtual screening and biological verification, vardenafil and linagliptin as GPR35 and AHR agonists respectively were discovered from 2388 approved drugs. Importantly, the results that vardenafil and linagliptin significantly alleviated chemotherapy-induced intestinal toxicity in vivo suggests that chemotherapeutics combined with the two could be a promising therapeutic strategy for cancer patients in clinic. This work highlights GPR35 and AHR as the guardian of kynurenine pathway metabolism and core component of defense responses against intestinal damage.
Collapse
Key Words
- 1-MT, 1-methyl-tryptophan
- AG, AG490
- AHR
- AHR, aryl hydrocarbon receptor
- ARNT, aryl hydrocarbon receptor nuclear translocator
- BCA, bicinchoninic acid
- BSA, bovine serum albumin
- CH, CH223191
- CPT-11, irinotecan
- CYP1A1, cytochrome P450 1A1
- DAI, disease activity index
- DMSO, dimethyl sulfoxide
- DPP-4, dipeptidyl peptidase-4
- DRE, dioxin response elements
- DSS, dextran sulphate sodium
- Dens-Cl, N-diethyl-amino naphthalene-1-sulfonyl chloride
- Dns-Cl, N-dimethyl-amino naphthalene-1-sulfonyl chloride
- ECL, enhanced chemiluminescence
- ELISA, enzyme-linked immunosorbent assay
- ERK1/2, extracellular regulated protein kinases 1/2
- ESI, electrospray ionization
- FBS, fetal bovine serum
- GE, gastric emptying
- GFP, green fluorescence protein
- GI, gastrointestinal transit
- GPR35
- GPR35, G protein-coupled receptor 35
- Gradually sensing
- HE, hematoxylin and eosin
- HRP, horseradish peroxi-dase
- IBD, inflammatory bowel disease
- IDO1, indoleamine 2,3-dioxygenase 1
- IL-6, interleukin-6
- IS, internal standard
- Intestinal toxicity
- JAK2, janus kinase 2
- KA, kynurenic acid
- KAT, kynurenine aminotransferase
- KYN, kynurenine
- Kynurenine pathway
- LC–MS, liquid chromatography–mass spectrometry
- LPS, lipopolysaccharides
- Linag, linagliptin
- MOE, molecular operating environment
- MOI, multiplicity of infection
- MRM, multiple-reaction monitoring
- MTT, thiazolyl blue tetrazolium bromide
- PBS, phosphate buffer saline
- PDB, protein data bank
- PDE5, phosphodiesterase type-5
- PF, PF-04859989
- PMA, phorbol 12-myristate 13-acetate
- PMSF, phenylmethylsulfonyl fluoride
- RIPA, radioimmunoprecipitation
- RPKM, reads per kilobase per million mapped reads
- RPMI 1640, Roswell Park Memorial Institute 1640
- RT-PCR, real-time polymerase chain reaction
- STAT3, signal transducer and activator of transcription 3
- Trp, tryptophan
- VCR, vincristine
- Vard, vardenafil
Collapse
|
14
|
Soleimanpour E, Bergado Acosta JR, Landgraf P, Mayer D, Dankert E, Dieterich DC, Fendt M. Regulation of CREB Phosphorylation in Nucleus Accumbens after Relief Conditioning. Cells 2021; 10:238. [PMID: 33530478 PMCID: PMC7912172 DOI: 10.3390/cells10020238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Relief learning is the association of environmental cues with the cessation of aversive events. While there is increasing knowledge about the neural circuitry mediating relief learning, the respective molecular pathways are not known. Therefore, the aim of the present study was to examine different putative molecular pathways underlying relief learning. To this purpose, male rats were subjected either to relief conditioning or to a pseudo conditioning procedure. Forty-five minutes or 6 h after conditioning, samples of five different brain regions, namely the prefrontal cortex, nucleus accumbens (NAC), dorsal striatum, dorsal hippocampus, and amygdala, were collected. Using quantitative Western blots, the expression level of CREB, pCREB, ERK1/2, pERK1/2, CaMKIIα, MAP2K, PKA, pPKA, Akt, pAkt, DARPP-32, pDARPP-32, 14-3-3, and neuroligin2 were studied. Our analyses revealed that relief conditioned rats had higher CREB phosphorylation in NAC 6 h after conditioning than pseudo conditioned rats. The data further revealed that this CREB phosphorylation was mainly induced by dopamine D1 receptor-mediated activation of PKA, however, other kinases, downstream of the NMDA receptor, may also contribute. Taken together, the present study suggests that CREB phosphorylation, induced by a combination of different molecular pathways downstream of dopamine D1 and NMDA receptors, is essential for the acquisition and consolidation of relief learning.
Collapse
Affiliation(s)
- Elaheh Soleimanpour
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
| | - Jorge R. Bergado Acosta
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Peter Landgraf
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
| | - Dana Mayer
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
| | - Evelyn Dankert
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
| | - Daniela C. Dieterich
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
15
|
Abstract
DARPP-32 (dopamine- and cAMP-regulated phosphoprotein with an apparent Mr of 32,000), now also known as phosphoprotein phosphatase 1 regulatory subunit 1B (PPP1R1B), is a potent inhibitor of protein phosphatase 1 (PP1, also known as PPP1) when phosphorylated at Thr34 by cAMP-dependent protein kinase (PKA). DARPP-32 exhibits a remarkable regional distribution in brain, roughly similar to that of dopamine innervation. Its discovery was a culmination of the long-standing effort of Paul Greengard to understand the mechanisms through which neurotransmitters such as dopamine exert their effects on target neurons. DARPP-32 is particularly enriched in striatal projection neurons where it is regulated by numerous signals through which it integrates and amplifies responses to many stimuli. Molecular studies of DARPP-32 have revealed that its regulation and function are more complex than anticipated. It is phosphorylated on multiple sites by several protein kinases that modulate DARPP-32 properties. Primarily, when phosphorylated at Thr34 DARPP-32 is a potent inhibitor of PP1, whereas when phosphorylated at Thr75 by Cdk5 it inhibits PKA. Phosphorylation at serine residues by CK1 and CK2 modulates its intracellular localization and its sensitivity to kinases or phosphatases. Modeling studies provide evidence that the signaling pathways including DARPP-32 are endowed of strong robustness and bistable properties favoring switch-like responses. Thus DARPP-32 combined with a set of other distinct signaling molecules enriched in striatal projection neurons plays a key role in the characteristic properties and physiological function of these neurons.
Collapse
|
16
|
Lee AM, Picciotto MR. Effects of nicotine on DARPP-32 and CaMKII signaling relevant to addiction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 90:89-115. [PMID: 33706940 PMCID: PMC8008986 DOI: 10.1016/bs.apha.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Paul Greengard brought to neuroscience the idea of, and evidence for, the role of second messenger systems in neuronal signaling. The fundamental nature of his contributions is evident in the far reach of his work, relevant to various subfields and topics in neuroscience. In this review, we discuss some of Greengard's work from the perspective of nicotinic acetylcholine receptors and their relevance to nicotine addiction. Specifically, we review the roles of dopamine- and cAMP-regulated phospho-protein of 32kDa (DARPP-32) and Ca2+/calmodulin-dependent kinase II (CaMKII) in nicotine-dependent behaviors. For each protein, we discuss the historical context of their discovery and initial characterization, focusing on the extensive biochemical and immunohistochemical work conducted by Greengard and colleagues. We then briefly summarize contemporary understanding of each protein in key intracellular signaling cascades and evidence for the role of each protein with respect to systems and behaviors relevant to nicotine addiction.
Collapse
Affiliation(s)
- Angela M Lee
- Department of Psychiatry, Yale University, New Haven, CT, United States; Yale Interdepartmental Neuroscience Program, New Haven, CT, United States
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, New Haven, CT, United States; Yale Interdepartmental Neuroscience Program, New Haven, CT, United States.
| |
Collapse
|
17
|
Christensen KR, Nairn AC. cAMP-regulated phosphoproteins DARPP-32, ARPP16/19, and RCS modulate striatal signal transduction through protein kinases and phosphatases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 90:39-65. [PMID: 33706938 DOI: 10.1016/bs.apha.2020.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Decades of research led by Paul Greengard identified protein phosphorylation as a ubiquitous and vital post-translational modification involved in many neuronal signaling pathways. In particular, his discovery that second messenger-regulated protein phosphorylation plays a central role in the propagation and transduction of signals in the nervous system has been essential in understanding the molecular mechanisms of neuronal communication. The establishment of dopamine (DA) as an essential neurotransmitter in the central nervous system, combined with observations that DA activates G-protein-coupled receptors to control the production of cyclic adenosine monophosphate (cAMP) in postsynaptic neurons, has provided fundamental insight into the regulation of neurotransmission. Notably, DA signaling in the striatum is involved in many neurological functions such as control of locomotion, reward, addiction, and learning, among others. This review focuses on the history, characterization, and function of cAMP-mediated regulation of serine/threonine protein phosphatases and their role in DA-mediated signaling in striatal neurons. Several small, heat- and acid-stable proteins, including DARPP-32, RCS, and ARPP-16/19, were discovered by the Greengard laboratory to be regulated by DA- and cAMP signaling, and found to undergo a complex but coordinated sequence of phosphorylation and dephosphorylation events. These studies have contributed significantly to the establishment of protein phosphorylation as a ubiquitous and vital process in signal propagation in neurons, paradigm shifting discoveries at the time. Understanding DA-mediated signaling in the context of signal propagation has led to numerous insights into human conditions and the development of treatments and therapies.
Collapse
Affiliation(s)
- Kyle R Christensen
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States
| | - Angus C Nairn
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States.
| |
Collapse
|
18
|
Boloc D, Rodríguez N, Torres T, García-Cerro S, Parellada M, Saiz-Ruiz J, Cuesta MJ, Bernardo M, Gassó P, Lafuente A, Mas S, Arnaiz JA. Identifying key transcription factors for pharmacogenetic studies of antipsychotics induced extrapyramidal symptoms. Psychopharmacology (Berl) 2020; 237:2151-2159. [PMID: 32382784 DOI: 10.1007/s00213-020-05526-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION We explore the transcription factors involved in the molecular mechanism of antipsychotic (AP)-induced acute extrapyramidalsymptoms (EPS) in order to identify new candidate genes for pharmacogenetic studies. METHODS Protein-protein interaction (PPI) networks previously created from three pharmacogenomic models (in vitro, animal, and peripheral blood inhumans) were used to, by means of several bioinformatic tools; identify key transcription factors (TFs) that regulate each network. Once the TFs wereidentified, SNPs disrupting the binding sites (TFBS) of these TFs in the genes of each network were selected for genotyping. Finally, SNP-basedassociations with EPS were analyzed in a sample of 356 psychiatric patients receiving AP. RESULTS Our analysis identified 33 TFs expressed in the striatum, and 125 SNPs disrupting TFBS in 50 genes of our initial networks. Two SNPs (rs938112,rs2987902) in two genes (LSMAP and ABL1) were significantly associated with AP induced EPS (p < 0.001). These SNPs disrupt TFBS regulated byPOU2F1. CONCLUSION Our results highlight the possible role of the disruption of TFBS by SNPs in the pharmacological response to AP.
Collapse
Affiliation(s)
- Daniel Boloc
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Teresa Torres
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Susana García-Cerro
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Mara Parellada
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
| | - Jeronimo Saiz-Ruiz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Hospital Ramon y Cajal, Universidad de Alcala, IRYCIS, Madrid, Spain
| | - Manuel J Cuesta
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Department of Psychiatry, Complejo Hospitalario de Navarra. Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Miquel Bernardo
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Barcelona Clínic Schizophrenia Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Spain The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Patricia Gassó
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
- Spain The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Amalia Lafuente
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Spain The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Sergi Mas
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain.
- Spain The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
| | - Joan Albert Arnaiz
- Dept. Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
19
|
Novel Diels-Alder Type Adducts from Morus alba Root Bark Targeting Human Monoamine Oxidase and Dopaminergic Receptors for the Management of Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20246232. [PMID: 31835621 PMCID: PMC6940761 DOI: 10.3390/ijms20246232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
In this study, we delineate the human monoamine oxidase (hMAO) inhibitory potential of natural Diels–Alder type adducts, mulberrofuran G (1), kuwanon G (2), and albanol B (3), from Morus alba root bark to characterize their role in Parkinson’s disease (PD) and depression, focusing on their ability to modulate dopaminergic receptors (D1R, D2LR, D3R, and D4R). In hMAO-A inhibition, 1–3 showed mild effects (50% inhibitory concentration (IC50): 54‒114 μM). However, 1 displayed moderate inhibition of the hMAO-B isozyme (IC50: 18.14 ± 1.06 μM) followed by mild inhibition by 2 (IC50: 57.71 ± 2.12 μM) and 3 (IC50: 90.59 ± 1.72 μM). Our kinetic study characterized the inhibition mode, and the in silico docking predicted that the moderate inhibitor 1 would have the lowest binding energy. Similarly, cell-based G protein-coupled receptors (GPCR) functional assays in vector-transfected cells expressing dopamine (DA) receptors characterized 1–3 as D1R/D2LR antagonists and D3R/D4R agonists. The half-maximum effective concentration (EC50) of 1–3 on DA D3R/D4R was 15.13/17.19, 20.18/21.05, and 12.63/‒ µM, respectively. Similarly, 1–3 inhibited 50% of the DA response on D1R/D2LR by 6.13/2.41, 16.48/31.22, and 7.16/18.42 µM, respectively. A computational study revealed low binding energy for the test ligands. Interactions with residues Asp110, Val111, Tyr365, and Phe345 at the D3R receptor and Asp115 and His414 at the D4R receptor explain the high agonist effect. Likewise, Asp187 at D1R and Asp114 at D2LR play a crucial role in the antagonist effects of the ligand binding. Our overall results depict 1–3 from M. alba root bark as good inhibitors of hMAO and potent modulators of DA function as D1R/D2LR antagonists and D3R/D4R agonists. These active constituents in M. alba deserve in-depth study for their potential to manage neurodegenerative disorders (NDs), particularly PD and psychosis.
Collapse
|
20
|
Brito V, Giralt A, Masana M, Royes A, Espina M, Sieiro E, Alberch J, Castañé A, Girault JA, Ginés S. Cyclin-Dependent Kinase 5 Dysfunction Contributes to Depressive-like Behaviors in Huntington's Disease by Altering the DARPP-32 Phosphorylation Status in the Nucleus Accumbens. Biol Psychiatry 2019; 86:196-207. [PMID: 31060804 DOI: 10.1016/j.biopsych.2019.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/15/2019] [Accepted: 03/04/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Depression is the most common psychiatric condition in Huntington's disease (HD), with rates more than twice those found in the general population. At the present time, there is no established molecular evidence to use as a basis for depression treatment in HD. Indeed, in some patients, classic antidepressant drugs exacerbate chorea or anxiety. Cyclin-dependent kinase 5 (Cdk5) has been involved in processes associated with anxiety and depression. This study evaluated the involvement of Cdk5 in the development and prevalence of depressive-like behaviors in HD and aimed to validate Cdk5 as a target for depression treatment. METHODS We evaluated the impact of pharmacological inhibition of Cdk5 in depressive-like and anxiety-like behaviors in Hdh+/Q111 knock-in mutant mice by using a battery of behavioral tests. Biochemical and morphological studies were performed to define the molecular mechanisms acting downstream of Cdk5 activation. A double huntingtin/DARPP-32 (dopamine- and cAMP-regulated phosphoprotein 32) knock-in mutant mouse was generated to analyze the role of DARPP-32 in HD depression. RESULTS We found that Hdh+/Q111 mutant mice exhibited depressive-like, but not anxiety-like, behaviors starting at 2 months of age. Cdk5 inhibition by roscovitine infusion prevented depressive-like behavior and reduced DARPP-32 phosphorylation at Thr75 in the nucleus accumbens. Hdh+/Q111 mice heterozygous for DARPP-32 Thr75Ala point mutation were resistant to depressive-like behaviors. We identified β-adducin phosphorylation as a Cdk5 downstream mechanism potentially mediating structural spine plasticity changes in the nucleus accumbens and depressive-like behavior. CONCLUSIONS These results point to Cdk5 in the nucleus accumbens as a critical contributor to depressive-like behaviors in HD mice by altering DARPP-32/β-adducin signaling and disrupting the dendritic spine cytoskeleton.
Collapse
Affiliation(s)
- Veronica Brito
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Albert Giralt
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Mercè Masana
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Aida Royes
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Marc Espina
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Esther Sieiro
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Jordi Alberch
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Anna Castañé
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Neurochemistry and Neuropharmacology, CSIC-Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Jean-Antoine Girault
- Inserm UMR-S 839, Paris, France; Sorbonne Université, Paris, France; Institut du Fer a Moulin, Paris, France
| | - Silvia Ginés
- Department of Biomedical Science, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.
| |
Collapse
|
21
|
The effects of proteasome on baseline and methamphetamine-dependent dopamine transmission. Neurosci Biobehav Rev 2019; 102:308-317. [DOI: 10.1016/j.neubiorev.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
|
22
|
Leslie SN, Nairn AC. cAMP regulation of protein phosphatases PP1 and PP2A in brain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:64-73. [PMID: 30401536 DOI: 10.1016/j.bbamcr.2018.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
Abstract
Normal functioning of the brain is dependent upon a complex web of communication between numerous cell types. Within neuronal networks, the faithful transmission of information between neurons relies on an equally complex organization of inter- and intra-cellular signaling systems that act to modulate protein activity. In particular, post-translational modifications (PTMs) are responsible for regulating protein activity in response to neurochemical signaling. The key second messenger, cyclic adenosine 3',5'-monophosphate (cAMP), regulates one of the most ubiquitous and influential PTMs, phosphorylation. While cAMP is canonically viewed as regulating the addition of phosphate groups through its activation of cAMP-dependent protein kinases, it plays an equally critical role in regulating removal of phosphate through indirect control of protein phosphatase activity. This dichotomy of regulation by cAMP places it as one of the key regulators of protein activity in response to neuronal signal transduction throughout the brain. In this review we focus on the role of cAMP in regulation of the serine/threonine phosphatases protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) and the relevance of control of PP1 and PP2A to regulation of brain function and behavior.
Collapse
Affiliation(s)
- Shannon N Leslie
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States of America
| | - Angus C Nairn
- Department of Psychiatry, Yale University, New Haven, CT, United States of America
| |
Collapse
|
23
|
Sucrose Abstinence and Environmental Enrichment Effects on Mesocorticolimbic DARPP32 in Rats. Sci Rep 2018; 8:13174. [PMID: 30181585 PMCID: PMC6123458 DOI: 10.1038/s41598-018-29625-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/13/2018] [Indexed: 01/09/2023] Open
Abstract
Dopamine- and cAMP-regulated neuronal phosphoprotein 32 kDa (DARPP32) is a signaling molecule that could serve as a molecular switch, promoting or restraining sucrose seeking. We measured DARPP32 and pThr34 DARPP32 in the brains of male Long-Evans rats with a history of sucrose self-administration followed by 1 or 30 days of abstinence and exposure to either overnight (acute) or one month (chronic) environmental enrichment (EE). Brains were extracted following a 1 h cue reactivity test or no exposure to the test environment. Micropunches (prelimbic, infralimbic, and anterior cingulate areas of the medial prefrontal cortex, orbitofrontal cortex, dorsal striatum, nucleus accumbens, and ventral tegmental area) were then processed using Western blot. Abstinence increased, while EE decreased, sucrose seeking. DARPP32 and pThr34 DARPP32 levels were affected by testing, abstinence, and/or EE in most regions. Especially salient results were observed in the nucleus accumbens core, a region associated with relapse behaviors. Both acute and chronic EE reduced DARPP32 in the nucleus accumbens core and acute EE increased the ratio of phosphorylated to total DARPP32. Degree of DARPP32 phosphorylation negatively correlated with sucrose seeking. These findings demonstrate a potential role for DARPP32 in mediating the “anti-craving” effect of EE.
Collapse
|
24
|
Epigenetic Effects Induced by Methamphetamine and Methamphetamine-Dependent Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4982453. [PMID: 30140365 PMCID: PMC6081569 DOI: 10.1155/2018/4982453] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/10/2018] [Indexed: 12/21/2022]
Abstract
Methamphetamine is a widely abused drug, which possesses neurotoxic activity and powerful addictive effects. Understanding methamphetamine toxicity is key beyond the field of drug abuse since it allows getting an insight into the molecular mechanisms which operate in a variety of neuropsychiatric disorders. In fact, key alterations produced by methamphetamine involve dopamine neurotransmission in a way, which is reminiscent of spontaneous neurodegeneration and psychiatric schizophrenia. Thus, understanding the molecular mechanisms operated by methamphetamine represents a wide window to understand both the addicted brain and a variety of neuropsychiatric disorders. This overlapping, which is already present when looking at the molecular and cellular events promoted immediately after methamphetamine intake, becomes impressive when plastic changes induced in the brain of methamphetamine-addicted patients are considered. Thus, the present manuscript is an attempt to encompass all the molecular events starting at the presynaptic dopamine terminals to reach the nucleus of postsynaptic neurons to explain how specific neurotransmitters and signaling cascades produce persistent genetic modifications, which shift neuronal phenotype and induce behavioral alterations. A special emphasis is posed on disclosing those early and delayed molecular events, which translate an altered neurotransmitter function into epigenetic events, which are derived from the translation of postsynaptic noncanonical signaling into altered gene regulation. All epigenetic effects are considered in light of their persistent changes induced in the postsynaptic neurons including sensitization and desensitization, priming, and shift of neuronal phenotype.
Collapse
|
25
|
Akaishi T. Unified neural structured model: A new diagnostic tool in primary care psychiatry. Med Hypotheses 2018; 118:107-113. [PMID: 30037595 DOI: 10.1016/j.mehy.2018.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 11/16/2022]
Abstract
Overlap of multiple mental disorders in each psychiatric patient has been emphasized and the style of assessment and intervention in each patient has been gradually changed. A new practical structured model that can comprehensively explain and assess the major mental disorders integratedly has been desired. In this report, the relationships between each of the major mental disorders and each neuropsychiatric component like personality, reward system, or reinforcement learning have been comprehensively reviewed to construct a new integrated structured model for assessing the overlapped mental conditions in primary care psychiatry. This new structured model contains the following three loops: "input-output-feedback loop" (external/environmental loop), "reward-learning loop" (learning loop), and "mood-reward sensitivity loop" (mood loop), which are connected by the functions of prefrontal cortex and basal ganglia. With this new concept, overlapped mental conditions in each psychiatric patient could be theoretically much simply and logically explained. In conclusion, with the proposed psychiatric structured model, we can simply explain and understand the overlapped mental disorders in each patient. Inventing and developing such basic psychiatric structured model would offer us new diagnostic and therapeutic tools to realize personalized medicine, especially in the field of primary care psychiatry.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Neurology, Tohoku University Graduate School of Medicine, Japan; Department of Education and Support for Community Medicine, Tohoku University Hospital, Japan.
| |
Collapse
|
26
|
Chen YC, Sudre G, Sharp W, Donovan F, Chandrasekharappa SC, Hansen N, Elnitski L, Shaw P. Neuroanatomic, epigenetic and genetic differences in monozygotic twins discordant for attention deficit hyperactivity disorder. Mol Psychiatry 2018; 23:683-690. [PMID: 28322272 PMCID: PMC5914518 DOI: 10.1038/mp.2017.45] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 12/18/2022]
Abstract
The study of monozygotic twins discordant for attention deficit hyperactivity disorder can elucidate mechanisms that contribute to the disorder, which affects ~7% of children. First, using in vivo neuroanatomic imaging on 14 pairs of monozygotic twins (mean age 9.7, s.d. 1.9 years), we found that discordance for the disorder is mirrored by differing dimensions of deep brain structures (the striatum and cerebellum), but not the cerebral cortex. Next, using whole-blood DNA from the same twins, we found a significant enrichment of epigenetic differences in genes expressed in these 'discordant' brain structures. Specifically, there is differential methylation of probes lying in the shore and shelf and enhancer regions of striatal and cerebellar genes. Notably, gene sets pertaining to the cerebral cortex (which did not differ in volume between affected and unaffected twins) were not enriched by differentially methylated probes. Genotypic differences between the twin pairs-such as copy number and rare, single-nucleotide variants-did not contribute to phenotypic discordance. Pathway analyses of the genes implicated by the most differentially methylated probes implicated γ-aminobutyric acid (GABA), dopamine and serotonin neurotransmitter systems. The study illustrates how neuroimaging can help guide the search for epigenomic mechanisms in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yun-Ching Chen
- Genomic Functional Analysis Section, Translational and Functional Genomics Branch, NHGRI/NIH, Bethesda
| | - Gustavo Sudre
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, NHGRI/NIH, Bethesda
| | - Wendy Sharp
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, NHGRI/NIH, Bethesda
| | - Frank Donovan
- Genomics Core and Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, NHGRI/NIH, Bethesda
| | | | | | - Laura Elnitski
- Genomic Functional Analysis Section, Translational and Functional Genomics Branch, NHGRI/NIH, Bethesda
| | - Philip Shaw
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, NHGRI/NIH, Bethesda
| |
Collapse
|
27
|
Ovenden ES, McGregor NW, Emsley RA, Warnich L. DNA methylation and antipsychotic treatment mechanisms in schizophrenia: Progress and future directions. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:38-49. [PMID: 29017764 DOI: 10.1016/j.pnpbp.2017.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022]
Abstract
Antipsychotic response in schizophrenia is a complex, multifactorial trait influenced by pharmacogenetic factors. With genetic studies thus far providing little biological insight or clinical utility, the field of pharmacoepigenomics has emerged to tackle the so-called "missing heritability" of drug response in disease. Research on psychiatric disorders has only recently started to assess the link between epigenetic alterations and treatment outcomes. DNA methylation, the best characterised epigenetic mechanism to date, is discussed here in the context of schizophrenia and antipsychotic treatment outcomes. The majority of published studies have assessed the influence of antipsychotics on methylation levels in specific neurotransmitter-associated candidate genes or at the genome-wide level. While these studies illustrate the epigenetic modifications associated with antipsychotics, very few have assessed clinical outcomes and the potential of differential DNA methylation profiles as predictors of antipsychotic response. Results from other psychiatric disorder studies, such as depression and bipolar disorder, provide insight into what may be achieved by schizophrenia pharmacoepigenomics. Other aspects that should be addressed in future research include methodological challenges, such as tissue specificity, and the influence of genetic variation on differential methylation patterns.
Collapse
Affiliation(s)
- Ellen S Ovenden
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Nathaniel W McGregor
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Robin A Emsley
- Department of Psychiatry, Stellenbosch University, Tygerberg 7505, South Africa
| | - Louise Warnich
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
28
|
Hasbi A, Perreault ML, Shen MYF, Fan T, Nguyen T, Alijaniaram M, Banasikowski TJ, Grace AA, O'Dowd BF, Fletcher PJ, George SR. Activation of Dopamine D1-D2 Receptor Complex Attenuates Cocaine Reward and Reinstatement of Cocaine-Seeking through Inhibition of DARPP-32, ERK, and ΔFosB. Front Pharmacol 2018; 8:924. [PMID: 29354053 PMCID: PMC5758537 DOI: 10.3389/fphar.2017.00924] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
A significant subpopulation of neurons in rat nucleus accumbens (NAc) coexpress dopamine D1 and D2 receptors, which can form a D1-D2 receptor complex, but their relevance in addiction is not known. The existence of the D1-D2 heteromer in the striatum of rat and monkey was established using in situ PLA, in situ FRET and co-immunoprecipitation. In rat, D1-D2 receptor heteromer activation led to place aversion and abolished cocaine CPP and locomotor sensitization, cocaine intravenous self-administration and reinstatement of cocaine seeking, as well as inhibited sucrose preference and abolished the motivation to seek palatable food. Selective disruption of this heteromer by a specific interfering peptide induced reward-like effects and enhanced the above cocaine-induced effects, including at a subthreshold dose of cocaine. The D1-D2 heteromer activated Cdk5/Thr75-DARPP-32 and attenuated cocaine-induced pERK and ΔFosB accumulation, together with inhibition of cocaine-enhanced local field potentials in NAc, blocking thus the signaling pathway activated by cocaine: D1R/cAMP/PKA/Thr34-DARPP-32/pERK with ΔFosB accumulation. In conclusion, our results show that the D1-D2 heteromer exerted tonic inhibitory control of basal natural and cocaine reward, and therefore initiates a fundamental physiologic function that limits the liability to develop cocaine addiction.
Collapse
Affiliation(s)
- Ahmed Hasbi
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | | | - Maurice Y F Shen
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Theresa Fan
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Tuan Nguyen
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | | | - Tomek J Banasikowski
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian F O'Dowd
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Susan R George
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
The central serotonin2B receptor as a new pharmacological target for the treatment of dopamine-related neuropsychiatric disorders: Rationale and current status of research. Pharmacol Ther 2018; 181:143-155. [DOI: 10.1016/j.pharmthera.2017.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Yapo C, Nair AG, Clement L, Castro LR, Hellgren Kotaleski J, Vincent P. Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons. J Physiol 2017; 595:7451-7475. [PMID: 28782235 PMCID: PMC5730852 DOI: 10.1113/jp274475] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Brief dopamine events are critical actors of reward-mediated learning in the striatum; the intracellular cAMP-protein kinase A (PKA) response of striatal medium spiny neurons to such events was studied dynamically using a combination of biosensor imaging in mouse brain slices and in silico simulations. Both D1 and D2 medium spiny neurons can sense brief dopamine transients in the sub-micromolar range. While dopamine transients profoundly change cAMP levels in both types of medium spiny neurons, the PKA-dependent phosphorylation level remains unaffected in D2 neurons. At the level of PKA-dependent phosphorylation, D2 unresponsiveness depends on protein phosphatase-1 (PP1) inhibition by DARPP-32. Simulations suggest that D2 medium spiny neurons could detect transient dips in dopamine level. ABSTRACT The phasic release of dopamine in the striatum determines various aspects of reward and action selection, but the dynamics of the dopamine effect on intracellular signalling remains poorly understood. We used genetically encoded FRET biosensors in striatal brain slices to quantify the effect of transient dopamine on cAMP or PKA-dependent phosphorylation levels, and computational modelling to further explore the dynamics of this signalling pathway. Medium-sized spiny neurons (MSNs), which express either D1 or D2 dopamine receptors, responded to dopamine by an increase or a decrease in cAMP, respectively. Transient dopamine showed similar sub-micromolar efficacies on cAMP in both D1 and D2 MSNs, thus challenging the commonly accepted notion that dopamine efficacy is much higher on D2 than on D1 receptors. However, in D2 MSNs, the large decrease in cAMP level triggered by transient dopamine did not translate to a decrease in PKA-dependent phosphorylation level, owing to the efficient inhibition of protein phosphatase 1 by DARPP-32. Simulations further suggested that D2 MSNs can also operate in a 'tone-sensing' mode, allowing them to detect transient dips in basal dopamine. Overall, our results show that D2 MSNs may sense much more complex patterns of dopamine than previously thought.
Collapse
Affiliation(s)
- Cedric Yapo
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
- Université Pierre et Marie Curie (UPMC, Paris 6)Sorbonne UniversitésF‐75005ParisFrance
| | - Anu G. Nair
- Science for Life Laboratory, School of Computer Science and CommunicationKTH Royal Institute of Technology10044StockholmSweden
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangalore560065KarnatakaIndia
- Manipal UniversityManipal576104KarnatakaIndia
| | - Lorna Clement
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
| | - Liliana R. Castro
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
- Université Pierre et Marie Curie (UPMC, Paris 6)Sorbonne UniversitésF‐75005ParisFrance
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Computer Science and CommunicationKTH Royal Institute of Technology10044StockholmSweden
- Department of NeuroscienceKarolinska Institutet17177SolnaSweden
| | - Pierre Vincent
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
- Université Pierre et Marie Curie (UPMC, Paris 6)Sorbonne UniversitésF‐75005ParisFrance
| |
Collapse
|
31
|
ARPP-16 Is a Striatal-Enriched Inhibitor of Protein Phosphatase 2A Regulated by Microtubule-Associated Serine/Threonine Kinase 3 (Mast 3 Kinase). J Neurosci 2017; 37:2709-2722. [PMID: 28167675 DOI: 10.1523/jneurosci.4559-15.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 12/27/2022] Open
Abstract
ARPP-16 (cAMP-regulated phospho-protein of molecular weight 16 kDa) is one of several small acid-soluble proteins highly expressed in medium spiny neurons of striatum that are phosphorylated in response to dopamine acting via D1 receptor/protein kinase A (PKA) signaling. We show here that ARPP-16 is also phosphorylated in vitro and in vivo by microtubule-associated serine/threonine kinase 3 (MAST3 kinase), an enzyme of previously unknown function that is enriched in striatum. We find that ARPP-16 interacts directly with the scaffolding A subunit of the serine/threonine protein phosphatase, PP2A, and that phosphorylation of ARPP-16 at Ser46 by MAST3 kinase converts the protein into a selective inhibitor of B55α- and B56δ-containing heterotrimeric forms of PP2A. Ser46 of ARPP-16 is phosphorylated to a high basal stoichiometry in striatum, suggestive of basal inhibition of PP2A in striatal neurons. In support of this hypothesis, conditional knock-out of ARPP-16 in CaMKIIα::cre/floxed ARPP-16/19 mice results in dephosphorylation of a subset of PP2A substrates including phospho-Thr75-DARPP-32, phospho-T308-Akt, and phospho-T202/Y204-ERK. Conditional knock-out of ARPP-16/19 is associated with increased motivation measured on a progressive ratio schedule of food reinforcement, yet an attenuated locomotor response to acute cocaine. Our previous studies have shown that ARPP-16 is phosphorylated at Ser88 by PKA. Activation of PKA in striatal slices leads to phosphorylation of Ser88, and this is accompanied by marked dephosphorylation of Ser46. Together, these studies suggest that phospho-Ser46-ARPP-16 acts to basally control PP2A in striatal medium spiny neurons but that dopamine acting via PKA inactivates ARPP-16 leading to selective potentiation of PP2A signaling.SIGNIFICANCE STATEMENT We describe a novel mechanism of signal transduction enriched in medium spiny neurons of striatum that likely mediates effects of the neurotransmitter dopamine acting on these cells. We find that the protein ARPP-16, which is highly expressed in striatal medium spiny neurons, acts as a selective inhibitor of certain forms of the serine/threonine protein phosphatase, PP2A, when phosphorylated by the kinase, MAST3. Under basal conditions, ARPP-16 is phosphorylated by MAST3 to a very high stoichiometry. However, the actions of MAST3 are antagonized by dopamine and cAMP-regulated signaling leading to disinhibition of ARPP-16 and increased PP2A action.
Collapse
|
32
|
Nishi A, Shuto T. Potential for targeting dopamine/DARPP-32 signaling in neuropsychiatric and neurodegenerative disorders. Expert Opin Ther Targets 2017; 21:259-272. [PMID: 28052701 DOI: 10.1080/14728222.2017.1279149] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Alterations in dopamine neurotransmission has been implicated in pathophysiology of neuropsychiatric and neurodegenerative disorders, and DARPP-32 plays a pivotal role in dopamine neurotransmission. DARPP-32 likely influences dopamine-mediated behaviors in animal models of neuropsychiatric and neurodegenerative disorders and therapeutic effects of pharmacological treatment. Areas covered: We will review animal studies on the biochemical and behavioral roles of DARPP-32 in drug addiction, schizophrenia and Parkinson's disease. In general, under physiological and pathophysiological conditions, DARPP-32 in D1 receptor expressing (D1R) -medium spiny neurons (MSNs) promotes dopamine/D1 receptor/PKA signaling, whereas DARPP-32 in D2 receptor expressing (D2R)-MSNs counteracts dopamine/D2 receptor signaling. However, the function of DARPP-32 is differentially regulated in acute and chronic phases of drug addiction; DARPP-32 enhances D1 receptor/PKA signaling in the acute phase, whereas DARPP-32 suppresses D1 receptor/PKA signaling in the chronic phase through homeostatic mechanisms. Therefore, DARPP-32 plays a bidirectional role in dopamine neurotransmission, depending on the cell type and experimental conditions, and is involved in dopamine-related behavioral abnormalities. Expert opinion: DARPP-32 differentially regulates dopamine signaling in D1R- and D2R-MSNs, and a shift of balance between D1R- and D2R-MSN function is associated with behavioral abnormalities. An adjustment of this imbalance is achieved by therapeutic approaches targeting DARPP-32-related signaling molecules.
Collapse
Affiliation(s)
- Akinori Nishi
- a Department of Pharmacology , Kurume University School of Medicine , Kurume, Fukuoka , Japan
| | - Takahide Shuto
- a Department of Pharmacology , Kurume University School of Medicine , Kurume, Fukuoka , Japan
| |
Collapse
|
33
|
Nishi A, Matamales M, Musante V, Valjent E, Kuroiwa M, Kitahara Y, Rebholz H, Greengard P, Girault JA, Nairn AC. Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution. J Biol Chem 2016; 292:1462-1476. [PMID: 27998980 DOI: 10.1074/jbc.m116.752402] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 12/06/2016] [Indexed: 01/17/2023] Open
Abstract
The interaction of glutamate and dopamine in the striatum is heavily dependent on signaling pathways that converge on the regulatory protein DARPP-32. The efficacy of dopamine/D1 receptor/PKA signaling is regulated by DARPP-32 phosphorylated at Thr-34 (the PKA site), a process that inhibits protein phosphatase 1 (PP1) and potentiates PKA action. Activation of dopamine/D1 receptor/PKA signaling also leads to dephosphorylation of DARPP-32 at Ser-97 (the CK2 site), leading to localization of phospho-Thr-34 DARPP-32 in the nucleus where it also inhibits PP1. In this study the role of glutamate in the regulation of DARPP-32 phosphorylation at four major sites was further investigated. Experiments using striatal slices revealed that glutamate decreased the phosphorylation states of DARPP-32 at Ser-97 as well as Thr-34, Thr-75, and Ser-130 by activating NMDA or AMPA receptors in both direct and indirect pathway striatal neurons. The effect of glutamate in decreasing Ser-97 phosphorylation was mediated by activation of PP2A. In vitro phosphatase assays indicated that the PP2A/PR72 heterotrimer complex was likely responsible for glutamate/Ca2+-regulated dephosphorylation of DARPP-32 at Ser-97. As a consequence of Ser-97 dephosphorylation, glutamate induced the nuclear localization in cultured striatal neurons of dephospho-Thr-34/dephospho-Ser-97 DARPP-32. It also reduced PKA-dependent DARPP-32 signaling in slices and in vivo Taken together, the results suggest that by inducing dephosphorylation of DARPP-32 at Ser-97 and altering its cytonuclear distribution, glutamate may counteract dopamine/D1 receptor/PKA signaling at multiple cellular levels.
Collapse
Affiliation(s)
- Akinori Nishi
- From the Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan,
| | - Miriam Matamales
- Institut du Fer à Moulin, INSERM, UPMC UMR-S839, 75005 Paris, France
| | - Veronica Musante
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508
| | - Emmanuel Valjent
- Institut de Génomique Fonctionnelle, Inserm U1191, UMR 5203 CNRS, Montpellier University, 34094 Montpellier, France, and
| | - Mahomi Kuroiwa
- From the Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yosuke Kitahara
- From the Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Heike Rebholz
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065
| | | | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508
| |
Collapse
|
34
|
Yamada K, Takahashi S, Karube F, Fujiyama F, Kobayashi K, Nishi A, Momiyama T. Neuronal circuits and physiological roles of the basal ganglia in terms of transmitters, receptors and related disorders. J Physiol Sci 2016; 66:435-446. [PMID: 26979514 PMCID: PMC5045844 DOI: 10.1007/s12576-016-0445-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/02/2016] [Indexed: 01/11/2023]
Abstract
The authors have reviewed recent research advances in basal ganglia circuitry and function, as well as in related disorders from multidisciplinary perspectives derived from the results of morphological, electrophysiological, behavioral, biochemical and molecular biological studies. Based on their expertise in their respective fields, as denoted in the text, the authors discuss five distinct research topics, as follows: (1) area-specific dopamine receptor expression of astrocytes in basal ganglia, (2) the role of physiologically released dopamine in the striatum, (3) control of behavioral flexibility by striatal cholinergic interneurons, (4) regulation of phosphorylation states of DARPP-32 by protein phosphatases and (5) physiological perspective on deep brain stimulation with optogenetics and closed-loop control for ameliorating parkinsonism.
Collapse
Affiliation(s)
- Katsuya Yamada
- Department of Physiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Susumu Takahashi
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Fuyuki Karube
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Fumino Fujiyama
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Fukushima Medical University, Fukushima, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Toshihiko Momiyama
- Department of Pharmacology, Jikei University School of Medicine, Nishi-Shinbashi Campus, Minato-ku, Tokyo, 105-8461, Japan.
| |
Collapse
|
35
|
Nagai T, Yoshimoto J, Kannon T, Kuroda K, Kaibuchi K. Phosphorylation Signals in Striatal Medium Spiny Neurons. Trends Pharmacol Sci 2016; 37:858-871. [DOI: 10.1016/j.tips.2016.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 12/21/2022]
|
36
|
Nair AG, Bhalla US, Hellgren Kotaleski J. Role of DARPP-32 and ARPP-21 in the Emergence of Temporal Constraints on Striatal Calcium and Dopamine Integration. PLoS Comput Biol 2016; 12:e1005080. [PMID: 27584878 PMCID: PMC5008828 DOI: 10.1371/journal.pcbi.1005080] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/22/2016] [Indexed: 01/06/2023] Open
Abstract
In reward learning, the integration of NMDA-dependent calcium and dopamine by striatal projection neurons leads to potentiation of corticostriatal synapses through CaMKII/PP1 signaling. In order to elicit the CaMKII/PP1-dependent response, the calcium and dopamine inputs should arrive in temporal proximity and must follow a specific (dopamine after calcium) order. However, little is known about the cellular mechanism which enforces these temporal constraints on the signal integration. In this computational study, we propose that these temporal requirements emerge as a result of the coordinated signaling via two striatal phosphoproteins, DARPP-32 and ARPP-21. Specifically, DARPP-32-mediated signaling could implement an input-interval dependent gating function, via transient PP1 inhibition, thus enforcing the requirement for temporal proximity. Furthermore, ARPP-21 signaling could impose the additional input-order requirement of calcium and dopamine, due to its Ca2+/calmodulin sequestering property when dopamine arrives first. This highlights the possible role of phosphoproteins in the temporal aspects of striatal signal transduction. A response towards an environmental stimulus could be reinforced if it elicits a reward. On the subcellular level, the environmental stimulus and the reward signal lead to a transient increase in striatal calcium- and dopamine-signaling, respectively. The integration of calcium and dopamine signals, which is important for reward-learning, could elicit a downstream response only if they are close in time and arrive in correct order (first calcium and then dopamine). This study proposes that the requirement for the input signals to be temporally close and in correct order could emerge due to the coordinated signaling via two striatal phosphoproteins, DARPP-32 and ARPP-21. The DARPP-32 signaling implements an input-interval dependent gating function and ARPP-21 implements an input-order dependent threshold-like function. Thus, a molecular mechanism has been presented here which could explain the emergence of important temporal aspects of subcellular signal integration in reward-learning.
Collapse
Affiliation(s)
- Anu G. Nair
- Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Manipal University, Manipal, India
| | - Upinder S. Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
- * E-mail:
| |
Collapse
|
37
|
Sensing Positive versus Negative Reward Signals through Adenylyl Cyclase-Coupled GPCRs in Direct and Indirect Pathway Striatal Medium Spiny Neurons. J Neurosci 2016; 35:14017-30. [PMID: 26468202 DOI: 10.1523/jneurosci.0730-15.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Transient changes in striatal dopamine (DA) concentration are considered to encode a reward prediction error (RPE) in reinforcement learning tasks. Often, a phasic DA change occurs concomitantly with a dip in striatal acetylcholine (ACh), whereas other neuromodulators, such as adenosine (Adn), change slowly. There are abundant adenylyl cyclase (AC) coupled GPCRs for these neuromodulators in striatal medium spiny neurons (MSNs), which play important roles in plasticity. However, little is known about the interaction between these neuromodulators via GPCRs. The interaction between these transient neuromodulator changes and the effect on cAMP/PKA signaling via Golf- and Gi/o-coupled GPCR are studied here using quantitative kinetic modeling. The simulations suggest that, under basal conditions, cAMP/PKA signaling could be significantly inhibited in D1R+ MSNs via ACh/M4R/Gi/o and an ACh dip is required to gate a subset of D1R/Golf-dependent PKA activation. Furthermore, the interaction between ACh dip and DA peak, via D1R and M4R, is synergistic. In a similar fashion, PKA signaling in D2+ MSNs is under basal inhibition via D2R/Gi/o and a DA dip leads to a PKA increase by disinhibiting A2aR/Golf, but D2+ MSNs could also respond to the DA peak via other intracellular pathways. This study highlights the similarity between the two types of MSNs in terms of high basal AC inhibition by Gi/o and the importance of interactions between Gi/o and Golf signaling, but at the same time predicts differences between them with regard to the sign of RPE responsible for PKA activation. SIGNIFICANCE STATEMENT Dopamine transients are considered to carry reward-related signal in reinforcement learning. An increase in dopamine concentration is associated with an unexpected reward or salient stimuli, whereas a decrease is produced by omission of an expected reward. Often dopamine transients are accompanied by other neuromodulatory signals, such as acetylcholine and adenosine. We highlight the importance of interaction between acetylcholine, dopamine, and adenosine signals via adenylyl-cyclase coupled GPCRs in shaping the dopamine-dependent cAMP/PKA signaling in striatal neurons. Specifically, a dopamine peak and an acetylcholine dip must interact, via D1 and M4 receptor, and a dopamine dip must interact with adenosine tone, via D2 and A2a receptor, in direct and indirect pathway neurons, respectively, to have any significant downstream PKA activation.
Collapse
|
38
|
Sun WL, Quizon PM, Zhu J. Molecular Mechanism: ERK Signaling, Drug Addiction, and Behavioral Effects. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:1-40. [PMID: 26809997 DOI: 10.1016/bs.pmbts.2015.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Addiction to psychostimulants has been considered as a chronic psychiatric disorder characterized by craving and compulsive drug seeking and use. Over the past two decades, accumulating evidence has demonstrated that repeated drug exposure causes long-lasting neurochemical and cellular changes that result in enduring neuroadaptation in brain circuitry and underlie compulsive drug consumption and relapse. Through intercellular signaling cascades, drugs of abuse induce remodeling in the rewarding circuitry that contributes to the neuroplasticity of learning and memory associated with addiction. Here, we review the role of the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase, and its related intracellular signaling pathways in drug-induced neuroadaptive changes that are associated with drug-mediated psychomotor activity, rewarding properties and relapse of drug seeking behaviors. We also discuss the neurobiological and behavioral effects of pharmacological and genetic interferences with ERK-associated molecular cascades in response to abused substances. Understanding the dynamic modulation of ERK signaling in response to drugs may provide novel molecular targets for therapeutic strategies to drug addiction.
Collapse
Affiliation(s)
- Wei-Lun Sun
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Pamela M Quizon
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
39
|
Kozorovitskiy Y, Peixoto R, Wang W, Saunders A, Sabatini BL. Neuromodulation of excitatory synaptogenesis in striatal development. eLife 2015; 4. [PMID: 26551563 PMCID: PMC4716836 DOI: 10.7554/elife.10111] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/08/2015] [Indexed: 11/30/2022] Open
Abstract
Dopamine is released in the striatum during development and impacts the activity of Protein Kinase A (PKA) in striatal spiny projection neurons (SPNs). We examined whether dopaminergic neuromodulation regulates activity-dependent glutamatergic synapse formation in the developing striatum. Systemic in vivo treatment with Gαs-coupled G-protein receptors (GPCRs) agonists enhanced excitatory synapses on direct pathway striatal spiny projection neurons (dSPNs), whereas rapid production of excitatory synapses on indirect pathway neurons (iSPNs) required the activation of Gαs GPCRs in SPNs of both pathways. Nevertheless, in vitro Gαs activation was sufficient to enhance spinogenesis induced by glutamate photolysis in both dSPNs and iSPNs, suggesting that iSPNs in intact neural circuits have additional requirements for rapid synaptic development. We evaluated the in vivo effects of enhanced glutamate release from corticostriatal axons and postsynaptic PKA and discovered a mechanism of developmental plasticity wherein rapid synaptogenesis is promoted by the coordinated actions of glutamate and postsynaptic Gαs-coupled receptors. DOI:http://dx.doi.org/10.7554/eLife.10111.001 The brain is composed of intricate circuits of connected neurons that communicate via a combination of electrical and chemical signals. Some signals (referred to as excitatory signals) increase the probability that the neuron receiving the chemical message will produce an electrical impulse. On the other hand, inhibitory messages decrease the likelihood of this activity. Both of these kinds of signals are fast, and act over milliseconds. There is also a diverse set of slower signals, referred to as neuromodulation, which regulates the faster signals. A signaling chemical called dopamine is involved in neuromodulation and is essential for rewarding behavior and complex motor actions. The importance of dopamine is clear from the profound lack of movement seen in individuals with Parkinson’s disease, which is caused by the death of dopamine producing brain cells. Many nerve endings from dopamine-releasing neurons connect to a part of the brain’s reward system called the striatum. The neurons in this region are organized into two pathways that have opposing impacts on behavior. Dopamine activates different kinds of receptors called “G protein-coupled dopamine receptors” on neurons from each pathway. This allows dopamine to alter the activity of a protein called Protein Kinase A (or PKA) and alter the signaling state of these neurons. The impact of dopamine on neural circuits in adults has been extensively studied. However it was unknown whether dopamine might influence how neural circuits are wired during brain development. Because the nerve endings from dopamine-releasing neurons reach the striatum before most excitatory connections between the neurons are formed, dopamine stands to influence the development of connections in the striatum. Kozorovitskiy et al. have now investigated the role of neuromodulation in brain development in young mice. This involved measuring the formation of excitatory connections or synapses and the electrical activity of different striatal neurons during the maturation of brain circuits that occurs after birth. This analysis revealed that turning on dopamine receptors that increase PKA activity rapidly enhances the number of excitatory synapses on the neurons that express this receptor. Kozorovitskiy et al. then used a variety of approaches to investigate whether there is cooperation between G protein-coupled receptors, PKA activity and a signaling molecule called glutamate in striatal development. This revealed a more general mechanism by which the activation of G-protein-coupled receptors interacts with glutamate (the primary excitatory signal sent between neurons) in order to produce new synapses. These results reveal a previously unknown role for neuromodulation in “wiring up” the brain and open the possibility of new therapies to treat neurodevelopmental and neurodegenerative disorders. DOI:http://dx.doi.org/10.7554/eLife.10111.002
Collapse
Affiliation(s)
- Yevgenia Kozorovitskiy
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States.,Department of Neurobiology, Northwestern University, Evanston, United States
| | - Rui Peixoto
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Wengang Wang
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Arpiar Saunders
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
40
|
Motor Skill Learning Is Associated with Phase-Dependent Modifications in the Striatal cAMP/PKA/DARPP-32 Signaling Pathway in Rodents. PLoS One 2015; 10:e0140974. [PMID: 26488498 PMCID: PMC4619563 DOI: 10.1371/journal.pone.0140974] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/02/2015] [Indexed: 11/19/2022] Open
Abstract
Abundant evidence points to a key role of dopamine in motor skill learning, although the underlying cellular and molecular mechanisms are still poorly understood. Here, we used a skilled-reaching paradigm to first examine changes in the expression of the plasticity-related gene Arc to map activity in cortico-striatal circuitry during different phases of motor skill learning in young animals. In the early phase, Arc mRNA was significantly induced in the medial prefrontal cortex (mPFC), cingulate cortex, primary motor cortex, and striatum. In the late phase, expression of Arc did not change in most regions, except in the mPFC and dorsal striatum. In the second series of experiments, we studied the learning-induced changes in the phosphorylation state of dopamine and cAMP-regulated phosphoprotein, 32k Da (DARPP-32). Western blot analysis of the phosphorylation state of DARPP-32 and its downstream target cAMP response element-binding protein (CREB) in the striatum revealed that the early, but not late, phase of motor skill learning was associated with increased levels of phospho-Thr34-DARPP-32 and phospho-Ser133-CREB. Finally, we used the DARPP-32 knock-in mice with a point mutation in the Thr34 regulatory site (i.e., protein kinase A site) to test the significance of this pathway in motor skill learning. In accordance with our hypothesis, inhibition of DARPP-32 activity at the Thr34 regulatory site strongly attenuated the motor learning rate and skilled reaching performance of mice. These findings suggest that the cAMP/PKA/DARPP-32 signaling pathway is critically involved in the acquisition of novel motor skills, and also demonstrate a dynamic shift in the contribution of cortico-striatal circuitry during different phases of motor skill learning.
Collapse
|
41
|
Selective Effects of PDE10A Inhibitors on Striatopallidal Neurons Require Phosphatase Inhibition by DARPP-32. eNeuro 2015; 2:eN-NWR-0060-15. [PMID: 26465004 PMCID: PMC4596023 DOI: 10.1523/eneuro.0060-15.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/21/2015] [Accepted: 08/10/2015] [Indexed: 01/13/2023] Open
Abstract
Type 10A phosphodiesterase (PDE10A) is highly expressed in the striatum, in striatonigral and striatopallidal medium-sized spiny neurons (MSNs), which express D1 and D2 dopamine receptors, respectively. PDE10A inhibitors have pharmacological and behavioral effects suggesting an antipsychotic profile, but the cellular bases of these effects are unclear. We analyzed the effects of PDE10A inhibition in vivo by immunohistochemistry, and imaged cAMP, cAMP-dependent protein kinase A (PKA), and cGMP signals with biosensors in mouse brain slices. PDE10A inhibition in mouse striatal slices produced a steady-state increase in intracellular cAMP concentration in D1 and D2 MSNs, demonstrating that PDE10A regulates basal cAMP levels. Surprisingly, the PKA-dependent AKAR3 phosphorylation signal was strong in D2 MSNs, whereas D1 MSNs remained unresponsive. This effect was also observed in adult mice in vivo since PDE10A inhibition increased phospho-histone H3 immunoreactivity selectively in D2 MSNs in the dorsomedial striatum. The PKA-dependent effects in D2 MSNs were prevented in brain slices and in vivo by mutation of the PKA-regulated phosphorylation site of 32 kDa dopamine- and cAMP-regulated phosphoprotein (DARPP-32), which is required for protein phosphatase-1 inhibition. These data highlight differences in the integration of the cAMP signal in D1 and D2 MSNs, resulting from stronger inhibition of protein phosphatase-1 by DARPP-32 in D2 MSNs than in D1 MSNs. This study shows that PDE10A inhibitors share with antipsychotic medications the property of activating preferentially PKA-dependent signaling in D2 MSNs.
Collapse
|
42
|
Kim J, Ryu IS, Seo SY, Choe ES. Activation of Protein Kinases and Phosphatases Coupled to Glutamate Receptors Regulates the Phosphorylation State of DARPP32 at Threonine 75 After Repeated Exposure to Cocaine in the Rat Dorsal Striatum in a Ca2+-Dependent Manner. Int J Neuropsychopharmacol 2015; 18:pyv075. [PMID: 26142455 PMCID: PMC4675983 DOI: 10.1093/ijnp/pyv075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/01/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Phosphorylation state of dopamine- and cAMP-regulated phosphoprotein, molecular weight 32 kDa (DARPP32) is crucial to understand drug-mediated synaptic plasticity. In this study, mechanisms underlying repeated cocaine-stimulated phosphorylation of DARPP32 at threonine 75 (pDARPP32-Thr75) were determined by investigating the hypothesis that activation of protein kinases and phosphatases coupled to glutamate signaling is necessary for the regulation of pDARPP32-Thr75 after repeated cocaine administration. METHODS Intracaudate drug infusions into the rat dorsal striatum followed by Western immunoblot analysis were mainly performed to test this hypothesis. RESULTS The results demonstrated that 7 repeated daily intraperitoneal injections of cocaine (20mg/kg) upregulated the expression of pDARPP32-Thr75. Increases in the cytosolic Ca(2+) concentrations followed by Ca(2+)-dependent protein kinase activation through stimulation of Ca(2+) channels in striatal neurons were necessary for the phosphorylation. Activation of protein phosphatases further regulated the phosphorylation state by deactivating pDARPP32-Thr75 and upstream protein kinases. CONCLUSION These findings suggest that activation of protein kinases and phosphatases coupled to glutamate receptors controls the phosphorylation state of DARPP32-Thr75 after repeated exposure to cocaine in the dorsal striatum in a Ca(2+)-dependent manner.
Collapse
Affiliation(s)
| | | | | | - Eun Sang Choe
- Department of Biological Sciences, Pusan National University, Pusan, Korea.
| |
Collapse
|
43
|
Abstract
Cyclin dependent kinase-5 (Cdk5), a family member of the cyclin-dependent kinases, plays a pivotal role in the central nervous system. During embryogenesis, Cdk5 is indispensable for brain development and, in the adult brain, it is essential for numerous neuronal processes, including higher cognitive functions such as learning and memory formation. However, Cdk5 activity becomes deregulated in several neurological disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, which leads to neurotoxicity. Therefore, precise control over Cdk5 activity is essential for its physiological functions. This Commentary covers the various mechanisms of Cdk5 regulation, including several recently identified protein activators and inhibitors of Cdk5 that control its activity in normal and diseased brains. We also discuss the autoregulatory activity of Cdk5 and its regulation at the transcriptional, post-transcriptional and post-translational levels. We finally highlight physiological and pathological roles of Cdk5 in the brain. Specific modulation of these protein regulators is expected to provide alternative strategies for the development of effective therapeutic interventions that are triggered by deregulation of Cdk5.
Collapse
Affiliation(s)
- Kavita Shah
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Debomoy K Lahiri
- Laboratory of Molecular Neurogenetics, Departments of Psychiatry and of Medical & Molecular Genetics, Indiana University School of Medicine, Institute of Psychiatric Research, Neuroscience Research Building, 320 W. 15th St., Indianapolis, IN 46202, USA
| |
Collapse
|
44
|
Cathala A, Devroye C, Maitre M, Piazza PV, Abrous DN, Revest JM, Spampinato U. Serotonin2C receptors modulate dopamine transmission in the nucleus accumbens independently of dopamine release: behavioral, neurochemical and molecular studies with cocaine. Addict Biol 2015; 20:445-57. [PMID: 24661380 DOI: 10.1111/adb.12137] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In keeping with its ability to control the mesoaccumbens dopamine (DA) pathway, the serotonin2C receptor (5-HT2C R) plays a key role in mediating the behavioral and neurochemical effects of drugs of abuse. Studies assessing the influence of 5-HT2C R agonists on cocaine-induced responses have suggested that 5-HT2C Rs can modulate mesoaccumbens DA pathway activity independently of accumbal DA release, thereby controlling DA transmission in the nucleus accumbens (NAc). In the present study, we assessed this hypothesis by studying the influence of the 5-HT2C R agonist Ro 60-0175 on cocaine-induced behavioral, neurochemical and molecular responses. The i.p. administration of 1 mg/kg Ro 60-0175 inhibited hyperlocomotion induced by cocaine (15 mg/kg, i.p.), had no effect on cocaine-induced DA outflow in the shell, and increased it in the core subregion of the NAc. Furthermore, Ro 60-0175 inhibited the late-onset locomotion induced by the subcutaneous administration of the DA-D2 R agonist quinpirole (0.5 mg/kg), as well as cocaine-induced increase in c-Fos immunoreactivity in NAc subregions. Finally, Ro 60-0175 inhibited cocaine-induced phosphorylation of the DA and c-AMP regulated phosphoprotein of Mr 32 kDa (DARPP-32) at threonine residues in the NAc core, this effect being reversed by the selective 5-HT2C R antagonist SB 242084 (0.5 mg/kg, i.p.). Altogether, these findings demonstrate that 5-HT2C Rs are capable of modulating mesoaccumbens DA pathway activity at post-synaptic level by specifically controlling DA signaling in the NAc core subregion. In keeping with the tight relationship between locomotor activity and NAc DA function, this interaction could participate in the inhibitory control of cocaine-induced locomotor activity.
Collapse
Affiliation(s)
- Adeline Cathala
- Neurocentre Magendie, Physiopathology of Addiction Group; Inserm U862; France
- Université de Bordeaux; France
| | - Céline Devroye
- Neurocentre Magendie, Physiopathology of Addiction Group; Inserm U862; France
- Université de Bordeaux; France
| | - Marlène Maitre
- Neurocentre Magendie, Physiopathology of Addiction Group; Inserm U862; France
- Université de Bordeaux; France
| | - Pier Vincenzo Piazza
- Neurocentre Magendie, Physiopathology of Addiction Group; Inserm U862; France
- Université de Bordeaux; France
| | - Djoher Nora Abrous
- Neurocentre Magendie, Physiopathology of Addiction Group; Inserm U862; France
- Neurocentre Magendie, Neurogenesis and Pathophysiology Group; Inserm U862; France
| | - Jean-Michel Revest
- Neurocentre Magendie, Physiopathology of Addiction Group; Inserm U862; France
- Université de Bordeaux; France
| | - Umberto Spampinato
- Neurocentre Magendie, Physiopathology of Addiction Group; Inserm U862; France
- Université de Bordeaux; France
| |
Collapse
|
45
|
Russwurm C, Koesling D, Russwurm M. Phosphodiesterase 10A Is Tethered to a Synaptic Signaling Complex in Striatum. J Biol Chem 2015; 290:11936-47. [PMID: 25762721 DOI: 10.1074/jbc.m114.595769] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 11/06/2022] Open
Abstract
Phosphodiesterase 10A (PDE10A) is a dual substrate PDE that can hydrolyze both cGMP and cAMP. In brain, PDE10A is almost exclusively expressed in the striatum. In several studies, PDE10A has been implicated in regulation of striatal output using either specific inhibitors or PDE10A knock-out mice and has been suggested as a promising target for novel antipsychotic drugs. In striatal medium spiny neurons, PDE10A is localized at the plasma membrane and in dendritic spines close to postsynaptic densities. In the present study, we identify PDE10A as the major cAMP PDE in mouse striatum and monitor PKA-dependent PDE10A phosphorylation. With recombinantly expressed PDE10A we demonstrate that phosphorylation does not alter PDE10A activity. In striatum, PDE10A was found to be associated with the A kinase anchoring protein AKAP150 suggesting the existence of a multiprotein signaling complex localizing PDE10A to a specific functional context at synaptic membranes. Furthermore, the cAMP effector PKA, the NMDA receptor subunits NR2A and -B, as well as PSD95, were tethered to the complex. In agreement, PDE10A was almost exclusively found in multiprotein complexes as indicated by migration in high molecular weight fractions in size exclusion chromatography. Finally, affinity of PDE10A to the signaling complexes formed around AKAP150 was reduced by PDE10A phosphorylation. The data indicate that phosphorylation of PDE10 has an impact on the interaction with other signaling proteins and adds an additional line of complexity to the role of PDE10 in regulation of synaptic transmission.
Collapse
Affiliation(s)
- Corina Russwurm
- From the Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Ruhr-Universität-Bochum, 44780 Bochum, Germany
| | - Doris Koesling
- From the Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Ruhr-Universität-Bochum, 44780 Bochum, Germany
| | - Michael Russwurm
- From the Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Ruhr-Universität-Bochum, 44780 Bochum, Germany
| |
Collapse
|
46
|
Devroye C, Cathala A, Maitre M, Piazza PV, Abrous DN, Revest JM, Spampinato U. Serotonin2C receptor stimulation inhibits cocaine-induced Fos expression and DARPP-32 phosphorylation in the rat striatum independently of dopamine outflow. Neuropharmacology 2015; 89:375-81. [DOI: 10.1016/j.neuropharm.2014.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 11/16/2022]
|
47
|
Lebel M, Robinson P, Cyr M. Canadian Association of Neurosciences Review: The Role of Dopamine Receptor Function in Neurodegenerative Diseases. Can J Neurol Sci 2014; 34:18-29. [PMID: 17352343 DOI: 10.1017/s0317167100005746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dopamine (DA) receptors, which are heavily expressed in the caudate/putamen of the brain, represent the molecular target of several drugs used in the treatment of various neurological disorders, such as Parkinson's disease. Although most of the drugs are very effective in alleviating the symptoms associated with these conditions, their long-term utilization could lead to the development of severe side-effects. In addition to uncovering novel mediators of physiological DA receptor functions, recent research advances are suggesting a role of these receptors in toxic effects on neurons. For instance, accumulating evidence indicates that DA receptors, particularly D1 receptors, are central in the neuronal toxicity induced by elevated synaptic levels of DA. In this review, we will discuss recent findings on DA receptors as regulators of long term neuronal dysfunction and neurodegenerative processes.
Collapse
Affiliation(s)
- Manon Lebel
- Neuroscience Research Group, Université du Québec à Trois-Rivières, Canada
| | | | | |
Collapse
|
48
|
Cyclin-dependent kinase 5 in the ventral tegmental area regulates depression-related behaviors. J Neurosci 2014; 34:6352-66. [PMID: 24790206 DOI: 10.1523/jneurosci.3673-13.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dopamine neurons in the ventral tegmental area (VTA) govern reward and motivation and dysregulated dopaminergic transmission may account for anhedonia and other symptoms of depression. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that regulates a broad range of brain functions through phosphorylation of a myriad of substrates, including tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine synthesis. We investigated whether and how Cdk5 activity in VTA dopamine neurons regulated depression-related behaviors in mice. Using the Cre/LoxP system to selectively delete Cdk5 in the VTA or in midbrain dopamine neurons in Cdk5(loxP/loxP) mice, we showed that Cdk5 loss of function in the VTA induced anxiety- and depressive-like behaviors that were associated with decreases in TH phosphorylation at Ser31 and Ser40 in the VTA and dopamine release in its target region, the nucleus accumbens. The decreased phosphorylation of TH at Ser31 was a direct effect of Cdk5 deletion, whereas decreased phosphorylation of TH at Ser40 was likely caused by impaired cAMP/protein kinase A (PKA) signaling, because Cdk5 deletion decreased cAMP and phosphorylated cAMP response element-binding protein (p-CREB) levels in the VTA. Using Designer Receptors Exclusively Activated by Designer Drugs (DREADD) technology, we showed that selectively increasing cAMP levels in VTA dopamine neurons increased phosphorylation of TH at Ser40 and CREB at Ser133 and reversed behavioral deficits induced by Cdk5 deletion. The results suggest that Cdk5 in the VTA regulates cAMP/PKA signaling, dopaminergic neurotransmission, and depression-related behaviors.
Collapse
|
49
|
Abstract
Elevation of inflammatory cytokines in the striatum precedes symptoms in a number of motor dysfunctions, but it is unclear whether this is part of the disease process or an adaptive response to the pathology. In pyramidal cells, TNFα drives the insertion of AMPA-type glutamate receptors into synapses, and contributes to the homeostatic regulation of circuit activity in the developing neocortex. Here we demonstrate that in the mouse dorsolateral striatum, TNFα drives the internalization of AMPARs and reduces corticostriatal synaptic strength, dephosphorylates DARPP-32 and GluA1, and results in a preferential removal of Ca(2+)-permeable AMPARs. Striatal TNFα signaling appears to be adaptive in nature, as TNFα is upregulated in response to the prolonged blockade of D2 dopamine receptors and is necessary to reduce the expression of extrapyramidal symptoms induced by chronic haloperidol treatment. These data indicate that TNFα is a regulator of glutamatergic synaptic strength in the adult striatum in a manner distinct from its regulation of synapses on pyramidal cells and mediates an adaptive response during pathological conditions.
Collapse
|
50
|
Li G, Liu T, Kong X, Wang L, Jin X. Hippocampal Glycogen Synthase Kinase 3β is Critical for the Antidepressant Effect of Cyclin-Dependent Kinase 5 Inhibitor in Rats. J Mol Neurosci 2014; 54:92-9. [DOI: 10.1007/s12031-014-0254-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/04/2014] [Indexed: 12/17/2022]
|