1
|
Dong Z, She X, Ma J, Chen Q, Gao Y, Chen R, Qin H, Shen B, Gao H. The E3 Ligase NEDD4L Prevents Colorectal Cancer Liver Metastasis via Degradation of PRMT5 to Inhibit the AKT/mTOR Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2504704. [PMID: 40279519 DOI: 10.1002/advs.202504704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Indexed: 04/27/2025]
Abstract
Colorectal cancer is the second most common cause of cancer mortality worldwide, and liver metastasis is the major cause of death of patients with colorectal cancer. Dysfunctional E3 ligase activity has recently been shown to be associated with colorectal cancer. However, the key E3 ligases affecting colorectal cancer liver metastasis remain unknown. Therefore, an shRNA library targeting 156 E3 ubiquitin ligases has been used to perform an in vivo loss-of-function screen of a human colorectal cancer cell line in a mouse model of liver metastasis. The screen reveals that neural precursor cell expressed developmentally down-regulated gene 4-like (NEDD4L) knockdown promotes colorectal cancer liver metastasis. Mechanistic studies reveal that NEDD4L binds to the PPNAY motif in protein arginine methyltransferase 5 (PRMT5) and ubiquitinates PRMT5 to promote its degradation. PRMT5 degradation attenuates the arginine methylation of AKT1 to inhibit the AKT/mTOR signaling pathway. The effect of NEDD4L decreases colorectal cancer cell proliferation to suppress colonization. This study is the first to show that PRMT5 is a substrate of NEDD4L and reveals not only the metastasis-inhibiting function of NEDD4L but also a novel mechanism by which NEDD4L prevents colorectal cancer liver metastasis. These findings may provide a new preventive strategy for liver metastasis.
Collapse
Affiliation(s)
- Zhewen Dong
- Tongji University Cancer Center and Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, P. R. China
| | - Xiaofei She
- Tongji University Cancer Center and Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, P. R. China
| | - Junxian Ma
- Tongji University Cancer Center and Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, P. R. China
| | - Qian Chen
- Tongji University Cancer Center and Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Yaqun Gao
- Tongji University Cancer Center and Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, P. R. China
| | - Ruiyan Chen
- Tongji University Cancer Center and Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, P. R. China
| | - Huanlong Qin
- Tongji University Cancer Center and Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Bing Shen
- Tongji University Cancer Center and Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- Department of Urology and Urologic Cancer Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Hua Gao
- Tongji University Cancer Center and Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
2
|
Liu T, Sun T, Chen X, Wu J, Sun X, Liu X, Yan H, Fu Q, Fan Z, Wang X, Cheng P, Cheng W, Wu A. Targeting ARPC1B Overcomes Immune Checkpoint Inhibitor Resistance in Glioblastoma by Reversing Protumorigenic Macrophage Polarization. Cancer Res 2025; 85:1236-1252. [PMID: 39841088 DOI: 10.1158/0008-5472.can-24-2286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/07/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
Immunotherapy has elicited significant improvements in outcomes for patients with several tumor types. However, the immunosuppressive microenvironment in glioblastoma (GBM) restricts the therapeutic efficacy of immune checkpoint blockade (ICB). In this study, we investigated the components of the immune microenvironment that contribute to ICB failure in GBM to elucidate the underlying causes of immunotherapeutic resistance. Macrophages were identified as a main contributor to ICB resistance. Expression of actin-related protein 2/3 complex subunit 1B (ARPC1B), a regulatory subunit of the Arp2/3 complex, was elevated in GBM and correlated with macrophage enrichment and prognosis. ARPC1B in tumor cells increased STAT1 expression and subsequent IL10 production, which induced a protumorigenic macrophage state. Mechanistically, ARPC1B inhibited the ubiquitination and degradation of STAT1 by preventing the E3 ubiquitin ligase NEDD4L from binding to STAT1 and by supporting the interaction between STAT1 and the deubiquitinase USP7. Inhibiting ARPC1B reshaped the immunosuppressive microenvironment and increased the efficacy of ICB in GBM models. This study highlights the important role of ARPC1B in macrophage-mediated immunosuppression and proposes a combination treatment regimen for GBM immunotherapy. Significance: ARPC1B induces macrophage-mediated immunosuppression by activating a STAT1/IL10 axis and can be targeted to improve the efficacy of immune checkpoint blockade in glioblastoma.
Collapse
Affiliation(s)
- Tianqi Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tao Sun
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Chen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianqi Wu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoqian Sun
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xing Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Haixu Yan
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Fu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zirong Fan
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiangyu Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Wen Cheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Anhua Wu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Shi J, Song C, Zhang P, Wang J, Huang W, Yu T, Wei Z, Wang L, Zhao L, Zhang R, Hou L, Zhang Y, Chen H, Wang H. Microglial circDlg1 modulates neuroinflammation by blocking PDE4B ubiquitination-dependent degradation associated with Alzheimer's disease. Theranostics 2025; 15:3401-3423. [PMID: 40093898 PMCID: PMC11905123 DOI: 10.7150/thno.104709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Abnormal activation of microglia occurs in the early stage of Alzheimer's disease (AD) and leads to subsequent neuroinflammation and major AD pathologies. Circular RNAs (circRNAs) are emerging as great potential therapeutic targets in AD. However, the extent of circRNAs entwined and the underlying mechanism in microglia-driven neuroinflammation in AD remain elusive. Methods: The circular RNA Dlg1 (circDlg1) was identified using circRNA microarray screening in magnetic-isolated microglia of APP/PS1 mice. CircDlg1 expression in microglia of APP/PS1 mice and AD patients was validated by FISH. Flow cytometry and immunostaining were conducted to explore the roles of circDlg1 in microglia. Adeno-associated virus 9 preparations for interfering with microglial circDlg1 were microinjected into mouse lateral ventricle to explore influences on microglial response, neuroinflammation and AD pathologies. Y-maze, novel object recognition and Morris water maze tasks were performed to assess cognitive performance. RNA pulldown assays, mass spectrometry analysis, RNA immunoprecipitation, and co-immunoprecipitation were performed to validate the underlying regulatory mechanisms of circDlg1. Results: A novel circular RNA circDlg1 was observed elevated using circRNA microarray screening in microglia isolated from APP/PS1 mice and validated increased in intracerebral microglia of AD patients. Microglia-specific knockdown of circDlg1 remarkably ameliorated microglial recruitment and envelopment of amyloid-β (Aβ), mitigated neuroinflammation, and prevented cognitive decline in APP/PS1 mice. Mechanistically, circDlg1 interfered with the interaction between phosphodiesterase 4b (PDE4B) and Smurf2, an E3 ubiquitin ligase of PDE4B. The formed ternary complex protected PDE4B from ubiquitination-dependent degradation via unique N-terminal targeting domain, thus consequently decreasing cAMP levels. We further confirmed that microglial circDlg1 downregulation significantly activated PKA/CREB anti-inflammatory pathway by decreasing PDE4B protein levels in APP/PS1 mice. Conclusion: The novel microglia-upregulated circDlg1 tightly involves in neuroinflammation in APP/PS1 mice via determining the protein fate of PDE4B. Microglial loss of circDlg1 promotes microglial protective response to Aβ deposition and relieves neuroinflammation, thus suggesting a potential therapeutic strategy that specifically targets the microglial response in AD.
Collapse
Affiliation(s)
- Jiyun Shi
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenghuan Song
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Pingao Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wanying Huang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ting Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zijie Wei
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lufeng Wang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Lanxue Zhao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lina Hou
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongfang Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shuguang Lab of Future Health, Shanghai Frontiers Science Center of TCM Chemical Biology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
4
|
Jiang S, Ou L, Wang Y, Su K, Chen Z, He L, Xu X, Cheng B, Xia J, Fan Z. CircPRMT5, a Potential Salivary Biomarker, Facilitates the Progression of Head and Neck Squamous Cell Carcinoma via the IGF2BP3-SERPINE1 Pathway. Int J Nanomedicine 2025; 20:1597-1613. [PMID: 39931528 PMCID: PMC11807777 DOI: 10.2147/ijn.s502400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Purpose Circular RNAs (circRNAs) are associated with the progression of tumors and hold promise as potential biomarkers for liquid biopsy. Among these, the role of circPRMT5 in head and neck squamous cell carcinoma (HNSCC) remains to be elucidated. This study aims to examine the role and underlying mechanisms of circPRMT5 in the progression of HNSCC and to assess its potential diagnostic value in saliva exosomes. Methods The expression of circPRMT5 and its clinical significance in HNSCC were investigated. Both in vitro and in vivo studies were performed to elucidate the biological role of circPRMT5 in HNSCC. RNA sequencing was utilized to identify downstream mechanisms. To evaluate and validate these mechanisms, Western blotting, RNA-FISH, immunofluorescence, immunohistochemistry, RIP, and rescue experiments were employed. Finally, salivary exosomes were isolated, and the expression levels of circPRMT5 were assessed using qRT-PCR. Results The upregulation of circPRMT5 in HNSCC tissues was identified to be correlated with cervical lymph node metastasis and advanced clinical T stage. Both in vitro and in vivo experiments manifested that circPRMT5 promoted the proliferation and metastasis of HNSCC. Mechanistically, circPRMT5 was demonstrated to directly bind to and stabilize the insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), which, subsequently, binds to and stabilizes the serpin family E member 1 (SERPINE1) mRNA, thereby enhancing SERPINE1 expression. Furthermore, rescue experiments indicated that the proliferative, invasive, and migratory effects of circPRMT5 in HNSCC were dependent on the involvement of IGF2BP3 and SERPINE1. Notably, circPRMT5 levels were significantly elevated in the saliva exosomes of HNSCC patients, exhibiting substantial diagnostic value. Conclusion CircPRMT5 exhibits significant diagnostic utility through salivary exosomes and plays a crucial role in promoting the progression of HNSCC via the IGF2BP3-SERPINE1 pathway. These findings highlight the potential of circPRMT5 as a noninvasive diagnostic biomarker and a therapeutic target for patients with HNSCC.
Collapse
Affiliation(s)
- Siqi Jiang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Linlin Ou
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yueqi Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Kai Su
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhipei Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Lihong He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xun Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhaona Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Zhang P, Wang T, Chen K, Sun R, Cao X, Du M, Peng F, Yin R, He X, Yin L. CircINADL promotes nasopharyngeal carcinoma metastasis by inhibiting HuR ubiquitin degradation and disrupting the hippo signaling pathway. Cell Signal 2025; 126:111526. [PMID: 39586520 DOI: 10.1016/j.cellsig.2024.111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Distant metastasis is a primary factor contributing to the low survival rate of patients with nasopharyngeal carcinoma (NPC). Circular RNAs (circRNAs) are increasingly recognized for their roles in cancer initiation and progression. However, the mechanisms underlying the abnormal expression and biological function of circRNA in NPC remain unclear. In this study, we identified a new circRNA, circINADL, which was upregulated in NPC tissues and positively correlated with the clinical stage of NPC. We found that the FUS RNA binding protein (FUS) promoted the transcription of circINADL in NPC cells. Elevated circINADL levels were shown to enhance NPC cells metastasis. Mechanistically, circINADL attenuated the interaction between human antigen R (HuR) and the E3 ubiquitin ligase β-TrCP, thereby inhibited the ubiquitination and degradation of HuR. Consequently, CircINADL enhanced the stability of the HuR target gene Yes1-associated transcriptional regulator (YAP1), leading to the dysregulation of the Hippo signaling pathway. In conclusion, our study reveals the function of circINADL in promoting NPC metastasis and highlights its potential as a biomarker and therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Pingchuan Zhang
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Tianxiang Wang
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Kun Chen
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Ruozhou Sun
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Xiang Cao
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Mingyu Du
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Fanyu Peng
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Rong Yin
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China
| | - Xia He
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China.
| | - Li Yin
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China.
| |
Collapse
|
6
|
Zhang N, Wang X, Li Y, Lu Y, Sheng C, Sun Y, Ma N, Jiao Y. Mechanisms and therapeutic implications of gene expression regulation by circRNA-protein interactions in cancer. Commun Biol 2025; 8:77. [PMID: 39825074 PMCID: PMC11748638 DOI: 10.1038/s42003-024-07383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025] Open
Abstract
Circular RNAs (circRNAs) have garnered substantial attention due to their distinctive circular structure and gene regulatory functions, establishing them as a significant class of functional non-coding RNAs in eukaryotes. Studies have demonstrated that circRNAs can interact with RNA-binding proteins (RBPs), which play crucial roles in tumorigenesis, metastasis, and drug response in cancer by influencing gene expression and altering the processes of tumor initiation and progression. This review aims to summarize the recent advances in research on circRNA-protein interactions (CPIs) and discuss the functions and mode of action of CPIs at various stages of gene expression, including transcription, splicing, translation, and post-translational modifications in the context of cancer. Additionally, we explore the role of CPIs in tumor drug resistance to gain a deeper understanding of their potential applications in the development of new anti-cancer therapeutic approaches.
Collapse
Affiliation(s)
- Nan Zhang
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Xinjia Wang
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yu Li
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yiwei Lu
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Chengcheng Sheng
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yumeng Sun
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Ningye Ma
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
| | - Yisheng Jiao
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
| |
Collapse
|
7
|
Chen G, Pei Y, Jiang P, Ye Q, Xie Z, Gyawali L. Exosomal NEDD4L derived from HG+oxLDL-induced vascular endothelial cells accelerates macrophage M1 polarization and oxLDL uptake by ubiquitinating IκBα and PPARγ. Cell Biol Toxicol 2025; 41:23. [PMID: 39775116 PMCID: PMC11706887 DOI: 10.1007/s10565-024-09973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Vascular endothelial cell-derived exosomes are thought to mediate disease progression by regulating macrophage polarization. However, its mechanism in diabetes mellitus (DM)-related atherosclerosis (AS) progress is unclear. METHODS High-glucose (HG) and oxLDL were used to induce human cardiac microvascular endothelial cells (HCMECs) to mimic DM-related AS model. The conditioned medium (CM) from HG+oxLDL-induced HCMECs was incubated with THP1-M0 monocytes treated with LPS or oxLDL. The mRNA levels of macrophage M1/M2 polarization markers, NEDD4L, IκBα and PPARγ were determined by qRT-PCR. Flow cytometry was used to analyze macrophage marker. Dil-labeled oxLDL and oil red O staining were performed to assess oxLDL uptake by THP1-M0 cells. The levels of inflammatory factors were examined using ELISA. Transmission electron microscope was used for observing foam cell formation and exosome morphology. The protein levels of p-Smad1/Smad1, p-Smad2/Smad2, p-IκBα/IκBα, p-P65/P65, anti-lipid metabolism-related markers, and NEDD4L were tested by western blot. The interaction between NEDD4L and IκBα or PPARγ was assessed by Co-IP assay. RESULTS The CM of HG+oxLDL-induced HCMECs could promote macrophage M1 polarization, oxLDL uptake and foam cell formation, and exosome inhibiter GW4869 eliminated these effects. NEDD4L was overexpressed in exosomes from HG+oxLDL-induced HCMECs, which could be taken up by THP1-M0 cells. Exosomal NEDD4L knockdown inhibited macrophage M1 polarization, oxLDL uptake and foam cell formation by reducing the protein levels of p-Smad1/Smad1, p-Smad2/Smad2, p-IκBα/IκBα and p-P65/P65. NEDD4L could reduce IκBα and PPARγ expression through ubiquitination. CONCLUSION HG+oxLDL-induced HCMECs-derived exosomal NEDD4L could enhance the ubiquitination of IκBα and PPARγ to facilitate macrophage M1 polarization and oxLDL uptake, thus accelerating DM-related AS.
Collapse
Affiliation(s)
- Guozhu Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400030, China.
- Department of Cardiology, The Beibei Affiliated Hospital of Chongqing Medical University, No. 69, Jialing Village, Beibei District, Chongqing, 400030, China.
| | - Yisong Pei
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400030, China
| | - Peng Jiang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400030, China
| | - Qiaoling Ye
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400030, China
| | - Zulong Xie
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Yuzhong District, Chongqing, 400030, China
| | | |
Collapse
|
8
|
Zhang W, Liu Y, Zhao Z, Zhang Y, Liang Y, Wang W. YBX1: A Multifunctional Protein in Senescence and Immune Regulation. Curr Issues Mol Biol 2024; 46:14058-14079. [PMID: 39727969 PMCID: PMC11726992 DOI: 10.3390/cimb46120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024] Open
Abstract
The Y-box binding protein 1 (YBX1) is a multifunctional protein with a wide range of roles in cell biology. It plays a crucial role in immune modulation, senescence, and disease progression. This review presents a comprehensive analysis of the specific functions and mechanisms of YBX1 in these areas. Initially, YBX1 is shown to be closely associated with cellular senescence and impacts significant biological processes, including cell proliferation, damage repair, and metabolism. This suggests potential applications in the prevention and treatment of senescence-related diseases. Additionally, YBX1 regulates the immune response by controlling the function of immune cells and the expression of immune molecules. It is essential in maintaining immune system homeostasis and impacts the pathological process of various diseases, including tumors. Lastly, the diverse functions of the YBX1 protein make it a promising candidate for the development of innovative therapeutic strategies for diseases. Comprehensive research on its mechanisms could provide novel insights and approaches for the prevention, diagnosis, and treatment of related diseases.
Collapse
Affiliation(s)
- Wenze Zhang
- The First College of Clinical Medicine, Lanzhou University, Lanzhou 730000, China;
| | - Ying Liu
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China; (Y.L.); (Z.Z.); (Y.Z.); (Y.L.)
| | - Zhe Zhao
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China; (Y.L.); (Z.Z.); (Y.Z.); (Y.L.)
| | - Yizhi Zhang
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China; (Y.L.); (Z.Z.); (Y.Z.); (Y.L.)
| | - Yujuan Liang
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China; (Y.L.); (Z.Z.); (Y.Z.); (Y.L.)
| | - Wanxia Wang
- The First College of Clinical Medicine, Lanzhou University, Lanzhou 730000, China;
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Lanzhou 730000, China
| |
Collapse
|
9
|
Chen G, Pei Y, Ye Q, Xie Z, Gyawali L, Liang X. NEDD4L-mediated RASGRP2 suppresses high-glucose and oxLDL-induced vascular endothelial cell dysfunctions by activating Rap1 and R-Ras. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119844. [PMID: 39260747 DOI: 10.1016/j.bbamcr.2024.119844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Ras guanyl-releasing protein 2 (RASGRP2) is an important regulator mediating endothelial cell function. However, whether RASGRP2 mediates diabetes mellitus (DM)-related atherosclerosis (AS) progression by regulating endothelial cell functions is unknown. METHODS Human cardiac microvascular endothelial cells (HCMECs) were treated with high-glucose (HG) and oxidized low-density lipoprotein (oxLDL). The expression of RASGRP2 and neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) was examined by quantitative real-time PCR and western blot (WB). Cell viability, apoptosis, migration, angiogenesis were detected by CCK8 assay, flow cytometry, transwell assay and tube formation assay. ROS production and cell permeability were tested to assess cell function. Rap1 and R-Ras protein levels were examined using WB. The interaction between RASGRP2 and NEDD4L was confirmed by Co-IP assay and ubiquitination assay. Exosomes were isolated from adipose-derived MSC (ADMSC)-transfected RASGRP2 overexpression vector, and then co-cultured with HG + oxLDL-induced HCMECs. RESULTS RASGRP2 was lowly expressed in HG + oxLDL-induced HCMECs. RASGRP2 overexpression inhibited HG + oxLDL-induced HCMECs permeability, apoptosis and ROS production, while accelerated cell viability, migration and angiogenesis. NEDD4L could interact with RASGRP2 by ubiquitination, thus inhibiting RASGRP2 protein stability to degrade its expression. Functional experiments showed that NEDD4L knockdown suppressed HG + oxLDL-induced HCMECs dysfunction, while these effects were reversed by RASGRP2 downregulation. ADMSC-Exo overexpressed RASGRP2 could promote cell viability, migration and angiogenesis, while suppress permeability, apoptosis and ROS production in HG + oxLDL-induced HCMECs. CONCLUSION Our data showed that targeting NEDD4L/RASGRP2 axis or inducing RASGRP2-modified ADMSC-Exo might be the efficient strategy for alleviating DM-related AS.
Collapse
Affiliation(s)
- Guozhu Chen
- The Second Affiliated Hospital of Chongqing Medical University Cardiology Department, Chongqing, China.
| | - Yisong Pei
- The Second Affiliated Hospital of Chongqing Medical University Cardiology Department, Chongqing, China
| | - Qiaoling Ye
- The Second Affiliated Hospital of Chongqing Medical University Cardiology Department, Chongqing, China
| | - Zulong Xie
- The Second Affiliated Hospital of Chongqing Medical University Cardiology Department, Chongqing, China
| | | | - Xing Liang
- The Second Affiliated Hospital of Chongqing Medical University Cardiology Department, Chongqing, China.
| |
Collapse
|
10
|
Qi M, Tu J, He R, Fei X, Zhao Y. NEDD4L Suppresses Proliferation and Promotes Apoptosis by Ubiquitinating RAC2 Expression and Acts as a Prognostic Biomarker in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2024; 25:11933. [PMID: 39596003 PMCID: PMC11594477 DOI: 10.3390/ijms252211933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Neural precursor cell expressed developmentally down-regulated 4-like (NEDD4L) is an HECT (homologous to E6AP C terminus)-type E3 ubiquitin ligase. As previously documented, bioinformatics analysis revealed NEDD4L is downregulated in clear cell renal cell carcinoma (ccRCC). However, the target substrate regulated by NEDD4L in ccRCC remains unknown. Here, we assessed whether NEDD4L regulates Ras-related C3 botulinum toxin substrate 2 (RAC2) expression in ccRCC. In our study, integrated bioinformatics analysis indicated that low expression of NEDD4L and high expression of RAC2 were both associated with poor prognosis of ccRCC, pro-tumorigenic immunity, and multiple tumor-associated pathways. Our data confirmed the hypothesis indicated in the previous studies related to the downregulation of NEDD4L in ccRCC. NEDD4L was identified to target the RAC2 threonine 108-proline motif, and RAC2 overexpression rescued NEDD4L-mediated cell apoptosis and inhibition of cell growth and migration. Therefore, RAC2 is a novel and first identified target of NEDD4L in ccRCC, and the aberrant less expression of NEDD4L and consequent RAC2 upregulation may contribute to renal carcinogenesis. Our study offers insight into NEDD4L as a potential future therapeutic target for renal cell carcinoma or as a novel prognostic biomarker.
Collapse
Affiliation(s)
- Manlong Qi
- Department of Clinical Genetics, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China; (J.T.); (R.H.)
| | - Jianqiao Tu
- Department of Clinical Genetics, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China; (J.T.); (R.H.)
| | - Rong He
- Department of Clinical Genetics, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China; (J.T.); (R.H.)
| | - Xiang Fei
- Department of Urology, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China;
| | - Yanyan Zhao
- Department of Clinical Genetics, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China; (J.T.); (R.H.)
| |
Collapse
|
11
|
Lou J, Mao Y, Jiang W, Shen H, Fan Y, Yu Q, Zhou C, Wei Z, Zhou K, Jin M, Wu J. TRIM56 Modulates YBX1 Degradation to Ameliorate ZBP1-Mediated Neuronal PANoptosis in Spinal Cord Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407132. [PMID: 39291396 PMCID: PMC11558135 DOI: 10.1002/advs.202407132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Spinal cord injury (SCI) is a severe injury to the central nervous system, and its treatment is always a major medical challenge. Proinflammatory cell death is considered an important factor affecting neuroinflammation and the prognosis after injury. PANoptosis, a newly discovered type of proinflammatory cell death, regulates the activation of executioner molecules of apoptosis, pyroptosis and necroptosis through the PANoptosome, providing a new target for therapeutic intervention after SCI. However, its role and regulatory mechanism in SCI are not yet elucidated. Here, based on proteomic data, YBX1 expression is significantly increased in neurons after SCI. Guided by RIP-seq, subsequent experiments reveal that YBX1 promotes ZBP1 expression by stabilizing the Zbp1 mRNA, thereby aggravating ZBP1-mediated PANoptosis. Furthermore, the E3 ubiquitin ligase TRIM56 is identified as an endogenous inhibitor of YBX1 via molecular docking and IP/MS analysis. Mechanistically, TRIM56 bound to YBX1 and promoted its ubiquitination, thereby accelerating its degradation. Taken together, these findings reveal a novel function of YBX1 in regulating ZBP1-mediated PANoptosis in the pathogenesis of SCI and verified that TRIM56 functions as an endogenous inhibitor to promote the ubiquitin-proteasomal degradation of YBX1, providing new insights into SCI treatment strategies.
Collapse
Affiliation(s)
- Junsheng Lou
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineNo. 79 Qingchun RoadHangzhou310003China
| | - Yiting Mao
- Obstetrics and Gynecology HospitalInstitute of Reproduction and DevelopmentFudan UniversityShanghai200090China
| | - Wu Jiang
- Department of OrthopeadicsAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityNo. 261 Huansha RoadHangzhou310006China
| | - Honghao Shen
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineNo. 79 Qingchun RoadHangzhou310003China
| | - Yunpeng Fan
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineNo. 79 Qingchun RoadHangzhou310003China
| | - Qing Yu
- Department of Critical Care Medicinethe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhou310009China
| | - Conghui Zhou
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineNo. 79 Qingchun RoadHangzhou310003China
| | - Ziyao Wei
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineNo. 79 Qingchun RoadHangzhou310003China
| | - Kailiang Zhou
- Department of OrthopeadicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Mengran Jin
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineNo. 79 Qingchun RoadHangzhou310003China
| | - Junsong Wu
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineNo. 79 Qingchun RoadHangzhou310003China
| |
Collapse
|
12
|
Lin C, Li H, Gao H, Zheng S, Wang Y, Wang Y, Chen Y, Zhu Z, Xia P, Shi H, Han A. Hsa_circ_0004194 suppresses colorectal cancer progression via hsa-miR-27a-3p. Heliyon 2024; 10:e39549. [PMID: 39498085 PMCID: PMC11532888 DOI: 10.1016/j.heliyon.2024.e39549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024] Open
Abstract
Aims To investigate the functional role and the underlying molecular mechanisms associated with hsa_circ_0004194 in the context of colorectal cancer (CRC) and to elucidate its impact on cancer progression. Results A notable and statistically significant decrease in the expression levels of hsa_circ_0004194 was observed specifically within CRC tissues when compared to non-tumor colorectal mucosa tissues. Functional evaluations, such as CCK8 assays, plate clone formation analysis, and transwell migration assays, our study revealed hsa_circ_0004194 significantly reduced the activity behavior of CRC cells. This overexpression of hsa_circ_0004194 effectively hindered these key cellular processes, demonstrating its role in suppressing the aggressive behaviors of CRC cells. Additionally, in vivo experiments utilizing mouse xenograft models exhibited that the upregulation of hsa_circ_0004194 significantly attenuated tumor growth, reduced tumor volume, and diminished liver metastasis. Further mechanistic investigation, through the utilization of RNA pull-down and luciferase reporter assays, uncovered that hsa_circ_0004194 sequestered hsa-miR-27a-3p, thereby enhancing retinoic acid X receptor α (RXRα)' expression which is in CRC cells. Moreover, this circular RNA also impeded the signaling pathway of Wnt/β-catenin. Conclusion Our study is the first to demonstrate that hsa_circ_0004194 exhibits downregulated expression in CRC and functions as a ceRNA by binding to and sequestering hsa-miR-27a-3p, thereby modulating the RXRα/β-catenin signaling pathway to inhibit CRC progression. This discovery suggests that hsa_circ_0004194 holds significant potential as a therapeutic biomarker for patients with CRC.
Collapse
Affiliation(s)
- Chen Lin
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| | - Hongjun Li
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| | - Huabin Gao
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| | - Shuai Zheng
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| | - Yu Wang
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| | - Yuting Wang
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| | - Yongyu Chen
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| | - Zhenwei Zhu
- The Oncology Department at Shenzhen Hospital of Southern Medical University in Shenzhen, China
| | - Pei Xia
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| | - Hujuan Shi
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| | - Anjia Han
- The Department of Pathology at the First Affiliated Hospital of Sun Yat-Sen University in Guangzhou, China
| |
Collapse
|
13
|
Wu F, Li D. YB1 and its role in osteosarcoma: a review. Front Oncol 2024; 14:1452661. [PMID: 39497723 PMCID: PMC11532169 DOI: 10.3389/fonc.2024.1452661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
YB1 (Y box binding protein 1), a multifunctional protein capable of binding to DNA/RNA, is present in most cells and acts as a splicing factor. It is involved in numerous cellular processes such as transcription, translation, and DNA repair, significantly affecting cell proliferation, differentiation, and apoptosis. Abnormal expression of this protein is closely linked to the formation of various malignancies (osteosarcoma, nasopharyngeal carcinoma, breast cancer, etc.). This review examines the multifaceted functions of YB1 and its critical role in osteosarcoma progression, providing new perspectives for potential therapeutic strategies.
Collapse
Affiliation(s)
| | - Dapeng Li
- Affiliated Hospital of Jiangsu University, Zhenjiang,
Jiangsu, China
| |
Collapse
|
14
|
Zhang X, Xu J, Zhuang G, Wang Y, Li X, Zhu X. Circular RNA TAF4B targeting MFN2 accelerates cell growth in bladder cancer through p27 depression and AKT activation. Front Immunol 2024; 15:1477196. [PMID: 39430741 PMCID: PMC11486711 DOI: 10.3389/fimmu.2024.1477196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Bladder cancer (BCa) is a common malignancy in the urinary tract. It has high recurrence rates and often requires microscopic examination, which presents significant challenges in clinical treatment. Previous research has shown that circular TAF4B (circTAF4B) is significantly upregulated in BCa and is associated with a poor prognosis. However, the specific targets and molecular mechanisms by which circTAF4B functions in BCa are still not well - understood. Methods In this study, an RNA pull - down assay and mass spectrometry were utilized to identify MFN2 as a binding protein of circTAF4B. Additionally, siRNA was used to silence MFN2 to observe the amplification of the inhibitory effects of circTAF4B overexpression on cell growth and migration in BCa cells. Moreover, circTAF4B shRNA lentiviral particles were employed to study their impact on BCa progression by examining the regulation of p27 and the blocking of AKT signaling. Results It was found that MFN2 is a binding protein of circTAF4B. Silencing MFN2 with siRNA enhanced the inhibitory effects of circTAF4B overexpression on cell growth and migration in BCa cells. Also, circTAF4B shRNA lentiviral particles inhibited BCa progression by upregulating p27 and blocking AKT signaling. Discussion In conclusion, the physical binding of circTAF4B to MFN2 is a crucial process in the tumorigenesis and progression of BCa. Targeting circTAF4B or its complexes may have potential as a therapeutic strategy for BCa diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Central Laboratory, Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, China
| | - Jia Xu
- Department of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Guangzhen Zhuang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Yiting Wang
- Central Laboratory, Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, China
| | - Xiaofeng Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaohui Zhu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
15
|
Huang Y, Wei X, Tu M, Lu W, Xu J. CircMAN1A2_009 facilitates YBX1 nuclear localization to induce GLO1 activation for cervical adenocarcinoma cell growth. Cancer Sci 2024; 115:3273-3287. [PMID: 39038813 PMCID: PMC11447891 DOI: 10.1111/cas.16264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
The molecular mechanisms driving the development of cervical adenocarcinoma (CADC) and optimal patient management strategies remain elusive. In this study, we have identified circMAN1A2_009 as an oncogenic circular RNA (circRNA) in CADC. Clinically, circMAN1A2_009 showed significant upregulation in CADC tissues, with an impressive area under the curve value of 0.8075 for detecting CADC. Functional studies, involving both gain-of-function and loss-of-function experiments, revealed that circMAN1A2_009 suppressed reactive oxygen species accumulation and apoptosis, and boosted cell viability in CADC cells. Conversely, silencing circMAN1A2_009 reversed these effects. Further mechanistic investigations indicated that circMAN1A2_009 interacted with YBX1, facilitating the phosphorylation levels of YBX1 at serine 102 (p-YBX1S102) and facilitating YBX1 nuclear localization through sequence 245-251. This interaction subsequently increased the activity of the glyoxalase 1 (GLO1) promoter, leading to the activation of GLO1 expression. Consistently, inhibition of either YBX1 or GLO1 mirrored the biological effects of circMAN1A2_009 in CADC cells. Additionally, knockdown of YBX1 or GLO1 partially reversed the oncogenic behaviors induced by circMAN1A2_009. In conclusion, our findings propose circMAN1A2_009 as a potential oncogene and a promising indicator for diagnosing and guiding therapy in CADC patients.
Collapse
Affiliation(s)
- Yongjie Huang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Wei
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengyan Tu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Yu M, Cao H, Yang J, Liu T, Wang B. Hsa_circ_0000825 promotes the progression of laryngeal squamous cell carcinoma by sponging miR-766 and interacting with ELAVL1. Heliyon 2024; 10:e37264. [PMID: 39319166 PMCID: PMC11419913 DOI: 10.1016/j.heliyon.2024.e37264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Emerging evidence suggests that circular RNAs (circRNAs) are involved in the regulation of tumourigenesis and progression of a variety of malignant tumours. In this study, we aimed to identify laryngeal squamous cell carcinoma (LSCC)-specific circRNAs and explore their biological functions and underlying molecular mechanisms. Employing microarray and qRT-PCR, hsa_circ_0000825 was found to be significantly increased in LSCC tissues versus para-cancerous tissues. High hsa_circ_0000825 expression was positively associated with advanced clinical stages, lymph node metastasis, and poor survival. Furthermore, the overexpression of hsa_circ_0000825 in TU177 and AMC-HN-8 cells promoted cell proliferation. Transwell assays showed enhanced migration and invasion of TU177 and AMC-HN-8 cells upon overexpression of hsa_circ_0000825. Conversely, the knockdown of hsa_circ_0000825 had the opposite effect. Xenograft tumours in BALB/c nude mice derived from hsa_circ_0000825-overexpressed TU177 cells showed greater volume and weight than those derived from control TU177 cells. Mechanistically, nuclear-cytoplasmic fractionation assay confirmed that hsa_circ_0000825 was mainly located in the cytoplasm of TU177 and AMC-HN-8 cells. The AGO2-RNA immunoprecipitation (RIP) assay revealed that hsa_circ_0000825 was significantly enriched in the AGO2-precipitated complex in both TU177 and AMC-HN-8 cells, suggesting that this circRNA may function via a competitive endogenous RNA (ceRNA) mechanism. Next, bioinformatics analysis, biotinylated-oligo pull-down assay and dual-luciferase reporter assay verified that miR-766 could be sponged by hsa_circ_0000825 and also target 3'UTR of HOXD10 mRNA. Moreover, miR-766 was shown to be involved in the pro-oncogenic effect of hsa_circ_0000825. This occurred via the mediation of hsa_circ_0000825-enhanced HOXD10 mRNA by the ceRNA mechanism in TU177 and AMC-HN-8 cells. Besides, RNA-binding protein (RBP) ELAVL1 interacted with hsa_circ_0000825 in TU177 and AMC-HN-8 cells, as revealed through bioinformatics analysis, biotinylated-oligo pull-down assays, and RIP assays. ELAVL1 knockdown decreased cell proliferation by 38 % and 34 % in hsa_circ_0000825-overexpressed TU177 and AMC-HN-8 cells (P < 0.05). Similarly, ELAVL1 was involved in the pro-migration and pro-invasion effects of hsa_circ_0000825 overexpression. In addition, comprehensive analysis of mRNA-seq in hsa_circ_0000825-overexpressed TU177 cells, as well as catRAPID and TCGA databases, suggested that ITGB2, HOXD10, and MTCL1 might be crucial downstream target mRNAs of ELAVL1 in LSCC, participating in the hsa_circ_0000825-ELAVL1 axis pro-oncogenic effect. Taken together, hsa_circ_0000825 plays a pro-oncogenic role in LSCC via the miR-766/HOXD10 axis and ELAVL1 and may serve as a promising specific biomarker and therapeutic target for LSCC.
Collapse
Affiliation(s)
- Miaomiao Yu
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huan Cao
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianwang Yang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tao Liu
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoshan Wang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
17
|
Zuo Y, Liu W, Jin Y, Pan Y, Fan T, Fu X, Guo J, Tan S, He J, Yang Y, Li Z, Yang C, Peng Y. C2CDB: an advanced platform integrating comprehensive information and analysis tools of cancer-related circRNAs. BIOINFORMATICS ADVANCES 2024; 4:vbae112. [PMID: 39246384 PMCID: PMC11379471 DOI: 10.1093/bioadv/vbae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/04/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Motivation Circular RNAs (circRNAs) play important roles in gene expression and their involvement in tumorigenesis is emerging. circRNA-related database is a powerful tool for researchers to investigate circRNAs. However, existing databases lack advanced platform integrating comprehensive information and analysis tools of cancer-related circRNAs. Results We developed a comprehensive platform called CircRNA to Cancer Database (C2CDB), encompassing 318 158 cancer-related circRNAs expressed in tumors and adjacent tissues across 30 types of cancers. C2CDB provides basic details such as sequence and expression levels of circRNAs, as well as crucial insights into biological mechanisms, including miRNA binding, RNA-binding protein interaction, coding potential, base modification, mutation, and secondary structure. Moreover, C2CDB collects an extensive compilation of published literature on cancer circRNAs, extracting and presenting pivotal content encompassing biological functions, underlying mechanisms, and molecular tools in these studies. Additionally, C2CDB offers integrated tools to analyse three potential mechanisms: circRNA-miRNA ceRNA interaction, circRNA encoding, and circRNA biogenesis, facilitating investigators with convenient access to highly reliable information. To enhance clarity and organization, C2CDB has meticulously curated and integrated the previously chaotic nomenclature of circRNAs, addressing the prevailing confusion and ambiguity surrounding their designations. Availability and implementation C2CDB is freely available at http://pengyonglab.com/c2cdb.
Collapse
Affiliation(s)
- Yuanli Zuo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Wenrong Liu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yang Jin
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yitong Pan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Ting Fan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xin Fu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Jiawei Guo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Shuangyan Tan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Juan He
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yang Yang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Zhang Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Chenyu Yang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
18
|
Zhang J, Luo Z, Zheng Y, Duan M, Qiu Z, Huang C. CircRNA as an Achilles heel of cancer: characterization, biomarker and therapeutic modalities. J Transl Med 2024; 22:752. [PMID: 39127679 DOI: 10.1186/s12967-024-05562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs characterized by their lack of 5' caps and 3' poly(A) tails. These molecules have garnered substantial attention from the scientific community. A wide range of circRNA types has been found to be expressed in various tissues of the human body, exhibiting unique characteristics such as high abundance, remarkable stability, and tissue-specific expression patterns. These attributes, along with their detectability in liquid biopsy samples such as plasma, position circRNAs an ideal choice as cancer diagnostic and prognostic biomarkers. Additionally, several studies have reported that the functions of circRNAs are associated with tumor proliferation, metastasis, and drug resistance. They achieve this through various mechanisms, including modulation of parental gene expression, regulation of gene transcription, acting as microRNA (miRNA) sponges, and encoding functional proteins. In recent years, a large number of studies have focused on synthesizing circRNAs in vitro and delivering them to tumor tissue to exert its effects in inhibit tumor progression. Herein, we briefly discuss the biogenesis, characteristics, functions, and detection of circRNAs, emphasizing their clinical potential as biomarkers for cancer diagnosis and prognosis. We also provide an overview the recent techniques for synthesizing circRNAs and delivery strategies, and outline the application of engineered circRNAs in clinical cancer therapy.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Zai Luo
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China.
| | - Yang Zheng
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Mingyu Duan
- Department of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Road, Songjiang District, Shanghai, 201600, China
| | - Zhengjun Qiu
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
19
|
Hu J, Li X, Xu K, Chen J, Zong S, Zhang H, Li H, Zhang G, Guo Z, Zhao X, Jiang Y, Jing Z. CircVPS8 promotes the malignant phenotype and inhibits ferroptosis of glioma stem cells by acting as a scaffold for MKRN1, SOX15 and HNF4A. Oncogene 2024; 43:2679-2695. [PMID: 39098847 DOI: 10.1038/s41388-024-03116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Exciting breakthroughs have been achieved in the field of glioblastoma with therapeutic interventions targeting specific ferroptosis targets. Nonetheless, the precise mechanisms through which circRNAs regulate the ferroptosis pathway have yet to be fully elucidated. Here we have identified a novel circRNA, circVPS8, which is highly expressed in glioblastoma. Our findings demonstrated that circVPS8 enhances glioma stem cells' viability, proliferation, sphere-forming ability, and stemness. Additionally, it inhibits ferroptosis in GSCs. In vivo, experiments further supported the promotion of glioblastoma growth by circVPS8. Mechanistically, circVPS8 acts as a scaffold, binding to both MKRN1 and SOX15, thus facilitating the ubiquitination of MKRN1 and subsequent degradation of SOX15. Due to competitive binding, the ubiquitination ability of MKRN1 towards HNF4A is reduced, leading to elevated HNF4A expression. Increased HNF4A expression, along with decreased SOX15 expression, synergistically inhibits ferroptosis in glioblastoma. Overall, our study highlights circVPS8 as a promising therapeutic target and provides valuable insights for clinically targeted therapy of glioblastoma.
Collapse
Affiliation(s)
- Jinpeng Hu
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China
| | - Xinqiao Li
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China
| | - Kai Xu
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China
- Department of Neurosurgery, The Central Hospital of Dalian University of Technology, Dalian, Liaoning, 116000, China
| | - Junhua Chen
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China
| | - Shengliang Zong
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China
| | - Haiying Zhang
- International Education College, Liaoning University of Traditional Chinese Medicine, NO. 79 Chongshan East Road, Shenyang, Liaoning, 110042, China
| | - Hao Li
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China
| | - Guoqing Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China
| | - Zhengting Guo
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China
| | - Xiang Zhao
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China
| | - Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155 North Nanjing Street, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
20
|
Liu C, Zou Z, Lu S, Jin K, Shen Y, Huang T, Li W, Zhou G. CircPKN2 promotes ferroptosis in bladder cancer by promoting the ubiquitination of Stearoyl-CoA Desaturase 1. Cancer Gene Ther 2024; 31:1251-1265. [PMID: 38802550 DOI: 10.1038/s41417-024-00784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Bladder cancer (BC) is one of the most common malignancies in the male urinary system and currently lacks an optimal treatment strategy. To elucidate the pathogenic mechanisms of BC from the perspective of circular RNAs, we conducted this study. Building upon our previous research, a novel circRNA, circPKN2, captured our interest due to its significant downregulation in BC, and its close association with the prognosis of BC patients. Our research findings indicate that circPKN2 can inhibit the proliferation and migration of BC cells in vitro. Furthermore, we discovered that circPKN2 exerts its anti-cancer effects in BC by promoting ferroptosis. Mechanistic studies revealed that circPKN2 recruits STUB1 to facilitate the ubiquitination of SCD1, thereby suppressing the WNT pathway and promoting ferroptosis in BC. Additionally, our research unveiled the regulatory role of the splicing factor QKI in the biogenesis of circPKN2. Animal studies demonstrated that circPKN2 enhances ferroptosis in BC cells in vivo, inhibiting tumor growth and metastasis. The discovery of the anti-cancer factor circPKN2 holds promise for providing new therapeutic targets in the prevention and treatment of BC.
Collapse
Affiliation(s)
- Changkun Liu
- Department of Urology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
| | - Zhuo Zou
- Department of Urology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Shengming Lu
- Department of Urology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Kun Jin
- Department of Urology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Ye Shen
- Department of Urology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Tianbao Huang
- Department of Urology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Weijian Li
- Department of Urology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Guangchen Zhou
- Department of Urology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
21
|
Shi R, Zhao R, Shen Y, Wei S, Zhang T, Zhang J, Shu W, Cheng S, Teng H, Wang H. IGF2BP2-modified circular RNA circCHD7 promotes endometrial cancer progression via stabilizing PDGFRB and activating JAK/STAT signaling pathway. Cancer Gene Ther 2024; 31:1221-1236. [PMID: 38778089 PMCID: PMC11327104 DOI: 10.1038/s41417-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Circular RNAs (circRNAs) represent a class of covalently closed, single-stranded RNAs and have been linked to cancer progression. N6-methyladenosine (m6A) methylation is a ubiquitous RNA modification in cancer cells. Increasing evidence suggests that m6A can mediate the effects of circRNAs in cancer biology. In contrast, the post-transcriptional systems of m6A and circRNA in the progression of endometrial cancer (EC) remain obscure. The current study identified a novel circRNA with m6A modification, hsa_circ_0084582 (circCHD7), which was upregulated in EC tissues. Functionally, circCHD7 was found to promote the proliferation of EC cells. Mechanistically, circCHD7 interacted with insulin-like growth factor 2 mRNA-binding protein (IGF2BP2) to amplify its enrichment. Moreover, circCHD7 increased the mRNA stability of platelet-derived growth factor receptor beta (PDGFRB) in an m6A-dependent manner, thereby enhancing its expression. In addition, the circCHD7/IGF2BP2/PDGFRB axis activated the JAK/STAT signaling pathway and promoted EC cell proliferation. In conclusion, these findings provide new insights into the regulation of circRNA-mediated m6A modification, and the new "circCHD7-PDGFRB" model of regulation offers new perspectives on circCHD7 as a potential target for EC therapy.
Collapse
Affiliation(s)
- Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Yan Shen
- Health Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Sitian Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Tangansu Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Wan Shu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Shuangshuang Cheng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Hua Teng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China.
| |
Collapse
|
22
|
Li F, Li W. Readers of RNA Modification in Cancer and Their Anticancer Inhibitors. Biomolecules 2024; 14:881. [PMID: 39062595 PMCID: PMC11275166 DOI: 10.3390/biom14070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer treatment has always been a challenge for humanity. The inadequacies of current technologies underscore the limitations of our efforts against this disease. Nevertheless, the advent of targeted therapy has introduced a promising avenue, furnishing us with more efficacious tools. Consequently, researchers have turned their attention toward epigenetics, offering a novel perspective in this realm. The investigation of epigenetics has brought RNA readers to the forefront, as they play pivotal roles in recognizing and regulating RNA functions. Recently, the development of inhibitors targeting these RNA readers has emerged as a focal point in research and holds promise for further strides in targeted therapy. In this review, we comprehensively summarize various types of inhibitors targeting RNA readers, including non-coding RNA (ncRNA) inhibitors, small-molecule inhibitors, and other potential inhibitors. We systematically elucidate their mechanisms in suppressing cancer progression by inhibiting readers, aiming to present inhibitors of readers at the current stage and provide more insights into the development of anticancer drugs.
Collapse
Affiliation(s)
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
23
|
Ning F, Du L, Li J, Wu T, Zhou J, Chen Z, Hu X, Zhang Y, Luan X, Xin H, Yuan C, Zhang X. The deubiquitinase USP5 promotes cholangiocarcinoma progression by stabilizing YBX1. Life Sci 2024; 348:122674. [PMID: 38692507 DOI: 10.1016/j.lfs.2024.122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
AIMS Ubiquitin specific peptidase 5 (USP5), a member of deubiquitinating enzymes, has garnered significant attention for its crucial role in cancer progression. This study aims to explore the role of USP5 and its potential molecular mechanisms in cholangiocarcinoma (CCA). MAIN METHODS To explore the effect of USP5 on CCA, gain-of-function and loss-of-function assays were conducted in human CCA cell lines RBE and HCCC9810. The CCK8, colony-forming assay, EDU, flow cytometry, transwell assay and xenografts were used to assess cell proliferation, migration and tumorigenesis. Western blot and immunohistochemistry were performed to measure the expression of related proteins. Immunoprecipitation and immunofluorescence were applied to identify the interaction between USP5 and Y box-binding protein 1 (YBX1). Ubiquitination assays and cycloheximide chase assays were carried out to confirm the effect of USP5 on YBX1. KEY FINDINGS We found USP5 is highly expressed in CCA tissues, and upregulated USP5 is required for the cancer progression. Knockdown of USP5 inhibited cell proliferation, migration and epithelial-mesenchymal transition (EMT) in vitro, along with suppressed xenograft tumor growth and metastasis in vivo. Mechanistically, USP5 could interact with YBX1 and stabilize YBX1 by deubiquitination in CCA cells. Additionally, silencing of USP5 hindered the phosphorylation of YBX1 at serine 102 and its subsequent translocation to the nucleus. Notably, the effect induced by USP5 overexpression in CCA cells was reversed by YBX1 silencing. SIGNIFICANCE Our findings reveal that USP5 is required for cell proliferation, migration and EMT in CCA by stabilizing YBX1, suggesting USP5-YBX1 axis as a promising therapeutic target for CCA.
Collapse
Affiliation(s)
- Fengling Ning
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Ling Du
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Jiayang Li
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Tiangang Wu
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Jiacheng Zhou
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Zihui Chen
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Xuetao Hu
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Yuai Zhang
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China.
| | - Chunyan Yuan
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China.
| |
Collapse
|
24
|
Bracken CP, Goodall GJ, Gregory PA. RNA regulatory mechanisms controlling TGF-β signaling and EMT in cancer. Semin Cancer Biol 2024; 102-103:4-16. [PMID: 38917876 DOI: 10.1016/j.semcancer.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a major contributor to metastatic progression and is prominently regulated by TGF-β signalling. Both EMT and TGF-β pathway components are tightly controlled by non-coding RNAs - including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) - that collectively have major impacts on gene expression and resulting cellular states. While miRNAs are the best characterised regulators of EMT and TGF-β signaling and the miR-200-ZEB1/2 feedback loop plays a central role, important functions for lncRNAs and circRNAs are also now emerging. This review will summarise our current understanding of the roles of non-coding RNAs in EMT and TGF-β signaling with a focus on their functions in cancer progression.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
25
|
Wu M, Yuan H, Zou W, Xu S, Liu S, Gao Q, Guo Q, Han Y, An X. Circular RNAs: characteristics, functions, mechanisms, and potential applications in thyroid cancer. Clin Transl Oncol 2024; 26:808-824. [PMID: 37864677 DOI: 10.1007/s12094-023-03324-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/08/2023] [Indexed: 10/23/2023]
Abstract
Thyroid cancer (TC) is one of the most common endocrine malignancies, and its incidence has increased globally. Despite extensive research, the underlying molecular mechanisms of TC remain partially understood, warranting continued exploration of molecular markers for diagnostic and prognostic applications. Circular RNAs (circRNAs) have recently garnered significant attention owing to their distinct roles in cancers. This review article introduced the classification and biological functions of circRNAs and summarized their potential as diagnostic and prognostic markers in TC. Further, the interplay of circRNAs with PI3K/Akt/mTOR, Wnt/β-catenin, MAPK/ERK, Notch, JAK/STAT, and AMPK pathways is elaborated upon. The article culminates with an examination of circRNA's role in drug resistance of TC and highlights the challenges in circRNA research in TC.
Collapse
Affiliation(s)
- Mengmeng Wu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Haibin Yuan
- Department of Health Management, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Weiwei Zou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Shujian Xu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Song Liu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Qiang Gao
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Qingqun Guo
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Yong Han
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China.
| | - Xingguo An
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China.
| |
Collapse
|
26
|
Jiang T, Qi J, Xue Z, Liu B, Liu J, Hu Q, Li Y, Ren J, Song H, Xu Y, Xu T, Fan R, Song J. The m 6A modification mediated-lncRNA POU6F2-AS1 reprograms fatty acid metabolism and facilitates the growth of colorectal cancer via upregulation of FASN. Mol Cancer 2024; 23:55. [PMID: 38491348 PMCID: PMC10943897 DOI: 10.1186/s12943-024-01962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have emerged as key players in tumorigenesis and tumour progression. However, the biological functions and potential mechanisms of lncRNAs in colorectal cancer (CRC) are unclear. METHODS The novel lncRNA POU6F2-AS1 was identified through bioinformatics analysis, and its expression in CRC patients was verified via qRT-PCR and FISH. In vitro and in vivo experiments, such as BODIPY staining, Oil Red O staining, triglyceride (TAG) assays, and liquid chromatography mass spectrometry (LC-MS) were subsequently performed with CRC specimens and cells to determine the clinical significance, and functional roles of POU6F2-AS1. Biotinylated RNA pull-down, RIP, Me-RIP, ChIP, and patient-derived organoid (PDO) culture assays were performed to confirm the underlying mechanism of POU6F2-AS1. RESULTS The lncRNA POU6F2-AS1 is markedly upregulated in CRC and associated with adverse clinicopathological features and poor overall survival in CRC patients. Functionally, POU6F2-AS1 promotes the growth and lipogenesis of CRC cells both in vitro and in vivo. Mechanistically, METTL3-induced m6A modification is involved in the upregulation of POU6F2-AS1. Furthermore, upregulated POU6F2-AS1 could tether YBX1 to the FASN promoter to induce transcriptional activation, thus facilitating the growth and lipogenesis of CRC cells. CONCLUSIONS Our data revealed that the upregulation of POU6F2-AS1 plays a critical role in CRC fatty acid metabolism and might provide a novel promising biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Junwen Qi
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Zhenyu Xue
- Department of Radiation Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Bowen Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jianquan Liu
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Qihang Hu
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yuqiu Li
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jing Ren
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Hu Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Teng Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Ruizhi Fan
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
27
|
Xu T, Xiong M, Hong Q, Pan B, Xu M, Wang Y, Sun Y, Sun H, Pan Y, Wang S, He B. Hsa_circ_0007990 promotes breast cancer growth via inhibiting YBX1 protein degradation to activate E2F1 transcription. Cell Death Dis 2024; 15:153. [PMID: 38378679 PMCID: PMC10879541 DOI: 10.1038/s41419-024-06527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed malignant tumour in females worldwide. Although remarkable advances in early detection and treatment strategies have led to decreased mortality, recurrence and metastasis remain the major causes of cancer death in BC patients. Increasing evidence has demonstrated that circular RNAs (circRNAs) play critical roles in cancer progression. However, the detailed biological functions and molecular mechanisms of circRNAs in BC are unclear. The aim of this study was to investigate the possible role of circRNAs in the progression of BC. Differentially expressed circRNAs in BC were identified by integrating breast tumour-associated somatic CNV data and circRNA high-throughput sequencing. Aberrant hsa_circ_0007990 expression and host gene copy number were detected in BC cell lines via quantitative polymerase chain reaction (qPCR). The expression level of hsa_circ_0007990 in BC tissues was validated by in situ hybridization (ISH). Loss- and gain-of-function experiments were performed in vitro and in vivo, respectively, to explore the potential biological function of hsa_circ_0007990 in BC. The underlying mechanisms of hsa_circ_0007990 were investigated through MS2 RNA pull-down, RNA immunoprecipitation, RNA fluorescence in situ hybridization, immunofluorescence, chromatin immunoprecipitation and luciferase reporter assays. The levels of hsa_circ_0007990 were elevated in BC tissues and cell lines, an effect that was partly due to host gene copy number gains. Functional assays showed that hsa_circ_0007990 promoted BC cell growth. Mechanistically, hsa_circ_0007990 could bind to YBX1 and inhibit its degradation by preventing ubiquitin/proteasome-dependent degradation, thus enhancing the expression of the cell cycle-associated gene E2F1. Rescue experiments suggested that hsa_circ_0007990 promoted BC progression through YBX1. In general, our study demonstrated that hsa_circ_0007990 modulates the ubiquitination and degradation of YBX1 protein and further regulates E2F1 expression to promote BC progression. We explored the possible function and molecular mechanism of hsa_circ_0007990 in BC and identified a novel candidate target for the treatment of BC.
Collapse
Affiliation(s)
- Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengqiu Xiong
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiwei Hong
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bei Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mu Xu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yalan Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
- Jiangsu Cancer Personalized Medicine Collaborative Innovation Center, Nanjing, Jiangsu, China.
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
28
|
Fu X, Song L, Chen L, Jin S, Duan Z, Zhang B, Xing Y, Wang Y. Mechanistic insights into aniline-induced liver injury: Role of the mmu_circ_26984/Myh9/NLRP3 axis and modulation by N-acetylcysteine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115826. [PMID: 38118330 DOI: 10.1016/j.ecoenv.2023.115826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Aniline is a widely used chemical. Chronic or high-dose exposure to aniline can lead to hepatocellular damage. Although the hepatic pathogenicity of aniline has been established in previous studies, studies involving pathogenic genes during aniline-induced liver injury are limited. Our study first discovered and identified the role and mechanism underlying a new circRNA mmu_circ_26984 in aniline-induced chemical liver injury. Further, we discuss the protective effect of N-acetylcysteine (NAC) in this pathway. After constructing in vitro and in vivo models of aniline treatment, we screened the circRNA with significant differences in expression in AML12 cells from control and aniline-treated groups by circRNA microarray analysis. Next, using RNA pulldown, liquid chromatography-mass spectrometry (LC-MS), and RNA immunoprecipitation, we analyzed the relationship between mmu_circ_26984 and myosin heavy chain 9 (Myh9). Subsequently, we determined the specific mechanism of action of mmu_circ_26984 and Myh9 in aniline-induced liver injury and the protective effect of NAC against aniline-induced liver injury process using Cell Counting Kit-8, Western blot, RNA extraction, a reverse transcription quantitative polymerase chain reaction (RT-qPCR), fluorescence in situ hybridization, immunohistochemistry, and immunofluorescence. The expression of mmu_circ_26984 was significantly increased in liver tissues and AML12 cells of aniline-treated mice compared with the control group. This high expression of mmu_circ_26984 increased the expression of injury-related inflammatory factors, such as NLRP3, Caspase-1, IL-18, and IL-1β in vivo and ex vivo, which exacerbated the level of liver injury. The interaction of mmu_circ_26984 with Myh9 also affected the course of liver injury. Mmu_circ_26984 overexpression and reduced treatment affected the levels of Myh9 expression in AML12 cells, as well as downstream inflammatory factors associated with injury, such as NLRP3. In addition, NAC reduced the process of liver injury mediated by the mmu_circ_26984/Myh9/NLRP3 axis. In conclusion, mmu_circ_26984 is a potential molecular marker and therapeutic target in the process of aniline-induced liver injury that can mediate aniline-exposure-induced liver injury via modulation of the mmu_circ_26984/Myh9/NLRP3 axis, and NAC can effectively attenuate the effect of this liver injury.
Collapse
Affiliation(s)
- Xinyu Fu
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Li Song
- Department of Occupational Poisoning, Occupational Disease Research Institute of Heilongjiang Province, Harbin 150010, China
| | - Lili Chen
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Shuo Jin
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Zhongliang Duan
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Bo Zhang
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Yuechen Xing
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Yue Wang
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China.
| |
Collapse
|
29
|
Zhou C, Li W, Liang Z, Wu X, Cheng S, Peng J, Zeng K, Li W, Lan P, Yang X, Xiong L, Zeng Z, Zheng X, Huang L, Fan W, Liu Z, Xing Y, Kang L, Liu H. Mutant KRAS-activated circATXN7 fosters tumor immunoescape by sensitizing tumor-specific T cells to activation-induced cell death. Nat Commun 2024; 15:499. [PMID: 38216551 PMCID: PMC10786880 DOI: 10.1038/s41467-024-44779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024] Open
Abstract
Mutant KRAS (KRASMUT) is often exploited by cancers to shape tumor immunity, but the underlying mechanisms are not fully understood. Here we report that tumor-specific cytotoxic T lymphocytes (CTLs) from KRASMUT cancers are sensitive to activation-induced cell death (AICD). circATXN7, an NF-κB-interacting circular RNA, governs T cell sensitivity to AICD by inactivating NF-κB. Mechanistically, histone lactylation derived from KRASMUT tumor cell-produced lactic acid directly activates transcription of circATXN7, which binds to NF-κB p65 subunit and masks the p65 nuclear localization signal motif, thereby sequestering it in the cytoplasm. Clinically, circATXN7 upregulation in tumor-specific CTLs correlates with adverse clinical outcomes and immunotherapeutic resistance. Genetic ablation of circAtxn7 in CD8+ T cells leads to mutant-selective tumor inhibition, while also increases anti-PD1 efficacy in multiple tumor models in female mice. Furthermore, targeting circATXN7 in adoptively transferred tumor-reactive CTLs improves their antitumor activities. These findings provide insight into how lymphocyte-expressed circRNAs contribute to T-cell fate decisions and anticancer immunotherapies.
Collapse
Affiliation(s)
- Chi Zhou
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenxin Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhenxing Liang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xianrui Wu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sijing Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianhong Peng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kaixuan Zeng
- Precision Medical Research Institute, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi'an, China
| | - Weihao Li
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ping Lan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin Yang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Xiong
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziwei Zeng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaobin Zheng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenhua Fan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhanzhen Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Liang Kang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Huashan Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
30
|
Dinh NTM, Nguyen TM, Park MK, Lee CH. Y-Box Binding Protein 1: Unraveling the Multifaceted Role in Cancer Development and Therapeutic Potential. Int J Mol Sci 2024; 25:717. [PMID: 38255791 PMCID: PMC10815159 DOI: 10.3390/ijms25020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Y-box binding protein 1 (YBX1), a member of the Cold Shock Domain protein family, is overexpressed in various human cancers and is recognized as an oncogenic gene associated with poor prognosis. YBX1's functional diversity arises from its capacity to interact with a broad range of DNA and RNA molecules, implicating its involvement in diverse cellular processes. Independent investigations have unveiled specific facets of YBX1's contribution to cancer development. This comprehensive review elucidates YBX1's multifaceted role in cancer across cancer hallmarks, both in cancer cell itself and the tumor microenvironment. Based on this, we proposed YBX1 as a potential target for cancer treatment. Notably, ongoing clinical trials addressing YBX1 as a target in breast cancer and lung cancer have showcased its promise for cancer therapy. The ramp up in in vitro research on targeting YBX1 compounds also underscores its growing appeal. Moreover, the emerging role of YBX1 as a neural input is also proposed where the high level of YBX1 was strongly associated with nerve cancer and neurodegenerative diseases. This review also summarized the up-to-date advanced research on the involvement of YBX1 in pancreatic cancer.
Collapse
Affiliation(s)
- Ngoc Thi Minh Dinh
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| |
Collapse
|
31
|
Chen Y, Jiang Z, Yang Y, Zhang C, Liu H, Wan J. The functions and mechanisms of post-translational modification in protein regulators of RNA methylation: Current status and future perspectives. Int J Biol Macromol 2023; 253:126773. [PMID: 37690652 DOI: 10.1016/j.ijbiomac.2023.126773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
RNA methylation, an epigenetic modification that does not alter gene sequence, may be important to diverse biological processes. Protein regulators of RNA methylation include "writers," "erasers," and "readers," which respectively deposit, remove, and recognize methylated RNA. RNA methylation, particularly N6-methyladenosine (m6A), 5-methylcytosine (m5C), N3-methylcytosine (m3C), N1-methyladenosine (m1A) and N7-methylguanosine (m7G), has been suggested as disease therapeutic targets. Despite advances in the structure and pharmacology of RNA methylation regulators that have improved drug discovery, regulating these proteins by various post-translational modifications (PTMs) has received little attention. PTM modifies protein structure and function, affecting all aspects of normal biology and pathogenesis, including immunology, cell differentiation, DNA damage repair, and tumors. It is becoming evident that RNA methylation regulators are also regulated by diverse PTMs. PTM of RNA methylation regulators induces their covalent linkage to new functional groups, hence modifying their activity and function. Mass spectrometry has identified many PTMs on protein regulators of RNA methylation. In this review, we describe the functions and PTM of protein regulators of RNA methylation and summarize the recent advances in the regulatory mode of human disease and its underlying mechanisms.
Collapse
Affiliation(s)
- Youming Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zuli Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
32
|
Zhang M, Zhang Z, Tian X, Zhang E, Wang Y, Tang J, Zhao J. NEDD4L in human tumors: regulatory mechanisms and dual effects on anti-tumor and pro-tumor. Front Pharmacol 2023; 14:1291773. [PMID: 38027016 PMCID: PMC10666796 DOI: 10.3389/fphar.2023.1291773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Tumorigenesis and tumor development are closely related to the abnormal regulation of ubiquitination. Neural precursor cell expressed developmentally downregulated 4-like (NEDD4L), an E3 ubiquitin ligase critical to the ubiquitination process, plays key roles in the regulation of cancer stem cells, as well as tumor cell functions, including cell proliferation, apoptosis, cell cycle regulation, migration, invasion, epithelial-mesenchymal transition (EMT), and tumor drug resistance, by controlling subsequent protein degradation through ubiquitination. NEDD4L primarily functions as a tumor suppressor in several tumors but also plays an oncogenic role in certain tumors. In this review, we comprehensively summarize the relevant signaling pathways of NEDD4L in tumors, the regulatory mechanisms of its upstream regulatory molecules and downstream substrates, and the resulting functional alterations. Overall, therapeutic strategies targeting NEDD4L to treat cancer may be feasible.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Tian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Enchong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yichun Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Tang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianzhu Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Wang S, Wang Y, Li Q, Li X, Feng X, Zeng K. The novel β-TrCP protein isoform hidden in circular RNA confers trastuzumab resistance in HER2-positive breast cancer. Redox Biol 2023; 67:102896. [PMID: 37783059 PMCID: PMC10551893 DOI: 10.1016/j.redox.2023.102896] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023] Open
Abstract
Trastuzumab notably improves the outcome of human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients, however, resistance to trastuzumab remains a major hurdle to clinical treatment. In the present study, we identify a circular RNA intimately linked to trastuzumab resistance. circ-β-TrCP, derived from the back-splicing of β-TrCP exon 7 and 13, confers trastuzumab resistance by regulating NRF2-mediated antioxidant pathway in a KEAP1-independent manner. Concretely, circ-β-TrCP encodes a novel truncated 343-amino acid peptide located in the nucleus, referred as β-TrCP-343aa, which competitively binds to NRF2, blocks SCFβ-TrCP-mediated NRF2 proteasomal degradation, and this protective effect of β-TrCP-343aa on NRF2 protein requires GSK3 activity. Subsequently, the elevated NRF2 transcriptionally upregulates a cohort of antioxidant genes, giving rise to trastuzumab resistance. Moreover, the translation ability of circ-β-TrCP is inhibited by eIF3j under both basal and oxidative stress conditions, and eIF3j is transcriptionally repressed by NRF2, thus forming a positive feedback circuit between β-TrCP-343aa and NRF2, expediting trastuzumab resistance. Collectively, our data demonstrate that circ-β-TrCP-encoded β-TrCP protein isoform drives HER2-targeted therapy resistance in a NRF2-dependent manner, which provides potential therapeutic targets for overcoming trastuzumab resistance.
Collapse
Affiliation(s)
- Shengting Wang
- Clinical Medical Center, Xi'an Peihua University, Xi'an, 710125, Shaanxi, China
| | - Yufang Wang
- Clinical Medical Center, Xi'an Peihua University, Xi'an, 710125, Shaanxi, China
| | - Qian Li
- Clinical Medical Center, Xi'an Peihua University, Xi'an, 710125, Shaanxi, China
| | - Xiaoming Li
- Clinical Medical Center, Xi'an Peihua University, Xi'an, 710125, Shaanxi, China
| | - Xinghua Feng
- Clinical Medical Center, Xi'an Peihua University, Xi'an, 710125, Shaanxi, China
| | - Kaixuan Zeng
- Precision Medical Research Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
34
|
Li K, Guo J, Ming Y, Chen S, Zhang T, Ma H, Fu X, Wang J, Liu W, Peng Y. A circular RNA activated by TGFβ promotes tumor metastasis through enhancing IGF2BP3-mediated PDPN mRNA stability. Nat Commun 2023; 14:6876. [PMID: 37898647 PMCID: PMC10613289 DOI: 10.1038/s41467-023-42571-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
Metastasis is the leading cause of cancer-related death, where TGFβ-induced epithelial-mesenchymal transition (EMT) process confers on cancer cells increased metastatic potential. However, the involvement of circRNAs in this process is still obscure. Here, we identify a TGFβ-induced circRNA called circITGB6 as an indispensable factor during the TGFβ-mediated EMT process. circITGB6 is significantly upregulated in metastatic cancer samples and its higher abundance is closely correlated to worse prognosis of colorectal cancer (CRC) patients. Through gain- and loss-of-function assays, circITGB6 is found to potently promote EMT process and tumor metastasis in various models in vitro and in vivo. Mechanistically, circITGB6 enhances the mRNA stability of PDPN, an EMT-promoting gene, by directly interacting with IGF2BP3. Notably, interfering circITGB6 with PEI-coated specific siRNA effectively represses liver metastasis. Therefore, our study reveals the function of a TGFβ-regulated circRNA in tumor metastasis and suggests that targeting circITGB6 is a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Ke Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiawei Guo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuang Chen
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Zhang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hulin Ma
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Fu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Wang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenrong Liu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, China.
| |
Collapse
|
35
|
Yao X, Liu H, Wang Z, Lu F, Chen W, Feng Q, Miao Y, Zhang J, Wang Y, Chen Y, Xue L, Liu Y, Chen L, Zhang Q. Circular RNA EIF3I promotes papillary thyroid cancer progression by interacting with AUF1 to increase Cyclin D1 production. Oncogene 2023; 42:3206-3218. [PMID: 37697064 DOI: 10.1038/s41388-023-02830-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Circular RNAs (circRNAs) play an important role in regulating the development of human cancers through diverse biological functions. However, the exact molecular mechanisms underlying the role of circRNAs in papillary thyroid cancer (PTC) remain largely unknown. Here, we found that hsa_circ_0011385, designated as circular eukaryotic translation initiation factor 3 subunit I (circEIF3I), preferentially localized in the cytoplasm of PTC cells and was more stable than its linear counterpart, EIF3I. Gain- and loss-of-function studies indicated that circEIF3I promoted PTC progression by facilitating cell proliferation, cell cycle, cell migration, and invasion in vitro, as well as PTC cell proliferation in vivo. Mechanistically, circEIF3I interacted with AU-rich element (ARE) RNA-binding factor 1 (AUF1) in the cytoplasm of PTC cells, thus reducing the degradation of Cyclin D1 mRNA and increasing Cyclin D1 protein production, ultimately resulting in PTC progression. Collectively, our results demonstrate the vital role of circEIF3I in PTC progression, supporting its significance as a potential therapeutic target.
Collapse
Affiliation(s)
- Xuelin Yao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hanyuan Liu
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zhen Wang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Fangting Lu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wenying Chen
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qing Feng
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yahu Miao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jie Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yanlei Wang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ye Chen
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Liping Xue
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Qiu Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
36
|
Datkhayev UM, Rakhmetova V, Shepetov AM, Kodasbayev A, Datkayeva GM, Pazilov SB, Farooqi AA. Unraveling the Complex Web of Mechanistic Regulation of Versatile NEDD4 Family by Non-Coding RNAs in Carcinogenesis and Metastasis: From Cell Culture Studies to Animal Models. Cancers (Basel) 2023; 15:3971. [PMID: 37568787 PMCID: PMC10417118 DOI: 10.3390/cancers15153971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 08/13/2023] Open
Abstract
Discoveries related to an intriguing feature of ubiquitination have prompted a detailed analysis of the ubiquitination patterns in malignant cells. How the "ubiquitinome" is reshaped during multistage carcinogenesis has garnered significant attention. Seminal studies related to the structural and functional characterization of NEDD4 (Neuronal precursor cell-expressed developmentally downregulated-4) have consolidated our understanding at a new level of maturity. Additionally, regulatory roles of non-coding RNAs have further complicated the complex interplay between non-coding RNAs and the members of NEDD4 family. These mechanisms range from the miRNA-mediated targeting of NEDD4 family members to the regulation of transcriptional factors for a broader range of non-coding RNAs. Additionally, the NEDD4-mediated degradation of different proteins is modulated by lncRNAs and circRNAs. The miRNA-mediated targeting of NEDD4 family members is also regulated by circRNAs. Tremendous advancements have been made in the identification of different substrates of NEDD4 family and in the comprehensive analysis of the molecular mechanisms by which various members of NEDD4 family catalyze the ubiquitination of substrates. In this review, we have attempted to summarize the multifunctional roles of the NEDD4 family in cancer biology, and how different non-coding RNAs modulate these NEDD4 family members in the regulation of cancer. Future molecular studies should focus on the investigation of a broader drug design space and expand the scope of accessible targets for the inhibition/prevention of metastasis.
Collapse
Affiliation(s)
- Ubaidilla M. Datkhayev
- Asfendiyarov Kazakh National Medical University, Tole Bi St 94, Almaty 050000, Kazakhstan
| | | | - Abay M. Shepetov
- Department of Nephrology, Asfendiyarov Kazakh National Medical University, Tole Bi St 94, Almaty 050000, Kazakhstan;
| | - Almat Kodasbayev
- Department of Cardiovascular Surgery, Asfendiyarov Kazakh National Medical University, Tole Bi St 94, Almaty 050000, Kazakhstan
| | | | - Sabit B. Pazilov
- Department of Healthcare of Kyzylorda Region, Kyzylorda, Abay Avenue, 27, Kyzylorda 120008, Kazakhstan;
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
| |
Collapse
|